(附答案解析)人教版八年级数学下册16.3二次根式的加减(1))精选同步练习
人教版八年级下册数学 16.3 二次根式的加减 同步练习试题(附答案)

16.3 二次根式的加减 同步练习题一、填空题1.下列二次根式化简后,与的被开方数相同的有______,与的被开方数相同的有______,与的被开方数相同的有______.2.计算:(1)________; (2)__________.二、选择题3.化简后,与的被开方数相同的二次根式是( ).A .B .C .D .4.下列说法正确的是( ).A .被开方数相同的二次根式可以合并B .与可以合并C .只有根指数为2的根式才能合并D .与不能合并 5.下列计算,正确的是( ). A .B .C .D .三、计算题6.7.15,12,18,82,454,125,27,32235=+31312=-x x 4321012216188********=+5225=-a a a 26225=+xy x y 32=+.48512739-+.61224-+8. 9.10. 11.提高题一、填空题12.已知二次根式与是同类二次根式,(a +b )a 的值是______.13.与无法合并,这种说法是______的.(填“正确”或“错误”)二、选择题14.在下列二次根式中,与是同类二次根式的是( ).A .B .C .D .三、计算题 15. 16.⋅++3218121⋅---)5.04313()81412(.1878523x x x +-⋅-+xx x x 1246932b a b +4b a +33832ab b a b 26a a 223a 3a 4a .)15(2822180-+--).272(43)32(21--+17.18.四、解答题19.化简求值:,其中,.20.当时,求代数式x 2-4x +2的值.⋅+-+bb a b a a 1241.21233ab bb a aba bab a-+-y y xy x x3241+-+4=x 91=y 321-=x21.探究下面的问题:(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”. ①( ) ①( ) ①( ) ①( ) (2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.322322=+833833=+15441544=+24552455=+参考答案1. 2.(1)3.C . 4.A . 5.C . 6. 7. 8.9. 10. 11.12.1. 13.错误. 14.C . 15.16.17. 18.0. .454,125;12,27;18,82,32.)2(;33x .33.632+⋅827.23+.214x .3x .12+⋅-423411.321b a +19.原式代入得2. 20.1. 21.(1)都画“√”;(2)(n ≥2,且n 为整数);(3)证明:,32y x+=1122-=-+n n nn n n ⋅-=-=-+-=-+111)1(1223222n nn n n n n n n n n n。
数学八年级下人教新课标16.3 二次根式的加减同步练习(解析版)

16.3 二次根式的加减(带解析)一、选择题1.下列计算正确的是()A.B.C.(2-)(2+)=1 D.2.下列二次根式中,与是同类二次根式的是()A.B.C.D.3.下列各组二次根式化简后,被开方数相同的一组是()A.B.C.D.4.已知m=1+,n=1-,则代数式的值为()A.9 B.±3 C.3 D.55.m为实数,则的值一定是()A.整数B.正整数C.正数D.负数6.方程x=的根是x=()A.4-B.4+C.-4 D.7.若一个三角形的一条边的长为,其面积为6,则这条边上的高为()A.B.C.D.8.对于任意不相等的两个非负实数a和b,定义一种新的运算,则下列关于这种运算的几个结论:①;②a*b+b*a=0;③a*(b+c)=a*b+a*c;④不存在这样的实数a和b,使得a*b=0.其中正确结论的个数是()A.1个B.2个C.3个D.4个二、填空题9.计算:()= .10.若规定符号“*”的意义是a*b=ab-b2,则2*()的值是.11.设,,,…,.设,则S= (用含n的代数式表示,其中n为正整数).三、解答题12.已知a是2的算术平方根,求的正整数解.13.矩形的两条边长分别是和,求该矩形的面积和对角线的长.14.已知:如图,Rt△ABC中,∠C=90°,AC=,BC=,求(1)Rt△ABC的面积;(2)斜边AB的长.参考答案及解析1.A【解析】A、原式=2-=,故正确;B、原式==,故错误;C、原式=4-5=-1,故错误;C、=3与不是同类二次根式,故C错误;D、=2、=2,它们不是同类二次根式,故D错误.故选B.4.C【解析】m+n=2,mn=(1+)(1-)=-1,原式====3.故选C.5.C【解析】因为m2+4m+5=(m+2)2+1>1,且m为实数,故一定是正数.故选C.6.B【解析】x=+,x=+,2x=x-3x+5+,∴x=,∴x=4+.故选B.7.B【解析】设这边上的高为h,则(+1)h=6,h===6-6.故选B.8.C∴==1+-,∴S=1+1-+1+-+…+1+-=n+1-==.12.x=1或2【解析】∵a是2的算术平方根,∴a=,∴x-<2,x<3,解得x<3,∵x是正整数,∴x=1或2.13.14.(1)(2)斜边AB的长为【解析】(1)Rt△ABC的面积=AC×BC=×(+)(-)=;(2)斜边AB的长==.答:斜边AB的长为.。
人教版八年级下册:16.3 二次根式的加减(含答案解析)

人教版八年级下册:16.3 二次根式的加减同步练习题一.选择题(共13小题)1.下列计算正确的是()A.+=3B.+=C.4﹣3=1D.3+2=52.下列计算正确的是()A.2+3=5B.÷=2C.5×5=5D.=23.计算(2﹣3)(2+3)的结果是()A.B.C.﹣3D.34.与是同类二次根式的是()A.B.C.D.5.下列二次根式中,与是同类二次根式的是()A.B.C.D.6.计算的结果是()A.B.C.D.7.计算的结果是()A.B.C.D.8.已知a=+,b=﹣,那么ab的值为()A.B.C.x﹣y D.x+y9.若有意义,则的值是()A.非正数B.负数C.非负数D.正数10.设矩形的面积为S,相邻两边的长分别为a,b,已知S=2,b=,则a等于()A.2B.C.D.11.在下列各组二次根式中,是同类二次根式的是()A.和B.和C.和D.和12.若最简二次根式与最简二次根式是同类二次根式,则x的值为()A.x=0B.x=1C.x=2D.x=﹣213.若实数a、b满足b=+4,则a+的值为()A.1或3B.3C.1D.5二.填空题(共9小题)14.计算:+=.15.已知矩形的长a=,宽b=,则这个矩形的面积是.16.已知a=2+,b=2﹣,则ab(a+b)=.17.计算:×﹣4×=.18.计算:=.19.已知最简二次根式与可以合并,则a+b的值为.20.一个三角形的三边长分别为、、,则它的周长是.21.已知x=,y=,则﹣=.22.最简二次根式与是同类二次根式,则b=.三.解答题(共5小题)23.计算:24.计算:25.有一块矩形木板,木工采用如图的方式,在木板上截出两个面积分别为18dm2和32dm2的正方形木板.(1)求剩余木料的面积.(2)如果木工想从剩余的木料中截出长为1.5dm,宽为ldm的长方形木条,最多能截出块这样的木条.26.已知a=,b=(1)化简a,b;(2)求a2﹣4ab+b2的值.27.已知二次根式﹣.(1)求使得该二次根式有意义的x的取值范围;(2)已知﹣为最简二次根式,且与为同类二次根式,求x的值,并求出这两个二次根式的积.参考答案一.选择题(共13小题)1.下列计算正确的是()A.+=3B.+=C.4﹣3=1D.3+2=5【分析】根据二次根式的加减法即可求解.【解答】解;A.+=+2=3.符合题意;B.不是同类项不能合并,不符合题意;C.4﹣3=,不符合题意;D.不是同类项不能合并,不符合题意.故选:A.2.下列计算正确的是()A.2+3=5B.÷=2C.5×5=5D.=2【分析】根据二次根式的加减法对A进行判断;根据二次根式的除法法则对B、D进行判断;根据二次根式的乘法法则对C进行判断.【解答】解:A、2与3不能合并,所以A选项错误;B、原式==2,所以B选项正确;C、原式=25=25,所以C选项错误;D、原式==,所以D选项错误.故选:B.3.计算(2﹣3)(2+3)的结果是()A.B.C.﹣3D.3【分析】利用平方差公式计算.【解答】解:原式=12﹣9=3.故选:D.4.与是同类二次根式的是()A.B.C.D.【分析】根据同类二次根式的定义进行解答.【解答】解:的被开方数是2.A、原式=3,其被开方数是3,与的被开方数不同,它们不是同类二次根式,故本选项不符合题意.B、该二次根式的被开方数是6,与的被开方数不同,它们不是同类二次根式,故本选项不符合题意.C、原式=,其被开方数是3,与的被开方数不同,它们不是同类二次根式,故本选项不符合题意.D、原式=2,其被开方数是2,与的被开方数相同,它们是同类二次根式,故本选项符合题意.故选:D.5.下列二次根式中,与是同类二次根式的是()A.B.C.D.【分析】根据二次根式的性质把各个二次根式化简,根据同类二次根式的概念判断即可.【解答】解:A、=5,与不是同类二次根式;B、=,与是同类二次根式;C、与不是同类二次根式;D、=5,与不是同类二次根式;故选:B.6.计算的结果是()A.B.C.D.【分析】根据二次根式的运算法则即可求出答案.【解答】解:原式=2+3=5,故选:C.7.计算的结果是()A.B.C.D.【分析】直接化简二次根式进而合并得出答案.【解答】解:原式=9×﹣4=﹣.故选:D.8.已知a=+,b=﹣,那么ab的值为()A.B.C.x﹣y D.x+y【分析】将a、b直接代入ab,利用平方差公式求值即可.【解答】解:∵a=+,b=﹣,∴ab=(+)(﹣)=x﹣y,故选:C.9.若有意义,则的值是()A.非正数B.负数C.非负数D.正数【分析】根据二次根式的有意义的条件可求出a的范围.【解答】解:由题意可知:﹣a>0,∴原式=>0,故选:D.10.设矩形的面积为S,相邻两边的长分别为a,b,已知S=2,b=,则a等于()A.2B.C.D.【分析】利用矩形的边=面积÷邻边列式计算即可.【解答】解:a=S÷b=2÷=,故选:B.11.在下列各组二次根式中,是同类二次根式的是()A.和B.和C.和D.和【分析】根据最简二次根式与同类二次根式的定义作答.【解答】解:A、=2,被开方数是3,与的被开方数2不同,不是同类二次根式,故本选项不符合题意.B、==,被开方数是3,与的被开方数2相同,是同类二次根式,故本选项符合题意.C、=|b|,被开方数是ab,与的被开方数2ab不同,不是同类二次根式,故本选项不符合题意.D、和的被开方数分别是a﹣1、a+1,不是同类二次根式,故本选项不符合题意.故选:B.12.若最简二次根式与最简二次根式是同类二次根式,则x的值为()A.x=0B.x=1C.x=2D.x=﹣2【分析】根据题意,它们的被开方数相同,列出方程求解即可.【解答】解:根据题意,得x+4=3x,解得x=2.故选:C.13.若实数a、b满足b=+4,则a+的值为()A.1或3B.3C.1D.5【分析】根据二次根式有意义的条件:被开方数大于等于0确定a2=1,再进行化简即可求解.【解答】解:∵+有意义,∴a2=1,∴a=±1,b=4.a+=1+2=3或﹣1+2=1.故选:A.二.填空题(共9小题)14.计算:+=5.【分析】首先化简,然后再合并同类二次根式即可.【解答】解:原式=4+=5,故答案为:5.15.已知矩形的长a=,宽b=,则这个矩形的面积是4.【分析】根据矩形的面积公式列出算式,根据二次根式的乘法法则计算,得到答案.【解答】解:矩形的面积=ab=×=×4××3=4,故答案为:4.16.已知a=2+,b=2﹣,则ab(a+b)=4.【分析】根据二次根式的加法法则求出a+b,根据乘方法则求出ab,代入计算即可.【解答】解:a+b=2++2﹣=4,ab=(2+)(2﹣)=1,则ab(a+b)=4×1=4,故答案为:4.17.计算:×﹣4×=.【分析】先利用二次根式的乘法法则运算,然后把二次根式化为最简二次根式后合并即可.【解答】解:原式=﹣4×=2﹣=.故答案为.18.计算:=5﹣1.【分析】直接分母有理数进而利用二次根式的加减运算法则计算得出答案.【解答】解:原式=+4=﹣1+4=5﹣1.故答案为:5﹣1.19.已知最简二次根式与可以合并,则a+b的值为2.【分析】根据同类二次根式的概念列出方程组,解方程组求出a、b,计算即可.【解答】解:由题意得,,解得,,则a+b=1+1=2,故答案为:2.20.一个三角形的三边长分别为、、,则它的周长是+3+2.【分析】直接利用二次根式的加减运算法则计算得出答案.【解答】解:∵一个三角形的三边长分别为、、,∴它的周长是:++=+3+2.故答案为:+3+2.21.已知x=,y=,则﹣=4.【分析】直接利用二次根式的性质化简得出答案.【解答】解:∵x=,y=,∴﹣=﹣=2(+)﹣2(﹣)=4.故答案为:4.22.最简二次根式与是同类二次根式,则b=2.【分析】利用同类二次根式的定义建立方程,解方程即可.【解答】解:∵与是同类二次根式,∴2b+1=7﹣b,7﹣b>0,2b>+1>0,∴b=2,故答案为:2三.解答题(共5小题)23.计算:【分析】直接化简二次根式进而合并得出答案.【解答】解:原式=3﹣2×+×4=.24.计算:【分析】先进行二次根式的除法运算,然后把二次根式化为最简二次根式后合并即可.【解答】解:原式=+2﹣=+2﹣=2.25.有一块矩形木板,木工采用如图的方式,在木板上截出两个面积分别为18dm2和32dm2的正方形木板.(1)求剩余木料的面积.(2)如果木工想从剩余的木料中截出长为1.5dm,宽为ldm的长方形木条,最多能截出2块这样的木条.【分析】(1)根据二次根式的性质分别求出两个正方形的边长,结合图形计算得到答案;(2)求出3和范围,根据题意解答.【解答】解:(1)∵两个正方形的面积分别为18dm2和32dm2,∴这两个正方形的边长分别为3dm和4dm,∴剩余木料的面积为(4﹣3)×3=6(dm2);(2)4<3<4.5,1<<2,∴从剩余的木料中截出长为1.5dm,宽为ldm的长方形木条,最多能截出2块这样的木条,故答案为:2.26.已知a=,b=(1)化简a,b;(2)求a2﹣4ab+b2的值.【分析】(1)利用分母有理化求解可得;(2)将化简后的a、b的值代入原式=(a﹣b)2﹣2ab计算可得.【解答】解:(1)a====﹣2,b====+2;(2)原式=(a﹣b)2﹣2ab=(﹣﹣2)2﹣2×(﹣2)(+2)=(﹣4)2﹣2×(5﹣4)=16﹣2=14.27.已知二次根式﹣.(1)求使得该二次根式有意义的x的取值范围;(2)已知﹣为最简二次根式,且与为同类二次根式,求x的值,并求出这两个二次根式的积.【分析】(1)根据二次根式有意义的条件得出x﹣2≥0,求出不等式的解集即可;(2)先求出=,得出x﹣2=10,求出x即可.【解答】解:(1)要使﹣有意义,必须x﹣2≥0,即x≥2,所以使得该二次根式有意义的x的取值范围是x≥2;(2)=,所以x﹣2=10,解得:x=12,这两个二次根式的积为﹣×=﹣5.。
二次根式的加减 分层作业(解析版)

人教版初中数学八年级下册16.3.1二次根式的加减同步练习夯实基础篇一、单选题:1)A BC D2.墨迹覆盖了等式-=)A.+B.-C.×D.÷3.下列二次根式合并过程正确的是()A=B .a =+C .=D .2-=4)A .1和2B .2和3C .3和4D .4和55.若两个最简二次根式)A .B .C .D .【答案】D【分析】先根据同类二次根式的定义求出m 的值,然后代入合并即可.6.已知3a =+3b =-,则22a b ab -的值为()A .1B .17C .D .-7x 的取值范围是()A .6x ≥B .6x ≤C .8x ≥D .8x ≤二、填空题:11.数轴上A、B两点所表示的数是-C是线段AB的中点,则点C所表示的数是_________.12.如图,要在长7.5dm、宽5dm的矩形木板上截两个面积为218dm的正方形,是否可行?8dm和2___________.(填“行”或“不行”)13.若最简二次根式3x-__.14.已知2a =2b =22a b -=________.【点睛】此题主要考查了平方差以及二次根式的计算,正确进行二次根式混合运算是解题关键.三、解答题:15.计算:16.计算:;(2-17.己知x =y =,求222x xy y -+-的值.【答案】8-【分析】先把所求代数式变形为()2x y --,再代值计算即可.【详解】解:222x xy y -+-()222x xy y =--+能力提升篇一、单选题:1.一个等腰三角形的两边长分别为3和)A.5+B.3+C.6+或3+D.3+10+2=n为整数),则m的值可以是()A.6B.12C.18D.24是非负数;②算术平方根a本身是非负数.求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.3.如图,在长方形ABCD中无重叠放入面积分别为8和16的两张正方形纸片,则图中空白部分的面积为()A.8-B.12C.4-D.2二、填空题:4.三角形周长为()cm,cmcm,则第三边的长是__________cm.6.观察下列各式:11111122⎛⎫=+=+-⎪⨯⎝⎭111112323⎛⎫+=+-⎪⨯⎝⎭111113434⎛⎫+=+-⎪⨯⎝⎭…三、解答题:733b b ++=+,x 的整数部分,y 的小数部分.求23x y -的值.8.我们知道,2=3,(2233=3=4-,…如果两个含有二次根式的非零代数式相乘,它们的积不含有二次根式,就说这两个非零代数式互为有理化因式.如33互为有理化因式.利用这种方法,可以将分母中含有二次根式的代数式化为分母是有理数的代数式,这个过程称为分母有理化,_________________;_________________;_________________;(4)。
八年级数学下册16.3二次根式的加减同步练习(一)(含解析)(新版)新人教版

16.3二次根式的加减同步练习(一)一、单项选择题(本大题共有 15小题,每小题3分, 1、下列运算中正确的是( ) A. 45分)B. C. |x/2- \/3| = \/3- v/2 |\/4 = 土2 \/2( \/8 — \/2) = ■ \/6 = k/4 + \/ [J = \/13 2、计算:D. \/14 + 4V TO-2+ 72 A. B. C. D. 3、化简 t2 + v lO -苗一厲 仏十2血+简一虫\/10+ \/5- 2 -並 松+厲+佑一v/10 (籀一 2严—(俪十2严"的结果为( A. B. C. D. -\/3-2 k/3 + 2| |\/3- 2 —1 4、 计算一 ,的值是( ) A. _ B. : C. . D.5、 与 「不是同类二次根式的是(A. B. y/a(jC.7、下列计算结果正确的是()A. / - ■- ■) .:-:B •上—-它 C. --拧D.-- I8、已知- ;/-?,则代数式" I J「;的值是()A . h ; - •汽• B. 卜十•八 C. ;D. '9、若,三-4,则 |1 -十;f )2|等于()A. B. : C. IB •珂 C.11、计算十4近一正确的结果是( )6、下列二次根式中,不能与A. 合并的是(13、 D. IF 列根式中,不能与 ”】合并的是()A. B. C.14、 15、把 V 3化简•.的结果是()A. 'B. B. 工C.-FT彳 厉化成最简二次根式,结果为:(D.A. B. C. D.、填空题(本大题共有 5小题,每小题5分, 25分)A 「、一 J 小 B. -C. C.■12、计算抿疔...的值是()A. ' ■B . C. _16/展::庇―八芳「「矗」T17、当.取-、、、、:-中的_______________________________________ 时与...是同类二次根式.18、计算一迈尸4- 的值是______________________19、计算:;_______________________ •120、已知丨,.工+ --------23、计算:. .. .. .21、解答题(本大题共有3小题,每小题10分,共30分)16.3二次根式的加减同步练习(一)答案部分、单项选择题(本大题共有15小题,每小题3分,共45分)1、下列运算中正确的是()A. [伫--仁-工:B. . :— 'C. \ 2 - J ■■■.- ■=. - \ .二D. .【答案】A【解析】解:;.[•--..〔— ' - ■ :— . r,- ■,错误;\/2 (\/8 —\/2) = & —2 = 2,= v/2 • X/G= \/12,错误; \:】 1 ,错误;■. ■. . 计算正确.V" 14 +-- =()2+ 72A.卜十一•崔-辺B. ' — J 一—x/bC.j 十::蔬「,一血D. + A•A/10【答案】A2、计算:【解析】解:/4+4西2 十M2= "0= 2皿_ ・適+2歼W(2+/10>(2-^2)r (2+顾b—o =2 + VW - v^-x/2.3、化简(阿一2严"〔药十2严山的结果为()A. 一'、』2八B. v^ + 2C. 芮- 2D. | ■ :il【答案】A【解析】解:I (苗—2严叭(搭+2)咖L [(如一2)(歯+刃严「(询+2)L (3-4)21115 [x/3 十2)=-\/3-2.4、计算,. ,.的值是()A. -B. :C. ”D.【答案】D髭-2 /込能与.合并;.匸 --,不能与•,合并; 的用:一九旳,能与.合并.7、下列计算结果正确的是()A. -:B. ;」'■' ' —-C. [-汀T -\/2ab—2 2 |fb Vaw L被开方数不同,不是同类二次根式;被开方数相同,是同类二次根式;V a W^-―= ― 与a b 被开方数相同,是同类二次根式; = 卑細训 阿;被开方数相同,是同类二次根式.6、下列二次根式中,不能与合并的是( )AVB. .C. D-.-【答案】C 【解析】解:【解析】解:能与.合并;D.仏+ L)2 = a2_+l【答案】B【解析】解:卜十汀w不能合并,错故本选项误;宀妊='L正确;- —if,故本选项错误;h十1〕;=亍+瑟十[,故本选项错误.8、已知jr - ——汽,则代数式二十十目+ •/$ ::•+ 的值是()A.|> -才IB.卜罟材至D.'【答案】B【解析】把k」冥…苧辭弋入代数式―站加+第+占=+ :兀得:(7 + 4^/3)(2 一V3)2+ (2 + 4)(2 —讴)十代=(7 十4\/3)( 7 —4\/3)十 4 —JJ 十\/3二如一48 + 1 + 因匚2 +旳9、若.F = -4,则|1 一/2十训等于()A. 一匚B. :C. ID. 一】【答案】C【解析】当._ - •时,代入式子原式三1 一"1,2 —4)^|-1 - |2-4||=|1 一| 一即D.【答案】B【解析】原方程化为4I.,m ―:空\Ztkr = 12,即仁=U ,.11、计算':!:■ -:- — 正确的结果是()A.J 心 B .c. ■■D.'-【答案】D【解析】孔十」皿 ■.■/:;:■=M + =G v\212、计算!的值是()A. ■B. .C. _D. I【答案】A1-2| -1110、若 \Z OG T +G -= 72,则国的值等于(A. B. 24C. Et24【解析】解: 处汐一 ¥喰一坯汐、 故答案为: 13、下列根式中,不能与 ”.合并的是( ) A.B. .-'2p j D. M 【答案】C 【解析】 —能与:f 二合并;能与临合并;不能与合并;3V 3 3 「I - I '能与”.合并.化简•. 的结果是( )A …' B. C. ■- D. 际凋 【答案】C 【解析】解: 烦=v/2 x 25 =並*岳=“ 故答案为:: 庐、—— 、、 15、把y §二化成取简一次根式,结果为:( A.914、二、填空题(本大题共有5小题,每小题5分,共25分)16、. I _______________________ . " | - _________ •【答案】「'【解析】解一; - -,.v0.1 x \Zs?T = x/u.l x S. 1 = \/(J.81 = 0.9-故答案是:| ,17、当.取-、、、、;.中的______________________________________ 时,卜洱|与是同类二次根式.【答案】-或:-【解析】解:先把、‘、丨、、-依次开根号,得出- : ■/':.,,.—'、,'、』=・—•一•与.是同类的二次根式是 -、...,即阪一斜或;-.故答案是:-或-•18、计算J.、一迈尸+ 质的值是_________________ •【答案】卜小-I【解析】解:血-剧+局=迈- 1 + 3厲|= 4x/2 - L |19、计算:J花一血____ ___ •【答案】【解析】解:'応一 4= 3血一x/2 = 2/2 120、已知丨,■X —1三、解答题(本大题共有3小题,每小题10分,共30分)『_(』+価)(4一石)【解析】解:* _ . ; :. 吗(4 -吗|= 9+ 12^/5 + 20-(16- 5)=12\/5+ L8.23、计算:. ,. ,- •是【答案】-2又I ',1VJ-的值21、■-22、「汀一1 :【解析】解:【解析】B:_4苗+后一西+皿=4 \/5+ 3 x/h—2 + 4 \/2^ =" + M.。
16.3二次根式的加减 人教版初中数学八年级下册同步练习(含解析)

16.3二次根式的加减人教版初中数学八年级下册同步练习第I卷(选择题)一、选择题:本题共12小题,每小题3分,共36分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.若三角形的三边分别是a,bc且(a−2√ 5)2+√ a−b−1+|c−4|=0,则这个三角形的周长是( )A. 2√ 5+5B. 4√ 5−3C. 4√ 5+5D. 4√ 5+32.计算(√ 2−1)2022⋅(√ 2+1)2023的结果为( )A. √ 2+1B. √ 2−1C. 1−√ 2D. 13.下列运算正确的是( )A. 4√ 3−√ 3=4B. √ 3×√ 6=3√ 2C. √ 5+√ 5=5D. √ 15÷√ 5=34.下列各式计算正确的是( )A. 3√ 3−2√ 3=1B. (√ 5+√ 3)(√ 5−√ 3)=2C. √ 3+√ 2=√ 5D. √ (−3)2=−3的值应在( )5.估计(√ 85+√ 20)×√ 55A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间,则x6−2√ 2020x5−x4+x3−2√ 2021x2+2x−√ 2021的值为( )6.已知x=1√ 2021−√ 2020A. 0B. 1C. √ 2020D. √ 20217.如图,长方形内有两个相邻的正方形,其面积分别为6和24,则图中阴影部分面积为( )A. 5B. 5√ 5C. 6D. 6√ 68.下列运算正确的是( )A. √ 2+√ 3=√ 5B. 4√ 3−√ 3=4C. √ (−5)2=−5D. 4√ 2÷√ 2=49.计算√ 15÷(−√ 5)+√ 6×√ 2的结果正确的是( )A. −√ 3−3√ 2B. 3√ 3C. √ 5+2√ 3D. √ 3时,多项式(4x3−1997x−1994)2019的值为( )10.当x=1+√ 19942A. 1B. −1C. 22002D. −2200111.下列等式中成立的是( )A. 2x 3y 3−(3xy)3=−11x 3y 3B. a 3−b 3=(a +b)(a 2+ab −b 2)C. √ 30÷(√ 5−√ 6)=√ 6−√ 5D. a 2a 2−1÷(1a−1+1)=1a+1 12.估计√ 32×√ 12+√ 5×√ 2的值在( )A. 6到7之间B. 7到8之间C. 8到9之间D. 9到10之间第II 卷(非选择题)二、填空题:本题共4小题,每小题3分,共12分。
人教版八年级下册数学16.3二次根式的加减 同步习题(word版含简单答案)

19. .
18.已知 ,求 的近似值(结果保留小数点后两位).
19.先化简,再求值:如果a=2+ ,b= ,求 的值.
参考答案
ቤተ መጻሕፍቲ ባይዱ1.B
2.C
3.D
4.D
5.C
6.D
7.C
8.C
9.B
10.D
11.
12. 或
13. 4
14.x≤10
15.0
16.(1) ;(2) ;(3) ;(4) .
17.(1) ;(2) ;(3) ;(4) .
A. B. C. D.
7.下列计算正确的是()
① ;② ;③ ;④ ;⑤ .
A.①②B.②④C.③④D.④⑤
8.若等腰三角形两边长分别为2 和5 ,则这个三角形的周长为()
A.4 +10 B.4 +5
C.2 +10 D.4 +5 或2 +10
9.设 ,则 的值一定是().
A.正数B.负数C.0D.1
13.长方形相邻边长分别为 , ,则它的周长是_______,面积是_______.
14.如果最简二次根式 与 可以合并,那么使 有意义的x的取值范围是______.
15.计算: ______.
三、解答题
16.计算:(1) ;(2) ;
(2) ;(4) .
17.计算:
(1) ;(2) ;
(3) ;(4) .
一、单选题
1.在下列各组根式中,可以合并的是()
A. 与 B. 与 C. 与 D. 与
2.在下列二次根式中,与 可以合并的是()
A. B. C. D.
3.计算 的结果是()
A. B. C. D.
人教版初中数学八年级下册《16.3 二次根式的加减》同步练习卷(含答案解析

人教新版八年级下学期《16.3 二次根式的加减》同步练习卷一.填空题(共26小题)1.若最简二次根式与可以合并,则x的值为.2.若最简二次根式和是同类二次根式,则=.3.若与最简二次根式是同类二次根式,则a=.4.若最简二次根式能与合并,则x的值为.5.与最简二次根式5是同类二次根式,则a=.6.计算+=.7.计算:3﹣的结果是.8.计算:=.9.计算的结果等于.10.计算:()2010•()2009=.11.化简:﹣|a2+1|+(3﹣2)2=12.计算:(3)(2)=,=.13.计算:()2018()2017=.14.已知a=,b=,那么a,b的大小关系是a b.(用“>”,“=”或“<”填写)15.比较大小:(填“>”、“<”或“=”号)16.计算=.17.计算:﹣(﹣)﹣2=.18.已知m=+1,n=﹣1,则代数式m2+n2﹣3mn的值为.19.已知a=+1,b=﹣1,则a2b+ab2的值是.20.若实数,则代数式a2﹣4a+4的值为.21.若a>a+1,化简|a+|﹣=.22.如图,在长方形内有两个相邻的正方形A,B,正方形A的面积为2,正方形B的面积为4,则图中阴影部分的面积是.23.若长方形相邻两边的长分别是cm和cm,则它的周长是cm.24.计算:=;=.25.观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第13个数据应是.26.观察分析下列数据:﹣,,﹣3,2,﹣,3,…根据数据排列规律得到第16个数据应该是(结果化简成最简形式).二.解答题(共14小题)27.如果最简根式和是同类二次根式,求a,b的值.28.计算:(1)﹣+﹣(2)﹣﹣+229.计算:2﹣6﹣(﹣)30.计算:﹣+|﹣|﹣31.计算:++﹣15.32.计算:(﹣)2+(2+)×(2﹣).33.计算:﹣﹣(+1)234.计算:(1)﹣22﹣(﹣)﹣2﹣|2﹣2|+(2)(2+)(2)﹣×()35.已知x=,y=,求x2﹣xy+y2的值.36.已知x=﹣1,求x2+3x﹣1的值.37.已知x=,y=,求+的值.38.先化简,再求值:(m﹣)(m+)﹣m(m﹣6),其中m=.39.已知x=+7,y=﹣7,求x2﹣y2的值.40.已知x=+1,y=﹣1,求x2+y2的值.人教新版八年级下学期《16.3 二次根式的加减》同步练习卷参考答案与试题解析一.填空题(共26小题)1.若最简二次根式与可以合并,则x的值为9.【分析】根据同类二次根式的概念列方程,解方程即可.【解答】解:∵最简二次根式与可以合并,∴二次根式与是同类二次根式,∴x+1=10,解得,x=9,故答案为:9.【点评】本题考查的是同类二次根式,最简二次根式,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,这几个二次根式叫做同类二次根式.2.若最简二次根式和是同类二次根式,则=5.【分析】直接利用最简二次根式以及同类二次根式的定义分析得出答案.【解答】解:∵最简二次根式和是同类二次根式,∴,解得:,∴=5.故答案为:5.【点评】此题主要考查了最简二次根式以及同类二次根式的定义,正确得出x,y的值是解题关键.3.若与最简二次根式是同类二次根式,则a=4.【分析】根据同类二次根式的被开方数相同可得出关于a的方程,解出即可得出答案.【解答】解:∵=3,∴3=2a﹣5,解得:a=4,故答案为:4.【点评】此题考查了同类二次根式的知识,解答本题需要掌握同类二次根式的被开方数相同这个知识点,难度一般.4.若最简二次根式能与合并,则x的值为2.【分析】根据最简二次根式以及同类二次根式即可求出答案.【解答】解:由题意可知:2x﹣1=3x=2故答案为:2【点评】本题考查学生对定义的理解,解题的关键是正确理解最简二次根式以及同类二次根式的定义,本题属于基础题型.5.与最简二次根式5是同类二次根式,则a=2.【分析】先将化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于a的方程,解出即可.【解答】解:∵与最简二次根式是同类二次根式,且,∴a+1=3,解得:a=2.故答案为2.【点评】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.6.计算+=.【分析】直接化简二次根式进而合并得出答案.【解答】解:原式=3+=.故答案为:.【点评】此题主要考查了二次根式的加减,正确化简二次根式是解题关键.7.计算:3﹣的结果是2.【分析】直接利用二次根式的加减运算法则计算得出答案.【解答】解:3﹣=2.故答案为:2.【点评】此题主要考查了二次根式的加减运算,正确掌握运算法则是解题关键.8.计算:=9.【分析】根据二次根式的运算法则即可求出答案【解答】解:原式=5+4=9故答案为:9【点评】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.9.计算的结果等于﹣1.【分析】根据平方差公式计算即可求解.【解答】解:=()2﹣22=3﹣4=﹣1.故答案为:﹣1.【点评】考查了二次根式的计算,关键是熟练掌握平方差公式.10.计算:()2010•()2009=2﹣.【分析】先利用积的乘方得到原式=[(﹣2)(+2)]2009•(﹣2),然后利用平方差公式计算.【解答】解:原式=[(﹣2)(+2)]2009•(﹣2)=(3﹣4)2009•(﹣2)=﹣(﹣2)=2﹣.故答案为2﹣.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.11.化简:﹣|a2+1|+(3﹣2)2=19【分析】利用二次根式有意义的条件得到a=0,则原式=0﹣1+(﹣2)2,然后根据二次根式的性质化简即可.【解答】解:∵﹣a2≥0,∴a=0,∴原式=0﹣1+(﹣2)2=﹣1+20=19.故答案为19.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.12.计算:(3)(2)=6,=2.【分析】①先根据加法交换律变形为:(3﹣2)(3+2),再根据平方差公式计算;②先将除法化为乘法,系数和系数相乘,被开方数和被开方数相乘,最后化简计算即可.【解答】解:①(3)(2),=(3﹣2)(3+2),=,=18﹣12,=6;②,=,=4,=4×,=2.故答案为:6,2.【点评】此题主要考查了平方差公式以及二次根式混合运算,正确掌握相关运算法则是解题关键.13.计算:()2018()2017=.【分析】根据平方差公式和二次根式的乘法可以解答本题.【解答】解:()2018()2017=[()()]2017•()=(﹣1)2017•()=﹣﹣,故答案为:﹣﹣.【点评】本题考查二次根式的混合运算,解答本题的关键是明确二次根式的混合运算的计算方法.14.已知a=,b=,那么a,b的大小关系是a=b.(用“>”,“=”或“<”填写)【分析】把b的值进行分母有理化即可得到得到a与b的大小关系.【解答】解:b==+,所以a=b.故答案为=.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.15.比较大小:<(填“>”、“<”或“=”号)【分析】先利用二次根式的乘法法则计算得到×=2,然后利用<进行大小比较.【解答】解:×==2,而+<2,所以<.故答案为<.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.16.计算=2019.【分析】运用完全平方公式,将被开方数化成20192,即可运用二次根式的性质得到结果.【解答】解:====2019,故答案为:2019.【点评】本题主要考查了二次根式的性质的运用,解决问题的关键是利用完全平方公式将被开方数进行变形.17.计算:﹣(﹣)﹣2=2﹣2.【分析】根据二次根式的除法法则和负整数指数的意义计算.【解答】解:原式=+﹣4=2+2﹣4=2﹣2.故答案为2﹣2.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.18.已知m=+1,n=﹣1,则代数式m2+n2﹣3mn的值为3.【分析】先求出(m+n)2、mn的值,再把m2+n2﹣3mn化成(m+n)2﹣5mn,代入求出其值即可.【解答】解:∵m=1+,n=﹣1,∴(m+n)2==8,mn=(1+)×(﹣1)=2﹣1=1,∴m2+n2﹣3mn=(m+n)2﹣2mn﹣3mn=(m+n)2﹣5mn=8﹣5×1=3,故答案为:3【点评】本题考查了二次根式的化简求值,注意:(m+n)2=m2+2mn+n2,m2+n2﹣3mn=(m+n)2﹣5mn.19.已知a=+1,b=﹣1,则a2b+ab2的值是8.【分析】先计算出a+b和ab,再把a2b+ab2因式分解,然后利用整体代入的方法计算;【解答】解:∵a=+1,b=﹣1,∴a+b=2,ab=5﹣1=4,∴a2b+ab2=ab(a+b)=4×2=8;故答案为:8【点评】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.20.若实数,则代数式a2﹣4a+4的值为3.【分析】先把a分母有理化,再代值计算即可解答本题.【解答】解:∵a====2+,∴原式=(a﹣2)2=(2+﹣2)2=3,故答案为:3.【点评】本题主要考查了二次根式的化简求值,解题的关键是对a进行分母有理化,明确二次根式化简求值的方法.21.若a>a+1,化简|a+|﹣=1.【分析】先根据a>a+1判断出a<﹣1﹣,据此可得a+<﹣1,a++1<0,再依据绝对值性质和二次根式的性质化简可得.【解答】解:∵a>a+1,∴(1﹣)a>1,则a<,即a<﹣1﹣,∴a+<﹣1,a++1<0,原式=﹣a﹣+a++1=1,故答案为:1.【点评】本题主要考查二次根式的应用,解题的关键是掌握二次根式的性质、绝对值的性质和解一元一次不等式的步骤.22.如图,在长方形内有两个相邻的正方形A,B,正方形A的面积为2,正方形B的面积为4,则图中阴影部分的面积是.【分析】设两个正方形A,B的边长是x、y(x<y),得出方程x2=2,y2=4,求出x=,y=2,代入阴影部分的面积是(y﹣x)x求出即可.【解答】解:设两个正方形A,B的边长是x、y(x<y),则x2=2,y2=4,x=,y=2,则阴影部分的面积是(y﹣x)x=(2﹣)×=2﹣2,故答案为:2﹣2.【点评】本题考查了二次根式的应用、算术平方根性质的应用,主要考查学生的计算能力.23.若长方形相邻两边的长分别是cm和cm,则它的周长是14cm.【分析】直接化简二次根式进而计算得出答案.【解答】解:∵长方形相邻两边的长分别是cm和cm,∴它的周长是:2(+)=2(2+5)=14(cm).故答案为:14.【点评】此题主要考查了二次根式的应用,正确化简二次根式是解题关键.24.计算:=3;=.【分析】根据二次根式的性质计算可得.【解答】解:=3,=5﹣2+1=6﹣2,故答案为:3、6﹣2.【点评】本题主要考查二次根式的应用,解题的关键是熟练掌握二次根式的性质和完全平方公式.25.观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第13个数据应是6.【分析】通过观察可知,规律是根号外的符号以及根号下的被开方数依次是:(﹣1)1+1×0,(﹣1)2+1,(﹣1)3+1…(﹣1)n+1),可以得到第13个的答案.【解答】解:由题意知道:题目中的数据可以整理为:(﹣1)1+1,(﹣1)2+1,…(﹣1)n+1),∴第13个答案为:(﹣1)13+1=6.故答案为:6.【点评】此题主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.26.观察分析下列数据:﹣,,﹣3,2,﹣,3,…根据数据排列规律得到第16个数据应该是4(结果化简成最简形式).【分析】通过观察可知,规律是根号外的符号以及根号下的被开方数依次是:(﹣1)2+1,(﹣1)3+1…(﹣1)n+1n,可以得到第16个的答案.【解答】解:由题意知道:题目中的数据可以整理为:(﹣1)1,(﹣1)2…(﹣1)n,∴第16个答案为:(﹣1)16=4.故答案为:4.【点评】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.二.解答题(共14小题)27.如果最简根式和是同类二次根式,求a,b的值.【分析】根据同类二次根式的定义,根指数相同,被开方数相同列方程组求解即可.【解答】解:∵最简根式和是同类二次根式,∴,解得,所以,a、b的值分别为0,2.【点评】此题主要考查了同类二次根式的定义,即:二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.28.计算:(1)﹣+﹣(2)﹣﹣+2【分析】(1)首先化简二次根式进而合并得出答案;(2)首先化简二次根式进而合并得出答案.【解答】解:(1)原式=6﹣4+3﹣5=﹣;(2)原式=﹣﹣+10=9.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.29.计算:2﹣6﹣(﹣)【分析】首先化简二次根式进而计算得出答案.【解答】解:原式=4﹣2﹣3+3=+.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.30.计算:﹣+|﹣|﹣【分析】首先化简二次根式,进而合并得出答案.【解答】解:原式=2﹣+﹣2=2﹣2.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.31.计算:++﹣15.【分析】首先化简二次根式进而合并得出答案.【解答】解:原式=2+3+×4﹣15×=5+﹣5=.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.32.计算:(﹣)2+(2+)×(2﹣).【分析】根据完全平方公式和平方差公式计算,再计算加减可得.【解答】解:原式=2﹣2+3+12﹣6=11﹣2.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.33.计算:﹣﹣(+1)2【分析】先分母有理化、计算零指数幂和算术平方根、利用完全平方公式计算,再去括号、计算加减可得.【解答】解:原式=2(2+)﹣1﹣(4+2)=4+2﹣1﹣4﹣2=﹣1.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.34.计算:(1)﹣22﹣(﹣)﹣2﹣|2﹣2|+(2)(2+)(2)﹣×()【分析】(1)利用乘方、负整数指数幂和绝对值的意义计算;(2)先利用平方差公式和二次根式的乘法法则运算,然后去括号后合并即可.【解答】解:(1)原式=﹣4﹣4+2﹣2+2=﹣6;(2)原式=12﹣6﹣(﹣)=6﹣+2=+2.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.35.已知x=,y=,求x2﹣xy+y2的值.【分析】根据分母有理化化简x与y,然后求出x+y与xy的表达式即可求出答案.【解答】解:∵x=,y=,∴x=,y=,∴x+y=,xy=,∴原式=x2+2xy+y2﹣3xy=(x+y)2﹣3xy=2a+b﹣=2a【点评】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.36.已知x=﹣1,求x2+3x﹣1的值.【分析】根据x=﹣1,可以求得所求式子的值.【解答】解:∵x=﹣1,∴x2+3x﹣1==2﹣2+1+3﹣3﹣1=﹣1+.【点评】本题考查二次根式的化简求值,解答本题的关键是明确二次根式化简求值的方法.37.已知x=,y=,求+的值.【分析】直接求出x+y,xy的值,进而将原式化简得出答案.【解答】解:∵x=,y=,∴x+y=+=;x•y=•=,∴+===12.【点评】此题主要考查了二次根式的化简求值,正确将原式变形是解题关键.38.先化简,再求值:(m﹣)(m+)﹣m(m﹣6),其中m=.【分析】直接利用乘法公式以及单项式乘以多项式运算法则计算得出答案.【解答】解:原式=m2﹣3﹣(m2﹣6m)=m2﹣3﹣m2+6m=6m﹣3,当m=时,原式=6﹣3.【点评】此题主要考查了二次根式的化简求值,正确合并同类项是解题关键.39.已知x=+7,y=﹣7,求x2﹣y2的值.【分析】求出x与y的和与差,根据平方差公式化简,代入计算即可.【解答】解:∵x=+7,y=﹣7,∴x+y=2,x﹣y=14,∴x2﹣y2=(x+y)(x﹣y)=28.【点评】本题考查的是二次根式的计算,掌握二次根式的加减法法则、平方差公式是解题的关键.40.已知x=+1,y=﹣1,求x2+y2的值.【分析】先根据x、y的值计算出x+y、xy的值,再代入原式=(x+y)2﹣2xy计算可得.【解答】解:∵x=+1,y=﹣1,∴x+y=+1+﹣1=2、xy=(+1)(﹣1)=2﹣1=1,则原式=(x+y)2﹣2xy=(2)2﹣2×1=8﹣2=6.【点评】本题主要考查二次根式的化简求值,解题的关键是掌握二次根式运算法则及平方差公式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16.3 二次根式的加减(1)同步练习姓名:__________班级:__________学号:__________本节应掌握和应用的知识点1.同类二次根式(1)同类二次根式的定义几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式叫做同类二次根式.(2)同类二次根式的合并合并同类二次根式类似于合并同类项,就是将同类二次根式的“系数”合并 ,根指数与被开方数保持不变.2.二次根式的加减(1)二次根式的加减实质是合并同类二次根式,非同类二次根式不能合并.(2)二次根式加减法的一般步骤: ①先把各根式化成最简二次根式; ②找出其中的同类二次根式; ③合并同类二次根式.3. 比较二次根式大小时,可将根号外的非负数(或式子) 移到根号内.基础知识和能力拓展训练一、选择题1.下列各组二次根式中,是同类二次根式的是( )A. 6和32B. a和2aC. 12和13D. 3和92.下列二次根式中,不能与2合并的是()A. 12B. 8C. 12D. 183.已知二次根式24a 与2是同类二次根式,则a的值可以是()A. 5B. 3C. 7D. 84.下列运算正确的是()A. (﹣a2)3=a6B. (a+b)2=a2+b2C. 8﹣2=2D. 55﹣5=4 5.已知等腰三角形的两边长为23和52,则此等腰三角形的周长为()A. 43+52B. 23+102C. 43+102D. 43+52或23+102 6.计算|2﹣5|+|4﹣5|的值是()A. ﹣2B. 2C. 25﹣6D. 6﹣257.计算:32﹣8的结果是()A. 30B. 2C. 22D. 2.88.实数的值在( )A. 0和1之间B. 1和2之间C. 2和3之间 D . 3和4之间9.设a=6-2,b=3-1,c=231,则a,b,c之间的大小关系是( )A. c>b>aB. a>c>bC. b>a>cD. a>b>c10.设的小数部分为,则的值是()A. B. 是一个无理数C. D. 无法确定二、填空题11.若最简二次根式与是同类二次根式,则a =______,b =___________.12.若最简二次根式1x +与22x -能合并为一个二次根式,则x =_______。
13.计算________.14.已知三角形三边的长分别为27cm, 12cm, 48cm,则它的周长为_____cm. 15.当x=2+时,代数式x2﹣4x+4的值是.16.请将23,23,23用""连接起来,______________。
三、解答题17.计算:(1)(2)(3)(4)18.如果二次根式31a - 与32- 能够合并,能否由此确定a=1?若能,请说明理由;不能,请举一个反例说明.19.若a+b=2,则称a 与b 是关于1的平衡数.(1)3与 是关于1的平衡数,5﹣与是关于1的平衡数;(2)若(m+)×(1﹣)=﹣5+3,判断m+与5﹣是否是关于1的平衡数,并说明理由.20.已知m是的小数部分,n是的整数部分.求:(1)(m ﹣n )2的值;(2)+m 的值.21.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如35, 23+1这样的式子,其实我们还可以将其进一步化简:33535==5555⨯⨯; ()2223-123-1==3-13+13-13+1)3-1⨯⨯=()()()( 以上这种化简的步骤叫做分母有理化.23+1还可以用以下方法化简: ()()()223-13+13-123-1====3-13+13+13+13+1(1)化简25+3. (2)化简:1111++++3+15+37+52+1+2-1n n L . 22.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=(1+2)2.善于思考的小明进行了以下探索:设a+b 2=(m+n 2)2(其中a 、b 、m 、n 均为整数),则有a+b 2=m 2+2n 2+2mn 2.∴a=m 2+2n 2,b=2mn .这样小明就找到了一种把类似a+b 2的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时,若a+b 3=()23m n +,用含m 、n 的式子分别表示a 、b ,得:a=__,b=__;(2)利用所探索的结论,找一组正整数a 、b 、m 、n 填空:__+__3=(___)+__3)2;(3)若a+43=()23m n +,且a 、m 、n 均为正整数,求a 的值?参考答案1.C【解析】解:A . 6与2的被开方数不同,所以它们不是同类二次根式;故本选项错误; B . a 与2a 的被开方数不同,所以它们不是同类二次根式;故本选项错误;C . 1223=与1333=的被开方数相同,所以它们是同类二次根式;故本选项正确; D . 3与9=3的被开方数不同,所以它们不是同类二次根式;故本选项错误; 故选C .点睛:本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式. 2.C【解析】试题解析:A 、12=22,故A 能与2合并; B 、8=22,故B 能与2合并; C 、12=23,故C 不能与2合并; D 、18=32,故D 能与2合并; 故选C . 3.B【解析】试题分析:根据同类二次根式的概念,可知其在化为最简二次根式,其被开方数相同,可知2a-4=2,解得a=3.故选:B4.C【解析】A. ∵(﹣a2)3=-a6 , 故不正确;B. ∵(a+b)2=a2++2ab+b2 , 故不正确;C. ∵8﹣2= 22﹣22= , 故正确;D. ∵55﹣5=45, 故不正确;故选C.5.B【解析】解:∵2×23<52,∴只能是腰长为52,∴等腰三角形的周长=2×52+23=10223+.故选B.点睛:本题考查了等腰三角形的性质:两腰相等,注意要用三角形的三边关系确定出第三边.6.B【解析】解:原式=5245-+-=2.故选B.点睛:本题考查了二次根式的加减法,解答本题的关键是掌握绝对值的化简.7.C【解析】解:原式=422222-=,故选C点睛:此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.8.D【解析】∵9<10<16,∴3<√10<4.故选D.点睛:本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.9.D【解析】a=6-2=2(3-1),b=3-1;c=231+=()()2313131-+-()=22×(3-1),∵2>1>22,∴a>b>c.故选:D.10.B【解析】∵,∴的小数部分为=,∴b(b+3)= ,又∵是无理数,∴也是无理数。
故选B。
11. 1 1【解析】试题解析:∵最简二次根式与是同类二次根式,∴3b-1=2,a+2=4b-a解得,a=1,b=1.12.1【解析】由最简二次根式x1-能合并为一个二次根式,得+与22xx+1=2x.解得x=1,故答案为:1.13.【解析】试题解析:原式= =14.93【解析】三角形的周长为: 27124833234393++=++=. 故本题应填93. 15.2015【解析】试题解析: 22015,x =+Q()()()222244222015220152015.x x x ∴-+=-=+-==故答案为: 2015.点睛:完全平方公式: ()2222.a ab b a b -+=-()2.a a =16.222333<<【解析】由题意得2633=,22333=,23, 所以222333<<. 17.(1) ;(2);(3)(4) 【解析】试题分析:(1)、首先根据二次根式的化简法则将各二次根式进行化简,然后再进行加减法计算得出答案;(2)、根据二次根式的乘除法计算法则进行计算得出答案;(3)、根据二次根式的化简法则将各二次根式进行化简,然后进行加减法计算;(4)、将括号里面的二次根式进行化简计算,然后根据二次根式的除法计算法则进行计算得出答案.试题解析:(1)===(2)== =(3)==(4) ====18.见解析【解析】试题分析:由于二次根式31a -与32-能够合并,如果31a -是最简二次根式,由此可以得到3a-1=2,由此可以确定a=1,但31a -不一定是最简二次根式,所以还有其他的情况,由此即可求解.试题解析:二次根式 31a -与-32能够合并,不能由此确定a=1. 当 31a -是最简二次根式,∴3a -1=2,∴a=1; 当31a - 不是最简二次根式,∴3a -1=8,∴a=3. 还有其他情况. 故不能确定a=1.19.(1)﹣1,﹣3+;(2)不是,理由见解析.【解析】试题分析:(1)根据所给的例子,可得出平衡数的求法,由此可得出答案.(2)根据所给的等式,解出m的值,进而再代入判断即可.试题解析:(1)由题意得,3+(﹣1)=2,5﹣+(﹣3+)=2,∴3与﹣1是关于1的平衡数,5﹣与﹣3+是关于1的平衡数;(2)不是.∵(m+)×(1﹣)=m﹣m+﹣3,又∵(m+)×(1﹣)=﹣5+3,∴m﹣m+﹣3=﹣5+3,∴m﹣m=﹣2+2.即m(1﹣)=﹣2(1﹣).∴m=﹣2.∴(m+)+(5﹣)=(﹣2+)+(5﹣)=3,∴(﹣2+)与(5﹣)不是关于1的平衡数.【点睛】本题考查了二次根式的加减运算,属于基础题,解答本题的关键是掌握二次根式的化简及同类二次根式的合并.20.(1)43﹣12;(2)﹣1.【解析】试题分析:根据二次根式的性质,分别表示出m、n的值,然后代入求值即可. 试题解析:∵m是的小数部分,n是的整数部分,∴m=﹣2,n=4;(1)(m﹣n)2=(﹣2﹣4)2=(﹣6)2=7﹣12+36=43﹣12;(2)+m= +﹣2=﹣1.21.(1)5-3;(2)2112n +- 【解析】试题分析:(1)根据材料运用两种方法进行分母有理化即可;(2)先分母有理化,再根据式子的规律即可求解.试题解析:(1)()()()()22225-325-3==535+35+35-353=--()() (2)原式=()()()()()()3-15-321213+13-15+35-321212121n n n n n n +--+++++-+--L =3-15-37-521-21++++2222n n +-L =2+1-12n . 22. a=m 2+3n 2 b=2mn 4 2 1 1【解析】(1)根据完全平方公式运算法则,即可得出a 、b 的表达式;(2)首先确定好m 、n 的正整数值,然后根据(1)的结论即可求出a 、b 的值;(3)根据题意,4=2mn ,首先确定m 、n 的值,通过分析m=2,n=1或者m=1,n=2,然后即可确定好a 的值.解:(1)∵a+b 3=()23m n +,∴a+b3=m2+3n2+2mn3,∴a=m2+3n2,b=2mn.故答案为:m2+3n2,2mn.(2)设m=1,n=1,∴a=m2+3n2=4,b=2mn=2.故答案为4、2、1、1.(3)由题意,得:a=m2+3n2,b=2mn∵4=2mn,且m、n为正整数,∴m=2,n=1或者m=1,n=2,∴a=22+3×12=7,或a=12+3×22=13.“点睛”本题主要考查二次根式的混合运算,完全平方公式,解题的关键在于熟练运算完全平方公式和二次根式的运算法则.。