南京市、盐城市2014届高三第一次模拟考试数学试卷及答案
江苏省南京市、盐城市2024届高三第一次模拟考试数学试题(含答案与解析)_8689

南京市、盐城市2024届高三年级第一次模拟考试数 学注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集U 与集合A ,B 的关系如图,则图中阴影部分所表示的集合为( )A. U A B ðB. U A B UðC. U B A ⋂ðD. U B A U ð2. 复数z 满足()21i 1i z -=+,(i 为虚数单位),则z =( )A.14B.12C.D. 13. 等比数列{}n a 的前n 项和为n S ,已知3215S a a =+,54a =,则1a =( ) A.14B. 14-C.12D. 12-4. 德国天文学家约翰尼斯·开普勒根据丹麦天文学家第谷·布拉赫等人的观测资料和星表,通过本人的观测和分析后,于1618年在《宇宙和谐论》中提出了行星运动第三定律——绕以太阳为焦点的椭圆轨道运行的所有行星,其椭圆轨道的长半轴长a 与公转周期T 有如下关系:32T a =,其中M 为太阳质量,G 为引力常量.已知火星的公转周期约为水星的8倍,则火星的椭圆轨道的长半轴长约为水星的( ) A. 2倍B. 4倍C. 6倍D. 8倍5. 关于函数()()sin f x A x =+ωϕ(0A >,0ω>,π02ϕ<<),有下列四个说法: ①()f x 的最大值为3②()f x 图像可由3sin y x =的图像平移得到 ③()f x 的图像上相邻两个对称中心间的距离为π2④()f x 的图像关于直线π3x =对称 若有且仅有一个说法是错误,则π2f ⎛⎫=⎪⎝⎭( ) AB. 32-C.32D.6. 设O 为坐标原点,圆()()22:124M x y -+-=与x 轴切于点A,直线0x +=交圆M 于,B C 两点,其中B 在第二象限,则OA BC ⋅=( )A.B.C.D.7. 在棱长为()20a a >的正方体1111ABCD A B C D -中,点,M N 分别为棱AB ,11D C 的中点.已知动点P 在该正方体的表面上,且0PM PN ⋅=,则点P 的轨迹长度为( )A. 12aB. 12πaC. 24aD. 24πa8. 用{}min ,x y 表示x ,y 中的最小数.已知函数()e xxf x =,则()(){}min ,ln 2f x f x +的最大值为( ) A.22e B.1eC.ln 22D. ln2二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知,x y ∈R ,且123x =,124y =,则( ) A. y x > B. 1x y +> C. 14xy <D.<10. 有n (n *∈N ,10n ≥)个编号分别为1,2,3,…,n 的盒子,1号盒子中有2个白球和1个黑球,其余盒子中均有1个白球和1个黑球.现从1号盒子任取一球放入2号盒子;再从2号盒子任取一球放入3号盒子;…;以此类推,记“从i 号盒子取出的球是白球”为事件i A (1i =,2,3,…,n ),则( )的的.A. ()1213P A A =B. ()124|5P A A = C. ()1279P A A +=D. ()1012P A =11. 已知抛物线E :24x y =的焦点为F ,过F 的直线1l 交E 于点()11,A x y ,()22,B x y ,E 在B 处的切线为2l ,过A 作与2l 平行的直线3l ,交E 于另一点()33,C x y ,记3l 与y 轴的交点为D ,则( ) A. 121y y = B. 1323x x x +=C. AF DF =D. ABC 面积的最小值为16三、填空题:本题共3小题,每小题5分,共15分.12. 621x x ⎛⎫- ⎪⎝⎭展开式的常数项为______.13. 设双曲线C :22221x y a b-=(0a >,0b >)的一个焦点为F ,过F 作一条渐近线的垂线,垂足为E .若线段EF 的中点在C 上,则C 的离心率为______. 14. 已知π,0,2αβ⎛⎫∈ ⎪⎝⎭,且1sin sin 2αβ-=-,1cos cos 2αβ-=,则tan tan αβ+=______. 四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. ABC 中,()sin sin B A A C -+=. (1)求B 的大小;(2)延长BC 至点M ,使得2BC CM =.若π4CAM ∠=,求BAC ∠的大小. 16. 如图,已知四棱台1111ABCD A B C D -的上、下底面分别是边长为2和4的正方形,平面11AA D D ⊥平面ABCD,11A A D D ==,点P 是棱1DD 的中点,点Q 在棱BC 上.(1)若3BQ QC =,证明:PQ ∥平面11ABB A ;在(2)若二面角P QD C --,求BQ 的长. 17. 已知某种机器的电源电压U (单位:V )服从正态分布()2220,20N .其电压通常有3种状态:①不超过200V ;②在200V~240V 之间③超过240V .在上述三种状态下,该机器生产的零件为不合格品的概率分别为0.15,0.05,0.2.(1)求该机器生产的零件为不合格品的概率;(2)从该机器生产的零件中随机抽取n (2n ≥)件,记其中恰有2件不合格品的概率为n p ,求n p 取得最大值时n 的值. 附:若()2~,Z Nμσ,取()0.68P Z μσμσ-<<+=,()220.95P Z μσμσ-<<+=.18. 已知椭圆C :()222210x y a b a b+=>>的右焦点为()1,0F ,右顶点为A ,直线l :4x =与x 轴交于点M ,且AM a AF =, (1)求C 的方程;(2)B 为l 上的动点,过B 作C 的两条切线,分别交y 轴于点P ,Q , ①证明:直线BP ,BF ,BQ 的斜率成等差数列;②⊙N 经过B ,P ,Q 三点,是否存在点B ,使得,90PNQ ∠=︒?若存在,求BM ;若不存在,请说明理由.19. 已知0a >,函数()sin cos 1f x ax x ax =+-,π04x <<. (1)若2a =,证明:()0f x >; (2)若()0f x >,求a 的取值范围; (3)设集合()1π{|cos,N }21nn n k P a a n k k *===∈+∑,对于正整数m ,集合{}|2m Q x m x m =<<,记m P Q 中元素个数为m b ,求数列{}m b 的通项公式.参考答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.的1. 已知全集U 与集合A ,B 的关系如图,则图中阴影部分所表示的集合为( )A. U A B ðB. U A B UðC. U B A ⋂ðD. U B A U ð【答案】A 【解析】【分析】利用韦恩图表示的集合运算,直接写出结果即可.【详解】观察韦恩图知,阴影部分在集合A 中,不在集合B 中,所以所求集合为U A B ð. 故选:A2. 复数z 满足()21i 1i z -=+,(i 为虚数单位),则z =( )A.14B.12C.D. 1【答案】C 【解析】【分析】根据复数的运算求出复数z ,再求模长即可求解. 【详解】由已知得:z ()()221i i 1i1i 11i 2i 2i 221i +++====-+---,所以,||z ==故选:C .3. 等比数列{}n a 的前n 项和为n S ,已知3215S a a =+,54a =,则1a =( ) A.14B. 14-C.12D. 12-【答案】A 【解析】【分析】把等比数列{}n a 各项用基本量1a 和q 表示,根据已知条件列方程即可求解. 【详解】设等比数列{}n a 的公比为q ,由3215S a a =+,得:123215a a a a a ++=+, 即:23114a a a q ==,所以,24q =,又54a =,所以,4222111()44a q a q a ==⨯=,所以,114a =. 故选:A.4. 德国天文学家约翰尼斯·开普勒根据丹麦天文学家第谷·布拉赫等人的观测资料和星表,通过本人的观测和分析后,于1618年在《宇宙和谐论》中提出了行星运动第三定律——绕以太阳为焦点的椭圆轨道运行的所有行星,其椭圆轨道的长半轴长a 与公转周期T有如下关系:32T a =,其中M 为太阳质量,G 为引力常量.已知火星的公转周期约为水星的8倍,则火星的椭圆轨道的长半轴长约为水星的( ) A. 2倍 B. 4倍C. 6倍D. 8倍【答案】B 【解析】【分析】根据已知的公式,由周期的倍数关系求出长半轴长的倍数关系即可.【详解】设火星的公转周期为1T ,长半轴长为1a ,火星的公转周期为2T ,长半轴长为2a ,则,128T T =,且32113222T T ⎧=⎪⎪⎨⎪=⎪⎩①②①②得: 311222(8T a T a ==, 所以,124a a =,即:124a a =. 故选:B .5. 关于函数()()sin f x A x =+ωϕ(0A >,0ω>,π02ϕ<<),有下列四个说法: ①()f x 的最大值为3②()f x 的图像可由3sin y x =的图像平移得到 ③()f x 的图像上相邻两个对称中心间的距离为π2④()f x 的图像关于直线π3x =对称 若有且仅有一个说法是错误的,则π2f ⎛⎫=⎪⎝⎭( )A. B. 32-C.32D.【答案】D 【解析】【分析】根据题意,由条件可得②和③相互矛盾,然后分别验证①②④成立时与①③④成立时的结论,即可得到结果.【详解】说法②可得1ω=,说法③可得π22T =,则2ππT ω==,则2ω=,②和③相互矛盾;当①②④成立时,由题意3A =,1ω=,ππ2π32k ϕ+=+,k ∈Z .因为π0,2ϕ⎛⎫∈ ⎪⎝⎭,故0k =,π6ϕ=,即()3sin 6f x x π⎛⎫=+ ⎪⎝⎭,2f π⎛⎫= ⎪⎝⎭; 说法①③④成立时,由题意3A =,2ω=,2ππ2π32k ϕ+=+,k ∈Z , 20,62k ππϕπ⎛⎫=-∉ ⎪⎝⎭,故不合题意. 故选:D .6. 设O 为坐标原点,圆()()22:124M x y -+-=与x 轴切于点A ,直线0x +=交圆M 于,B C 两点,其中B 在第二象限,则OA BC ⋅=( )A.B.C.D.【答案】D 【解析】【分析】先根据圆的弦长公式求出线段BC 的长度,再求出直线0x +=的倾斜角,即可求得OA与BC的的夹角,进而可得出答案.【详解】由题意()1,0A ,圆心()1,2M ,()1,2M 到直线0x -+=距离为12,所以BC ==直线0x +=π6,则OA 与BC 的的夹角为π6,所以cos ,1OA BC OA BC OA BC ⋅===故选:D .7. 在棱长为()20a a >的正方体1111ABCD A B C D -中,点,M N 分别为棱AB ,11D C 的中点.已知动点P 在该正方体的表面上,且0PM PN ⋅=,则点P 的轨迹长度为( ) A. 12a B. 12πaC. 24aD. 24πa【答案】B 【解析】【分析】根据条件得到P 点轨迹为以MN 为直径的球,进而得出点P 的轨迹是六个半径为a 的圆,即可求出结果.【详解】因为0PM PN ⋅=,故P 点轨迹为以MN 为直径的球,如图,易知MN 中点即为正方体中心O ,球心在每个面上的射影为面的中心,设O 在底面ABCD 上的射影为1O ,又正方体的棱长为2a ,所以MN =, 易知1OO a =,1O M a =,又动点P 在正方体的表面上运动, 所以点P 的轨迹是六个半径为a 的圆,轨迹长度为6212a a ⨯π=π,故选:B .8. 用{}min ,x y 表示x ,y 中的最小数.已知函数()ex xf x =,则()(){}min ,ln 2f x f x +的最大值为( ) A.22e B.1eC.ln 22D. ln2【答案】C 【解析】【分析】利用导数研究()e xxf x =的单调性,作出其图象,根据图象平移作出()ln 2y f x =+的图象,数形结合即可得到答案. 【详解】∵()e x x f x =,∴()1e xxf x ='-, 根据导数易知()f x 在(),1∞-上单调递增,在()1,∞+上单调递减; 由题意令()()ln 2f x f x =+,即ln 2ln 2e ex x x x ++=,解得ln 2x =; 作出图象:则()(){}min ,ln 2f x f x +的最大值为两函数图象交点处函数值,为ln 22. 故选:C .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知,x y ∈R ,且123x =,124y =,则( ) A. y x >B. 1x y +>C. 14xy <D.<【答案】ACD 【解析】【分析】用对数表示x ,y ,利用对数函数的性质、对数的计算、基本不等式等即可逐项计算得到答案. 【详解】∵123x =,∴12log 3x =,同理12log 4y =, ∵12log y x =在0x >时递增,故y x >,故A 正确; ∵12log 121x y +==,∴B 错误;∵0x >,0y >,∴2124x y xy +⎛⎫≤= ⎪⎝⎭,当且仅当x y =时等号成立,而x y <,故14xy <,∴C 正确;∴212x y +=++=+<<,∴D 正确.故选:ACD .10. 有n (n *∈N ,10n ≥)个编号分别为1,2,3,…,n 的盒子,1号盒子中有2个白球和1个黑球,其余盒子中均有1个白球和1个黑球.现从1号盒子任取一球放入2号盒子;再从2号盒子任取一球放入3号盒子;…;以此类推,记“从i 号盒子取出的球是白球”为事件i A (1i =,2,3,…,n ),则( )A. ()1213P A A = B. ()124|5P A A = C. ()1279P A A +=D. ()1012P A =【答案】BC 【解析】【分析】根据题意,由概率的公式即可判断AC ,由条件概率的公式即可判断B ,由()n P A 与()1n P A -的关系,即可得到()11123n n P A ⎛⎫=⋅+ ⎪⎝⎭,从而判断D 【详解】对A ,()12224339P A A =⨯=,所以A 错误; 对B ,()22211533339P A =⨯+⨯=,故()()()121224|5P A A P A A P A ==,所以B 正确; 对C ,()()()()12121225473999P A A P A P A P A A +=+-=+-=,所以C 正确;对D ,由题意:()()()1121133n n n P A P A P A --⎡⎤=+-⎣⎦,所以()()1111232n n P A P A -⎡⎤-=-⎢⎥⎣⎦, ()123P A =,()112112326P A -=-=,所以()11111126323n nn P A -⎛⎫⎛⎫-=⨯=⨯ ⎪ ⎪⎝⎭⎝⎭, 所以()11123n n P A ⎛⎫=⋅+ ⎪⎝⎭, 则()101011123P A ⎛⎫=⋅+ ⎪⎝⎭,所以D 错误. 故选:BC .11. 已知抛物线E :24x y =的焦点为F ,过F 的直线1l 交E 于点()11,A x y ,()22,B x y ,E 在B 处的切线为2l ,过A 作与2l 平行的直线3l ,交E 于另一点()33,C x y ,记3l 与y 轴的交点为D ,则( ) A. 121y y = B. 1323x x x +=C. AF DF =D. ABC 面积的最小值为16【答案】ACD 【解析】【分析】A 选项,求出焦点坐标与准线方程,设直线1l 的方程为1y kx =+,联立抛物线方程,得到两根之积,从而求出121y y =;B 选项,求导,得到切线方程,联立抛物线方程,得到1322x x x +=;C 选项,求出()10,2D y +,11DF y =+,结合焦半径公式求出11AF y =+,C 正确;D 选项,作出辅助线,结合B 选项,得到2ABC ABM S S = ,表达出ABM S △,利用基本不等式求出最小值,从而得到ABC 面积最小值. 【详解】A 选项,由题意得()0,1F ,准线方程为1y =-, 直线1l 的斜率存在,故设直线1l 的方程为1y kx =+, 联立24x y =,得2440x k --=,124x x =-,故2212121116y y x x ==,A 正确; B 选项,12y x '=,直线2l 的斜率为212x ,故直线3l 的方程为()2112x y y x x -=-,即2122x y x y =++,联立24x y =,得()2212220x x x y --+=,故1322x x x +=, 所以B 错误;C 选项,由直线3l 的方程()2112x y y x x -=-,令0x =得()2112xy x y =-+, 又124x x =-,所以12y y =+,故()10,2D y +,故11DF y =+,又由焦半径公式得11AF y =+,所以C 正确; D 选项,不妨设12x x <,过B 向3l 作垂线交3l 于M ,根据B 选项知,1322x x x +=, 故2ABC ABM S S = , 根据直线3l 的方程()2112x y y x x -=-, 当2x x =时,()22221222111122222x x x x x y x x y y y =-+=+-=++, 故2221,22x M x y ⎛⎫++ ⎪⎝⎭, 故222222221211212111614222244444x x x x x BM y y x x x ⎛⎫=++-=+-=++=+ ⎪⎝⎭,故()2212111111114144248ABMS x x x x x x x x ⎛⎫⎛⎫⎛⎫=-⋅⋅+=+⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3311141888x x ⎛⎫⎛⎫=+≥= ⎪ ⎪ ⎪⎝⎭⎝⎭, 当且仅当114x x =,即12x =时,等号成立, 故ABC 的面积最小值为16,D 正确. 故选:ACD【点睛】方法点睛:圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.三、填空题:本题共3小题,每小题5分,共15分.12. 621x x ⎛⎫- ⎪⎝⎭展开式的常数项为______.【答案】15 【解析】【分析】利用二项式的展开式通项公式求解.【详解】展开式的通项公式为66316621C (1)C kk k k k kk T x x x --+⎛⎫=-=- ⎪⎝⎭,令630k -=,解得2k =, 所以常数项为236C 15T ==, 故答案为:15.13. 设双曲线C :22221x y a b-=(0a >,0b >)的一个焦点为F ,过F 作一条渐近线的垂线,垂足为E .若线段EF 的中点在C 上,则C 的离心率为______.【解析】【分析】由直线EF 与渐近线方程联立求出E 的坐标,代入双曲线标准方程即可求出离心率.【详解】直线EF 与渐近线方程联立得(),,b y x a a y x c b ⎧=⎪⎪⎨⎪=--⎪⎩解得2E a x c =,E ab y c =,∴EF 中点M 的坐标为22,22a c ab cc ⎛⎫+⎪⎝⎭, 又M 点在双曲线上,代入其标准方程,得()2222222144c a c a a c+-=, 化简得222c a =,∴22e =,e =.的. 14. 已知π,0,2αβ⎛⎫∈ ⎪⎝⎭,且1sin sin 2αβ-=-,1cos cos 2αβ-=,则tan tan αβ+=______. 【答案】83##223【解析】【分析】变形后得到sin cos sin cos ααββ+=+,利用辅助角公式得到π2αβ+=,得到1sin cos 2αα-=-,两边平方后得到3sin cos 8αα=,利用同角三角函数关系求出18tan tan sin cos 3αβαα+==.【详解】由题可知sin sin cos cos αβαβ-=-+,所以sin cos sin cos ααββ+=+,ππ44αβ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭, 因为π,0,2αβ⎛⎫∈ ⎪⎝⎭,所以ππ3πππ3π,,,244244αβ⎛⎫⎛⎫+∈+∈ ⎪⎪⎝⎭⎝⎭, 又αβ≠,所以πππ44a β+++=,故π2αβ+=, 所以1sin cos 2sin sin αβαα-=--=,两边平方后得221sin 2sin cos cos 4αααα-+=,故3sin cos 8αα=,1sin cos 18tan tan tan tan cos sin sin cos 3αααβαααααα+=+=+==.故答案为:83四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 在ABC 中,()sin sin B A A C -=. (1)求B 的大小;(2)延长BC 至点M ,使得2BC CM =.若π4CAM ∠=,求BAC ∠的大小. 【答案】(1)π4B =; (2)π12BAC ∠=或5π12.【解析】【分析】(1)由()sin sin C A B =+,代入已知等式中,利用两角和与差的正弦公式化简得cos B =可得B 的大小;(2)设BC x =,BAC θ∠=,在ABC 和ACM △中,由正弦定理表示边角关系,化简求BAC ∠的大小.【小问1详解】在ABC 中,A B C π++=,所以()sin sin C A B =+.因为()sin sin B A A C -=,所以()()sin sin B A A A B -+=+,即sin cos cos sin sin cos cos sin B A B A A B A B A -=+2cos sin A B A =. 因为()0,πA ∈,所以sin 0A ≠,cos B =. 因为0πB <<,所以π4B =. 【小问2详解】法1:设BC x =,BAC θ∠=,则2CM x =.由(1)知π4B =,又π4CAM ∠=,所以在ABM 中,π2AMC θ∠=-.在ABC 中,由正弦定理得sin sin BC AC BAC B=∠,即πsin sin 4x ACθ=①. 在ACM △中,由正弦定理得sin sin CM ACCAM M =∠,即2ππsin sin 42x ACθ=⎛⎫- ⎪⎝⎭②.①÷=,即12sin cos 2θθ=,所以1sin 22θ=.因为3π0,4θ⎛⎫∈ ⎪⎝⎭,3π20,2θ⎛⎫∈ ⎪⎝⎭,所以π26θ=或5π6,故π12θ=或5π12. 法2:设BC x =,则2CM x =,3BM x =. 因为π4CAM B ∠==,所以ACM BAM △△∽,因此AM CM BM AM=, 所以226AM BM CM x =⋅=,AM =.在ABM 中,由正弦定理得sin sin =∠BM AM BAM B,即3sin x BAM =∠,化简得sin BAM ∠=. 因为30,4BAM π⎛⎫∠∈ ⎪⎝⎭,所以π3BAM ∠=或2π3,π4BAC BAM ∠=∠-, 故π12BAC ∠=或5π12. 16. 如图,已知四棱台1111ABCD A B C D -的上、下底面分别是边长为2和4的正方形,平面11AA D D ⊥平面ABCD,11A A D D ==,点P 是棱1DD 的中点,点Q 在棱BC 上.(1)若3BQ QC =,证明:PQ ∥平面11ABB A ; (2)若二面角P QD C --,求BQ 的长. 【答案】(1)证明见解析;(2)1. 【解析】【分析】(1)取1AA 的中点M ,先证明四边形BMPQ 是平行四边形得到线线平行,再由线面平行性质定理可得;(2)法一:应用面面垂直性质定理得到线面垂直,建立空间直角坐标系,再利用共线条件设CQ CB λ=()01λ≤≤,利用向量加减法几何意义表示所需向量的坐标,再由法向量方法表示面面角,建立方程求解可得;法二:同法一建立空间直角坐标系后,直接设点Q 坐标()()4,,013Q t t -≤≤,进而表示所需向量坐标求解两平面的法向量及夹角,建立方程求解t ;法三:一作二证三求,设()04BQ x x =≤≤,利用面面垂直性质定理,作辅助线作角,先证明所作角即为二面角的平面角,再利用已知条件解三角形建立方程求解可得. 【小问1详解】证明:取1AA 的中点M ,连接MP ,MB .在四棱台1111ABCD A B C D -中,四边形11A ADD 是梯形,112AD =,4=AD , 又点M ,P 分别是棱1A A ,1D D 中点,所以MP AD ∥,且1132A D ADMP +==.在正方形ABCD 中,BC AD ∥,4BC =,又3BQ QC =,所以3BQ =. 从而MP BQ ∥且MP BQ =,所以四边形BMPQ 是平行四边形,所以PQ MB ∥. 又因为MB ⊂平面11ABB A ,PQ ⊄平面11ABB A ,所以PQ ∥平面11ABB A ;【小问2详解】在平面11AA D D 中,作1A O AD ⊥于O .因为平面11AA D D ⊥平面ABCD ,平面11AA D D ⋂平面ABCD AD =,1A O AD ⊥,1A O ⊂平面11AA D D ,的所以1A O ⊥平面ABCD .在正方形ABCD 中,过O 作AB 的平行线交BC 于点N ,则ON OD ⊥.以{}1,,ON OD OA为正交基底,建立空间直角坐标系O xyz -.因为四边形11AA D D 是等腰梯形,112AD =,4=AD ,所以1AO =,又11AA D D ==,所以14A O =.易得()4,1,0B -,()0,3,0D ,()4,3,0C ,()10,2,4D ,50,,22P ⎛⎫⎪⎝⎭,所以()4,0,0DC = ,10,,22DP ⎛⎫=- ⎪⎝⎭ ,()0,4,0CB =-.法1:设()()0,4,001CQ CB λλλ==-≤≤ ,所以()4,4,0DQ DC CQ λ=+=-.设平面PDQ 的法向量为(),,m x y z = ,由00m DP m DO ⎧⋅=⎪⎨⋅=⎪⎩ ,得1202440y z x y λ⎧-+=⎪⎨⎪-=⎩,取()4,4,1m λ= , 另取平面DCQ 的一个法向量为()0,0,1n =.设二面角P QD C --的平面角为θ,由题意得cos θ==. 又cos cos ,m n m n m nθ⋅===⋅=解得34λ=±(舍负),因此3434CQ =⨯=,1BQ =. 所以当二面角P QDC --时,BQ 的长为1.法2:设()()4,,013Q t t -≤≤,所以()4,3,0DQ t =-.设平面PDQ 的法向量为(),,m x y z = ,由00m DP m DQ ⎧⋅=⎪⎨⋅=⎪⎩ ,得12024(3)0y z x t y ⎧-+=⎪⎨⎪+-=⎩,取()3,4,1m t =- ,另取平面DCQ 的一个法向量为()0,0,1n =.设二面角P QD C --的平面角为θ,由题意得cos θ==. 又cos cos ,m n m n m nθ⋅===⋅=解得0=t 或6(舍),因此1BQ =. 所以当二面角P QDC --时,BQ 的长为1.法3:在平面11A ADD 中,作PH AD ⊥,垂足为H .因为平面11A ADD ⊥平面ABCD ,平面11 A ADD 平面ABCD AD =,PH AD ⊥,PH ⊂平面11A ADD ,所以PH ⊥平面ABCD ,又DQ ⊂平面ABCD ,所以PH DQ ⊥. 在平面ABCD 中,作HG DQ ⊥,垂足为G ,连接PG .因为PH DQ ⊥,HG DQ ⊥,PH HG H = ,PH ,HG ⊂平面PHG , 所以DQ ⊥平面PHG ,又PG ⊂平面PHG ,所以DQ PG ⊥.因为HG DQ ⊥,PG DQ ⊥,所以PGH ∠是二面角P QD A --的平面角. 在四棱台1111ABCD A B CD -中,四边形11A ADD 是梯形,112AD =,4=AD ,11AA D D ==,点P 是棱1DD 的中点, 所以2PH =,12DH =.设()04BQ x x =≤≤,则4CQ x =-,DQ ==在QHD △中,1114222HG ⨯⨯=,从而HG =.因为二面角P QD C --的平面角与二面角P QD A --的平面角互补,且二面角P QD C --sin PGH ∠=tan 5PGH ∠=.所以在Rt PHG △中,5PHHG==,解得1x =或7x =(舍).所以当二面角P QD C --时,BQ 的长为1. 17. 已知某种机器的电源电压U (单位:V )服从正态分布()2220,20N .其电压通常有3种状态:①不超过200V ;②在200V~240V 之间③超过240V .在上述三种状态下,该机器生产的零件为不合格品的概率分别为0.15,0.05,0.2.(1)求该机器生产的零件为不合格品的概率;(2)从该机器生产的零件中随机抽取n (2n ≥)件,记其中恰有2件不合格品的概率为n p ,求n p 取得最大值时n 的值. 附:若()2~,Z Nμσ,取()0.68P Z μσμσ-<<+=,()220.95P Z μσμσ-<<+=.【答案】(1)0.09;(2)22n =. 【解析】【分析】(1)根据题意,由正态分布的概率公式代入计算,再由全概率公式,即可得到结果; (2)根据题意,由二项分布的概率公式代入计算,即可得到结果. 【小问1详解】记电压“不超过200V”、“在200V~240V 之间”、“超过240V”分别为事件A ,B ,C ,“该机器生产的零件为不合格品”为事件D .因为()2~220,20U N ,所以()()()110.682000.1622P Z P A P U μσμσ--<<+-=≤===,()()()2002400.68P B P U P Z μσμσ=<<=-<<+=,()()()110.682400.1622P Z P C P U μσμσ--<<+-=>===.所以()()()()()()()|||P D P A P D A P B P D B P C P D C =++0.160.150.680.050.160.20.09=⨯+⨯+⨯=,所以该机器生产的零件为不合格品的概率为0.09. 【小问2详解】从该机器生产的零件中随机抽取n 件,设不合格品件数为X ,则()~,0.09X B n , 所以()2222C 0.910.09n n n p P X -===⋅⋅.由21211222C 0.910.0910.911C 0.910.091n n n n n n p n p n -++-⋅⋅+==⨯>⋅⋅-,解得19129n ≤<. 所以当221n ≤≤时,1n n p p +<; 当22n ≥时,1n n p p +>;所以22p 最大. 因此当22n =时,n p 最大.18. 已知椭圆C :()222210x y a b a b+=>>的右焦点为()1,0F ,右顶点为A ,直线l :4x =与x 轴交于点M ,且AM a AF =, (1)求C 的方程;(2)B 为l 上动点,过B 作C 的两条切线,分别交y 轴于点P ,Q , ①证明:直线BP ,BF ,BQ 的斜率成等差数列;②⊙N 经过B ,P ,Q 三点,是否存在点B ,使得,90PNQ ∠=︒?若存在,求BM ;若不存在,请说明理由.【答案】(1)22143x y +=的(2)①证明见解析;②存在,BM =【解析】【分析】(1)先求出右顶点D 和M 的坐标,利用题中条件列等式,分类讨论计算得出椭圆的方程; (2)设直线的方程为()4y t k x -=-,将直线方程与椭圆方程联立,得出韦达定理,由题意,将韦达定理代入可出答案. 【小问1详解】由右焦点为()1,0F ,得1c =,因为AM a AF =,所以()41a a a -=-,若4a ≥,则()41a a a -=-,得2402a a -+=,无解,若4a <,则()41a a a -=-,得24a =,所以23b =,因此C 的方程22143x y +=.【小问2详解】设()4,B t ,易知过B 且与C 相切的直线斜率存在, 设为()4y t k x -=-,联立()224143y t k x x y ⎧-=-⎪⎨+=⎪⎩,消去y 得()()()222348444120k x k t k x t k ++-+--=,由()()()2222Δ64443444120k t k k t k ⎡⎤=--+--=⎣⎦,得2212830k tk t -+-=, 设两条切线BP ,BQ 的斜率分别为1k ,2k ,则1282123t t k k +==,212312t k k -=. ①设BF 斜率为3k ,则3413t tk ==-, 因为123223tk k k +==,所以BP ,BF ,BQ 的斜率成等差数列, 的②法1:在()14y t k x -=-中,令0x =,得14P y t k =-,所以()10,4P t k -, 同理,得()20,4Q t k -,所以PQ 的中垂线为()122y t k k =-+, 易得BP 中点为()12,2t k -,所以BP 的中垂线为()11122y x t k k =--+-, 联立12112()1(2)2y t k k y x t k k =-+⎧⎪⎨=--+-⎪⎩,解得()()121222,2N k k t k k +-+, 所以()122122,22NP k k k k =--- ,()121222,22NQ k k k k =---,要使0NP NQ ⋅= ,即()()2212124140k k k k +--=,整理得12121k k k k +=-,而12k k -===,所以23112t -+=,解得27t =,t =,因此BM = 故存在符合题意的点B ,使得0NP NQ ⋅=,此时BM =法2:在()14y t k x -=-中,令0x =,得14P y t k =-,因此()10,4P t k -, 同理可得()20,4Q t k -,所以PQ 的中垂线为()122y tk k=-+,因为BP 中点为()12,2t k -,所以BP 的中垂线为()11122y x t k k =--+-, 联立12112()1(2)2y t k k y x t k k =-+⎧⎪⎨=--+-⎪⎩,解得1222N x k k =+, 要使0NP NQ ⋅= ,则2PNQ π∠=,所以2N PQ x =,即1212222k k k k +=-,而12k k -===,所以23112t -+=,解得27t =,t =,因此BM = 故存在符合题意的点B ,使得0NP NQ ⋅=,此时BM =法3:要使90PNQ ∠=︒,即45PBQ ∠=︒或135︒, 从而1tan PBQ ∠=,又1212tan 1k k PBQ k k -∠=+,所以121211k k k k -=+,因为12k k -===,23112t -=+,解得27t =,t =,所以BM =故存在符合题意的点B ,使得0NP NQ ⋅=,此时BM =法4:要使90PNQ ∠=︒,即45PBQ ∠=︒或135︒,从而cos BP BQ PBQ BP BQ⋅∠==⋅ ,在()14y t k x -=-中,令0x =,得14P y t k =-,故()10,4P t k -, 同理可得()20,4Q t k -,因此()14,4BP k =-- ,()24,4BQ k =--,所以BP BQ BP BQ ⋅==⋅)121k k +=,即222222121212122241k k k k k k k k ++=+++, 整理得()22212121261k k k k k k ++=+,所以22223326112123t t t ⎛⎫--⎛⎫+⋅+= ⎪ ⎪⎝⎭⎝⎭,整理得422630t t +-=,解得27t =或9-(舍去),因此t =,BM =故存在符合题意的点B ,使得0NP NQ ⋅=,此时BM =法5:要使90PNQ ∠=︒,即45PBQ ∠=︒或135︒,在()14y t k x -=-中,令0x =,得14P y t k =-,故()10,4P t k -,同理可得()20,4Q t k -, 由等面积法得1122B PBQ PQ x S BP BQ ⋅==⋅即121144422k k -⋅=⋅()22212121261k k k k k k +=++, 所以22222336131212t t t ⎛⎫--⎛⎫=+⋅+ ⎪ ⎪⎝⎭⎝⎭,整理得422630t t +-=,解得27t =或9-(舍去),因此t =,BM =故存在符合题意的点B ,使得0NP NQ ⋅=,此时BM =【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式; (5)代入韦达定理求解.19. 已知0a >,函数()sin cos 1f x ax x ax =+-,π04x <<. (1)若2a =,证明:()0f x >; (2)若()0f x >,求a 的取值范围; (3)设集合()1π{|cos ,N }21nn n k P a a n k k *===∈+∑,对于正整数m ,集合{}|2mQ x m x m =<<,记m P Q 中元素的个数为m b ,求数列{}m b 的通项公式.【答案】(1)证明见解析;(2)(]0,2;(3)m b m =. 【解析】【分析】(1)通过构造函数,利用导数判断函数单调性,求最小值即可证明;(2)对a 的值分类讨论,利用导数判断函数单调性,求最小值,判断能否满足()0f x >;(3)利用(1)中结论,()()ππcos 12121k k k k >-++,通过放缩并用裂项相消法求()1πcos 21nk k k =+∑,有()1π1cos21nk n n k k =-<<+∑,可得m b m =【小问1详解】因为2a =,所以()()2sin cos 212sin sin f x x x x x x x =+-=-, π04x <<,2sin 0x >. 设()sin gx x x =-,π04x <<, 则()1cos 0g x x ='->,所以()g x 在π0,4⎛⎫⎪⎝⎭上单调递增, 所以()()00g x g >=, 因此()0f x >. 【小问2详解】函数()sin cos 1f x ax x ax =+-,π04x <<, 方法一:()()sin cos sin f x a x x x ax '=+-,当02a <≤时, 注意到π022ax x <≤<,故sin sin2ax x ≤, 因此()()()()sin cos sin2sin 1cos sin cos f x a x x x x a x x x x x '≥+-=-+-⎡⎤⎣⎦, 由(1)得sin 0x x ->,因此()0f x ¢>, 所以()f x 在π0,4⎛⎫⎪⎝⎭上单调递增,从而()()00f x f >=,满足题意; 当2a >时,令()()()sin cos sin h x f x a x x x ax '==+-,()()()222cos sin cos 2cos cos h x a x x x a ax a a ax a ax a ⎛⎫'=--<-=- ⎪⎝⎭,.因为201a <<,所以存在0,2a θπ⎛⎫∈ ⎪⎝⎭,使得2cos a a θ=, 则当(0,)x θ∈时,0,()ax a θ∈,()2220h x a a a ⎛⎫'<-=⎪⎝⎭,所以()f x '在()0,θ上单调递减, 从而()()00f x f ''<=,所以()f x 在()0,θ上单调递减,因此()()00f f θ<=,不合题意;综上,02a <≤. 方法二:()()sin cos sin f x a x x x ax '=+-,当02a <≤时,注意到π022ax x <≤<,故sin sin2ax x ≤, 因此()()()()sin cos sin2sin 1cos sin cos f x a x x x x a x x x x x '≥+-=-+-⎡⎤⎣⎦, 由(1)得sin 0x x ->,因此()0f x ¢>, 所以()f x 在π0,4⎛⎫⎪⎝⎭上单调递增,从而()()00f x f >=,满足题意; 当2a >时,先证明当0x >时,2sin x x x -<. 令()2sin G x x x x =--,则()12cos G x x x '=--,令()12cos H x x x =--,则()2sin 0H x x '=-+<, 所以()G x '在()0,∞+上单调递减,有()()00G x G ''<=, 所以()G x 在()0,∞+上单调递减,有()()00G x G <=, 因此当0x >时,2sin x x x -<. 又由(1)得sin 0x x ->,此时()()()()()2222sin cos s 22in 2a x ax ax a a x a x ax a x a f x a x x x ax ⎡⎤⎡⎤⎡⎤<-+=--=--⎣⎦⎣⎦⎣⎦'=+-,则0π0,4x ⎛⎫∈ ⎪⎝⎭∃且022a x a-<,当()00,x x ∈时,()0f x '<。
【新结构】江苏省盐城市盐城中学2024届高三第一次模拟考试数学试卷+答案解析

【新结构】江苏省盐城市盐城中学2024届高三第一次模拟考试数学试卷❖一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.函数的最小正周期是()A.B.C.D.2.已知随机事件A ,B 相互独立,且,则()A.B.C. D.3.已知向量,满足,,则()A.1B.C.2D.4.若从1至9的9个整数中随机取2个不同的数,则这2个数的和是3的倍数的概率为()A. B.C.D.5.已知为数列的前n 项和,则“”是“数列为单增数列”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.已知,,,,则的值是()A.B.C.D.7.已知球O 与圆台的上下底面和侧面都相切.若圆台上下底面半径分别为,且若球和圆台的体积分别为和,则的最大值为()A.B.C. D.8.已知函数的零点为,存在零点,使,则不能是()A. B.C.D.二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,部分选对的得2分,有选错的得0分。
9.已知非零复数在复平面内对应的点分别为,O 为坐标原点,则A.当时,B.当时,C.若,则存在实数t,使得D.若,则10.定义平面斜坐标系xOy,记,,分别为x轴、y轴正方向上的单位向量,若平面上任意一点P的坐标满足:,则记向量的坐标为,给出下列四个命题,正确的选项是()A.若,,则B.若,,则C.若,,则D.若,以O为圆心、半径为1的圆的斜坐标方程为11.已知直四棱柱,,底面ABCD是边长为1的菱形,且,点E,F,G分别为,,BC的中点,点H是线段上的动点含端点以为球心作半径为R的球,下列说法正确的是()A.直线AH与直线BE所成角的正切值的最小值为B.存在点H,使得平面EFGC.当时,球与直四棱柱的四个侧面均有交线D.在直四棱柱内,球外放置一个小球,当小球体积最大时,球直径的最大值为三、填空题:本题共3小题,每小题5分,共15分。
江苏省盐城市2014届高三上学期期中考试数学试题 Word版含答案

盐城市2014届高三年级第一学期期中考试数 学 试 题(总分160分,考试时间120分钟)一、填空题:本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上.1.已知集合{}1,0,1,2A =-, {}2|10B x x =->,则A B = ▲ .2.命题“,sin 1x R x ∀∈≤”的否定是 ▲ .3.函数2cos y x =的最小正周期为 ▲ .4.设函数2()(2)1f x x a x =+--在区间[)2,+∞上是增函数,则实数a 的最小值 为 ▲ .5.设向量(1,),(3,4)a x b ==- ,若//a b ,则实数x 的值为 ▲ .6.在等比数列{}n a 中,22a =,516a =,则10a = ▲ .7.设函数()f x 是周期为5的奇函数,当02x <≤时,()23x f x =-,则(2013)f= ▲ .8.设命题:p 4>x ;命题082:2≥--x x q ,那么p 是q 的 ▲ 条件(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”).9.已知函数()2(1)ln f x f x x '=-,则()f x 的极大值为 ▲ .10.在ABC ∆中,6BC =,BC 边上的高为2,则AB AC ⋅ 的最小值为 ▲ .11.在数列{}n a 中,11a =,2(1)2n n n a a ++-=,记n S 是数列{}n a 的前n 项和,则60S = ▲ .12.在ABC ∆中,若22()||5CA CB AB AB +⋅= ,则tan tan A B= ▲ . 13.在数列{}n a 中,10a =,111111n n a a +-=--,设n b =,记n S 为数列{}n b 的前n 项和,则99S = ▲ .14. 设)(x f '和)(x g '分别是()f x 和()g x 的导函数,若()()0f x g x ''≤在区间I 上恒成立,则称)(x f 和)(x g 在区间I 上单调性相反.若函数31()23f x x ax =-与2()2g x x bx =+在开区间(,)a b 上单调性相反(0a >),则b a -的最大值为 ▲ .二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.15. (本小题满分14分)已知函数()2sin(2)f x x ϕ=+,其中角ϕ的终边经过点P ,且0ϕπ<<.(1)求ϕ的值;(2)求()f x 在[0,]π上的单调减区间.16. (本小题满分14分)设集合{}21A x x =-<<-,|lg,0,3x a B x y a a R a x -⎧⎫==≠∈⎨⎬-⎩⎭. (1)当a =1时,求集合B ;(2)当A B B = 时,求a 的取值范围.17. (本小题满分14分) 在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,设(1,1)m = ,(cos ,sin )n A A =- , 记()f A m n =⋅ .(2)若m 与n 的夹角为3π,3C π=,c =,求b 的值.18. (本小题满分16分)某地开发了一个旅游景点,第1年的游客约为100万人,第2年的游客约为120万人. 某数学兴趣小组综合各种因素预测:①该景点每年的游客人数会逐年增加;②该景点每年的游客都达不到130万人. 该兴趣小组想找一个函数()y f x =来拟合该景点对外开放的第x (1)x ≥年与当年的游客人数y (单位:万人)之间的关系.(1)根据上述两点预测,请用数学语言描述.......函数()y f x =所具有的性质; (2)若()f x =m n x+,试确定,m n 的值,并考察该函数是否符合上述两点预测; (3)若()f x =(0,1)x a b c b b ⋅+>≠,欲使得该函数符合上述两点预测,试确定b 的取值范围.19. (本小题满分16分)若函数()(ln )f x x x a =-(a 为实常数).(1)当0a =时,求函数)(x f 在1x =处的切线方程;(2)设()|()|g x f x =.①求函数()g x 的单调区间; ②若函数1()()h x g x =的定义域为2[1,]e ,求函数()h x 的最小值()m a .20. (本小题满分16分)设数列{}n a 的各项均为正实数,2log n n b a =,若数列{}n b 满足20b =,12log n n b b p +=+,其中p 为正常数,且1p ≠.(1)求数列{}n a 的通项公式;(2)是否存在正整数M ,使得当n M >时,1473216n a a a a a -⋅⋅⋅⋅⋅⋅⋅>恒成立?若存在,求出使结论成立的p 的取值范围和相应的M 的最小值;若不存在,请说明理由;(3)若2p =,设数列{}n c 对任意的*n N ∈,都有12132n n n c b c b c b --+++⋅⋅⋅1n c b +2n =-成立,问数列{}n c 是不是等比数列?若是,请求出其通项公式;若不是,请说明理由.。
数学_2014年江苏省某校高考数学一模试卷(含答案)

2014年江苏省某校高考数学一模试卷一、填空题:本大题共14小题,每小题5分,共70分.把答案填在题中横线上. 1. 已知集合A ={x|2x >1},B ={x|x <1},则A ∩B =________. 2. 复数a−2i 1+2i(i 是虚数单位)是纯虚数,则实数a 的值为________.3. 一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[2500, 3000)(元)月收入段应抽出________人.4. 某算法的伪代码如图所示,若输出y 的值为1,则输入x 的值为________.5. 已知双曲线x 24−y 2b=1的右焦点为(3, 0),则该双曲线的渐近线方程为________.6. 已知2sinθ+3cosθ=0,则tan2θ=________.7. 已知正三棱柱底面边长是2,外接球的表面积是16π,则该三棱柱的侧棱长________. 8. 在R 上定义运算⊙:a ⊙b =ab +2a +b ,则不等式x ⊙(x −2)<0的解集是________. 9. 投掷一枚正方体骰子(六个面上分别标有1,2,3,4,5,6),向上的面上的数字记为a ,又n(A)表示集合的元素个数,A ={x||x 2+ax +3|=1, x ∈R},则n(A)=4的概率为________.10. 函数f(x)=2sin(πx)−11−x,x ∈[−2, 4]的所有零点之和为________.11. 如图,PQ 是半径为1的圆A 的直径,△ABC 是边长为1的正三角形,则BP →⋅CQ →的最大值为________.12. 已知数列{a n }的首项a 1=a ,其前n 和为S n ,且满足S n +S n−1=3n 2(n ≥2).若对任意的n ∈N ∗,a n <a n+1恒成立,则a 的取值范围是________.13. 已知圆C :(x −2)2+y 2=1,点P 在直线l:x +y +1=0上,若过点P 存在直线m 与圆C 交于A 、B 两点,且点A 为PB 的中点,则点P 横坐标x 0的取值范围是________. 14. 记实数x 1,x 2,…,x n 中的最大数为max{x 1, x 2, ..., x n },最小数为min{x 1, x 2, ..., x n }.已知实数1≤x ≤y 且三数能构成三角形的三边长,若t =max{1x , xy, y}⋅min{1x , xy, y},则t 的取值范围是________.二、解答题:本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤. 15. 已知a →=(3, −cos(ωx)),b →=(sin(ωx),√3),其中ω>0,函数f(x)=a →⋅b →的最小正周期为π.(1)求f(x)的单调递增区间;(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .且f(A2)=√3,a =√3b 求角A 、B 、C 的大小.16. 如图,在三棱锥P −ABC 中,PA ⊥PC ,AB =PB ,E ,F 分别是PA ,AC 的中点.求证: (1)EF // 平面PBC ;(2)平面BEF ⊥平面PAB .17. 某音乐喷泉喷射的水珠呈抛物线形,它在每分钟内随时间t (秒)的变化规律大致可用y =−(1+4sin 2tπ60)x 2+20(sin tπ60)x(t 为时间参数,x 的单位:m)来描述,其中地面可作为x 轴所在平面,泉眼为坐标原点,垂直于地面的直线为y 轴. (1)试求此喷泉喷射的圆形范围的半径最大值;(2)若在一建筑物前计划修建一个矩形花坛并在花坛内装置两个这样的喷泉,则如何设计花坛的尺寸和两个喷水器的位置,才能使花坛的面积最大且能全部喷到水? 18. 如图,在平面直角坐标系xOy 中,已知椭圆C:x 2a2+y 2b 2=1(a >b >0)的离心率为√32,以椭圆C 左顶点T 为圆心作圆T :(x +2)2+y 2=r 2(r >0),设圆T 与椭圆C 交于点M 与点N .(1)求椭圆C 的方程;(2)求TM →⋅TN →的最小值,并求此时圆T 的方程;(3)设点P 是椭圆C 上异于M ,N 的任意一点,且直线MP ,NP 分别与x 轴交于点R ,S ,O为坐标原点,求证:OR ⋅OS 为定值. 19. 已知数列{a n }满足下列条件: ①首项a 1=a ,(a >3, a ∈N ∗); ②当a n =3k ,(k ∈N ∗)时,a n+1=a n 3;③当a n ≠3k ,(k ∈N ∗)时,a n+1=a n +1. (1)当a 4=1,求首项a 之值; (2)当a =2014时,求a 2014;(3)试证:正整数3必为数列{a n }中的某一项.20. 已知函数f(x)=a −blnx(a, b ∈R),其图象在x =e 处的切线方程为x −ey +e =0.函数g(x)=kx (k >0),ℎ(x)=f(x)x−1.(1)求实数a 、b 的值;(2)以函数g(x)图象上一点为圆心,2为半径作圆C ,若圆C 上存在两个不同的点到原点O 的距离为1,求k 的取值范围;(3)求最大的正整数k ,对于任意的p ∈(1, +∞),存在实数m 、n 满足0<m <n <p ,使得ℎ(p)=ℎ(m)=g(n).【选做题】在四小题中只能选做2题,每小题10分,共计20分.解答应写出文字说明、证明过程或演算步骤.选修4-1几何证明选讲21. 选修4−1:几何证明选讲如图,已知⊙O 的半径为1,MN 是⊙O 的直径,过M 点作⊙O 的切线AM ,C 是AM 的中点,AN 交⊙O 于B 点,若四边形BCON 是平行四边形; (1)求AM 的长; (2)求sin∠ANC .选修4-2矩阵与变换22. 已知二阶矩阵M 有特征值λ=3及对应的一个特征向量e 1→=[11],并且矩阵M 对应的变换将点(−1, 2)变换成(3, 0),求矩阵M .选修4-4参数方程与极坐标23. 已知曲线C 的极坐标方程是ρ=2sinθ,设直线l 的参数方程是{x =−35t +2,y =45t ,(t 为参数).(1)将曲线C 的极坐标方程转化为直角坐标方程;(2)设直线l 与x 轴的交点是M ,N 为曲线C 上一动点,求|MN|的最大值.选修4-5不等式证明选讲24. 已知x 2+y 2=2,且|x|≠|y|,求1(x+y)2+1(x−y)2的最小值.25. 如图,PCBM 是直角梯形,∠PCB =90∘,PM // BC ,PM =1,BC =2,又AC =1,∠ACB =120∘,AB ⊥PC ,直线AM 与直线PC 所成的角为60∘. (1)求二面角M −AC −B 的余弦值; (2)求点C 到面MAB 的距离. 26. 已知二项式(√x 5+12x)m的展开式中第2项为常数项t ,其中m ∈N ∗,且展开式按x 的降幂排列.(1)求m 及t 的值.(2)数列{a n }中,a 1=t ,a n =t a n−1,n ∈N ∗,求证:a n −3能被4整除.2014年江苏省某校高考数学一模试卷答案1. {x|0<x <1}2. 43. 254. −1或20145. y =±√52x 6. 125 7.4√63 8. (−2, 1) 9. 13 10. 8 11. 12 12. (94, 154) 13. [−1, 2] 14. [1,1+√52)15. 解:(1)f(x)=3sinωx−√3cosωx=2√3(√32sinωx−12cosωx)=2√3sin(ωx−π6),∵ T=2πω=π,∴ ω=2,即f(x)=2√3sin(2x−π6),由2kπ−π2≤2x−π6≤2kπ+π2,k∈Z,得:kπ−π6≤x≤kπ+π3,k∈Z,则f(x)的单调递增区间为[kπ−π6, kπ+π3](k∈Z);(2)∵ f(A2)=2√3sin(A−π6)=√3,∴ sin(A−π6)=12,∵ 0<A<π,∴ −π6<A−π6<5π6,即A=π3,∵ asinA =bsinB,a=√3b,∴ sinB=bsinAa =√33×√32=12,∵ a>b,∴ A>B,则B=π6,A=π3,C=π2.16. 证明:(1)在△APC中,因为E,F分别是PA,AC的中点,所以EF // PC,…又PC⊂平面PAC,EF⊄平面PAC,所以EF // 平面PBC;…(2)因为AB=PB,且点E是PA的中点,所以PA⊥BE;…又PA⊥PC,EF // PC,所以PA⊥EF,…因为BE⊂平面BEF,EF⊂平面BEF,BE∩EF=E,PA⊂平面PAB,所以平面PAB⊥平面BEF.…17. 花坛的长为10√2m,宽为5√2m,两喷水器位于矩形分成的两个正方形的中心,符合要求.…18. 依题意,得a=2,e=ca =√32,∴ c=√3,b=√4−3=1,故椭圆C的方程为x 24+y2=1.方法一:点M与点N关于x轴对称,设M(x 1, y 1),N(x 1, −y 1),不妨设y 1>0. 由于点M 在椭圆C 上,所以y 12=1−x 124. (∗)由已知T(−2, 0),则TM →=(x 1+2,y 1),TN →=(x 1+2,−y 1), ∴ TM →⋅TN →=(x 1+2,y 1)⋅(x 1+2,−y 1) =(x 1+2)2−y 12=(x 1+2)2−(1−x 124)=54x 12+4x 1+3=54(x 1+85)2−15.由于−2<x 1<2,故当x 1=−85时,TM →⋅TN →取得最小值为−15.由(∗)式,y 1=35,故M(−85,35),又点M 在圆T 上,代入圆的方程得到r 2=1325. 故圆T 的方程为:(x +2)2+y 2=1325.方法二:点M 与点N 关于x 轴对称,故设M(2cosθ, sinθ),N(2cosθ, −sinθ), 不妨设sinθ>0,由已知T(−2, 0),则TM →⋅TN →=(2cosθ+2,sinθ)⋅(2cosθ+2,−sinθ) =(2cosθ+2)2−sin 2θ =5cos 2θ+8cosθ+3 =5(cosθ+45)2−15.故当cosθ=−45时,TM →⋅TN →取得最小值为−15,此时M(−85,35),又点M 在圆T 上,代入圆的方程得到r 2=1325.故圆T 的方程为:(x +2)2+y 2=1325.方法一:设P(x 0, y 0),则直线MP 的方程为:y −y 0=y 0−y1x 0−x 1(x −x 0),令y =0,得x R =x 1y 0−x 0y 1y 0−y 1,同理:x S =x 1y 0+x 0y 1y 0+y 1,故x R⋅x S=x12y02−x02y12y02−y12 (∗∗)又点M与点P在椭圆上,故x02=4(1−y02),x12=4(1−y12),代入(∗∗)式,得:x R⋅x S=4(1−y12)y02−4(1−y02)y12y02−y12=4(y02−y12)y02−y12=4.所以|OR|⋅|OS|=|x R|⋅|x S|=|x R⋅x S|=4为定值.方法二:设M(2cosθ, sinθ),N(2cosθ, −sinθ),不妨设sinθ>0,P(2cosα, sinα),其中sinα≠±sinθ.则直线MP的方程为:y−sinα=sinα−sinθ2cosα−2cosθ(x−2cosα),令y=0,得x R=2(sinαcosθ−cosαsinθ)sinα−sinθ,同理:x S=2(sinαcosθ+cosαsinθ)sinα+sinθ,故x R⋅x S=4(sin2αcos2θ−cos2αsin2θ)sin2α−sin2θ=4(sin2α−sin2θ)sin2α−sin2θ=4.所以|OR|⋅|OS|=|x R|⋅|x S|=|x R⋅x S|=4为定值.19. (1)解:当a4=1时,因为a n+1=a n3,所以a3=3,此时,若a2=2,则a=6;若a2=9,则a=27或8,综上所述,a之值为6或8或27.…(2)解:当a=2014时,a2=2015,a3=2016,a4=672,a5=224,a6=225,a7=75,a8=25,a9=26,a10=27,a11=9,a12=3,a13=1,a14=2,a15=3,以下出现周期为3的数列,从而a2014=a13=1;…(3)证明:由条件知:若a n=3k,(k∈N∗),则a n+1=a n3,a n+3≤a n3+2;若a n=3k+1,(k∈N∗),则a n+1=a n+1=3k+2,a n+2=3k+3,a n+3=k+1<13a n+2;若a n=3k+2,(k∈N∗),则a n+1=a n+1=3k+3,a n+2=13(a n+1),a n+3≤13(a n+1)+1<13a n+2;…综上所述,a n+3≤13a n+2,从而a n−a n+3≥23(a n−3),故当a n>3时,必有a n−a n+3>0,因a n∈N∗,故a n−a n+3≥1,所以数列{a n}中必存在某一项a m≤3(否则会与上述结论矛盾!)若a m=3,则a m+1=1,a m+2=2;若a m=2,则a m+1=3,a m+2=1,若a m =1,则a m+1=2,a m+2=3,综上所述,正整数3必为数列{a n }中的某一项. … 20. 解:(1) 当x =e 时,y =2,f′(x)=−bx , 故{a −b =2−b e =1e,解得{a =1b =−1.(2)问题即为圆C 与以O 为圆心1为半径的圆有两个交点,即两圆相交. 设C(x 0,kx 0),则1<√x 02+k 2x 02<3,即{k 2>x 02−x 04k 2<9x 02−x 04, ∵ x 02−x 04=−(x 02−12)2+14,∴ x 02−x 04≤14,∴ k 2>x 02−x 04必定有解; ∵ 9x 02−x 04=−(x 02−92)2+814,∴ 9x 02−x 04≤814,故k 2<9x 02−x 04有解,须k 2<814,又k >0,从而0<k <92.(3)显然g(x)=kx (k >0)在区间(1, +∞)上为减函数,于是g(n)>g(p),若ℎ(p)=g(n),则对任意p >1,有ℎ(p)>g(p). 当x >1时,ℎ(x)>g(x)⇔k <x(1+lnx)x−1,令φ(x)=x(1+lnx)x−1(x >1),则φ/(x)=x−2−lnx (x−1)2.令ϕ(x)=x −2−lnx(x >1),则ϕ/(x)=x−1x>0,故ϕ(x)在(1, +∞)上为增函数,又ϕ(3)=1−ln3<0,ϕ(4)=2−ln4>0, 因此存在唯一正实数x 0∈(3, 4),使ϕ(x 0)=x 0−2−lnx 0=0.故当x ∈(1, x 0)时,φ′(x)<0,φ(x)为减函数;当x ∈(x 0, +∞)时,φ′(x)>0,φ(x)为增函数,因此φ(x)在(1, +∞)上有最小值φ(x 0)=x 0(1+lnx 0)x 0−1,又x 0−2−lnx 0=0,化简得φ(x 0)=x 0∈(3, 4),∴ k ≤3.下面证明:当k =3时,对0<x <1,有ℎ(x)<g(x).当0<x <1时,ℎ(x)<g(x)⇔3−2x +xlnx >0.令ψ(x)=3−2x +xlnx(0<x <1), 则ψ′(x)=lnx −1<0,故ψ(x)在(0, 1)上为减函数, 于是ψ(x)>ψ(1)=1>0.同时,当x ∈(0, +∞)时,g(x)=3x ∈(0,+∞).当x ∈(0, 1)时,ℎ(x)∈R ;当x ∈(1, +∞)时,ℎ(x)∈(0, +∞).结合函数的图象可知,对任意的正数p ,存在实数m 、n 满足0<m <n <p ,使得ℎ(p)=ℎ(m)=g(n).综上所述,正整数k 的最大值为3.21. 解:(1)连接BM ,则 ∵ MN 是⊙O 的直径,∴ ∠MBN =90∘,∵ 四边形BCON 是平行四边形,∴ BC // MN ,又∵ AM 是⊙O 的切线,可得MN ⊥AM ,∴ BC ⊥AM , ∵ C 是AM 的中点,∴ BC 是△ABM 的中线, 由此可得△ABM 是等腰三角形,即BM =BA , ∵ ∠MBN =90∘,∴ ∠BMA =∠A =45∘,因此得到Rt △NAM 是等腰直角三角形,故AM =MN =2.… (2)作CE ⊥AN 于E 点,则 由(1),得△CEA 是等腰直角三角形,且AC =1 ∴ CE =√22AC =√22, ∵ Rt △MNC 中,MN =2,MC =1,∴ CN =√22+12=√5, 故Rt △ENC 中,sin∠ANC =CE NC=√1010.… 22. 解:设矩阵M =[abc d],这里a ,b ,c ,d ∈R , 则[a b c d ] [11]=3 [11]=[33],故{a +b =3,c +d =3,①[a b cd ][−12]=[30],故{−a +2b =3,−c +2d =0,②由①②联立解得{a =1,b =2,c =2,d =1,∴ M =[1 22 1].23. 解:(1)曲C 的极坐标方程可化为:ρ2=2ρsinθ, 又x 2+y 2=ρ2,x =ρcosθ,y =ρsinθ.所以,曲C 的直角坐标方程为:x 2+y 2−2y =0.(2)将直线L 的参数方程化为直角坐标方程得:y =−43(x −2).令y =0得x =2即M 点的坐标为(2, 0) 又曲线C 为圆,圆C 的圆心坐标为(0, 1)半径r =1,则|MC|=√5,∴ |MN|≤|MC|+r =√5+1. 所以|MN|max =√5+1.24. 解:∵ x 2+y 2=2,∴ (x +y)2+(x −y)2=4.∵ ((x +y)2+(x −y)2)(1(x+y)2+1(x−y)2)≥4,∴ 1(x+y)2+1(x−y)2≥1,当且仅当x =±√2,y =0,或x =0,y =±√2时,1(x+y)2+1(x−y)2取得最小值是1.25. 解:(1)∵ PC ⊥AB ,PC ⊥BC ,AB ∩BC =B ,∴ PC ⊥平面ABC .在平面ABC 内,过C 作CD ⊥CB ,建立空间直角坐标系C −xyz (如图) 由题意有A(√32,−12,0),设P(0, 0, z 0)(z 0>0),则M(0,1,z 0),AM →=(√32,−12,z 0),CP →=(0,0,z 0)由直线AM 与直线PC 所成的角为600, 得AM →⋅CP →=|AM →|⋅|CP →|⋅cos600,即z 02=π2√z 02+3⋅z 0,解得z 0=1∴ CM →=(0,0,1),CA →=(√32,−12,0), 设平面MAC 的一个法向量为n 1→=(x 1,y 1,z 1), 则{y 1+z 1=0√32y 1−12z 1=0,取x 1=1,得n 1→=(1,√3,−√3),平面ABC 的法向量取为n 2→=(0,0,1)设n 1→与n 2→所成的角为θ,则cosθ=|n 1→|⋅|n 2→|˙=−√3√7.二面角M −AC −B 的平面角为锐角, 故二面角M −AC −B 的余弦值为√217.… (2)M(0, 1, 1),A(√32,−12,0),B(0, 2, 0), ∴ AM →=(−√32,32,1),MB→=(0,1,−1).CB →=(0, 2, 0),设平面MAB 的一个法向量m →=(x 2,y 2,z 2), 则{−√32x 2+32y 2+z 2=0y 2−z 2=0,取z 2=1,得m →=(5√3,1,1),则点C 到平面MAB 的距离d =|m →|˙=2√9331.… 26. 解:(1) T 2=C m 1(x 15)m−1(12x )1=C m 1⋅12⋅x m−65, 故m−65=0,m =6,t =C 61⋅12=3. (2)证明:①当n =1时,a 1=3,a 1−3=0,能被4整除. ②假设当n =k 时,a k −3能被4整除,即a k −3=4p ,其中p 是非负整数. 那么当n =k +1时,a k+1=34p+3=(1+2)4p+3=C 4p+30+C 4p+31⋅2+C 4p+32⋅22+⋯+C 4p+34p+324p+3=1+8p +6+4(C 4p+32+⋯+C 4p+34p+324p+1) =3+8p +4+4(C 4p+32+⋯+C 4p+34p+324p+1) =3+4(2p +1+C 4p+32+⋯+C 4p+34p+324p+1) 显然2p +1+C 4p+32+⋯+C 4p+34p+324p+1是非负整数, a k+1−3能被4整除.由①、②可知,命题对一切n ∈N ∗都成立.。
盐城市2014届高三考前突击精选模拟试卷数学卷4

a ←1b ←2c ←3 c ←a a ←b b ←c Print a ,b(第3题)江苏省盐城市2014届高三考前突击精选模拟试卷数学卷4数学Ⅰ一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共70分. 1. 在平面直角坐标系xOy 中,双曲线221y x -=的离心率为 ▲ . 答案:22. 若复数z 满足()12i 34i z +=-+(是虚数单位),则z = ▲ . 答案:1 + 2i3. 在右图的算法中,最后输出的a ,b 的值依次是 ▲ . 答案:2,14. 一组数据9.8, 9.9, 10,a , 10.2的平均数为10,则该组数据的方差为 ▲ . 答案:0.025. 设全集U =Z ,集合{}220A x x x x =--∈Z ≥,,则U A =ð ▲ (用列举法表示). 答案:{0,1}6. 在平面直角坐标系xOy 中,已知向量a = (1,2),12-a b =(3,1),则⋅=a b ▲ .答案:07. 将甲、乙两个球随机放入编号为1,2,3的3个盒子中,每个盒子的放球数量不限,则在1,2号盒子中各有1个球的概率为 ▲ . 答案:298. 设P 是函数(1)y x x =+图象上异于原点的动点,且该图象在点P 处的切线的倾斜角为θ,则θ的取值范围是 ▲ . 答案:)ππ32⎡⎢⎣,9. 如图,矩形ABCD 的三个顶点A 、B 、C 分别在函数22logy x =,12y x =,()22xy =的图象上,且矩形的边分别平行于两坐标轴. 若点A 的纵坐标为2,则 点D 的坐标为 ▲.O BCF 1F 2Dxy(第13题)答案:()1124,10.观察下列等式: 311=, 33129+=, 33312336++=, 33331234100+++=,……猜想:3333123n +++⋅⋅⋅+= ▲ (n ∈*N ). 答案:2(1)2n n +⎡⎤⎢⎥⎣⎦11.在棱长为4的正方体1111ABCD A B C D -中,E 、F 分别为棱1AA 、11D C 上的动点,点G 为正方形11B BCC 的中心. 则空间四边形AEFG 在该正方体各个面上的正投影所构成的图形中,面积的最大值为 ▲ . 答案:1212.若12sin a x x a x ≤≤对任意的π02x ⎡⎤∈⎢⎥⎣⎦,都成立,则21a a -的最小值为 ▲ . 答案:21π-13.如图,在平面直角坐标系xOy 中,F 1,F 2分别为椭圆22221y x a b +=(0a b >>)的左、右焦点,B ,C 分别为椭圆 的上、下顶点,直线BF 2与椭圆的另一交点为D . 若 127cos 25F BF ∠=,则直线CD 的斜率为 ▲ .答案:122514.各项均为正偶数的数列a 1,a 2,a 3,a 4中,前三项依次成公差为d (d > 0)的等差数列,后三项依次成公比为q 的等比数列. 若4188a a -=,则q 的所有可能的值构成的集合为D 1C 1 B 1A 1▲ .答案: {}58 37,二、解答题 15.满分14分.在斜三角形ABC 中,角A ,B ,C 的对边分别为 a ,b ,c .(1)若2sin cos sin A C B =,求a c 的值;(2)若sin(2)3sin A B B +=,求tan tan A C 的值.解:(1)由正弦定理,得sin sin A a B b =.从而2s i n c o s s i nA CB =可化为2c o s a C b =. …………………………………………3分由余弦定理,得22222a b c a b ab+-⨯=. 整理得a c =,即1a c=. …………………………………………………………………7分 (2)在斜三角形ABC 中,A B C ++=π,所以sin(2)3sin A B B +=可化为()()sin 3sin A C A C π+-=π-+⎡⎤⎡⎤⎣⎦⎣⎦, 即()()sin 3sin A C A C --=+.…………………………………………………………10分故sin cos cos sin 3(sin cos cos sin )A C A C A C A C -+=+. 整理,得4s i nc o s 2c o s A C A C =-, ………………………………………………12分因为△ABC 是斜三角形,所以sin A cos A cos C 0≠, 所以t a n 1ta n 2A C =-.………………………………………………………………………14分 16.满分14分.如图,在六面体1111ABCD A B C D -中,11//AA CC ,11A B A D =,AB AD =.求证:(1)1AA BD ⊥; (2)11//BB DD .证明:(1)取线段BD 的中点M ,连结AM 、1A M , 因为11A D A B =,AD AB =,所以B D A M⊥,1BD A M ⊥.………………………………………………………3分又1AM A M M = ,1AM A M ⊂、平面1A AM ,所以BD ⊥平面1A AM . 而1AA ⊂平面1A AM , 所以1AA B D⊥.…………………………………………………………………………7分 (2)因为11//AA CC ,1AA ⊄平面11D DCC ,1CC ⊂平面11D DCC , 所以1//AA 平面11D DCC .……………………………………………………………9分又1AA ⊂平面11A ADD ,平面11A ADD平面111D DCC DD =,……………………11分所以11//AA DD .同理得11//AA BB , 所以11//BB DD .………………………………………………………………………14分17.满分14分.将52名志愿者分成A ,B 两组参加义务植树活动,A 组种植150捆白杨树苗,B 组种植200捆沙棘树苗.假定A ,B 两组同时开始种植.(1)根据历年统计,每名志愿者种植一捆白杨树苗用时25小时,种植一捆沙棘树苗用时12小时.应如何分配A ,B 两组的人数,使植树活动持续时间最短? (2)在按(1)分配的人数种植1小时后发现,每名志愿者种植一捆白杨树苗用时仍为25小时,而每名志愿者种植一捆沙棘树苗实际用时23小时,于是从A 组抽调6名志愿者加入B 组继续种植,求植树活动所持续的时间.解:(1)设A 组人数为x ,且052x <<,x ∈*N ,则A组活动所需时间2150605()f x x x⨯==;……………………………………………2分 B 组活动所需时间12001002()5252g x x x⨯==--.……………………………………………4分 令()()f x g x =,即6010052x x =-,解得392x =.所以两组同时开始的植树活动所需时间**6019()10020.52x x xF x x x x⎧∈⎪=⎨⎪∈-⎩N N ≤, ,,,≥, ………………………………………………………6分而60(19)19F =,25(20)8F =,故(19)(20)F F >.所以当A 、B 两组人数分别为20 32,时,使植树活动持续时间最短.………………8分(2)A 组所需时间为1+21502016532067⨯-⨯=-(小时),……………………………………10分B 组所需时间为220032123133263⨯-⨯+=+(小时), …………………………………12分 所以植树活动所持续的时间为637小时. ……………………………………………14分18.满分16分.如图,在平面直角坐标系xOy 中,已知圆1C :22(1)1x y ++=,圆2C :(第18题)xyO1C 2CC1l2l22(3)(4)1x y -+-=.(1)若过点1(1 0)C -,的直线被圆2C 截得的弦长为 65,求直线的方程;(2)设动圆C 同时平分圆1C 的周长、圆2C 的周长. ①证明:动圆圆心C 在一条定直线上运动;②动圆C 是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.解:(1)设直线的方程为(1)y k x =+,即0kx y k -+=.因为直线被圆2C 截得的弦长为65,而圆2C 的半径为1,所以圆心2(3 4)C ,到:0kx y k -+=的距离为244451k k -=+.…………………………3分化简,得21225120k k -+=,解得43k =或34k =.所以直线的方程为4340x y -+=或3430x y -+=.…………………………………6分(2)①证明:设圆心( )C x y ,,由题意,得12CC CC =, 即2222(1)(3)(4)x y x y ++=-+-. 化简得30x y +-=,即动圆圆心C 在定直线30x y +-=上运动.…………………………………………10分②圆C 过定点,设(3)C m m -,,则动圆C 的半径为222111(1)(3)CC m m +=+++-.于是动圆C 的方程为2222()(3)1(1)(3)x m y m m m -+-+=+++-. 整理,得22622(1)0x y y m x y +----+=.…………………………………………14分由2210 620x y x y y -+=⎧⎨+--=⎩,,得31223 222x y ⎧=+⎪⎨⎪=+⎩,;或31223 2 2.2x y ⎧=-⎪⎨⎪=-⎩,所以定点的坐标为()3312 2222--,,()3312 2222++,.………………………16分19.满分16分.已知函数()sin f x x x =+.(1)设P ,Q 是函数()f x 图象上相异的两点,证明:直线PQ 的斜率大于0; (2)求实数a 的取值范围,使不等式()cos f x ax x ≥在π02⎡⎤⎣⎦,上恒成立.解:(1)由题意,得()1cos 0f x x '=+≥.所以函数()sin f x x x =+在R 上单调递增.设11( )P x y ,,22( )Q x y ,,则有12120y y x x ->-,即0PQ k >. ………………………………6分(2)当0a ≤时,()sin 0cos f x x x ax x =+≥≥恒成立.………………………………………8分当0a >时,令()()cos sin cos g x f x ax x x x ax x =-=+-, ()1cos (cos sin )g'x x a x x x =+-- 1(1)cos sin a x ax x =+-+.①当10a -≥,即01a <≤时,()()11cos sin 0g'x a x ax x =+-+>, 所以()g x 在π02⎡⎤⎣⎦,上为单调增函数.所以()(0)0sin 00cos 00g x g a =+-⨯⨯=≥,符合题意. ……………………………10分②当10a -<,即1a >时,令()()1(1)cos sin h x g'x a x ax x ==+-+, 于是()(21)sin cos h'x a x ax x =-+. 因为1a >,所以210a ->,从而()0h'x ≥. 所以()h x 在π02⎡⎤⎣⎦,上为单调增函数. 所以()π(0)()2h h x h ≤≤,即π2()12a h x a -+≤≤,亦即π2()12a g 'x a -+≤≤.……………………………………………………………12分 (i )当20a -≥,即12a <≤时,()0g'x ≥,所以()g x 在π02⎡⎤⎣⎦,上为单调增函数.于是()(0)0g x g =≥,符合题意.…………14分(ii )当20a -<,即2a >时,存在()0π02x ∈,,使得当0(0 )x x ∈,时,有()0g'x <,此时()g x 在0(0)x ,上为单调减函数, 从而()(0)0g x g <=,不能使()0g x >恒成立. 综上所述,实数a的取值范围为2a ≤.……………………………………………………16分20.满分16分.设数列{n a }的各项均为正数.若对任意的n ∈*N ,存在k ∈*N ,使得22n k n n k a a a ++=⋅成立,则称数列{n a }为“J k 型”数列.(1)若数列{n a }是“J 2型”数列,且28a =,81a =,求2n a ;(2)若数列{n a }既是“J 3型”数列,又是“J 4型”数列,证明:数列{n a }是等比数列. 解:(1)由题意,得2a ,4a ,6a ,8a ,…成等比数列,且公比()138212aq a ==, 所以()412212n n n a a q--==. ………………………………………………………………4分(2)证明:由{n a }是“4J 型”数列,得1a ,5a ,9a ,13a ,17a ,21a ,…成等比数列,设公比为. …………………………6分由{n a }是“3J 型”数列,得1a ,4a ,7a ,10a ,13a ,…成等比数列,设公比为1α;AE BCDO ·(第21-A 题)2a ,5a ,8a ,11a ,14a ,…成等比数列,设公比为2α; 3a ,6a ,9a ,12a ,15a ,…成等比数列,设公比为3α; 则431311a t a α==,431725a t a α==,432139at a α==. 所以123ααα==,不妨记123αααα===,且43t α=. ……………………………12分于是()(32)1133211k k k a a a αα----==,()2(31)12233315111k k k k k a a a t a a αααα------====,()1313233339111k k k k k a a a t a a αααα----====,所以()131n n a a α-=,故{na }为等比数列.……………………………………………16分数学Ⅱ附加题21.【选做题】A .选修4—1:几何证明选讲 满分10分.如图,AB 是半圆O 的直径,延长AB 到C ,使BC 3=,CD 切半圆O 于点D , DE ⊥AB ,垂足为E .若AE ∶EB =3∶1,求DE 的长. 解:连接AD 、DO 、DB .由AE ∶EB =3∶1,得DO ∶OE =2∶1. 又DE ⊥AB ,所以60DOE ∠= .故△ODB 为正三角形.……………………………5分 于是30DAC BDC ∠==∠ .而60ABD ∠= ,故30C BDC ∠==∠ . 所以3DB BC ==. 在△O B D中,3322DE DB ==.……………………………………………………………10分B .选修4—2:矩阵与变换 满分10分.在平面直角坐标系xOy 中,直线y kx =在矩阵0110⎡⎤⎢⎥⎣⎦对应的变换下得到的直线过点(41)P , ,求实数k 的值.解:设变换T :x x y y '⎡⎤⎡⎤→⎢⎥⎢⎥'⎣⎦⎣⎦,则0110x x y y y x '⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦⎣⎦,即 . x y y x '=⎧⎨'=⎩,…………………………5分代入直线y kx =,得x ky ''=. 将点(4 1)P ,代入上式,得k =4.……………………………………………………………10分C .选修4—4:坐标系与参数方程 满分10分.在极坐标系中,已知圆sin a ρθ=(0a >)与直线()cos 1ρθπ+=4相切,求实数a 的值.解:将圆sin a ρθ=化成普通方程为22x y ay +=,整理,得()22224aa x y +-=. 将直线()cos 1ρθπ+=4化成普通方程为20x y --=. ……………………………………6分由题意,得2222a a --=.解得422a =+.…………………………………………… 10分D .选修4—5:不等式选讲 满分10分.已知正数a ,b ,c 满足1abc =,求证:(2)(2)(2)27a b c +++≥.证明:(2)(2)(2)a b c +++(11)(11)(11)a b c =++++++ …………………………………………4分333333a b c ⋅⋅⋅⋅⋅≥ 327abc =⋅ 27=(当且仅当1a b c ===时等号成立). ……………………………………………10分22.【必做题】满分10分.已知数列{n a }满足:112a =,*12 ()1nn n a a n a +=∈+N . (1)求2a ,3a 的值;(2)证明:不等式10n n a a +<<对于任意*n ∈N 都成立. (1)解:由题意,得2324 35a a ==,. ……………………………………………………………2分(2)证明:①当1n =时,由(1),知120a a <<,不等式成立.……………………………4分②设当*()n k k =∈N 时,10k k a a +<<成立,………………………………………6分则当1n k =+时,由归纳假设,知10k a +>.而()()1111211112121222()011(1)(1)(1)(1)k k k k k k k k k k k k k k k k a a a a a a a a a a a a a a a a ++++++++++-+--=-==>++++++,所以120k k a a ++<<,即当1n k =+时,不等式成立.由①②,得不等式10n n a a +<<对于任意*n ∈N 成立.…………………………10分23.【必做题】满分10分.如图,在平面直角坐标系xOy 中,抛物线的顶点在原点,焦点为F (1,0).过抛物线在x 轴上方的不同两点A 、B 作抛物线的切线AC 、BD ,与x 轴分别交于C 、D 两点,且AC 与BD 交于点M ,直线AD 与直线BC 交于点N . (1)求抛物线的标准方程; (2)求证:MN ⊥x 轴;(3)若直线MN 与x 轴的交点恰为F (1,0), 求证:直线AB 过定点.解:(1)设抛物线的标准方程为22(0)y px p =>, 由题意,得12p=,即2p =. 所以抛物线的标准方程为24y x =.……………………………………………………3分 (2)设11( )A x y ,,22( )B x y ,,且10y >,20y >.由24y x =(0y >),得2y x =,所以1y x'=.所以切线AC 的方程为1111()y y x x x -=-,即1112()y y x x y -=-.整理,得112()yy x x =+, ① 且C 点坐标为1( 0)x -,.同理得切线BD 的方程为222()yy x x =+,② 且D 点坐标为2( 0)x -,.由①②消去y,得122112M x y x y x y y -=-.……………………………………………………5分又直线AD 的方程为1212()y y x x x x =++,③直线BC 的方程为2112()y y x x x x =++. ④ 由③④消去y ,得122112N x y x y x y y -=-.所以M Nx x =,即MN⊥x轴. …………………………………………………………7分(3)由题意,设0(1 )M y ,,代入(1)中的①②,得0112(1)y y x =+,0222(1)y y x =+.所以1122( ) ( )A x y B x y ,,,都满足方程02(1)y y x =+.所以直线AB 的方程为02(1)y y x =+. 故直线AB过定点(1 0)-,.………………………………………………………………10分。
南京盐城高三一模数学试卷及答案

江苏省南京盐城市20XX 届高三年级第一次模拟考试数学试题一、填空题(本大题共14题)⒈已知集合}2,1,2,3{--=A ,集合),0[+∞=B ,则=⋂B A 。
⒉若复数)3)(1(ai i z -+=(i 为虚数单位)为纯虚数,则实数a = 。
⒊现从甲乙丙三人中随机选派2人参加某项活动,则甲被选中的概率为 。
⒋根据如图所示的伪代码,最后输出的S 的值为 。
⒌若一组样本数据2,3,7,8,a 的平均数为5,则该组数据的方差=2s 。
⒍在平面直角坐标系xOy 中,若中心在坐标原点的双曲线的一条准线方程为21=x ,且它的一个顶点与抛物线x y 42-=的焦点重合,则该双曲线的渐近线方程为 。
⒎在平面直角坐标系xOy 中,若点P )1,(m 到直线0134=--y x 的距离为4,且点P 在不等式32≥+y x 表示的平面区域内,则=m 。
⒏ 在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,∠BAD 060=,侧棱PA ⊥底面ABCD ,PA =2,E 为AB 的中点,则四面体PBCE 的体积为 。
⒐设函数)2cos()(ϕ+=x x f ,则“)(x f 为奇函数”是“2πϕ=”的 条件(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)。
⒑在平面直角坐标系xOy 中,若圆4)1(22=-+y x 上存在A ,B 两点关于点)2,1(P 成中心对称,则直线AB 的方程为 。
⒒在ABC ∆中,BC =2,32π=A ,则AC AB ⋅的最小值为 。
⒓若函数)(x f 是定义在R 上的偶函数,且在区间),0[+∞上是单调增函数。
如果实数t 满足)1(2)1(ln )(ln f tf t f ≤+时,那么t 的取值范围是 。
⒔若关于x 的不等式02lg )20(≤-xaax 对任意的正实数x 恒成立,则实数a 的取值范围是 。
⒕已知等比数列}{n a 的首项为34,公比为31-,其前n 项和为n S ,若B S S A nn ≤-≤1对任意*N n ∈恒成立,则A B -的最小值为 。
2014江苏高考数学一模试卷

a3 a4 4 ,则 a5 a6 a7 a8
▲
.
6、已知| a |=3,| b |=4,( a + b )( a +3 b )=33,则 a 与 b 的夹角为 ▲ 7、在 ABC 的边 AB 上随机取一点 P , 记 CAP 和 CBP 的面积分别 为 S1 和 S2 ,则 S1 2S2 的概率是 ▲ 8、执行如右图所示的程序框图,则输出结果 S 的值为 ▲ 9、已知直线 l 平面 ,直线 m 平面 ,给出下列命题: ①若 / / ,则 l m ;②若 ,则 l / / m ; ③若 l / / m ,则 ; ④若 l m ,则 / / . 其中,正确命题的序号是 ▲ 2 x y 4 10、若动点 P(m, n) 是不等式组 x 0 表示的平面区域内的动点, y 0
6
1 南京清江花苑严老师
(1)若 x
4
,求函数 f x 的值域;
2 2
5 3 A 5 (2) 设 A, B, C 为 ABC 的三个内角,若 f ,求 cos C 的值; , cos A C 14
16、 (本题 14 分)如图,在三棱锥 P ABC 中, PAB 和 CAB 都是 以 AB 为斜边的等腰直角三角形,D、E、F 分别是 PC、AC、BC 的中点. (1) 证明:平面 DEF//平面 PAB; (2) 证明: AB PC ; (3) 若 AB 2PC 2 ,求三棱锥 P ABC 的体积.
▲
13、在平面直角坐标系 xoy 中,已知点 A 是半圆 x2 y 2 2 y 0 (1≤y≤2) 上的一个动点,点 C 在线段 OA 的延长线上.当 OA OC 10 时,则点 C 的横坐标的取值范围是 ▲ 14、设 f ( x) etx (t 0) ,过点 P(t ,0) 且平行于 y 轴的直线与曲线 C : y f ( x) 的交点为 Q, 曲线 C 过点 Q 的切线交 x 轴于点 R,若 S (1, f (1)) ,则 PRS 的面积的最小值是 ▲ 二、解答题: (本大题共 6 小题,共 90 分.解答应写出文字说明,证明过程或演算步骤. ) 15、 (本题 14 分)设函数 f x sin 2 x cos 2 x 3 sin x cos x .
南京盐城高三一模数学试卷及答案

江苏省南京盐城市2014届高三年级第一次模拟考试数学试题一、填空题(本大题共14题)⒈已知集合}2,1,2,3{--=A ,集合),0[+∞=B ,则=⋂B A 。
⒉若复数)3)(1(ai i z -+=(i 为虚数单位)为纯虚数,则实数a = 。
⒊现从甲乙丙三人中随机选派2人参加某项活动,则甲被选中的概率为 。
⒋根据如图所示的伪代码,最后输出的S 的值为 。
⒌若一组样本数据2,3,7,8,a 的平均数为5,则该组数据的方差=2s 。
⒍在平面直角坐标系xOy 中,若中心在坐标原点的双曲线的一条准线方程为21=x ,且它的一个顶点与抛物线x y 42-=的焦点重合,则该双曲线的渐近线方程为 。
⒎在平面直角坐标系xOy 中,若点P )1,(m 到直线0134=--y x 的距离为4,且点P 在不等式32≥+y x 表示的平面区域内,则=m 。
⒏ 在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,∠BAD 060=,侧棱PA ⊥底面ABCD ,PA =2,E 为AB 的中点,则四面体PBCE 的体积为 。
⒐设函数)2cos()(ϕ+=x x f ,则“)(x f 为奇函数”是“2πϕ=”的 条件(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)。
⒑在平面直角坐标系xOy 中,若圆4)1(22=-+y x 上存在A ,B 两点关于点)2,1(P 成中心对称,则直线AB 的方程为 。
⒒在ABC ∆中,BC =2,32π=A ,则AC AB ⋅的最小值为 。
⒓若函数)(x f 是定义在R 上的偶函数,且在区间),0[+∞上是单调增函数。
如果实数t 满足)1(2)1(ln )(ln f tf t f ≤+时,那么t 的取值范围是 。
⒔若关于x 的不等式02lg )20(≤-xaax 对任意的正实数x 恒成立,则实数a 的取值范围是 。
0←S For I From 1 To 10 I S S +← End For Print S⒕已知等比数列}{n a 的首项为34,公比为31-,其前n 项和为n S ,若B S S A n n ≤-≤1对任意*N n ∈恒成立,则A B -的最小值为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)当 不存在时,易得 ,
当 存在时,设 , ,则 ,
, ,两式相减,得 ,
,令 ,则 ,…………12分
直线 方程: , ,
, 直线 方程: , ,…………14分
,又 , ,
,所以 为定值 .……………16分
19.解:(1) , ,又 ,
在 处的切线方程为 ,………………2分
又因为 底面 ,而 底面 ,所以 ,
则由 ,得 ,而 平面 ,且 ,
所以 面 ,…………12分
又 平面 ,所以平面 平面 .…………14分
17.解:(1)由题意得, …………4分
解得 即 .…………7分
(2)记“环岛”的整体造价为 元,则由题意得
,…………10分
令 ,则 ,
由 ,解得 或 ,…………12分
参考公式:
样本数据x1,x2,…,xn的方差s2=(xi-)2,其中=xi.
锥体的体积公式:V=Sh,其中S为锥体的底面积,h为锥体的高.
一、填空题(本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上)
1.已知集合A={-3,-1,1,2},集合B=[0,+∞),则A∩B=▲.
当 时,得 ,由正弦定理得 ,
联立方程组 解得 , .…………13分
所以 的面积 .…………14分
16.证:(1)连 交 于点 , 为 中点, ,
为 中点, ,
, 四边形 是平行四边形,……4分
,又 平面 , 平面 , 平面 .…………7分
(2)由(1)知 , , 为 中点,所以 ,所以 ,
…………9分
D.(选修4-5:不等式选讲)
已知 , , 为正实数,若 ,求证: .
[必做题]第22、23题,每小题10分,计20分.请把答案写在答题纸的指定区域内.
22.(本小题满分10分)
已知点 在抛物线 : 上.
(1)若 的三个顶点都在抛物线 上,记三边 , , 所在直线的斜率分别为 , , ,求 的值;
(2)若四边形 的四个顶点都在抛物线 上,记四边 , , , 所在直线的斜率分别为 , , , ,求 的值.
A.(选修4—1:几何证明选讲)
如图, , 是半径为 的圆 的两条弦,它们相交于 的中点 ,若 , ,求 的长.
B.(选修4—2:矩阵与变换)
已知曲线 : ,若矩阵 对应的变换将曲线 变为曲线 ,求曲线 的方程.
C.(选修4—4:坐标系与参数方程)
在极坐标系中,圆 的方程为 ,以极点为坐标原点,极轴为 轴的正半轴建立平面直角坐标系,直线 的参数方程为 ( 为参数),若直线 与圆 相切,求实数 的值.
侧棱PA⊥底面ABCD,PA=2,E为AB的中点,则四面体PBCE的体积为▲.
9.设函数f(x)=cos(2x+φ),则“f(x)为奇函数”是“φ=”的▲条件.(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”其中之一)
10.在平面直角坐标系xOy中,若圆x2+(y-1)2=4上存在A,B两点关于点P(1,2)成中心对称,则直线AB的方程为▲.
准线方程为x=,且它的一个顶点与抛物线y2=-4x的焦点重合,
则该双曲线的渐近线方程为▲.
7.在平面直角坐标系xOy中,若点P(m,1)到直线4x-3y-1=0的距离为4,且点P在不等式2x+y≥3表示的平面区域内,则m=▲.
8.在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,
又 , ,又 , 在 处的切线方程为 ,
所以当 且 时,曲线 与 在 处总有相同的切线………4分
(2)由 , , ,
,………………7分
由 ,得 , ,
当 时,函数 的减区间为 , ;
当 时,函数 的减区间为 ;
当 时,函数 的减区间为 , .………10分
(3)由 ,则 , ,
①当 时, ,函数 在 单调递增,
(1)求x的取值范围;(运算中取1.4)
(2)若中间草地的造价为a元/m2,四个花坛的造价为ax元/m2,其余区域的造价为元/m2,当x取何值时,可使“环岛”的整体造价最低?
18.(本小题满分16分)
在平面直角坐标系xOy中,已知过点(1,)的椭圆C∶+=1(a>b>0)的右焦点为F(1,0),过焦点F且与x轴不重合的直线与椭圆C交于A,B两点,点B关于坐标原点的对称点为P,直线PA,PB分别交椭圆C的右准线l于M,N两点.
①当q取最小值时,求{kn}的通项公式;
②若关于n(n∈N*)的不等式6Sn>kn+1有解,试求q的值.
南京市、盐城市2013届高三年级第一次模拟考试
数学附加题部分
(本部分满分40分,考试时间30分钟)
21.[选做题]在A、B、C、D四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内.
16.(本小题满分14分)
如图,在正三棱柱ABC-A1B1C1中,E,F分别为BB1,AC的中点.
(1)求证:BF∥平面A1EC;
(2)求证:平面A1EC⊥平面ACC1A1.
17.(本小题满分14分)
如图,现要在边长为100m的正方形ABCD内建一个交通“环岛”.以正方形的四个顶点为圆心,在四个角分别建半径为xm(x不小于9)的扇形花坛,以正方形的中心为圆心建一个半径为x2m的圆形草地.为了保证道路畅通,岛口宽不小于60m,绕岛行驶的路宽均不小于10m.
11.在△ABC中,BC=2,A=,则·的最小值为▲.
12.若函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上是单调增函数.如果实数t满足f(lnt)+f(ln)≤2f(1),那么t的取值范围是▲.
13.若关于x的不等式(ax-20)lg≤0对任意的x>0恒成立,则实数a的取值范围是▲.
14.已知等比数列{an}的首项为,公比为-,其前n项和为Sn,若A≤Sn-≤B对n∈N*恒成立,则B-A的最小值为▲.
(1)求椭圆C的标准方程;
(2)若点B的坐标为(,),试求直线PA的方程;
(3)记M,N两点的纵坐标分别为yM,yN,试问yM·yN是否为定值?若是,请求出该定值;若不是,请说明理由.
19.(本小题满分16分)
已知函数f(x)=ex,g(x)=ax2+bx+1(a,bR).
(1)当a≠0时,则a,b满足什么条件,曲线y=f(x)与y=g(x)在x=0处总有相同的切线?
2.若复数z=(1+i)(3-ai)(i为虚数单位)为纯虚数,则实数a=▲.
3.现从甲、乙、丙3人中随机选派2人参加某项活动,则甲被选中的概率为▲.
4.根据如图所示的伪代码,最后输出的S的值为▲.
5.若一组样本数据2,3,7,8,a的平均数为5,则该组数据
的方差s2=▲.
6.在平面直角坐标系xOy中,若中心在坐标原点的双曲线的一条列表如下:9来自(9,10)10
(10,15)
15
-
0
+
0
↘
极小值
↗
所以当 , 取最小值.
答:当 m时,可使“环岛”的整体造价最低.………14分
18.解:(1)由题意,得 ,即 ,…………2分
又 , , 椭圆 的标准方程为 .…………5分
(2) , ,又 , ,
直线 : ,…………7分
联立方程组 ,解得 ,…………9分
二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内)
15.(本小题满分14分)
在△ABC中,角A,B,C所对的边分别是a,b,c,已知c=2,C=.
(1)若△ABC的面积等于,求a,b的值;
(2)若sinC+sin(B-A)=2sin2A,求△ABC的面积.
1. 2.-3 3. 4. 55 5. 6. 7. 6 8. 9、必要不充分10. 11. 12. 13. 14.
二、解答题:
15.解:(1)由余弦定理及已知条件得, ,…………2分
又因为 的面积等于 ,所以 ,得 .………4分
联立方程组 解得 , .………7分
(2)由题意得 ,即 ,
当 时, , , , ,…………10分
(2)当a=1时,求函数h(x)=的单调减区间;
(3)当a=0时,若f(x)≥g(x)对任意的xR恒成立,求b的取值的集合.
20.(本小题满分16分)
设等差数列{an}的前n项和为Sn,已知a1=2,S6=22.
(1)求Sn;
(2)若从{an}中抽取一个公比为q的等比数列{ak},其中k1=1,且
k1<k2<…<kn<…,knN*.
南京市、盐城市2014届高三年级第一次模拟考试
数学2014.01
注意事项:
1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分为160分,考试时间为120分钟.
2.答题前,请务必将自己的姓名、学校写在答题纸内.试题的答案写在答题纸上对应题目的答案空格内.考试结束后,交回答题纸.
所以 .…………4分
(2)因为数列 是正项递增等差数列,所以数列 的公比 ,
若 ,则由 ,得 ,此时 ,由 ,
又 , 时, ,与函数 矛盾,………………12分
②当 时, , ; ,
函数 在 单调递减; 单调递增,
(Ⅰ)当 时, ,又 , ,与函数 矛盾,
(Ⅱ)当 时,同理 ,与函数 矛盾,
(Ⅲ)当 时, , 函数 在 单调递减; 单调递增,
,故 满足题意.
综上所述, 的取值的集合为 .……………16分
20.解:(1)设等差数列的公差为 ,则 ,解得 ,…2分
23.(本小题满分10分)
设 是给定的正整数,有序数组( )中 或 .
(1)求满足“对任意的 , ,都有 ”的有序数组( )的个数 ;