15.2.2.2分式的混合运算
15.2.2分式的加减(第2课时)

分式混合运算例题与练习
x+ 2 x-1 x- 4 解: (2) 2 - 2 . x x - 2 x x - 4 x+ 4
x+ 2 x-1 x = 2 x x- 2) (x- 2) x- 4 ( x+ 2) ( (x- 2) ( x x-1) x = 2 2 x x- 2) ( x x- 2) x- 4 ( x 2 - 4-x 2 +x x 1 = = . 2 2 x- 4 (x- 2) ( x x- 2)
x2 x2 x x
4 x
4.解:
4a 8a a 1 a 1 (a 2)( a 1) a 1 a 1
2
4a(a 2) 4a (a 2)(a 1) (a 1)(a 1)
4a (a 1)(a 1) (a 1) 4a
a 2 a 1 a = 4a a 2 4a
1 a2
……
x3 5 2.解: ( x 2) 2x 4 x 2 x 3 5 ( x 2)( x 2) 2x 4 x2 x3 x2 2 2x 4 9 x 1 2( 3 x )
a c ac b d bd 1、分式的乘除: a c a d ad b d b c bc
a n a 2、分式的乘方:( ) n b b a c ac b b b 3、分式的加减法则: a c ad bc ad bc b d bd bd bd
布置作业
教科书习题15.2第6题.
5 2 m- 4 ( 1) m+ 2+ 2-m 3-m ; x+ 2 x-1 x- 4 (2) x 2 - 2 x - x 2 - 4 x+ 4 x .
人教版八年级数学上册说课稿15.2分式的运算

人教版八年级数学上册说课稿15.2 分式的运算一. 教材分析本次说课的内容是人教版八年级数学上册的15.2分式的运算。
这部分内容是学生在学习了分式的概念、分式的性质和分式的化简等知识的基础上进行学习的,是进一步培养学生对分式的理解和运用能力的重要环节。
在这部分内容中,学生需要掌握分式的加减乘除运算规则,能够熟练地进行分式的运算。
二. 学情分析学生在学习这部分内容时,已经具备了分式的基本知识,对分式的概念和性质有一定的理解。
但学生在进行分式的运算时,还存在着对运算规则理解不深,运算步骤不清晰等问题。
因此,在教学过程中,需要引导学生深入理解分式运算的规则,明确运算的步骤,提高学生的运算能力。
三. 说教学目标1.知识与技能目标:学生能够掌握分式的加减乘除运算规则,能够熟练地进行分式的运算。
2.过程与方法目标:通过学生的自主学习和合作交流,培养学生对分式运算的理解和运用能力。
3.情感态度与价值观目标:培养学生对数学学习的兴趣,提高学生对数学学习的自信心。
四. 说教学重难点1.教学重点:分式的加减乘除运算规则的掌握和运用。
2.教学难点:分式运算步骤的清晰和运算规则的灵活运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作法进行教学。
2.教学手段:利用多媒体课件进行教学,引导学生通过观察、思考、讨论和总结,深入理解分式的运算规则。
六. 说教学过程1.导入新课:通过一个实际问题,引导学生进入分式的运算学习。
2.自主学习:学生通过自主学习,掌握分式的加减乘除运算规则。
3.合作交流:学生分组进行合作交流,通过讨论和总结,明确分式运算的步骤。
4.案例分析:通过分析典型案例,引导学生理解和掌握分式运算的规则。
5.练习巩固:学生进行练习,巩固所学的内容。
6.总结提升:教师引导学生进行总结提升,明确分式运算的重点和难点。
七. 说板书设计板书设计要清晰、简洁,能够突出教学的重点和难点。
在板书中,可以将分式的加减乘除运算规则用图示的方式进行展示,让学生一目了然。
第十五章 15.2 15.2.2 第1课时 分式的加减

解:原式=(x+5)10(x x-5)-(x+5)2(x x-5)=
(x+5)8(x x-5), 解不等式得-5≤x<6,取 x=0, 则原式=0.
9. 已知: (x2+y2)-(x-y)2+2y(x-y)÷4y=1, 求4x24-x y2-2x+1 y的值. 解:由已知得 x-12y=1, 原式=2x1-y=12.
∴A--3AB-=B1, =5,解得
A=-1, B=-2.
1. (2017·滨州)观察下列各式:1×23=11-13,2×24=12- 14,3×25=13-15,
… 请利用你所得结论,化简代数式1×13+2×14+3×15+… +n(n1+2)(n≥3 且 n 为整数),其结果为
3n2+5n 4(n+1)(n+2) .
.
知识点 同分母分式加减
15.2.2分式的加减(2)混合运算(教案)

(1)讲解分式加减混合运算的法则时,通过具体例题强调加法交换律和结合律在分式运算中的应用,如:
$\frac{a}{b} + \frac{c}{d} = \frac{c}{d} + \frac{a}{b} = \frac{a \cdot d + c \cdot b}{b \cdot d}$
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与分式混合运算相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如计算不同商品打折后的总价。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“分式混合运算在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
五、教学反思
在今天的教学中,我重点关注了分式混合运算的概念和实际应用。通过引入日常生活中的例子,我试图让学生认识到数学知识在解决实际问题中的重要性。课堂上,我注意到学生们在理解合并同类项和通分的过程中遇到了一些挑战,这让我意识到这些概念需要更多的解释和练习。
我尝试通过具体的案例分析和逐步解题来帮助学生理解难点,但我也发现,对于一些学生来说,这些概念仍然难以消化。在今后的教学中,我需要寻找更多直观和生动的方法来解释这些难点,比如使用实物或动画来展示分式的通分过程,让学生能够更直观地理解。
$\frac{1}{a} + \frac{1}{b} = \frac{b}{ab} + \frac{a}{ab} = \frac{a+b}{ab}$
难点在于如何确定最简公分母,如$a$和$b$的最小公倍数$ab$。
精ppt分式的混合运算

解:原式=-xx-+22
(2)a+a 1·(a+2a1)2-(a-1 1-a+1 1). 解:原式=4a2a-2-4a1-2
精ppt分式的混合运算(PPT优秀课件 )
精ppt分式的混合运算(PPT优秀课件 )
12.(2016·巴中)先化简:x2-x2+2xx+1÷(x-2 1-1x),然后再从-2<x≤2 的 范围内选取一个合适的 x 的整数值代入求值.
(2)(3ba)2·3a+1 b-ba÷b3; 解:原式=-3ab3+a b2
精ppt分式的混合运算(PPT优秀课件 )
精ppt分式的混合运算(PPT优秀课件 )
(3)(2016·成都)(a+a 2+a2-1 4)÷aa- +12; 解:原式=aa--12
(4)(2016·重庆)x2x+2+4x2+x 4÷(2x-4+xx2). 解:原式=x-1 2
精ppt分式的混合运算(PPT优秀课件 )
精ppt分式的混合运算(PPT优秀课件 ) 精ppt分式的混合运算(PPT优秀课件 )
精ppt分式的混合运算(PPT优秀课件 )
9.(2016·北京)如果 a+b=2,那么代数(a-ba2)·a-a b的值是( A )
A.2
B.-2
1 C.2
D.-12
10.李明同学从家到学校的速度是 a 千米/小时,沿原路从学校返回家的速
2ab 度是 b 千米/小时,则李明同学来回的平均速度是 a+b
(用含 a,b 的式子表示)
千米/小时.
精ppt分式的混合运算(PPT优秀课件 )
精ppt分式的混合运算(PPT优秀课件 )
11.(习题 6 变式)计算: (1)(2016·聊城)(xx2+-84-x-2 2)÷x2-x-4x4+4;
人教八年级数学上册-分式的混合运算(附习题)

课堂小结 对于不带括号的分式混合运算: (1)运算顺序:先乘方,再乘除,然后加减; (2)计算结果要化为最简分式. 对于带括号的分式混合运算: (1)将各分式的分子、分母分解因式后,再
进行计算; (2)注意处理好每一步运算中遇到的符号; (3)计算结果要化为最简分式.
课后作业
2y 3x
x2 2y
x 2y2
3x3 8y
x3 4 y3
3x3y2 8y3
2x3
2.先化简,再求值: m2
m2
3m 4m
4
m m
3 2
m
2
2
,
其中m=2.
解:原式
m m 3 m 22
m2 m3
2 m
2
m 2 m 2. m2 m2 m2
当m=2代入其中,得原式 2 2 0 . 22
问题 分数的混合运算的顺序是什么?你能将 它们推广,得出分式的混合运算顺序吗?
分式的混合运算顺序: “从高到低、从左到右、括号从小到大”.
例1 计算:
2a 2 b
1 a-b
-
a b
b 4
.
这道题的运算顺序是怎样的?
解:
2a 2
b
1 a-b
-
a b
b 4
=
4a2 b2
1 a-b
-
a b
例2 计算:
(1) m+2+
5
2-m
2m-4 ; 3-m
(2) xx2 -+22x -
x-1 x2 -4x+4
x-4 . x
这两道题的运算顺序又是怎样的?
解:(1)
m+2+
15.2.2(2)分式的混合运算(课件)八年级数学上册(人教版)

3.先化简,再求值:
,其中x=3.
x
2
x
4
解:
2−1
−2
−1 ÷
+1
2 −4
2 − 1 − 2
+1
=
−
÷
−2 −2
+2 − 2
=
+1
−2
⋅
+2 −2
+1
= +2 ,
当 = 3 时,原式= 3 + 2 = 5.
当堂检测
1 a2
2
(3 m)(3 m) 2(2 m)
•
2m
3 m
2(m 3) 2m 6;
新知探究
+2
−1
−4
【例2】计算: ( 2 − 2 − 2 − 4 + 4) ÷ .
x2
x 1
x
•
解:(2)原式
2
x( x 2) ( x 2) x 4
( x +1)(x - 1) x +1 x +1 ( x +1) x +1 ( x +1) x - 2 x - 2
1
令x = 0( x ≠± 1且x ≠2), 得原式 =
2
方法总结:把分式化成最简分式是解题的关键,通分、因式分解和约分
是基本环节,注意选数时,要求分母不能为0.
新知探究
(1)进行混合运算时,要注意运算顺序,在没有括号的情况下,按从左往右的
( x 2)( x 2) x( x 1)
八年级数学 15.2.2分式的混合运算

b d b c bc
同分母加减:b c b c
加减法
aa a
异分母加减:b d bc ad bc ad
a c ac ac ac
一 新课讲解
2
问题:如何计算
2m
n
1 m-n
-
m n
n 4
?
请先思考这道题包含的运算,再确定运算顺 序,并独立完成.
b
a
1
b
a
1
b
a
1
b
a
1
b
a
1
b
a
1
b
2a
a2 b2
巧用公式
一 能力提升
例4.若
2 x2 1
A x 1
B ,求A、B的值. x 1
解析:先将等式两边化成同分母分式,然后对 照两边的分子,可得到关于A、B的方程组.
2.课本p146 习题15.2 第6题
一 课堂练习
1.
计算
1
3x 2y
3x 2y
2y 3x
的结果是( C
)
2 y 6xy
A. 9x2
2y 3x
B. 2y
3x 2y
C. 3x
3x
D. 2 y
2.
化简(
x y
y) x
x
x
y
的结果是
x y y.3.化简来自1x y x 3y
解:∵ A B x 1 x 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式的混合运算
实数的混合运算顺序: 1、先乘方,再乘除,最后加减。 2、同级运算则从左到右依次计算。 3、有括号的先算括号里面的,从小括 号到中括号,最后再去大括号。
例1: 2a 1 a b b .a b b 4
2
1、先乘方,再乘除,最后加减。 2、同级运算则从左到右依次计算。 3、有括号的先算括号里面的,从小括 号到中括号,最后再去大括号。
1 1 1 (1) a(a 1) (a 1)(a 2) (a x 1)(a x)
1 1 2 4 1024 2048 (2) 2 4 1024 2048 1 a 1 a 1 a 1 a 1 a 1 a
200220032 (3) 20022002 2 20022004 2 2
1、先乘方,再乘除,最后加减。 2、同级运算则从左到右依次计算。 3、有括号的先算括号里面的,从小括 号到中括号,最后再去大括号。
分式的混合运算:关键是要正 确的使用相应的运算法则和运算顺 序;正确的使用运算律,尽量简化 运算过程;结果必须化为最简分式 。 混合运算的特点:是整式运算、 因式分解、分式运算的综合运用, 综合性强。
1 x 11 2 x 1 x 1
x2 x 1 x4 2( 2 2 ) x 2x x 4x 4 x
1 1 mn 3 m n 2m m n 2m
学 以 致 用
2 2 x y x y 4 x y x 3x x y 3x
化简求值题型
2013年重庆中考题
a 2 6ab 9b2 21、先化简,再求值: a 2 2ab
5b2 1 a 2b a 2b a
a b 4 其中,a,b满足 a b 2
2014年重庆中考题
2015年重庆中考题
特别题
2 x2 3x 4 2 2 5、先化简,再求值: x 1 x 1 x 2x 1
x 4 0 其中x是不等式组 的整数解。 2 x 5 1
例2: a 2
a 1 4 a 2 2 2 a 2a a 4a 4 a 2a
1、先乘方,再乘除,最后加减。 2、同级运算则从左到右依次计算。 3、有括号的先算括号里面的,从小括 号到中括号,最后再去大括号。
例3:
x3 5 ( x 2) 2x 4 x 2