正反比例的比较习题

合集下载

六年级数学下册正反比例判断练习题(人教版)

六年级数学下册正反比例判断练习题(人教版)

正反比例练习题班级:姓名:成绩:一、判断题1.植树的成活率一定,植树的棵树和成活的棵树成正比例。

( )2.圆的面积和半径成正比例。

( )3.正方形的周长和边长成正比例。

( )4.圆柱体的高一定,底面半径与体积成正比例。

( )5.小明的年龄和她的妈妈的年龄成正比例。

( )6.圆锥体的高一定,体积和底面半径的平方成正比例。

( )7.总价一定,单价和数量成反比例。

()8..实际距离一定,图上距离与比例尺成正比例。

()9.正方体体积一定,底面积和高成反比例。

()10.订阅《辽沈晚报》的总钱数和分数成正比例。

()11、方砖的边长一定,要铺地面积和用砖块数成正比例。

()12、用瓷砖铺地,要用的砖数一定,铺地的面积和瓷砖的面积成正比例。

()13、要铺地的总面积一定,每块方砖的边长与需要的块数成正比例。

()16、梯形的面积一定,高和上下底的和成反比例。

()17、圆的半径一定,圆的面积和兀不成比例。

()18、加工时间一定,加工零件个数和加工每个零件所需的时间成反比例。

()19、南京到北京,所行驶的路程和速度不成比例。

()20、出盐率一定,盐的重量和盐水重量成正比例。

()21、正方形的边长和面积成正比例。

()22. y:7=x y和x成()比例。

23.圆柱德高一定,体积和底面积成()关系。

24.圆的周长和直径成()比例。

二、选择题1、因为14 X=2Y,所以X:Y=():(),X和Y成()比例。

2、因为X=2Y,所以X:Y=():(),X和Y成()比例。

3、下列各式中(a、b均不为0),a和b成正比例的是()。

A 、a×8=b×5B 、9a=6bC 、a×13 -1÷b= 0 D、a+710 =b4、下面不成比例的是( )。

A、正方形的周长和边长B、某同学从家到学校的步行速度和所用时间C、圆的体积和表面积5、如果y=15x, x和y成( )比例;如果y=X15, x和y成( )比例6、如果Y = 8X ,X 和Y 成()比例如果Y =X8,X 和Y 成()比例。

正反比例练习题大全

正反比例练习题大全

正反比例的练习题大全判断是否成比例,成什么比例1、正方形的边长和周长成。

()2、正方形的边长和面积成.()3、a是b的5倍,数a和数b成。

()4、如果4a=3b,那么a∶b=3∶4 。

( )5、圆的周长一定,直径和圆周率成。

( )6、8A=B,那么A和B成。

()7、长方体的体积一定,底面积和高成。

()8、如果x 与y成,那么3 x与y也成。

()9、圆的面积与半径的平方成。

()10、圆锥的体积一定,底面积和高成。

()11、三角形的高一定,底和面积成.( )12、路程一定,车轮的直径与车轮的转数成.()13、全班总人数一定,出勤人数和出勤率成。

( )14、从甲地到乙地,已走路程和未走路程成.( )15、减数一定,被减数和差成.( )16、甲数的3/4是乙数,那么甲数与乙成( )17、如果3x=y(x和y都不等于0),x与y。

()18、如果xy=1,x与y。

()(19、)如果5A=B,A与B。

( )(20)如果x+y=6,x与y。

( )(21)如果x与y互为倒数,x与y。

()(22)如果3:x=y:16,x与y。

()(23)如果20:x=12:y,x与y。

()(24)如果ab=k+2(k一定),那么a和b成反比例数成反比例( )25、《小学生作文》的单价一定,总价和订阅的数量.()26、小新跳高的高度和他的身高( )。

27、学校全班的人数一定,每组的人数和级数.( )28、圆柱体积一定,圆柱的底面积和高。

()29、书的总册数一定,每包的册数和包数。

()30、在一块菜地上种的黄瓜和西红柿的面积.()31、小麦每公顷产量一定,小麦的公顷数和总产量.()32、书的总页数一定,已经看的页数和未看的页数。

( )33、轮船行驶的速度一定,行驶的路程和时间。

()34、每吨自来水的价钱一定,用水吨数和所需付的水费。

()35、货物的总重量一定,每辆车的载重量和汽车辆数( )比例36、在圆中,面积和半径()比例 ,周长和半径()比例。

数学正反比例练习题大全

数学正反比例练习题大全

数学正反比例练习题大全
以下是一系列的数学正反比例练题,供学生练和巩固所学的知识。

1. 问题:一个园子总共有120棵树,如果每排10棵,共有几排?
答案:120 ÷ 10 = 12 排
2. 问题:一个长方形花坛的长为8米,宽为10米,如果每平方米能种5棵花,花坛能种多少棵花?
答案:8 × 10 × 5 = 400 棵花
3. 问题:某水果市场每个箱子里放20个苹果,如果共有3000个苹果,需要多少个箱子才能装完?
答案:3000 ÷ 20 = 150 个箱子
4. 问题:一辆车以每小时80公里的速度行驶,行驶300公里需要多少小时?
答案:300 ÷ 80 = 3.75 小时
5. 问题:一个水缸的容量为400升,每分钟排水20升,需要多少分钟才能排完?
答案:400 ÷ 20 = 20 分钟
6. 问题:小明每天花2小时做作业,如果他一共需要做8天,总共需要多少小时?
答案:2 × 8 = 16 小时
7. 问题:一辆公交车每小时能载客60人,需要载完400人,需要多少小时?
答案:400 ÷ 60 = 6.67 小时
8. 问题:某商品原价100元,打8折,现在售价多少?
答案:100 × (1 - 0.8) = 20 元
9. 问题:一桶油装满需要3分钟,如果用两个人一起装,需要多少时间?
答案:3 ÷ 2 = 1.5 分钟
10. 问题:橙子每斤售价5元,小明买了3斤橙子,一共需要支付多少元?
答案:5 × 3 = 15 元
以上是数学正反比例的练习题。

希望能帮助到你,加油!。

正反比例的练习题

正反比例的练习题

正反比例的练习题练习题一:某商店购买10个商品的总价格为20元,那么购买20个商品的总价格是多少?解答:我们可以设商品的单价为x元。

根据题意,10个商品的总价格为20元,那么可以得到等式:10x = 20解得:x = 2因此,商品的单价为2元。

再根据单价,我们可以计算购买20个商品的总价格:20 × 2 = 40所以,购买20个商品的总价格是40元。

练习题二:一辆汽车以每小时60公里的速度行驶,行驶2小时所走的路程是多少?解答:根据题意,汽车以每小时60公里的速度行驶,那么可以得到等式:60 × 2 = 路程解得:路程 = 120公里所以,一辆汽车行驶2小时所走的路程是120公里。

练习题三:甲、乙两人同时开始在同一地点往同一方向行走,甲每分钟行进20米,乙每分钟行进15米。

他们相遇需要多少时间?解答:根据题意,甲每分钟行进20米,乙每分钟行进15米。

他们相遇相当于他们行进的距离之和等于他们相遇的地点距离出发地点的距离。

假设他们相遇所需要的时间为t分钟。

那么可以得到等式:20t + 15t = 距离解得:35t = 距离由于他们同时开始,在同一地点往同一方向行走,所以距离相等,即甲、乙相遇所需要的时间为t分钟。

练习题四:小明在做练习,每分钟可以做6道数学题,如果他共用时18分钟,那么他一共做了多少道数学题?解答:根据题意,小明每分钟可以做6道数学题,共用时18分钟。

假设他一共做了x道数学题。

那么可以得到等式:6 × 18 = x解得:x = 108所以,小明一共做了108道数学题。

练习题五:某工程队10天可以修建完一条公路,现在计划增加工人的数量,问几天可以修建完?解答:根据题意,某工程队10天可以修建完一条公路。

假设增加工人的数量为x人,那么可以设修建完一条公路所需天数为t天。

那么可以得到等式:10 × x = t解得:t = 10x所以,增加工人的数量,修建完一条公路所需的天数是10x天。

正反比例练习题及答案

正反比例练习题及答案

正反比例练习题及答案相关热词搜索:练习题正反比例答案六年级比例练习题答案正反比例的概念正比例和反比例篇一:正比例和反比例习题精选及答案正比例和反比例习题精选一、判断.1.一个因数不变,积与另一个因数成正比例.()2.长方形的长一定,宽和面积成正比例.()3.大米的总量一定,吃掉的和剩下的成反比例.()4.圆的半径和周长成正比例.()5.分数的分子一定,分数值和分母成反比例.()6.铺地面积一定,方砖的边长和所需块数成反比例.()7.铺地面积一定,方砖面积和所需块数成反比例.()8.除数一定,被除数和商成正比例.()二、选择.1.把一堆化肥装入麻袋,麻袋的数量和每袋化肥的重量.()A.成正比例B.成反比例C.不成比例2.和一定,加数和另一个加数.()A.成正比例B.成反比例C.不成比例3.在汽车每次运货吨数,运货次数和运货的总吨数这三种量中,成正比例关系是(),成反比例关系是().A.汽车每次运货吨数一定,运货次数和运货总吨数.B.汽车运货次数一定,每次运货的吨数和运货总吨数.C.汽车运货总吨数一定,每次运货的吨数和运货的次数.三、填空.1.两种()的量,一种量变化,另一种量(),如果这两种量中()的两个数的()一定,这两种量就叫做成正比例的量,它们的关系叫做(),关系式是().2.两种()的量,一种量变化,另一种量(),如果这两种量中()的两个数的()一定,这两种量就叫做成反比例的量,它们的关系叫做(),关系式是().3.一房间铺地面积和用砖数如下表,根据要求填空.铺地面积(平方米)1 2 3 4 5用砖块数25 50 75100 125(1)表中()和()是相关联的量,()随着()的变化而变化.(2)表中第三组这两种量相对应的两个数的比是(),比值是();第五组这两种量相对应的两个数的比是(),比值是().(3)上面所求出的比值所表示的的意义是(),铺地面积和砖的块数的()是一定的,所以铺地面积和砖的块数().4.练习本总价和练习本本数的比值是().当()一定时,()和()成()比例.二、判断下面每题中的两种量是不是成比例,成什么比例,并说明理由.1.平行四边形的高一定,它的底和面积.2.被除数一定,商和除数.3.小明的年龄和他的体重.4.天数一定,生产零件的总个数和每天生产零件的个数.三、思考.、、三种量的关系是:×=1.如果一定,那么和成()比例;2.如果一定,那么和成()比例;3.如果一定,那么和成()比例.参考答案一、判断.(√)(√)(×)(√)(√)(×)(√)(√)二、选择.1.(B )2.(C )3.(C ).1.两种(相关联)的量,一种量变化,另一种量(随着变化),如果这两种量中(相对应)的两个数的(比值)一定,这两种量就叫做成正比例的量,它们的关系叫做(正比例关系),关系式是((一定)).2.两种(相关联)的量,一种量变化,另一种量(随着变化),如果这两种量中(相对应)的两个数的(积)一定,这两种量就叫做成反比例的量,它们的关系叫做(反比例关系),关系式是((一定)).(1)表中(铺地面积)和(用砖块数)是相关联的量,(用砖块数)随着(铺地面积)的变化而变化.(2)表中第三组这两种量相对应的两个数的比是(75∶3),比值是(25);第五组这两种量相对应的两个数的比是(125∶5),比值是(25).(3)上面所求出的比值所表示的的意义是(每平方米用砖块数),铺地面积和砖的块数的(比值)是一定的,所以铺地面积和砖的块数(正比例).4.练习本总价和练习本本数的比值是(练习本单价).当(练习本单价)一定时,(练习本总价)和(练习本本数)成(正)比例.二、判断下面每题中的两种量是不是成比例,成什么比例,并说明理由.1.平行四边形的高一定,它的底和面积.理由:因为,高一定,就是平行四边形面积与底的比值一定.所以,平行四边形的面积与底成正比例.2.被除数一定,商和除数.理由:因为被除数一定,就是商和除数的乘积一定,所以,商和除数成反比例.3.小明的年龄和他的体重.理由:小明的年龄和他的体重虽然也是一对相关联的量,但是这两个量的变化并没有什么规律,找不出哪个是不变量,所以,小明的年龄和他的体重不成比例.4.天数一定,生产零件的总个数和每天生产零件的个数.理由:因为,天数一定,就是生产零件的总个数和每天生产零件的个数的比值一定,所以,生产零件的总个数和每天生产零件的个数成正比例.三、思考.、、三种量的关系是:×=1.如果一定,那么和成(正)比例;2.如果一定,那么和成(正)比例;3.如果一定,那么和成(反)比例.篇二:正反比例练习题正反比例练习题一、选择、填空。

正反比例练习题及答案

正反比例练习题及答案

正反比例练习题及答案一、选择题1. 某工厂生产零件,每小时生产零件数与生产时间成反比例。

如果工厂在4小时内生产了120个零件,那么在1小时内可以生产多少个零件?A. 30B. 60C. 120D. 2402. 一个水池的容积是固定的,水管注水的速度与注满水池所需的时间成什么比例?A. 正比例B. 反比例C. 不成比例D. 无法确定3. 某商品的总成本与生产数量成反比例,当生产数量为100时,总成本为5000元。

如果生产数量增加到200,总成本是多少?A. 2500元B. 5000元C. 10000元D. 无法确定4. 某学校学生人数与每个学生分得的图书数量成反比例。

如果学校有200名学生,每人分得5本书,那么当学生人数增加到400时,每人分得多少本书?A. 2.5本B. 5本C. 10本D. 无法确定5. 某工厂的总产量与工作时间成正比例。

如果工厂在8小时内生产了800个单位的产品,那么在4小时内可以生产多少个单位的产品?A. 200B. 400C. 800D. 1600答案:1. B 2. B 3. A 4. A 5. B二、填空题6. 某工厂的工作效率与所需时间成________比例,如果工作效率提高到原来的2倍,那么所需时间将减少到原来的________。

7. 某书店的图书销售量与销售价格成________比例,如果销售价格提高到原来的1.5倍,销售量将减少到原来的________。

8. 某产品的生产成本与生产数量成________比例,如果生产数量增加到原来的3倍,生产成本将增加到原来的________。

9. 某工厂的总产量与工作时间成________比例,如果工作时间减少到原来的一半,总产量将减少到原来的________。

10. 某学校的图书数量与学生人数成________比例,如果学生人数增加到原来的4倍,图书数量将增加到原来的________。

答案:6. 反,1/2 7. 反,2/3 8. 正,3 9. 正,1/2 10. 正,4三、判断题11. 某商品的单价与销售数量成反比例,这种说法是正确的。

正反比例练习题

正反比例练习题

正反比例练习题正反比例是数学中常见的一种比例关系,指两个变量之间的比例是相等的,其中一个变量增加,另一个变量相应地减少。

在解决实际问题中,正反比例关系经常用到。

本文将介绍一些正反比例练习题,帮助读者更好地理解和运用正反比例。

一、题目1小明利用正反比例关系绘制了一条直线。

当x为0时,y为8;当x 为4时,y为2。

试判断这条直线的方程式是什么?解答:设直线的方程为y=k/x (k为常数)由已知条件得:当x为0时,y为8,此时利用方程求得k=8*0=0;当x为4时,y为2,代入方程得:2=k/4,解得k=8;因此,直线的方程为y=8/x。

二、题目2某商品的价格和销量成反比关系。

当商品价格为10元时,销量为20个;当商品价格为20元时,销量为10个。

求商品的价格和销量之间的函数关系。

解答:设商品价格为x,销量为y。

由题意可知,x和y成反比关系,即xy=k(k为常数)。

根据题意,当x为10时,y为20,代入反比关系可求得k=10*20=200;当x为20时,y为10,代入反比关系可求得200=20*10;因此,商品的价格和销量之间的函数关系为xy=200。

三、题目3小王从城市A到城市B的距离为200千米,他选择骑自行车去。

第一天骑了100千米,第二天骑了80千米,第三天骑了多少千米?解答:设第三天小王骑的千米数为x。

根据题意,第一天骑了100千米,第二天骑了80千米,第三天骑了x千米,根据正反比例关系可得:100/200 = 80/(200-100-x);计算可得:(100*(200-100-x)) = 80*200;解得x=60;因此,小王第三天骑了60千米。

四、题目4在某连锁超市的促销活动中,每购买4件商品可以享受8折优惠,求购买10件该商品的折扣价格是多少?解答:设购买10件商品的折扣价格为x。

根据题意,购买4件商品享受8折优惠,根据正反比例关系可得:4/x = 8/10;解得x=5;因此,购买10件商品的折扣价格为5元。

正反比例的练习题五年级

正反比例的练习题五年级

正反比例的练习题五年级正反比例的练习题(五年级)1. 简介正反比例是数学中一个重要的概念,它在现实生活中有很多应用。

本文将通过一些练习题,帮助五年级的学生更好地理解和掌握正反比例。

2. 问题一一根绳子长5米,剪成多段,每段长度相等。

如果剪成10段,每段的长度是多少?解析:由于绳子被剪成了10段,而且每段长度相等,因此可以用反比例来解决。

我们可以先求出总长度与段数的比例,再将总长度除以段数,得到每段的长度。

解答:总长度:5米段数:10段所以总长度与段数的比例为5:10,即1:2。

每段的长度 = 总长度 / 段数 = 5米 / 10段 = 0.5米。

所以每段的长度为0.5米。

3. 问题二一个果汁摊位上有15瓶橙汁,每瓶的容量都相等。

如果卖出5瓶橙汁,还剩下的容量是多少?解析:这个问题可以用正比例来解决。

我们可以先求出总容量与瓶数的比例,再将总容量除以瓶数,得到每瓶的容量。

然后,用每瓶的容量乘以剩余的瓶数,即可求出剩下的容量。

解答:总容量:15瓶(假设每瓶容量为C)瓶数:15瓶(卖出5瓶后剩余10瓶)所以总容量与瓶数的比例为15:C = 10:5,即3:2。

每瓶的容量 = 总容量 / 瓶数 = 15瓶 / 15瓶 = C。

剩下的容量 = 每瓶的容量 ×剩余的瓶数 = C × 10。

所以剩下的容量为C × 10。

4. 问题三小明和小华一起做作业,小明用1小时做完了1/4,小华同样用1小时做完了1/5。

如果他们继续以相同的速度做作业,小明再用多少小时可以做完全班同学的作业?解析:这个问题需要用正比例和反比例相结合的思想来解决。

首先,我们可以求出小明和小华每小时所做作业的比例,然后将全班同学的作业量除以每小时的做题量,就可以得到小明需要多少小时才能完成。

解答:小明每小时的做题量:1/4小华每小时的做题量:1/5所以小明和小华每小时做题量的比例为:1/4 : 1/5 = 5/20 : 4/20 = 5:4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正反比例练习题
一、判断。

1、方砖的边长一定,要铺地面积和用砖块数成正比例()
2、用瓷砖铺地,要用的砖数一定,要铺地的平方米数和每平方米用砖的数量成
正比例()
3、要铺地的总面积一定,每块方砖的边长与需要的块数成正比例()
4、一个比例的两个内项分别是25和0.4,它的两个外项的积一定是10。

()
5、梯形的面积一定,高和上下底的和成反比例()
6、圆的半径一定,圆的面积和兀不成比例()
7、加工时间一定,加工零件个数和加工每个零件所需的时间成反比例()
8、南京到北京,所行驶的路程和速度不成比例()
9、出盐率一定,盐的重量和海水重量成正比例。

()
10、正方形的边长和面积成正比例。

()
二、填空。

(38分)
1、3:()=():20=0.6=()%
2、甲乙两数的比是4:5,甲数比乙数少 ,乙数比甲数多()。

3、在一个比例式中,两个外项的积是最小的质数,其中一个内项是3,另一个
外项是()。

4、在同一个圆内,直径与半径的长度的比是(),周长与直径的比()。

5、把3:6=4.5:9改写成()×()=()×()。

6、6X=2×9改写成():()=():()。

7、已知A、B、C三种量的关系是A÷B=C,如果A一定,那么B和C成()比例关系,如果C一定,A和B成()比例关系。

8、若8x=10y,那么x是y的(),x、y成()比例关系。

9、长度一定的铁丝,平均分成若干段,每段的长度和截的段数成()比例
10、如果y=5x,那么x和y成()比例。

5、如果7x=8y,那么x∶y=()∶( )
11、如果 = ,那么a和b成()比例关系。

12、直圆柱的高一定,它的底面半径和体积成( )比例.
13、、如果Y= ,X和Y成()比例,Y= ,X和Y成()比例。

14、如果=,那么a和b成()比例关系。

15.如果6a=5b,那么a:b=_____: ____,a:5=____:____。

三、选择
1、圆的半径与面积()。

A、成正比例
B、成反比例
C、不成比例
2、做一个零件的时间一定,做的零件个数与总时间。

()A、成正比例关系 B、成反比例关系 C、不成比例
3、数一定,被减数与差。

()A、成正比例关系 B、成反比例关系 C、
不成比例
4、小明拿一些钱买铅笔,单价和购买的数量.()A、成正比例 B、成反比例 C、不成比例
5、路程一定,车轮的直径与车轮转的圈数。

()A、成正比例关系 B、成反比例关系C、不成比例
6、小林做10道数学题,已做的题和没有做的题.()A、成正比例 B、成反比例 C、不成比例
7、在比例里,两个外项的积一定,两个内项成()。

A、正比例
B、反比例
C、不成比例
D、无法判断
8、互为倒数的两个数,它们一定成()。

A、正比例 B、反比例 C、不成比例 D、无法判断
9、小王的身高与体重成()。

A、正比例 B、反比例 C、不成比例 D、无法判断
10.全班人数一定,出勤人数和出勤率( )。

A.成正比例 B.成反比例 C.不成比例。

相关文档
最新文档