华师大版-数学-八年级上册-《等腰三角形的判定》同步测试

合集下载

华东师大初中数学八年级上册等腰三角形的判定 巩固练习(基础)

华东师大初中数学八年级上册等腰三角形的判定  巩固练习(基础)

等腰三角形的判定 (基础)巩固练习【巩固练习】一.选择题1.在△ABC中,①若AB=BC=CA,则△ABC为等边三角形;②若∠A=∠B=∠C,则△ABC为等边三角形;③有两个角都是60°的三角形是等边三角形;④一个角为60°的等腰三角形是等边三角形.上述结论中正确的有()A.1个 B.2个 C.3个 D.4个2.(2016秋•桐乡市期中)下列条件中,不能判定△ABC是等腰三角形的是()A.a=3,b=3,c=4 B.a:b:c=2:3:4C.∠B=50°,∠C=80° D.∠A:∠B:∠C=1:1:23. 等边三角形的两条高线相交成钝角的度数是()A.105°B.120°C.135°D.150°4. 如图,在△ABC中,∠ABC、∠ACB的平分线相交于F,过F作DE∥BC,交AB于D,交AC于E,那么下列结论正确的有( ) .①△BDF,△CEF都是等腰三角形;②DE=DB+CE;③AD+DE+AE=AB+AC;④BF=CF.A.1个B.2个C.3个D.4个5. 如图,等边三角形ABC中,D为BC的中点,BE平分∠ABC交AD 于E,若△CDE的面积等于1,则△ABC的面积等于().A.2 B.4 C.6 D.126. 如图,ΔABC中,AB=AC,∠BAC=108°,若AD、AE三等分∠BAC,则图中等腰三角形有().A.4个B.5个C.6个D.7个二.填空题7.如图,在一张长方形纸条上任意画一条截线AB,将纸条沿截线AB折叠,所得到△ABC的形状一定是三角形.8.如图,在△ABC中,分别以点A和点B为圆心,大于12AB的长为半径画弧,两弧交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为12,AB=16,则△ABC的周长为________.9. 如图所示,△ABC为等边三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,•则四个结论正确的是.①P在∠A的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.10. 如图,已知△ABC是等边三角形,点O是BC上任意一点,OE、OF分别与两边垂直,等边三角形的高为1,则OE+OF的值为.11. 如图,△ABC中,BO、CO分别平分∠ABC、∠ACB,OM∥AB,ON∥AC,BC=10cm,则ΔOMN的周长=______cm.12.(2016•山西模拟)如图,在4×5的点阵图中,每两个横向和纵向相邻阵点的距离均为1,该点阵图中已有两个阵点分别标为A、B,请在此点阵图中找一个阵点C,使得以点A、B、C为顶点的三角形是等腰三角形,则符合条件的点C有个.三.解答题13.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.14. 如图,在梯形ABCD中,AD∥BC,E为CD中点,连接AE并延长AE交BC的延长线于点F(1)求证:CF=AD;(2)若AD=2,AB=8,当BC为多少时,点B在线段AF的垂直平分线上,为什么?15.如图,在△ABC中,∠C=90°,过A点沿直线AE折叠这个三角形,使点C落在AB边上的D点处,连接DC,若AE=BE,求证:△ADC是等边三角形.【答案与解析】一.选择题1. 【答案】D;【解析】解:①根据等边三角形的定义可得△ABC为等边三角形,结论正确;②根据判定定理1可得△ABC为等边三角形,结论正确;③一个三角形中有两个角都是60°时,根据三角形内角和定理可得第三个角也是60°,那么这个三角形的三个角都相等,根据判定定理1可得△ABC为等边三角形,结论正确;④根据判定定理2可得△ABC为等边三角形,结论正确.故选D.2. 【答案】B;【解析】A、∵a=3,b=3,c=4,∴a=b,∴△ABC是等腰三角形;B、∵a:b:c=2:3:4∴a≠b≠c,∴△ABC不是等腰三角形;C、∵∠B=50°,∠C=80°,∴∠A =50°,∴AC=BC,∴△ABC是等腰三角形;D、∵∠A:∠B:∠C=1:1:2,∴∠A=∠B,∴AC=BC,∴△ABC是等腰三角形.故选B.3. 【答案】B;【解析】等边△ABC的两条高线相交于O,∠OAB=∠OBA=30°,故∠AOB=120°. 4. 【答案】C ;【解析】①②③正确.5. 【答案】C;【解析】AE=2DE,△ABC的面积是△CDE面积的6倍.6. 【答案】C;【解析】△ABD,△ADE,△ACE,△ABE,△ACD,△ABC为等腰三角形.二.填空题7. 【答案】等腰;【解析】解:∵所给图形是长方形,∴∠1=∠2,∵∠2=∠ABC,∴∠1=∠ABC,∴AC=BC,即△ABC为等腰三角形.故答案为:等腰.8. 【答案】28;【解析】解:由题意得:MN是线段AB的垂直平分线,则AD=BD,∵△ADC的周长为12,∴AC+CD+AD=12,∴AC+CD+DB=12,即:AC+BC=12,∵AB=16,∴△ABC的周长为:AC+BC+AB=12+16=28,故答案为:28.9. 【答案】①②③④;10.【答案】1;【解析】连接AO,△ABO的面积+△ACO的面积=△ABC的面积,所以OE+OF=等边三角形的高.11.【答案】10;【解析】OM=BM,ON=CN,∴△OMN的周长等于BC.12.【答案】5;【解析】画出图形得:故答案为:5三.解答题13.【解析】证明:(1)∵AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等),∵E是CD的中点(已知),∴DE=EC(中点的定义).∵在△ADE与△FCE中,ADC ECF DE ECAED CEF ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ADE ≌△FCE (ASA ),∴FC=AD (全等三角形的性质).(2)∵△ADE ≌△FCE ,∴AE=EF ,AD=CF (全等三角形的对应边相等),∴BE 是线段AF 的垂直平分线,∴AB=BF=BC+CF ,∵AD=CF (已证),∴AB=BC+AD (等量代换).14.【解析】解:当BC=6时,点B 在线段AF 的垂直平分线上,其理由是:∵BC=6,AD=2,AB=8,∴AB=BC+AD .又∵CF=AD ,BC+CF=BF ,∴AB=BF .∴△ABF 是等腰三角形,∴点B 在AF 的垂直平分线上.15.【解析】证明:根据折叠的性质:△ACE≌△ADE,AC=AD ,∠ADE=∠ACB=90°, ∵AE=BE,∴AD=BD,∴AB=2AD=2AC,∴∠B=30°,∴∠CAB=60°,∴△ADC 是等边三角形.。

2018年秋八年级数学上册 第13章 全等三角形 13.3 等腰三角形 2 等腰三角形的判定作业 (新版)华东师大版

2018年秋八年级数学上册 第13章 全等三角形 13.3 等腰三角形 2 等腰三角形的判定作业 (新版)华东师大版

[13.3 2.等腰三角形的判定],一、选择题1.下列条件中,不能判定△ABC为等腰三角形的是( )A.∠A=70°,∠B=55°B.AB=AC=2,BC=3C.AB=3,BC=7,周长为15D.∠A∶∠B∶∠C=1∶1∶22.下列推理中,错误的是 ( )A.∵∠A=∠B=∠C,∴△ABC是等边三角形B.∵AB=AC,∠B=∠C,∴△ABC是等边三角形C.∵∠A=60°,∠B=60°,∴△ABC是等边三角形D.∵AB=AC,∠B=60°,∴△ABC是等边三角形3.有一个外角等于120°且有两个内角相等的三角形是( )A.三边均不相等的三角形B.等腰三角形C.等边三角形D.不能确定4.如果三角形的一个外角的平分线平行于三角形的一边,那么这个三角形是( ) A.锐角三角形 B.等腰三角形C.直角三角形 D.不能确定图K-30-15.如图K-30-1,在△ABC中,AB=AC,∠A=36°,BD,CE分别是∠ABC,∠BCD的平分线,则图中的等腰三角形有( )A.5个B.4个C.3个D.2个6.如图K-30-2,D为△ABC内一点,CD平分∠ACB,BE⊥CD,垂足为D,交AC于点E,∠A=∠ABE,AC=5,BC=3,则BD的长为( )A.1 B.1.5 C.2 D.2.5图K-30-27.如图K-30-3,△MNP中,∠P=60°,MN=NP,MQ⊥PN,垂足为Q,延长MN至点G,使NG=NQ,若△MNP的周长为12,MQ=a,则△MGQ的周长是( )图K-30-3A.8+2a B.8+aC.6+a D.6+2a8.如图K-30-4,∠1=∠2,∠C=∠D,AC,BD交于点E,下列结论中不正确的是( ) A.∠DAE=∠CBEB.CE=DEC.△DEA不全等于△CEBD.△EAB是等腰三角形图K-30-49.如图K -30-5,正三角形ABC 的三边表示三面镜子,BP =13AB =1,一束光线从点P发射至BC 上R 点,且∠BPR =60°.光线依次经BC 反射,AC 反射,AB 反射……一直继续下去.当光线第一次回到点P 时,这束光线所经过的路线的总长为( )图K -30-5A .6B .9C .18D .27 二、填空题10.如图K -30-6,已知OC 平分∠AOB ,CD ∥OB .若OD =3 cm ,则CD =________cm.图K -30-611.如图K -30-7,在△ABC 中,∠ABC 与∠ACB 的平分线交于点O ,过点O 作DE ∥BC ,分别交AB ,AC 于点D ,E .若AB =5,AC =4,则△ADE 的周长为________.图K -30-712.在一次夏令营活动中,小明同学从营地A 出发,要到A 地的北偏东60°方向的C 处,他先沿正东方向走了200 m 到达B 地,再沿北偏东30°方向走,恰能到达目的地C (如图K -30-8),那么,由此可知,B ,C 两地相距________m.图K-30-8三、解答题13.2017·内江如图K-30-9,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.链接听课例1归纳总结图K-30-914.如图K-30-10,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:AB=CD.链接听课例2归纳总结图K-30-1015.如图K-30-11,△ABC是等边三角形,BD⊥AC,AE⊥BC,垂足分别为D,E.AE,BD相交于点O,连结DE.判断△CDE的形状,并说明理由.链接听课例3归纳总结图K-30-1116.如图K-30-12所示,点E在△ABC中AC边的延长线上,点D在AB边上,DE交BC于点F,DF=EF,BD=CE.求证:△ABC是等腰三角形.图K-30-12模型思想在图K-30-13的各图中,AD是∠BAC的平分线,根据关于各图的其他条件,找出图K-30-13中的等腰三角形.图K-30-13(1)如图①,CE∥AB,CE交AD的延长线于点E,则________是等腰三角形;(2)如图②,DE∥AC,DE交AB于点E,则________是等腰三角形;(3)如图③,CE∥AD,CE交BA的延长线于点E,则________是等腰三角形;(4)如图④,EF∥AD,EF与AB相交于点G,与CA的延长线相交于点E,与BC相交于点F,则________是等腰三角形.详解详析【课时作业】[课堂达标]1.C2.[解析] B由AB=AC,∠B=∠C,可知三角形是等腰三角形,不能判定三角形是等边三角形.3.[解析] C有一个外角是120°,则与它相邻的内角是60°.有两个内角相等的三角形是等腰三角形,再根据一个内角是60°,可知此三角形是等边三角形.4.[解析] B由平行线的性质可推得外角的一半分别等于这个三角形的两个内角,再由等角对等边可得这个三角形是等腰三角形.5.A 6.A7.D8.C9.[全品导学号:90702271] B10.311.[答案] 9[解析] 由BO是∠ABC的平分线,DE∥BC可得∠DBO=∠DOB,则BD=DO.同理可得EO =EC,所以△ADE的周长=AD+AE+DE=AD+BD+AE+EC=AB+AC=5+4=9.12.20013.证明:如图.∵DE∥AC,∴∠1=∠3.∵AD平分∠BAC,∴∠1=∠2,∴∠2=∠3.∵AD ⊥BD ,∴∠2+∠B=90°,∠3+∠BDE=90°, ∴∠B =∠BDE, ∴△BDE 是等腰三角形. 14.解:(1)∵AB=AC , ∴∠B =∠C=30°.∵∠C +∠BAC+∠B=180°, ∴∠BAC =180°-30°-30°=120°. ∵∠DAB =45°,∴∠DAC =∠BAC-∠DAB=120°-45°=75°. (2)证明:∵∠DAB=45°, ∴∠ADC =∠B+∠DAB=75°, ∴∠DAC =∠ADC, ∴CD =AC. ∵AB =AC , ∴AB =CD.15.解:△CDE 是等边三角形.理由:∵△ABC 是等边三角形,且BD⊥AC,AE ⊥BC , ∴∠C =60°,CE =12BC ,CD =12AC ,BC =AC ,∴CD =CE ,∴△CDE 是等边三角形.16.证明:如图所示,过点D 作DG∥AC 交BC 于点G.。

原八年级数学上册13.3.2等腰三角形的判定习题课件(新版)华东师大版

原八年级数学上册13.3.2等腰三角形的判定习题课件(新版)华东师大版
第五页,共13页。
8.如图,已知△ABC中,BD平分(píngfēn)∠ABC,CE=CD,DB=DE, ∠E=30°. 求证:△ABC是等边三角形.
解:∵DB=DE,∴∠DBC=∠E=30°,∵BD平分(píngfēn)∠ABC,∴∠ABC= 2∠DBC=60°,∵CE=CD,∴∠CDE=∠E=30°,∴∠BCD=∠CDE+∠E= 60°,∴∠A=180°-∠ABC-∠ACB=60°,∠A=∠ABC=∠ACB,∴△ABC 是等边三角形
A.①②③ B.①②④ C.②③④ D.①③④
第十一页,共13页。
16.如图,∠ABC=45°,CD⊥AB 于 D,DH⊥BC 于 H,BE⊥AC 于 E, BE 平分∠ABC,与 CD 相交于点 F. (1)求证:BF=AC; (2)求证:CE=12BF.
解:(1)易知∠FBD,∠ACD 都与∠A 互余,∴∠FBD=∠ACD,又∠ DCB=∠ADC-∠ABC=90°-45°=45°=∠ABC,∴BD=CD, 易 证 △ FBD ≌ △ ACD(ASA) , ∴ BF = AC (2) 易 证 △ BAE ≌ △ BCE(ASA),∴CE=AE=12AC=12BF
第十三页,共13页。
第13章 全等三角形
13.3 等腰三角形
第2课时(kèshí) 等腰三角形的判定
第一页,共13页。
知识点❶ 等角对等边 1.(例题3变式)在△ABC中,∠A和∠B的度数如下,不能判定△ABC是等腰 三角形的是( ) D A.∠A=20°,∠B=80° B.∠A=36°,∠B=108° C.∠A=30°,∠B=120° D.∠A=80°,∠B=60° 2.(2016·陕西)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角 平分线,若在边AB上截取(jiéqǔ)BE=BC,连结DE,则图中等腰三角形共有 ()

华师大版初中数学八年级上册专题训练13.3 等腰三角形(含答案)

华师大版初中数学八年级上册专题训练13.3 等腰三角形(含答案)

13.3 等腰三角形专题一 与等腰三角形有关的探究题1. 设a 、b 、c 是三角形的三边长,且ca bc ab c b a ++=++222,关于此三角形的形状有以下判断:①是等腰三角形;②是等边三角形;③是锐角三角形;④是等腰直角三角形.其中真命题的个数是( )A.4个B.3个C.2个D.1个 2. 如图,已知:∠MON =30°,点A 1、A 2、A 3……在射线ON 上,点B 1、B 2、B 3……在射线 OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4……均为等边三角形,若OA 1=1,则△A 2013B 2013A 2014 的边长为( )201220133. 如图,在△AB 1A 中, ∠B =20°,AB =1A B ,在1A B 上取一点C,延长1AA 到2A ,使得12A A =1A C ; 在2A C 上取一点D,延长12A A 到3A ,使得23A A =2A D ;……,按此做法进行下去,求∠n A 的度数.4. 如图,点O是等腰直角三角形ABC内一点,∠ACB=90°,∠AOB=140°,∠AOC=α.将△AOC绕直角顶点C按顺时针方向旋转90°得△BDC,连接OD.(1)试说明△COD是等腰直角三角形;(2)当α=95°时,试判断△BOD的形状,并说明理由.5. 如图.在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.(1)试判定△ODE的形状,并说明你的理由;(2)线段BD、DE、EC三者有什么关系?写出你的判断过程.专题二等腰(边)三角形中的动点问题6. 已知ΔABC为等边三角形,点M是射线BC上任意一点,点N是射线CA上任意一点,且BM=CN,直线BN与AM相交于Q点.就下面给出的三种情况(如图中的①②③),先用量角器分别测量∠BQM的大小,将结果填写在下面对应的横线上,然后猜测∠BQM在点M、N的变化中的取值情况,并利用图③证明你的结论.测量结果:图①中∠BQM=______;图②中∠BQM=______;图③中∠BQM=______.7. 如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=______°;点D从B向C运动时,∠BDA逐渐变_____ (填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BDA等于多少度时,△ADE 是等腰三角形.8. 阅读材料:如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r1,r2,腰上的高为h,连接AP,则S△ABP+S△ACP=S△ABC,即:12AB•r1+12AC•r2=12AB•h,∴r1+r2=h(定值).(1)类比与推理如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在三角形内任一点”,即:已知等边△ABC内任意一点P到各边的距离分别为r1,r2,r3,等边△ABC的高为h,试证明r1+r2+r3=h(定值).(2)理解与应用△ABC中,∠C=90°,AB=10,AC=8,BC=6,△ABC内部是否存在一点O,点O到各边的距离相等?_____(填“存在”或“不存在”),若存在,请直接写出这个距离r的值,r= _____.若不存在,请说明理由.状元笔记[知识要点]1.等腰三角形的性质:(1)等腰三角形是轴对称图形,对称轴是顶角平分线所在的直线;(2)等腰三角形底边上的高、中线及顶角的平分重合(简称为“三线合一”);(3)等腰三角形的两底角相等(简称“等角对等边”).2.等边三角形的性质:等边三角形的三个内角相等,且都等于60°.3.等腰三角形的判定:(1)有两个角相等的三角形是等腰三角形(简称为“等角对等边”.(2)三个角都是60°的三角形是等边三角形.(3)有一个角是60°的等腰三角形是等边三角形.【方法技巧】1.等边对等角或等角对等边必须在同一个三角形中.2.判断一个三角形的形状一般要考虑:①等腰三角形;②直角三角形;③等边三角形;④等腰直角三角形.3.“等边对等角”和“等角对等边”成为今后证明角或边相等又一新方法.参考答案1. C 【解析】 由ca bc ab c b a ++=++222得:222()()()0a b b c a c -+-+-=,所以000a b b c a c -=⎧⎪-=⎨⎪-=⎩,所以a b c ==,所以②、③是真命题,故选C. 2. C 【解析】 ∵△A 1B 1A 2是等边三角形, ∴A 1B 1=A 2B 1,∠1=60°. ∵∠MON=30°, ∴∠2=30°=∠MON , ∴A 1B 1 =OA 1=1= A 1A 2.同理可证:A 2B 2 =OA 2 =2,A 2A 3=OA 2 =2,A 3A 4=OA 3 =4=22,A 4A 5=OA 4 =8=32. 以此类推:A 2013B 2013A 2014=22012. 故选C .3. 解:如图,在△AB 1A 中, ∵∠B =20°,AB =1A B , ∴∠1AA B =80°. 在△12A A C 中, ∵12A A =1A C ,∴∠12A A C =112AA B ∠=1802⨯=211802-⎛⎫⨯ ⎪⎝⎭=40°. 在△23A A D 中, ∵23A A =2A D ,∴∠23A A D =1212A A C ∠=118022⨯⨯=311802-⎛⎫⨯ ⎪⎝⎭=20°. 依此类推, 得∠n A 的度数为11802n -⎛⎫⎪⎝⎭.故∠n A 的度数为1n-11808022n -⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭或.4. 解:(1)∵△AOC 绕直角顶点C 按顺时针方向旋转90°得△BDC , ∴∠OCD=90°,CO=CD , ∴△COD 是等腰直角三角形;(2)△BOD 为等腰三角形. 理由如下:∵△COD 是等腰直角三角形, ∴∠COD=∠CDO=45°,而∠AOB=140°,α=95°,∠BDC=95°,∴∠BOD=360°-140°-95°-45°=80°,∠BDO=95°-45°=50°, ∴∠OBD=180°-80°-50°=50°. ∴△BOD 为等腰三角形. 5. 解:(1)△ODE 是等边三角形, 其理由是:∵△ABC 是等边三角形, ∴∠ABC=∠ACB=60°, ∵OD ∥AB ,OE ∥AC ,∴∠ODE=∠ABC=60°,∠OED=∠ACB=60°, ∴△ODE 是等边三角形; (2)BD=DE=EC ,其理由是: ∵OB 平分∠ABC ,且∠ABC=60°, ∴∠ABO=∠OBD=30°, ∵OD ∥AB ,∴∠BOD=∠ABO=30°,∴∠DBO=∠DOB , ∴DB=DO , 同理可证EC=EO. ∵DE=OD=OE , ∴BD=DE=EC . 6. 60°,60°,60°.证明: ∵BM=CN ;∠ABM=∠BCN=60°;BA=BC.ΔABM ≌ΔBCN(SAS),∠BAM=∠CBN;8. 解:(1)证明:连结AP ,BP ,CP.则=ABC BPC APC APB S S S S ++△△△△,即12311112222BC h BC r AC r AB r ⋅=⋅+⋅+⋅, ∵AB=BC=AC ,∴r 1+r 2+r 3=h (定值). (2)存在;2.。

华师大版初中数学八年级上册《13.3 等腰三角形》同步练习卷(含答案解析

华师大版初中数学八年级上册《13.3  等腰三角形》同步练习卷(含答案解析

华师大新版八年级上学期《13.3 等腰三角形》同步练习卷一.选择题(共17小题)1.如图,在△ABC中,AB=AD=DC,若∠BAD=36°,则∠C的大小为()A.36°B.38°C.40°D.42°2.如图,△ABC中,AB=AC,∠BAC、∠ABC的角平分线相交于点D.若∠ADB=130°,则∠BAC等于()A.20°B.25°C.30°D.35°3.若等腰三角形的两边长分别是6cm和4cm,则等腰三角形的周长是()A.16cm B.14cm C.16cm或14cm D.无法确定4.若等腰三角形一腰上的高与另一腰的夹角为36°,则它的顶角为()A.36°B.54°C.72°或36°D.54°或126°5.等腰三角形的两条边分别为6和8,则等腰三角形的周长是()A.20B.22C.20或22D.不确定6.某等腰三角形的周长为25,其中一边长为9,则等腰三角形底边长为()A.9B.7C.9或7D.以上均不对7.如图,△ABC中,AB=AC,BD平分∠ABC交AC于G,DM∥BC交∠ABC的外角平分线于M,交AB、AC于F、E,下列结论正确的是()A.EF=ED B.FD=BC C.EC=MF D.EC=AG8.等腰三角形的一个外角是140°,则其底角是()A.40°B.70°或40°C.70°D.140°9.如图,在△ABC中,AB=AC,∠A=30°,以B为圆心,BC的长为半径画弧,交AC于点D,连接BD,则∠DBC等于()A.75°B.60°C.45°D.30°10.如图,在第一个△ABA1中,∠B=20°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C,得到第二个△A1A2C;在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此做法进行下去,则第5个三角形中,以点A4为顶点的底角的度数为()A.5°B.10°C.175°D.170°11.如图,在Rt△ABC中,∠ACB=90°,AB=2BC,在直线BC或AC上取一点P,使得△PAB为等腰三角形,则符合条件的点P共有()A.4个B.5个C.6个D.7个12.已知A(0,﹣1)、B(1,0)是平面直角坐标系中的两点,且点C在坐标轴上,△ABC为等腰三角形,则满足条件的点C有()A.4个B.5个C.7个D.8个13.如图所示,在长方形ABCD的对称轴l上找点P,使得△PAB、△PBC均为等腰三角形,则满足条件的点P有()A.1个B.3个C.5个D.无数多个14.如图,在△ABC中,BC=4,BD平分∠ABC,过点A作AD⊥BD于点D,过点D作DE∥CB,分別交AB、AC于点E、F,若EF=2DF,则AB的长为()A.4B.6C.8D.1015.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为()A.90°B.120°C.270°D.360°16.如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则△ADE的形状是()A.等腰三角形B.等边三角形C.不等边三角形D.不能确定形状17.下面给出几种三角形:(1)有两个角为60°的三角形;(2)三个外角都相等的三角形;(3)一边上的高也是这边上的中线的三角形;(4)有一个角为60°的等腰三角形,其中是等边三角形的个数是()A.4个B.3个C.2个D.1个二.解答题(共22小题)18.已知在△ABC中,AB=AC,D是BC边上任意一点,过点D分别向AB,AC引垂线,垂足分别为E,F.(1)如图1,当点D在边BC的什么位置时,DE=DF?并给出证明;(2)如图2,过点C作AB边上的高CG,垂足为G,试猜想线段DE,DF,CG的长度之间存在怎样的数量关系?并给出证明.19.如图,△ABC中,AB=AC,AD⊥BC于D点,DE⊥AB于点E,BF⊥AC于点F,DE=3cm,求BF的长.20.在△ABC中,∠BAC=100°,∠ABC=∠ACB,点D在直线BC上运动(不与点B、C重合),点E在射线AC上运动,且∠ADE=∠AED,设∠DAC=n.(1)如图①,当点D在边BC上时,且n=36°,则∠BAD=,∠CDE=;(2)如图②,当点D运动到点B的左侧时,其他条件不变,请猜想∠BAD和∠CDE的数量关系,并说明理由;(3)当点D运动到点C的右侧时,其他条件不变,∠BAD和∠CDE还满足(2)中的数量关系吗?请画出图形,并说明理由.21.如图,AB∥CD,点E、N在AB上,点F在CD上,∠EFD的平分线FM交AB 于点G,且GM=GN,若∠EFC=112°,求∠M的度数.22.如图①,△ABC中,∠ABC=∠ACB,点D为BC边上一点,E为直线AC上一点,且∠ADE=∠AED.(1)试说明∠BAD=2∠CDE;(2)如图②,若点D在CB的延长线上,其他条件不变,(1)中的结论是否仍然成立?请说明理由.23.如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且∠ADE=∠AED,连接DE.(1)如图①,若∠B=∠C=30°,∠BAD=70°,求∠CDE的度数;(2)如图②,若∠ABC=∠ACB=70°,∠CDE=15°,求∠BAD的度数;(3)当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE 的数量关系,并说明理由.24.已知△ABC中,AC=BC,∠C=120°,点D为AB边的中点,∠EDF=60°,DE、DF分别交AC、BC于E、F点.(1)如图1,若EF∥AB.求证:DE=DF.(2)如图2,若EF与AB不平行.则问题(1)的结论是否成立?说明理由.25.如图(1),点P是等腰三角形ABC底边BC上的一动点,过点P作BC的垂线,交直线AB于点Q,交CA的延长线于点R.(1)试猜想线段AR与AQ的长度之间存在怎样的数量关系?并证明你的猜想.(2)如图(2),如果点P沿着底边BC所在的直线,按由C向B的方向运动到CB的延长线上时,其它条件不变,问(1)中所得的结论还成立吗?(直接写“成立”或“不成立”即可,不需证明)26.在△ABC中,AB=AC=a,AB边上的高CD=h,点P是直线BC上任意一点,过P作PE⊥AB于E,PF⊥AC于F,且PE=h1,PF=h2.(1)若点P在边BC上时,h,h1,h2三者关系如何?请予以证明;(2)若点P在BC或CB的延长线上时,h,h1,h2三者关系又如何(直接写出结论,不需证明)(3)若点P是直线BC上的点,h1=5,h=8,求h2的值.27.如图1,已知△ABC中,AB=AC,点D是△ABC外的一点(与点A分别在直线BC的两侧),且DB=DC,过点D作DE∥AC,交射线AB于点E,连接AD 交BC于点F.(1)求证:AD垂直平分BC;(2)请从A,B两题中任选一题作答,我选择题.A:如图1,当点E在线段AB上且不与点B重合时,求证:DE=AE;B:如图2,当点E在线段AB的延长线上时,写出线段DE,AC,BE之间的等量关系,并证明你的结论.28.操作发现将一副直角三角板如图(1)摆放,能够发现等腰直角三角板ABC的斜边BC与含30°角的直角三角板DEF的长直角边DE重合.问题解决将图1中的等腰直角三角板ABC绕点B顺时针旋转30°,点C落在BF上.AC与BD交于点O,连接CD,如图2.(1)若DF=4,求BF的长;(2)求证:△CDO是等腰三角形.29.如图,在△ABC中,∠ABD=∠ACD=60°,∠ADB=90°﹣∠BDC.求证:△ABC是等腰三角形.30.如图,已知CD平分∠ACB,DE∥BC,说明△EDC是等腰三角形的理由.根据解题的要求,填写适当的内容或理由.解:∵DE∥BC (已知)∴(两直线平行,内错角相等)又(已知)∴∠ACD=∠BCD ()∴∠EDC=∠ACB∴DE=EC()∴△EDC是等腰三角形.31.如图,已知在△ABC中,AB=AC,∠MAC和∠ABC的平分线AD、BD相交于点D,试说明△ABD是等腰三角形的理由.32.如图,在△ABC中,AB=AC,D在边AC上,且BD=DA=BC.(1)如图1,填空∠A=°,∠C=°.(2)如图2,若M为线段AC上的点,过M作直线MH⊥BD于H,分别交直线AB、BC与点N、E.①求证:△BNE是等腰三角形;②试写出线段AN、CE、CD之间的数量关系,并加以证明.33.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=50°时,求∠DEF的度数.34.如图,等边△ABC中,AB=6,D是AC的中点,E是BC延长线上的一点,CE=CD,DF⊥BE,垂足为F.(1)求BD的长;(2)求证:BF=EF;(3)求△BDE的面积.35.数学课上,李老师出示了如下的题目:“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图,试确定线段AE与DB的大小关系,并说明理由”.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE DB(填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,AE与DB的大小关系是:AE DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).36.已知:在△AOB和△COD中,OA=OB,OC=OD.(1)如图①,若∠AOB=∠COD=60°,求证:①AC=BD ②∠APB=60°.(2)如图②,若∠AOB=∠COD=α,则AC与BD间的等量关系式为,∠APB的大小为(直接写出结果,不证明)37.如图,已知等边△ABC,点D是AB的中点,过点D作DF⊥AC,垂足为点F,过点F作FH⊥BC,垂足为点H,若等边△ABC的边长为4,求BH的长.38.(1)如图①,在△ABC中,BD平分∠ABC,过点D作ED∥BC.指出图中的等腰三角形,并说明理由.(2)如图②,在△ABC中,∠ABC、∠ACB的平分线交于点O,过点O作EF∥BC.证明:EF=BE+CF.39.已知BD是△ABC的角平分线,DE∥BC,交AB于点E.(1)如图1,求证:BE=DE.(2)如图2,在过点D作DF∥AB,连接EF,过点E作EG⊥BC,若EG=3,BF=5,在不添加任何辅助线的情况下,请直接写出面积等于的所有三角形.三.填空题(共3小题)40.如图,由九个等边三角形组成的一个六边形ABCDEF,当图中最小的等边三角形的边长为1cm时,这个六边形ABCDEF的周长为cm.41.如图,把面积为1的正三角形ABC的各边依次循环延长一倍,顺次连接这三条线段的外端点,这样操作后,可以得到一个新的正三角形DEF;对新三角形重复上述过程,经过2017次操作后,所得正三角形的面积是.42.如图,在△ABC中,AB=AC=10cm,∠B=15°,CD是AB边上的高,则CD=.华师大新版八年级上学期《13.3 等腰三角形》同步练习卷参考答案与试题解析一.选择题(共17小题)1.如图,在△ABC中,AB=AD=DC,若∠BAD=36°,则∠C的大小为()A.36°B.38°C.40°D.42°【分析】根据三角形外角的性质以及等腰三角形的性质.由AB=AD=DC可得∠DAC=∠C,易求解.【解答】解:∵∠BAD=36°,AB=AD=DC,∴∠ABD=∠ADB=72°,又∵AD=DC,∴∠C=∠CAD=∠ADB=36°.故选:A.【点评】本题考查的是三角形内角和定理,三角形外角与外角性质以及等腰三角形的性质.此类题目考查学生分析各角之间关系的能力,运用所学的三角形知识点求解.2.如图,△ABC中,AB=AC,∠BAC、∠ABC的角平分线相交于点D.若∠ADB=130°,则∠BAC等于()A.20°B.25°C.30°D.35°【分析】设∠BAC=x,根据已知可以分别表示出∠ABD和∠BAD,再根据三角形内角和定理即可求得∠BAC的度数.【解答】解:设∠BAC=x,∵在△ABC中,AB=AC,∴∠ABC=∠C=(180°﹣x),∵BD是∠ABC的角平分线,AD是∠BAC的角平分线,∴∠ABD=(180°﹣x),∠DAB=x,∵∠ABD+∠DAB+∠ADB=180°,∴(180°﹣x)+x+130°=180°,∴x=20°.故选:A.【点评】此题主要考查等腰三角形的性质、角平分线的性质、三角形内角和定理:三角形内角和是180°.3.若等腰三角形的两边长分别是6cm和4cm,则等腰三角形的周长是()A.16cm B.14cm C.16cm或14cm D.无法确定【分析】根据等腰三角形的性质,分两种情况:①当腰长为6cm时,②当腰长为4cm时,解答出即可;【解答】解:根据题意,①当腰长为6cm时,周长=6+6+4=16(cm);②当腰长为4cm时,周长=4+4+6=14(cm).故选:C.【点评】本题主要考查了等腰三角形的性质定理,本题重点是要分两种情况解答.4.若等腰三角形一腰上的高与另一腰的夹角为36°,则它的顶角为()A.36°B.54°C.72°或36°D.54°或126°【分析】首先根据题意画出图形,一种情况等腰三角形为锐角三角形,即可推出顶角的度数为50°.另一种情况等腰三角形为钝角三角形,由题意,即可推出顶角的度数为130°.【解答】解:①如图1,等腰三角形为锐角三角形,∵BD⊥AC,∠ABD=36°,∴∠A=54°,即顶角的度数为54°.②如图2,等腰三角形为钝角三角形,∵BD⊥AC,∠DBA=36°,∴∠BAD=54°,∴∠BAC=126°.故选:D.【点评】本题主要考查了直角三角形的性质、等腰三角形的性质.此题难度适中,解题的关键在于正确的画出图形,结合图形,利用数形结合思想求解.5.等腰三角形的两条边分别为6和8,则等腰三角形的周长是()A.20B.22C.20或22D.不确定【分析】根据等腰三角形的性质,分两种情况:①当腰长为6时,②当腰长为8时,解答出即可.【解答】解:根据题意,①当腰长为6时,周长=6+6+8=20;②当腰长为8时,周长=8+8+6=22.故选:C.【点评】本题考查了等腰三角形的性质,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.6.某等腰三角形的周长为25,其中一边长为9,则等腰三角形底边长为()A.9B.7C.9或7D.以上均不对【分析】已知的边可能是腰,也可能是底边,应分两种情况进行讨论.【解答】解:当腰是9时,则另两边是9,7.当底边是9时,另两边长是8,8,则该等腰三角形的底边为9或7,故选:C.【点评】本题考查了等腰三角形性质和三角形的三边关系定理的应用,从边的方面考查三角形,涉及分类讨论的思想方法.7.如图,△ABC中,AB=AC,BD平分∠ABC交AC于G,DM∥BC交∠ABC的外角平分线于M,交AB、AC于F、E,下列结论正确的是()A.EF=ED B.FD=BC C.EC=MF D.EC=AG【分析】想办法证明BF=EC,BF=FM即可解决问题;【解答】解:∵AB=AC,∴∠ABC=∠C,∵DM∥BC,∴∠AFE=∠ABC,∠AEF=∠C,∴∠AFE=∠AEF,∴AF=AE,∴BF=EC,∵∠D=∠DBC=∠FBD,∴DF=BF,同法可证:BF=FM,∴EC=FM,故选:C.【点评】该题主要考查了等腰三角形的判定及其性质,平行线的性质,角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.等腰三角形的一个外角是140°,则其底角是()A.40°B.70°或40°C.70°D.140°【分析】分这个外角为顶角的外角和底角的外角,分别求解即可.【解答】解:当140°为顶角的外角时,则其顶角为:40°,则其底角为:=70°,当140°为底角的外角时,则其底角为:180°﹣140°=40°.故选:B.【点评】本题主要考查等腰三角形的性质和三角形内角和定理的应用,掌握等腰三角形的两底角相等和三角形三个内角的和为180°是解题的关键.9.如图,在△ABC中,AB=AC,∠A=30°,以B为圆心,BC的长为半径画弧,交AC于点D,连接BD,则∠DBC等于()A.75°B.60°C.45°D.30°【分析】根据等腰三角形的性质得出∠C=∠BDC,∠C=∠ABC,根据三角形内角和定理求出∠C=∠BDC=75°,根据三角形内角和定理求出即可.【解答】解:∵从作图可知:BD=BC,∴∠C=∠BDC,∵在△ABC中,∠A=30°,AB=AC,∴∠C=∠ABC=(180°﹣∠A)=75°,∴∠BDC=∠C=75°,∴∠DBC=180°﹣∠C﹣∠BDC=30°,故选:D.【点评】本题考查了等腰三角形的性质和三角形内角和定理,能求出∠C和∠BDC 的度数是解此题的关键.10.如图,在第一个△ABA1中,∠B=20°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C,得到第二个△A1A2C;在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此做法进行下去,则第5个三角形中,以点A4为顶点的底角的度数为()A.5°B.10°C.175°D.170°【分析】先根据等腰三角形的性质求出∠BA1A的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA2A1,∠DA3A2及∠EA4A3的度数,找出规律即可得出∠A6的度数.【解答】解:∵在△ABA1中,∠B=20°,AB=A1B,∴∠BA1A==80°,∵A1A2=A1C,∠BA1A是△A1A2C的外角,∴∠CA2A1===40°;A同理可得∠DA3A2=20°,∠EA4A3=10°,∴∠A n=,以点A4为顶点的底角为∠A5.∵∠A5==5°,故选:A.【点评】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA2A1,∠DA3A2及∠EA4A3的度数,找出规律是解答此题的关键.11.如图,在Rt△ABC中,∠ACB=90°,AB=2BC,在直线BC或AC上取一点P,使得△PAB为等腰三角形,则符合条件的点P共有()A.4个B.5个C.6个D.7个【分析】根据等腰三角形的判定,“在同一三角形中,有两条边相等的三角形是等腰三角形(简称:在同一三角形中,等边对等角)”分三种情况解答即可.【解答】解:如图,①AB的垂直平分线交AC一点P1(PA=PB),交直线BC于点P2;②以A为圆心,AB为半径画圆,交AC有二点P3,P4,交BC有一点P2,(此时AB=AP);③以B为圆心,BA为半径画圆,交BC有二点P5,P2,交AC有一点P6(此时BP=BA).2+(3﹣1)+(3﹣1)=6,∴符合条件的点有六个.故选:C.【点评】本题考查了等腰三角形的判定;构造等腰三角形时本着截取相同的线段就能作出等腰三角形来,思考要全面,做到不重不漏.12.已知A(0,﹣1)、B(1,0)是平面直角坐标系中的两点,且点C在坐标轴上,△ABC为等腰三角形,则满足条件的点C有()A.4个B.5个C.7个D.8个【分析】若线段AB为腰,以点A为圆心,AB为半径的圆与坐标轴有三个交点,以点B为圆心,AB为半径的圆与坐标轴有三个交点;若线段AB为底边,作线段AB的垂直平分线与坐标轴有一个交点,所有与坐标轴的交点都是满足条件的C点.【解答】解:根据题意画出图形如下所示;①若等腰三角形以线段AB为腰,以点A为圆心,AB为半径的圆与坐标轴有三个交点,以点B为圆心,AB为半径的圆与坐标轴有三个交点;②若等腰三角形以线段AB为底边,作线段AB的垂直平分线与坐标轴有一个交点;故满足条件的C点有7个.故选:C.【点评】本题考查了等腰三角形的判定及坐标与图形的性质,分类别寻找是正确解答本题的关键,有一定难度.13.如图所示,在长方形ABCD的对称轴l上找点P,使得△PAB、△PBC均为等腰三角形,则满足条件的点P有()A.1个B.3个C.5个D.无数多个【分析】利用分类讨论的思想,此题共可找到5个符合条件的点:一是作AB或DC的垂直平分线交l于P;二是在长方形内部在l上作点P,使PA=AB,PD=DC,同理,在l上作点P,使PC=DC,AB=PB;三是如图,在长方形外l上作点P,使AB=BP,DC=PC,同理,在长方形外l上作点P,使AP=AB,PD=DC.【解答】解:如图,作AB或DC的垂直平分线交l于P,如图,在l上作点P,使PA=AB,PD=DC,同理,在l上作点P,使PC=DC,AB=PB,如图,在长方形外l上作点P,使AB=BP,DC=PC,同理,在长方形外l上作点P,使AP=AB,PD=DC,故选:C.【点评】本题考查了等腰三角形的判定;解题中利用等腰三角形的判定来解决特殊的实际问题,其关键是根据题意,结合图形,再利用数学知识来求解.14.如图,在△ABC中,BC=4,BD平分∠ABC,过点A作AD⊥BD于点D,过点D作DE∥CB,分別交AB、AC于点E、F,若EF=2DF,则AB的长为()A.4B.6C.8D.10【分析】延长AD,BC交于点G,根据BD平分∠ABC,AD⊥BD于点D,可得AB=BG,D是AG的中点,依据DE∥BG,即可得出DE是△ABG的中位线,EF是△ABC 的中位线,求得BG=2DE=6,即可得到AB=6.【解答】解:如图,延长AD,BC交于点G,∵BD平分∠ABC,AD⊥BD于点D,∴∠BAD=∠G,∴AB=BG,∴D是AG的中点,又∵DE∥BG,∴E是AB的中点,F是AC的中点,∴DE是△ABG的中位线,EF是△ABC的中位线,∴EF=BC=2,又∵EF=2DF,∴DF=1,∴DE=3,∴BG=2DE=6,∴AB=6,故选:B.【点评】本题主要考查了三角形中位线定理以及等腰三角形的性质的运用,解决问题的关键是作辅助线构造等腰三角形,利用三角形中位线定理进行推算.15.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为()A.90°B.120°C.270°D.360°【分析】先根据图中是三个等边三角形可知三角形各内角等于60°,用∠1,∠2,∠3表示出△ABC各角的度数,再根据三角形内角和定理即可得出结论.【解答】解:∵图中是三个等边三角形,∠3=60°,∴∠ABC=180°﹣60°﹣60°=60°,∠ACB=180°﹣60°﹣∠2=120°﹣∠2,∠BAC=180°﹣60°﹣∠1=120°﹣∠1,∵∠ABC+∠ACB+∠BAC=180°,∴60°+(120°﹣∠2)+(120°﹣∠1)=180°,∴∠1+∠2=120°.故选:B.【点评】本题考查的是等边三角形的性质,熟知等边三角形各内角均等于60°是解答此题的关键.16.如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则△ADE的形状是()A.等腰三角形B.等边三角形C.不等边三角形D.不能确定形状【分析】先证得△ABE≌△ACD,可得AE=AD,∠BAE=∠CAD=60°,即可证明△ADE 是等边三角形.【解答】解:∵△ABC为等边三角形∴AB=AC∵∠1=∠2,BE=CD∴△ABE≌△ACD∴AE=AD,∠BAE=∠CAD=60°∴△ADE是等边三角形.故选:B.【点评】此题主要考查学生对等边三角形的判定及三角形的全等等知识点的掌握.17.下面给出几种三角形:(1)有两个角为60°的三角形;(2)三个外角都相等的三角形;(3)一边上的高也是这边上的中线的三角形;(4)有一个角为60°的等腰三角形,其中是等边三角形的个数是()A.4个B.3个C.2个D.1个【分析】根据等边三角形的判定:有三角都是60°,或有三边相等的三角形是等边三角形,分析并作答.【解答】解:有三角都是60°,或有三边相等的三角形是等边三角形,那么可由(1),(4)推出等边三角形,(2)若每个角各取一个外角时,该结论成立.而(3)只能得出这个三角形是等腰三角形.故选:C.【点评】本题主要考查等边三角形的判定,利用三角都是60°,或有三边相等的三角形是等边三角形这一知识点.二.解答题(共22小题)18.已知在△ABC中,AB=AC,D是BC边上任意一点,过点D分别向AB,AC引垂线,垂足分别为E,F.(1)如图1,当点D在边BC的什么位置时,DE=DF?并给出证明;(2)如图2,过点C作AB边上的高CG,垂足为G,试猜想线段DE,DF,CG的长度之间存在怎样的数量关系?并给出证明.【分析】(1)根据AAS证△BED≌△CFD,根据全等三角形的性质推出即可;(2)连接AD,根据三角形的面积公式求出即可.【解答】解:(1)当点D在BC的中点上时,DE=DF,证明:∵D为BC中点,∴BD=CD,∵AB=AC,∴∠B=∠C,∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°,在△BED和△CFD中,,∴△BED≌△CFD(AAS),∴DE=DF.(2)CG=DE+DF证明:连接AD,=S三角形ADB+S三角形ADC,∵S三角形ABC∴AB×CG=AB×DE+AC×DF,∵AB=AC,∴CG=DE+DF.【点评】本题考查了全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力.19.如图,△ABC中,AB=AC,AD⊥BC于D点,DE⊥AB于点E,BF⊥AC于点F,DE=3cm,求BF的长.=2S△ABD=2×AB•DE=AB•DE=3AB,【分析】先得出AD是△ABC的中线,得出S△ABC又S=AC•BF,将AC=AB代入即可求出BF.△ABC【解答】解:∵△ABC中,AB=AC,AD⊥BC,∴AD是△ABC的中线,∴S=2S△ABD=2×AB•DE=AB•DE=3AB,△ABC=AC•BF,∵S△ABC∴AC•BF=3AB,∵AC=AB,∴BF=3,∴BF=6.【点评】本题考查了全等三角形的判定与性质,等腰三角形的性质,三角形的面积,利用面积公式得出等式是解题的关键.20.在△ABC中,∠BAC=100°,∠ABC=∠ACB,点D在直线BC上运动(不与点B、C重合),点E在射线AC上运动,且∠ADE=∠AED,设∠DAC=n.(1)如图①,当点D在边BC上时,且n=36°,则∠BAD=64°,∠CDE=32°;(2)如图②,当点D运动到点B的左侧时,其他条件不变,请猜想∠BAD和∠CDE的数量关系,并说明理由;(3)当点D运动到点C的右侧时,其他条件不变,∠BAD和∠CDE还满足(2)中的数量关系吗?请画出图形,并说明理由.【分析】(1)如图①,将∠BAC=100°,∠DAC=36°代入∠BAD=∠BAC﹣∠DAC,求出∠BAD.在△ABC中利用三角形内角和定理求出∠ABC=∠ACB=40°,根据三角形外角的性质得出∠ADC=∠ABC+∠BAD=104°,在△ADE中利用三角形内角和定理求出∠ADE=∠AED=72°,那么∠CDE=∠ADC﹣∠ADE=32°;(2)如图②,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根据三角形外角的性质得出∠CDE=∠ACB﹣∠AED=,再由∠BAD=∠BAC﹣∠DAC得到∠BAD=n﹣100°,从而得出结论∠BAD=2∠CDE;(3)如图③,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根据三角形外角的性质得出∠CDE=∠ACD﹣∠AED=,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,从而得出结论∠BAD=2∠CDE.【解答】解:(1)∠BAD=∠BAC﹣∠DAC=100°﹣36°=64°.∵在△ABC中,∠BAC=100°,∠ABC=∠ACB,∴∠ABC=∠ACB=40°,∴∠ADC=∠ABC+∠BAD=40°+64°=104°.∵∠DAC=36°,∠ADE=∠AED,∴∠ADE=∠AED=72°,∴∠CDE=∠ADC﹣∠ADE=104°﹣72°=32°.故答案为64°,32°;(2)∠BAD=2∠CDE,理由如下:如图②,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=.∵∠ACB=∠CDE+∠AED,∴∠CDE=∠ACB﹣∠AED=40°﹣=.∵∠BAC=100°,∠DAC=n,∴∠BAD=n﹣100°,∴∠BAD=2∠CDE;(3)∠BAD=2∠CDE,理由如下:如图③,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ACD=140°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=.∵∠ACD=∠CDE+∠AED,∴∠CDE=∠ACD﹣∠AED=140°﹣=.∵∠BAC=100°,∠DAC=n,∴∠BAD=100°+n,∴∠BAD=2∠CDE.【点评】本题考查了等腰三角形的性质,三角形内角和定理,三角形外角的性质,从图形中得出相关角度之间的关系是解题的关键.21.如图,AB∥CD,点E、N在AB上,点F在CD上,∠EFD的平分线FM交AB 于点G,且GM=GN,若∠EFC=112°,求∠M的度数.【分析】求出∠EFD,根据角平分线定义求出∠GFD,根据平行线的性质求出∠MGN,根据等腰三角形的性质和三角形内角和定理求出即可.【解答】解:∵∠EFC=112°,∴∠EFD=180°﹣112°=68°,∵FG平分∠EFD,∴∠GFD=∠EFD=34°,∵AB∥CD,∴∠MGN=∠GFD=34°,∵GM=GN,∴∠M=∠MNG=×(180°﹣∠MGN)=73°.【点评】本题考查了平行线的性质、等腰三角形的性质、三角形内角和定理、角平分线定义等知识点,能根据知识点求出∠MGN的度数是解此题的关键.22.如图①,△ABC中,∠ABC=∠ACB,点D为BC边上一点,E为直线AC上一点,且∠ADE=∠AED.(1)试说明∠BAD=2∠CDE;(2)如图②,若点D在CB的延长线上,其他条件不变,(1)中的结论是否仍然成立?请说明理由.【分析】(1)根据三角形的外角性质和等腰三角形的性质解答即可;(2)根据三角形的外角性质和等腰三角形的性质解答即可.【解答】(1)证明:∵∠AED是△CDE的外角∴∠AED=∠ACB+∠CDE,∵∠ADC是△ABD的外角∴∠ADC=∠ADE+∠CDE=∠BAD+∠ABC,∵∠ADE=∠AED∴∠ACB+∠CDE+∠CDE=∠BAD+∠ABC,∵∠ABC=∠ACB,∴∠BAD=2∠CDE;(2)(1)中的结论仍然成立,理由如下:∵∠ACB是△CDE的外角∴∠ACB=∠AED+∠CDE,∵∠ABC是△ABD的外角∴∠ABC=∠ADB+∠BAD,∵∠ABC=∠ACB,∴∠AED+∠CDE=∠ADB+∠BAD,∵∠AED=∠ADE=∠CDE+∠ADB∴∠CDE+∠ADB+∠CDE=∠ADB+∠BAD∴∠BAD=2∠CDE.【点评】此题考查等腰三角形的性质,关键是根据三角形的外角性质和等腰三角形的性质解答即可.23.如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC 上,且∠ADE=∠AED,连接DE.(1)如图①,若∠B=∠C=30°,∠BAD=70°,求∠CDE的度数;(2)如图②,若∠ABC=∠ACB=70°,∠CDE=15°,求∠BAD的度数;(3)当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE 的数量关系,并说明理由.【分析】(1)根据等腰三角形的性质得到∠BAC=120°,根据三角形的外角的性质即可得到结论;(2)根据三角形的外角的性质得到∠E=70°﹣15°=55°,于是得到结论;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D在点B的左侧时,∠ADC=x°﹣α②如图2,当点D在线段BC上时,∠ADC=x°+α③如图3,当点D在点C右侧时,∠ADC=x°﹣α,根据题意列方程组即可得到结论.【解答】解:(1)∵∠B=∠C=30°,∴∠BAC=120°,∵∠BAD=70°,∴∠DAE=50°,∴∠ADE=∠AED=65°,∴∠CDE=180°﹣50°﹣30°﹣65°=35°;(2)∵∠ACB=70°,∠CDE=15°,∴∠E=70°﹣15°=55°,∴∠ADE=∠AED=55°,∴∠ADC=40°,∵∠ABC=∠ADB+∠DAB=70°,∴∠BAD=30°;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D在点B的左侧时,∠ADC=x°﹣α∴,(1)﹣(2)得,2α﹣β=0,∴2α=β;②如图2,当点D在线段BC上时,∠ADC=x°+α∴,∴2α=β,∴2α=β;③如图3,当点D在点C右侧时,∠ADC=x°﹣α∴,(2)﹣(1)得,2α﹣β=0,∴2α=β.综上所述,∠BAD与∠CDE的数量关系是2∠CDE=∠BAD.【点评】本题考查了等腰三角形的性质,三角形的外角的性质,三角形的内角和,正确的识别图形是解题的关键.24.已知△ABC中,AC=BC,∠C=120°,点D为AB边的中点,∠EDF=60°,DE、DF分别交AC、BC于E、F点.(1)如图1,若EF∥AB.求证:DE=DF.(2)如图2,若EF与AB不平行.则问题(1)的结论是否成立?说明理由.(1)根据SAS证明△ADE≌△BDF,再根据全等三角形的性质可得DE=DF;【分析】(2)过D作DM⊥AC交AC于M,再作DN⊥BC交BC于N.可证明DM=DN.再分一、当M与E重合时,N就一定与F重合.二、当M落在C、E之间时,N 就一定落在B、F之间.三、当M落在A、E之间时,N就一定落在C、F之间.三种情况讨论即可求解.【解答】解:(1)∵EF∥AB.∴∠FEC=∠A=30°.∠EFC=∠B=30°∴EC=CF.又∵AC=BC∴AE=BFD是AB中点.∴DB=AD∴△ADE≌△BDF.∴DE=DF(2)过D作DM⊥AC交AC于M,再作DN⊥BC交BC于N.∵AC=BC,∴∠A=∠B,又∵∠ACB=120°,∴∠A=∠B=(180°﹣∠ACB)÷2=30°,∴∠ADM=∠BDN=60°,∴∠MDN=180°﹣∠ADM﹣∠BDN=60°.∵AC=BC、AD=BD,∴∠ACD=∠BCD,∴DM=DN.由∠MDN=60°、∠EDF=60°,可知:一、当M与E重合时,N就一定与F重合.此时:DM=DE、DN=DF,结合证得的DM=DN,得:DE=DF,但EF∥AB,不合题意.二、当M落在C、E之间时,N就一定落在B、F之间.此时:∠EDM=∠EDF﹣∠MDF=60°﹣∠MDF,∠FDN=∠MDN﹣∠MDF=60°﹣∠MDF,∴∠EDM=∠FDN,又∵∠DME=∠DNF=90°、DM=DN,∴△DEM≌△DFN(ASA),∴DE=DF.三、当M落在A、E之间时,N就一定落在C、F之间.此时:∠EDM=∠MDN﹣∠EDN=60°﹣∠EDN,∠FDN=∠EDF﹣∠EDN=60°﹣∠EDN,∴∠EDM=∠FDN,又∵∠DME=∠DNF=90°、DM=DN,∴△DEM≌△DFN(ASA),∴DE=DF.综上一、二、三所述,得:DE=DF.【点评】考查了等腰三角形的性质和全等三角形的判定与性质,注意第(2)题分三种情况讨论求解,有一定的难度.25.如图(1),点P是等腰三角形ABC底边BC上的一动点,过点P作BC的垂线,交直线AB于点Q,交CA的延长线于点R.(1)试猜想线段AR与AQ的长度之间存在怎样的数量关系?并证明你的猜想.(2)如图(2),如果点P沿着底边BC所在的直线,按由C向B的方向运动到CB的延长线上时,其它条件不变,问(1)中所得的结论还成立吗?(直接写“成立”或“不成立”即可,不需证明)【分析】(1)根据等腰三角形的性质求出∠B=∠C,根据等角的余角相等求出∠BQP=∠PRC,再根据对顶角相等可得∠BQP=∠AQR,从而得到∠AQR=∠PRC,然后根据等角对等边证明即可;(2)根据等腰三角形的性质求出∠ABC=∠C,再根据对顶角相等可得∠ABC=∠PBQ,从而得到∠C=∠PBQ,然后根据等角的余角相等求出∠Q=∠R,最后根据等角对等边证明即可.【解答】(1)解:AR=AQ.理由如下:∵△ABC是等腰三角形,∴AB=AC,∴∠B=∠C,∵PR⊥BC,∴∠B+∠BQP=90°,∠C+∠PRC=90°,∴∠BQP=∠PRC,∵∠BQP=∠AQR(对顶角相等),∴∠AQR=∠PRC,∴AR=AQ;。

2021年华师大版八年级数学上册等腰三角形测试题及答案

2021年华师大版八年级数学上册等腰三角形测试题及答案

EDC AB F等腰三角形练习题一、选择题1.等腰三角形的对称轴是( )A .顶角的平分线B .底边上的高C .底边上的中线D .底边上的高所在的直线2.等腰三角形有两条边长为4cm 和9cm ,则该三角形的周长是( ) A .17cm B .22cm C .17cm 或22cm D .18cm 3.等腰三角形的顶角是80°,则一腰上的高与底边的夹角是( ) A .40° B .50° C .60° D .30° 4.等腰三角形的一个外角是80°,则其底角是( )A .100°B .100°或40°C .40°D .80°5.如图,C 、E 和B 、D 、F 分别在∠GAH 的两边上,且AB=BC=CD=DE=EF ,若∠A=18°,则∠GEF 的度数是( )A .80°B .90°C .100°D .108°ECAHFG二、填空题6.等腰△ABC 的底角是60°,则顶角是________度.7.等腰三角形“三线合一”是指___________.8.等腰三角形的顶角是n °,则两个底角的角平分线所夹的钝角是_________.9.如图,△ABC 中AB=AC ,EB=BD=DC=CF ,∠A=40°,则∠EDF•的度数是_____. 10.△ABC 中,AB=AC .点D 在BC 边上(1)∵AD 平分∠BAC ,∴_______=________;________⊥_________; (2)∵AD 是中线,∴∠________=∠________;________⊥________; (3)∵AD ⊥BC ,∴∠________=∠_______;_______=_______. 一、选择题1.如图1,已知OC 平分∠AOB ,CD ∥OB ,若OD=3cm ,则CD 等于( )A .3cmB .4cmC .1.5cmD .2cmD C A BE D ABFEDCBH(1) (2) (3)2.△ABC 中AB=AC ,∠A=36°,BD 平分∠ABC 交AC 于D ,则图中的等腰三角形有( ) A .1个 B .2个 C .3个 D .4个3.如图2,△ABC 中,∠ABC 与∠ACB 的平分线交于点F ,过点F 作DE ∥BC 交AB 于点D ,交AC 于点E ,那么下列结论:①△BDF 和△CEF 都是等腰三角形;②DE=BD+CE ;•③△ADE 的周长等于AB 与AC 的和;④BF=CF .其中正确的有( )A .①②③B .①②③④C .①②D .①4.如图3,Rt △ABC 中,CD 是斜边AB 上的高,角平分线AE 交CD 于H ,EF ⊥AB 于F ,则下列结论中不正确的是( )A .∠ACD=∠B B .CH=CE=EFC .CH=HD D .AC=AF 二、填空题5.△ABC 中,∠A=65°,∠B=50°,则AB :BC=_________.6.已知AD 是△ABC 的外角∠EAC 的平分线,要使AD•∥BC ,•则△ABC•的边一定满足________.7.△ABC 中,∠C=∠B ,D 、E 分别是AB 、AC 上的点,•AE=•2cm ,•且DE•∥BC ,•则AD=________.8.一灯塔P 在小岛A 的北偏西25°,从小岛A 沿正北方向前进30海里后到达小岛,•此时测得灯塔P 在北偏西50°方向,则P 与小岛B 相距________. 一、选择题1.正△ABC 的两条角平分线BD 和CE 交于点I ,则∠BIC 等于( ) A .60° B .90° C .120° D .150°2.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;•③三个外角(每个顶点处各取一个外角)都相等的三角形;•④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有( ) A .①②③ B .①②④ C .①③ D .①②③④3.如图,D 、E 、F 分别是等边△ABC 各边上的点,且AD=BE=CF ,则△DEF•的形状是( ) A .等边三角形 B .腰和底边不相等的等腰三角形C .直角三角形D .不等边三角形ED CAF21EDCA B4.Rt △ABC 中,CD 是斜边AB 上的高,∠B=30°,AD=2cm ,则AB 的长度是( ) A .2cm B .4cm C .8cm D .16cm5.如图,E 是等边△ABC 中AC 边上的点,∠1=∠2,BE=CD ,则对△ADE 的形状最准备的判断是( )A .等腰三角形B .等边三角形C .不等边三角形D .不能确定形状 二、填空题6.△ABC 中,AB=AC ,∠A=∠C ,则∠B=_______.7.已知AD 是等边△ABC 的高,BE 是AC 边的中线,AD 与BE 交于点F ,则∠AFE=______. 8.等边三角形是轴对称图形,它有______条对称轴,分别是_____________.9.△ABC 中,∠B=∠C=15°,AB=2cm ,CD ⊥AB 交BA 的延长线于点D ,•则CD•的长度是_______. 三、解答题10.已知D 、E 分别是等边△ABC 中AB 、AC 上的点,且AE=BD ,求BE 与CD•的夹角是多少度?。

华师大版八年级数学上册 第13章 全等三角形 等腰三角形的判定

华师大版八年级数学上册  第13章  全等三角形  等腰三角形的判定

华东师大版八年级数学上册第13章全等三角形等腰三角形的判定专题检验题1.下列能断定△ABC为等腰三角形的是( )A.∠A=30°,∠B=60° B.∠A=50°,∠B=80°C.AB=AC=2,BC=4 D.AB=3,BC=7,周长为102.如图,已知OC平分∠AOB,CD∥OB,若OD=3 cm,则CD等于( )A.3 cm B.4 cm C.1.5 cm D.2 cm3.如图所示,在△ABC中,∠A=36°,∠C=72°,∠ABC的平分线交AC于D,则图中共有等腰三角形( )A.0个 B.1个 C.2个 D.3个4.如图,在△ABD和△BAC中,∠1=∠2,∠C=∠D,AC,BD相交于点E,则下列结论中正确的个数有( )①∠DAE=∠CBE;②△ADE≌△BCE;③CE=DE;④△EAB为等腰三角形.A.1个 B.2个 C.3个 D.4个5.如图,在△ABC中,AD⊥BC于D.请你再添加一个条件,就可以确定△ABC是等腰三角形.你添加的条件是_____________.6.如图,已知在△ABC中,∠C=90°,AD是角平分线,过点B作BA的垂线与AD的延长线相交于点E,求证:△BDE是等腰三角形.7.△ABC中,①若AB=BC=CA,则△ABC是等边三角形;②一个底角为60°的等腰三角形是等边三角形;③顶角为60°的等腰三角形是等边三角形;④有两个角都是60°的三角形是等边三角形.上述结论中正确的有( )A.1个 B.2个 C.3个 D.4个8.如图,D,E,F分别是等边△ABC各边上的点,且AD=BE=CF,则△DEF的形状是( )A.等边三角形 B.腰和底边不相等的等腰三角形 C.直角三角形 D.不等边三角形9.如图,AB=AC,∠BAC=120°,AD⊥AB,AE⊥AC.(1)在Rt△ACE中,∠C=______,CE=______AE;(2)求证:△ADE是等边三角形.10.若三角形中一角的平分线是它对边的中线,则这个三角形一定是( )A.等腰三角形 B.直角三角形C.等边三角形 D.等腰直角三角形11.如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别为∠ABC,∠ACB的角平分线,则图中等腰三角形共有( )A.5个 B.6个 C.7个 D.8个12.如图,D为锐角△ABC边AC延长线上一点,DF⊥AB于F交BC于E,要使△CED为等腰三角形,则△ABC的边必须满足的条件是______________.13.如图,已知AB=AC,D是AB上一点,DE⊥BC于E,ED的延长线交CA的延长线于F,求证:△ADF是等腰三角形.14.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)△OAB 是等腰三角形.15.如图所示,△ABC为等边三角形,∠ABD=∠ACE,BD=CE,求证:△ADE是等边三角形.16.如图,在△ABC中,点E在AB上,点D在BC上,BD=BE,∠BAD=∠BCE,AD与CE相交于点F,试判断△AFC的形状,并说明理由.17.已知:如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E.(1)求证:AD=AE;(2)若BE∥AC,试判断△ABC的形状,并说明理由.答案:1---4 BADD5. BD=CD6. ∵在Rt△ACD中,∠ADC+∠DAC=90°,又∵∠BDE=∠ADC,∴∠BDE+∠DAC=90°,∵Rt△ABE中,∠E+∠BAE=90°,又∵AD是∠BAC的平分线,即∠BAE=∠DAC,∴∠E=∠BDE,∴BE=BD,即△BDE是等腰三角形7. D8. A9. (1) 30° 2(2) 由∠AED=∠ADE=∠EAD=60°可证10. A11. D12. AC=BC13. ∵AB=AC,∴∠B=∠C,又DE⊥BC,∴∠B+∠BDE=90°,∠C+∠F=90°,又∠BDE=∠ADF,∴∠ADF=∠F,∴AD=AF14. (1)∵AC⊥BC,BD⊥AD,∴△ABC与△BAD是直角三角形,在△ABC和△BAD中,∵AC=BD,AB=BA,∠ACB=∠BDA=90°,∴△ABC≌△BAD(H.L.),∴BC=AD(2)∵△ABC≌△BAD,∴∠CAB=∠DBA,∴OA=OB,∴△OAB是等腰三角形15. ∵△ABC是等边三角形,∴AB=AC,∠BAC=60°.又∠ABD=∠ACE,BD=CE,∴△ABD≌△ACE(S.A.S.),∴AD=AE,∠DAE=∠BAD=60°,∴△ADE是等边三角形16. △AFC是等腰三角形.理由如下:在△BAD与△BCE中,∵∠B=∠B(公共角),∠BAD =∠BCE,BD=BE,∴△BAD≌△BCE(AAS),∴BA=BC,∠BAD=∠BCE,∴∠BAC =∠BCA,∴∠BAC-∠BAD=∠BCA-∠BCE,即∠FAC=∠FCA,∴AF=CF,∴△AFC 是等腰三角形17. (1) △AFC是等腰三角形.理由如下:在△BAD与△BCE中,∵∠B=∠B(公共角),∠BAD=∠BCE,BD=BE,∴△BAD≌△BCE(AAS),∴BA=BC,∠BAD=∠BCE,∴∠BAC=∠BCA,∴∠BAC-∠BAD=∠BCA-∠BCE,即∠FAC=∠FCA,∴AF=CF,∴△AFC是等腰三角形(2)△ABC是等边三角形.理由:∵BE∥AC,∴∠EAC=90°,∵AB=AC,点D是BC的中点,∴∠1=∠2=∠3=30°,∴∠BAC=∠1+∠3=60°,∴△ABC是等边三角形初中数学试卷。

八年级数学上册《第十三章 等腰三角形》同步练习题及答案(华东师大版)

八年级数学上册《第十三章 等腰三角形》同步练习题及答案(华东师大版)

八年级数学上册《第十三章等腰三角形》同步练习题及答案(华东师大版)班级姓名学号一、选择题1.已知等腰三角形的两边长分别为7和5,则它的周长是( )A.12B.17C.19D.17或192.如图,在等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为( )A.36°B.60°C.72°D.108°3.如图,在△ABC中,AB=AC,AD、CE分别是△ABC的中线和角平分线.若∠CAD=20°,则∠ACE的度数是( )A.20°B.35°C.40°D.70°4.等腰三角形底边上一点到两腰的距离之和等于( )A.腰上的高B.腰上的中线C.底角的平分线D.顶角的平分线5.如图,是四张形状不同的纸片,用剪刀沿一条直线将它们分别剪开(只允许剪一次),不能得到两个等腰三角形纸片的是( )om6.如图,△ABC中,∠A=36°,AB=AC,BD平分∠ABC,DE∥BC,则图中等腰三角形的个数( )A.1个B.3个C.4个D.5个7.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB =∠EAC,则添加的条件不能为( )A.BD=CEB.AD=AEC.DA=DED.BE=CD8.如图,△ABC中∠A=30°,E是AC边上的点,先将△ABE沿着BE翻折,翻折后△ABE的AB 边交AC于点D,又将△BCD沿着BD翻折,C点恰好落在BE上,此时∠CDB=82°,则原三角形的∠B为( )A.75°B.76°C.77°D.78°二、填空题9.如图,在△ABC中,AD⊥BC于点D,请你再添加一个条件,确定△ABC是等腰三角形.你添加的条件是 .10.△ABC中其周长为7,AB=3,当BC=时,△ABC为等腰三角形.11.一个等腰三角形的两边长分别为5和2,则这个三角形的周长为.12.我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=12,则该等腰三角形的顶角为________度.13.在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到锐角为50°,则∠B 等于.14.如图,在△ABC中,AB=AC,AD=BD=BC,那么∠A= .三、解答题15.如图,△ABC中,AC=BC,点D在BC上,作∠ADF=∠B,DF交外角∠ACE的平分线CF于点F.(1)求证:CF∥AB;(2)若∠CAD=20°,求∠CFD的度数.16.如图,在△ABC中,AC=DC=DB,∠ACD=100°,求∠B的度数.17.如图:△ABC的边AB的延长线上有一个点D,过点D作DF⊥AC于F,交BC于E,且BD=BE,求证:△ABC为等腰三角形.18.如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.19.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC 的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.20.如图,在△ABC中,∠ABC=2∠C,∠BAC的平分线AD交BC于D,过B作BE⊥AD交AD于F,交AC于E.(1)求证:△ABE为等腰三角形;(2)已知AC=11,AB=6,求BD长.参考答案1.D.2.C3.B.4.A5.B6.D7.C8.D9.答案为:BD =CD(答案不唯一).10.答案为:1或2.11.答案为:12.12.答案为:36.13.答案为:70°或20°.14.答案为:36°.15.(1)证明:∵AC =BC∴∠B =∠BAC∵∠ACE =∠B+∠BAC∴∠BAC =12∠ACE ∵CF 平分∠ACE∴∠ACF =∠ECF =12∠ACE ∴∠BAC =∠ACF∴CF ∥AB ;(2)解:∵∠BAC =∠ACF ,∠B =∠BAC ,∠ADF =∠B ∴∠ACF =∠ADF∵∠ADF+∠CAD+∠AGD =180°,∠ACF+∠F+∠CGF =180° 又∵∠AGD =∠CGF∴∠F =∠CAD =20°.16.解:∵AC=DC=DB,∠ACD=100°∴∠CAD=(180°﹣100°)÷2=40°∵∠CDB是△ACD的外角∴∠CDB=∠A+∠ACD=100°=40°+100°=140°∵DC=DB∴∠B=(180°﹣140°)÷2=20°.17.证明:∵DF⊥AC∴∠DFA=∠EFC=90°.∴∠A=∠DFA﹣∠D,∠C=∠EFC﹣∠CEF∵BD=BE∴∠BED=∠D.∵∠BED=∠CEF∴∠D=∠CEF.∴∠A=∠C.∴△ABC为等腰三角形.18.证明:∵AD平分∠BAC∴∠BAD=∠DAC∵DE∥AC∴∠ADE=∠DAC.∴∠BAD=∠ADE∵AD⊥BD∴∠ADB=90°∴∠BAD+∠B=90°.∵∠BDE+∠ADE=90°∴∠B=∠BDE∴BE=DE∴△BDE是等腰三角形.19.证明:(1)∵AD∥BC(已知)∴∠ADC=∠ECF(两直线平行,内错角相等)∵E是CD的中点(已知)∴DE=EC(中点的定义).∵在△ADE与△FCE中∴△ADE≌△FCE(ASA)∴FC=AD(全等三角形的性质).(2)∵△ADE≌△FCE∴AE=EF,AD=CF(全等三角形的对应边相等)∴BE是线段AF的垂直平分线∴AB=BF=BC+CF∵AD=CF(已证)∴AB=BC+AD(等量代换).20.证明:(1)∵BE⊥AD∴∠AFE=∠AFB=90°又∵AD平分∠BAC∴∠EAF=∠BAF又∵在△AEF和△ABF中∠AFE+∠EAF+∠AEF=180°,∠AFB+∠BAF+∠ABF=180°∴∠AEF=∠ABF∴AE=AB∴△ABE为等腰三角形;(2)连接DE,∵AE=AB,AD平分∠BAC∴AD垂直平分BE∴BD=ED∴∠DEF=∠DBF∵∠AEF=∠ABF∴∠AED=∠ABD又∵∠ABC=2∠C∴∠AED=2∠C又∵△CED中,∠AED=∠C+∠EDC∴∠C=∠EDC∴EC=ED∴CE=BD.∴BD=CE=AC﹣AE=AC﹣AB=11﹣6=5.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13.3.2等腰三角形的判定
考点导航:1.掌握等腰三角形和等边三角形的判定方法;
2.会利用等腰三角形和等边三角形的判定解决问题.
3.本节是中考考查的热点
一 耐心选一选,你会开心(每题4分,共24分)
1、如果一个三角形的外角平分线平行于三角形的一边,那么这个三角形是( ) A.等腰直角三角形 B.等腰三角形
C.直角三角形 D.锐角三角形 2、下列给出的几种三角形,其中是等边三角形的个数是( )
①有两个角为60的三角形;②三个外角都相等的三角形;③一边上的高也是这边上的中线的等腰三角形;④有一个角是60的等腰三角形.
A.4 B.3 C.2 D.1
3、如图1,在ABC △中,A ∠36=,C ∠72=,ABC ∠的平
分线 交AC 于D ,则图中共有等腰三角形( )
A . 0 个
B . 1个
C . 2 个
D . 3 个
4、从等腰三角形底边上任意一点分别作两腰的平行线,与两腰所围
成的平行四边形的周长等于三角形的( )
A.两腰长的和 B.周长的一半 C.周长 D.一腰长与底边长的和 5、如图2,小明将两个全等且有一个角为60的直角三角
形拼成如图所示的图形,其中两条较长直角边在同一直线上,
则图中等腰三角形的个数是( )
A.4 B.3 C.2 D.1
6、小明拿一张矩形纸(如图3),沿虚线对折一次如图甲,再将对角两顶点重合折叠得图乙,按图丙沿折痕中点与重合顶点的连线剪开,得到三个图形,这三个图形是( )

乙 丙
图3 图 1
A .都是等腰三角形
B .都是等边三角形
C .两个直角三角形,一个等腰三角形
D .两个直角三角形,一个等腰梯形
二、精心填一填,你会轻松(每小题4分,共24分)
7.如图4,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点F ,过F
作DE ∥BC ,交AB ,AC 于点D ,E ,若BD +CE =10,则线段DE 的长为
___________.
8.如图5,聪明的亮亮用含有30°的两个完全相同的三角板拼成如图9所示的图案,并发现图中有等腰三角形,请你帮助他找出两个等腰三角形:
____________.
9.如果一个三角形是轴对称图形,且有一个角为60,那么这个
三角形是_____,它有_____条对称轴.
10.如图6,在△ABC 中,AD ⊥BC 于D .请你再添加一个条件,就
可以确定△ABC 是等腰三角形.你添加的条件是 .
11.如图7,在ABC △中,5cm BC =,BP ,CP 分别是ABC
∠和ACB ∠的角平分线,且PD AB ∥,PE AC ∥,则PDE △的周长
是_______cm .
12.已知等腰三角形ABC 中,AB AC D =,为BC 边上一点,连
接AD ,若ACD △和ABD △都是等腰三角形,则C ∠的度数是 .
三、细心做一做,你会成功(每题13分)
13.如图8所示,一艘轮船在近海处由南向北航行,点C 是灯塔,轮船在A 处测得灯塔在其北偏西38°的方向上,轮船又由A 向北航行30海里到B 处,测得灯塔在其北偏西76°的方向上.
(1)求∠ACB 的度数;
(2)轮船在B 处时,到灯塔C 的距离是多少?
14.如图9所示,在ABC △中,D E ,分别是AC 和AB 上的一点,BD 与CE 交于点O ,给出下列四个条件:①EBO DCO ∠=∠;②BEO CDO ∠=∠;③BE CD =;④OB OC =.
(1)上述四个条件中,哪两个条件可以判定ABC △是等腰三角形(用序号写出所有的情形);
(2)选择(1)小题中的一种情形,证明ABC △是等腰三角形.
15.如图10,ABC △是等边三角形,且123==∠∠∠
,则DEF △是等边三角形,请简单说明理由.
图10
16.如图所示,把一个直角三角尺ACB 绕着30角的顶点B 顺时针旋转,使得点A 与CB 的延长线上的点E 重合.
(1)三角尺旋转了多少度?
(2)连结CD ,试判断△CBD 的形状;
(3)求BDC 的度数.
C B E
参考答案
1.B
2.B
3.D
4.A
5.B
6.D
7.10
8.,BEC ABE ∆∆ 9.等边三角形,3 10.BD=CD 11.5 12. 36或45
13.(1)38°(2)30海里
14.(1)①③,①④,②③,②④(2)选①④可证明如下:
OB OC OBC OCB EBO DCO ABC ACB AB AC =∴∠=∠∠=∠∴∠=∠∴=
15.证明如下:
60360AB BC AC ABC ACB BAC FCB ==∴∠=∠=∠=︒∴∠+∠=︒ 23260FCB ∠=∠∴∠+∠=︒
60,60FED FDE DFE DEF ∴∠=︒∠=∠=︒∴∆同理是等边三角形
16.(1)150(2)等腰三角形(3)15。

相关文档
最新文档