2008年高考文科数学试题(陕西卷)

合集下载

陕西数学文科

陕西数学文科

2008年普通高等学校招生全国统一考试(陕西卷)文科数学(必修+选修Ⅰ)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共12小题,每小题5分,共60分). 1.sin 330︒等于( B ) A.B .12-C .12D【解析】1sin 330sin(36030)sin(30)sin 302=-=-=-=-.2.已知全集{12345}U =,,,,,集合{1,3}A =,{3,4,5}B =,则集合()U A B =ð( D )A .{3}B .{4,5}C .{3,4,5}D .{1245},,, 【解析】{1,3}A =,{3,4,5}B ={3}AB ⇒=,所以()U A B =ð{1245},,,.3.某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( C ) A .30 B .25 C .20 D .15 【解析】设样本中松树苗的数量为x ,则15020300004000xx =⇒=4.已知{}n a 是等差数列,124a a +=,7828a a +=,则该数列前10项和10S 等于( B ) A .64 B .100 C .110 D .120【解析】同理科4设公差为d ,则由已知得112421328a d a d +=⎧⎨+=⎩1101109101210022a S d =⎧⨯⇒⇒=⨯+⨯=⎨=⎩.50y m -+=与圆22220x y x +--=相切,则实数m 等于( A ) A.-B.-CD.【解析】同理科5圆的方程22(1)3x y -+=,圆心(1,0)到直线的距离等于半径m ⇒==m ⇒=m ⇒=-6.“1a =”是“对任意的正数x ,21ax x+≥”的( A ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】类理科61a=1221a x x x x ⇒+=+≥=>,显然2a =也能推出,所以“1a =”是“对任意的正数x ,21ax x+≥”的充分不必要条件。

2008年普通高等学校招生全国统一考试数学卷(陕西.文)含详解

2008年普通高等学校招生全国统一考试数学卷(陕西.文)含详解

2008年普通高等学校招生全国统一考试(陕西卷)文科数学(必修+选修Ⅰ)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共12小题,每小题5分,共60分). 1.sin 330︒等于( B ) A.B .12-C .12D解:1sin 330sin 302︒=-=-2.已知全集{12345}U =,,,,,集合{1,3}A =,{3,4,5}B =,则集合()U A B = ð( D )A .{3}B .{4,5}C .{3,4,5}D .{1245},,, 解:{1,3}A =,{3,4,5}B ={3}A B ⇒= 所以()U A B = ð{1245},,,3.某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( C ) A .30 B .25 C .20 D .15 解:设样本中松树苗的数量为x ,则15020300004000xx =⇒=4.已知{}n a 是等差数列,124a a +=,7828a a +=,则该数列前10项和10S 等于( B ) A .64B .100C .110D .120解:设公差为d ,则由已知得112421328a d a d +=⎧⎨+=⎩1101109101210022a S d =⎧⨯⇒⇒=⨯+⨯=⎨=⎩50y m -+=与圆22220x y x +--=相切,则实数m 等于( C ) AB.C.-D.-解:圆的方程22(1)3x y -+=,圆心(1,0到直线的距离等于半径m ⇒=⇒=m ⇒=m ⇒=-6.“1a =”是“对任意的正数x ,21ax x+≥”的( A ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解:1a=1221a x x x x ⇒+=+≥=>,显然2a =也能推出,所以“1a =”是“对任意的正数x ,21ax x+≥”的充分不必要条件。

2008年陕西省高考数学试卷(文科)答案与解析

2008年陕西省高考数学试卷(文科)答案与解析

2008年陕西省高考数学试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2008•陕西)sin330°等于()A.B. C.D.【考点】运用诱导公式化简求值.【分析】根据330°=360°﹣30°,由诱导公式一可得答案.【解答】解:∵故选B.【点评】本题主要考查根据三角函数的诱导公式进行化简求值的问题.属基础题.对于三角函数的诱导公式一定要强化记忆.2.(5分)(2008•四川)已知全集U={1,2,3,4,5},集合A={1,3},B={3,4,5},则集合∁U(A∩B)=()A.{3} B.{4,5} C.{3,4,5} D.{1,2,4,5}【考点】交、并、补集的混合运算.【分析】根据交集的含义求A∩B、再根据补集的含义求解.【解答】解:A={1,3},B={3,4,5}⇒A∩B={3};所以C U(A∩B)={1,2,4,5},故选D【点评】本题考查集合的基本运算,较简单.3.(5分)(2008•陕西)某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为()A.30 B.25 C.20 D.15【考点】分层抽样方法.【分析】先计算抽取比例,再计算松树苗抽取的棵数即可.【解答】解:设样本中松树苗的数量为x,则故选C【点评】本题考查分层抽样,属基本题.4.(5分)(2008•陕西)已知{a n}是等差数列,a1+a2=4,a7+a8=28,则该数列前10项和S10等于()A.64 B.100 C.110 D.120【考点】等差数列的前n项和.【专题】计算题.【分析】利用等差数列的通项公式,结合已知条件列出关于a1,d的方程组,求出a1和d,代入等差数列的前n 项和公式求解即可.【解答】解:设公差为d,则由已知得,故选B.【点评】本题考查了等差数列的通项公式和前n项和公式,熟记公式是解题的关键,同时注意方程思想的应用.5.(5分)(2008•陕西)直线与圆x2+y2﹣2x﹣2=0相切,则实数m等于()A.或B.或C.或D.或【考点】直线与圆的位置关系.【分析】圆心到直线的距离等于半径,求解即可.【解答】解:圆的方程(x﹣1)2+y2=3,圆心(1,0)到直线的距离等于半径或者故选C.【点评】本题考查直线和圆的位置关系,是基础题.6.(5分)(2008•陕西)“a=1”是“对任意的正数x,”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】把a=1代入,不等式成立,当a=2时也成立,可推出其关系.【解答】解:a=1,显然a=2也能推出,所以“a=1”是“对任意的正数x,”的充分不必要条件.故选A.【点评】充分不必要条件、必要不充分条件、充要条件;三者有明显区别,对任意的正数x,成立,可得a≥,而不仅仅是a=17.(5分)(2008•陕西)已知函数f(x)=2x+3,f﹣1(x)是f(x)的反函数,若mn=16(m,n∈R+),则f﹣1(m)+f﹣1(n)的值为()A.10 B.4 C.1 D.﹣2【考点】反函数.【专题】计算题.【分析】求出函数f(x)=2x+3的反函数f﹣1(x),化简f﹣1(m)+f﹣1(n)的表达式,代入mn=16即可求值.【解答】解:f(x)=2x+3⇒f﹣1(x)=log2x﹣3;于是f﹣1(m)+f﹣1(n)=log2m﹣3+log2n﹣3=log2mn﹣6=log216﹣6=4﹣6=﹣2故选D.【点评】本题考查反函数的求法,函数值的求解,是基础题.8.(5分)(2008•陕西)长方体ABCD﹣A1B1C1D1的各顶点都在半径为1的球面上,其中AB:AD:AA1=2:1:,则两A,B点的球面距离为()A.B.C.D.【考点】球面距离及相关计算.【专题】计算题.【分析】设出AD,然后通过球的直径求出AD,解出∠AOB,可求A,B两点的球面距离.【解答】解:设AD=a,则⇒球的直径即,在△AOB中,,AB=2a,⇒OA2+OB2=AB2⇒∠AOB=90°从而A,B点的球面距离为故选C.【点评】本题考查球面距离及其他计算,实际上是球的内接长方体问题,考查学生发现问题解决问题能力,是基础题.9.(5分)(2008•陕西)双曲线(a>0,b>0)的左、右焦点分别是F1,F2,过F1作倾斜角为30°的直线交双曲线右支于M点,若MF2垂直于x轴,则双曲线的离心率为()A.B.C.D.【考点】双曲线的简单性质.【专题】计算题.【分析】先在Rt△MF1F2中,利用∠MF1F2和F1F2求得MF1和MF2,进而根据双曲线的定义求得a,最后根据a和c求得离心率.【解答】解:如图在Rt△MF1F2中,∠MF1F2=30°,F1F2=2c∴,∴∴,故选B.【点评】本题主要考查了双曲线的简单性质,属基础题.10.(5分)(2008•陕西)如图,α⊥β,α∩β=l,A∈α,B∈β,A、B到l的距离分别是a和b.AB与α、β所成的角分别是θ和φ,AB在α、β内的射影分别是m和n.若a>b,则()A.θ>φ,m>n B.θ>φ,m<n C.θ<φ,m<n D.θ<φ,m>n【考点】平面与平面垂直的性质;三垂线定理.【专题】计算题.【分析】在图象中作出射影,在直角三角形中利用勾股定理与三角函数的定义建立相关等式,运算即可.【解答】解:由题意可得,即有,故选D.【点评】本题考查对直二面角的认识程度,以及正确识图的能力、借且图象进行推理的能力.11.(5分)(2008•陕西)定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),f(1)=2,则f(﹣3)等于()A.2 B.3 C.6 D.9【考点】函数的值.【专题】压轴题.【分析】根据关系式f(x+y)=f(x)+f(y)+2xy,令x=y=0求出f(0),再令x=y=1,求出f(2),同样的道理求出f(3),最终求出f(﹣3)的值.【解答】解:令x=y=0⇒f(0)=0,令x=y=1⇒f(2)=2f(1)+2=6;令x=2,y=1⇒f(3)=f(2)+f(1)+4=12,再令x=3,y=﹣3得0=f(3﹣3)=f(3)+f(﹣3)﹣18⇒f(﹣3)=18﹣f(3)=6故选C.【点评】本题主要考查已知函数的关系式求函数值的问题.这里经常取一些特殊点代入,要注意特殊点的选取技巧.12.(5分)(2008•陕西)为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,a i∈{0,1}(i=0,1,2),传输信息为h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.11010 B.01100 C.10111 D.00011【考点】抽象函数及其应用.【专题】压轴题.【分析】首先理解⊕的运算规则,然后各选项依次分析即可.【解答】解:A选项原信息为101,则h0=a0⊕a1=1⊕0=1,h1=h0⊕a2=1⊕1=0,所以传输信息为11010,A选项正确;B选项原信息为110,则h0=a0⊕a1=1⊕1=0,h1=h0⊕a2=0⊕0=0,所以传输信息为01100,B选项正确;C选项原信息为011,则h0=a0⊕a1=0⊕1=1,h1=h0⊕a2=1⊕1=0,所以传输信息为10110,C选项错误;D选项原信息为001,则h0=a0⊕a1=0⊕0=0,h1=h0⊕a2=0⊕1=1,所以传输信息为00011,D选项正确;故选C.【点评】本题考查对新规则的阅读理解能力.二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2008•陕西)△ABC的内角A,B,C的对边分别为a,b,c,若c=,b=,B=120°,则a=.【考点】正弦定理.【专题】计算题.【分析】由正弦定理求得sinC的值,进而求得C,进而求得A推断a=c,答案可得.【解答】解:由正弦定理,∴故答案为【点评】本题主要考查了正弦定理得应用.属基础题.14.(4分)(2008•陕西)的展开式中的系数为84.(用数字作答)【考点】二项式系数的性质.【专题】计算题.【分析】利用二项展开式的通项个数求出第r+1项,令x的指数为﹣2,求出系数.【解答】解:,令7﹣r=2⇒r=5,因此展开式中的系数为(﹣2)7﹣5C75=84,故答案为84.【点评】本题考查利用二项展开式的通项个数解决展开式的特定项问题.15.(4分)(2008•陕西)关于平面向量,,,有下列三个命题:①若•=•,则=、②若=(1,k),=(﹣2,6),∥,则k=﹣3.③非零向量和满足||=||=|﹣|,则与+的夹角为60°.其中真命题的序号为②.(写出所有真命题的序号)【考点】命题的真假判断与应用.【专题】压轴题;数形结合.【分析】①向量不满足约分运算,但满足分配律,由此我们利用向量的运算性质,可判断平面向量,,的关系;②中,由∥,我们根据两个向量平行,坐标交叉相乘差为0的原则,可以构造一个关于k的方程,解方程即可求出k值;③中,若||=||=|﹣|,我们利用向量加减法的平行四边形法则,可以画出满足条件图象,利用图象易得到两个向量的夹角;【解答】解:①若•=•,则•(﹣)=0,此时⊥(﹣),而不一定=,①为假.②由两向量∥的充要条件,知1×6﹣k•(﹣2)=0,解得k=﹣3,②为真.③如图,在△ABC中,设,,,由||=||=|﹣|,可知△ABC为等边三角形.由平行四边形法则作出向量+=,此时与+成的角为30°.③为假.综上,只有②是真命题.答案:②【点评】本题考查的知识点是向量的运算性质及命题的真假判断与应用,处理的关键是熟练掌握向量的运算性质,如两个向量垂直,则数量积为0,两个向量平等,坐标交叉相乘差为0等.16.(4分)(2008•陕西)某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有96种.(用数字作答).【考点】排列、组合的实际应用.【专题】计算题;压轴题.【分析】根据题意,如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生;按第一棒是丙或甲、乙中一人,分为两类,分别计算其情况数目,结合分类计数原理,计算可得答案.【解答】解:分两类:第一棒是丙有C11•C21•A44=48,第一棒是甲、乙中一人有C21•C11•A44=48因此共有方案48+48=96种;故答案为96.【点评】本题考查排列、组合的综合应用,注意优先分析有特殊要求的元素,对于本题,注意分类的标准前后统一,要做到不重不漏.三、解答题(共6小题,满分70分)17.(12分)(2008•陕西)已知函数f(x)=2sin•cos+cos.(1)求函数f(x)的最小正周期及最值;(2)令g(x)=f,判断函数g(x)的奇偶性,并说明理由.【考点】三角函数的周期性及其求法;正弦函数的奇偶性;三角函数的最值.【专题】计算题.【分析】利用二倍角公式、两角和的正弦函数化简函数f(x)=2sin•cos+cos,为y=2sin,(1)直接利用周期公式求出周期,求出最值.(2)求出g(x)=f的表达式,g(x)=2cos.然后判断出奇偶性即可.【解答】解:(1)∵f(x)=sin+cos=2sin,∴f(x)的最小正周期T==4π.当sin=﹣1时,f(x)取得最小值﹣2;当sin=1时,f(x)取得最大值2.(2)g(x)是偶函数.理由如下:由(1)知f(x)=2sin,又g(x)=f,∴g(x)=2sin=2sin=2cos.∵g(﹣x)=2cos=2cos=g(x),∴函数g(x)是偶函数.【点评】本题是基础题,考查三角函数的化简与求值,考查三角函数的基本性质,常考题型.18.(12分)(2008•陕西)一个口袋中装有大小相同的2个红球,3个黑球和4个白球,从口袋中一次摸出一个球,摸出的球不再放回.(Ⅰ)连续摸球2次,求第一次摸出黑球,第二次摸出白球的概率;(Ⅱ)如果摸出红球,则停止摸球,求摸球次数不超过3次的概率.【考点】相互独立事件的概率乘法公式;互斥事件的概率加法公式;古典概型及其概率计算公式.【专题】计算题.【分析】(Ⅰ)本题是一个古典概型,试验发生包含的事件是从袋中依次摸出2个球共有A92种结果,满足条件的事件是第一次摸出黑球、第二次摸出白球有A31A41种结果,或者是题目按照相互独立事件同时发生的概率来理解.(Ⅱ)摸球不超过三次,包括第一次摸到红球,第二次摸到红球,第三次摸到红球,这三个事件是互斥的,分别写出三个事件的概率,根据互斥事件的概率得到结果.【解答】解:(Ⅰ)由题意知,本题是一个古典概型,试验发生包含的事件是从袋中依次摸出2个球共有A92种结果,满足条件的事件是第一次摸出黑球、第二次摸出白球有A31A41种结果,∴所求概率(Ⅱ)摸球不超过三次,包括第一次摸到红球,第二次摸到红球,第三次摸到红球,这三个事件是互斥的第一次摸出红球的概率为,第二次摸出红球的概率为,第三次摸出红球的概率为,则摸球次数不超过3次的概率为.【点评】本题考查互斥事件的概率,考查相互独立事件同时发生的概率,考查古典概型,是一个综合题,解题时关键在于理解题意,同一个题目可以有不同的解法.19.(12分)(2008•陕西)三棱锥被平行于底面ABC的平面所截得的几何体如图所示,截面为A1B1C1,∠BAC=90°,A 1A⊥平面ABC,,,AC=2,A1C1=1,.(Ⅰ)证明:平面A1AD⊥平面BCC1B1;(Ⅱ)求二面角A﹣CC1﹣B的大小.【考点】平面与平面垂直的判定;二面角的平面角及求法.【专题】计算题;证明题.【分析】(Ⅰ)欲证平面A1AD⊥平面BCC1B1,根据面面垂直的判定定理可知在平面BCC1B1内一直线与平面A1AD垂直,根据线面垂直的性质可知A1A⊥BC,AD⊥BC,又A1A∩AD=A,根据线面垂直的判定定理可知BC⊥平面A1AD,而BC⊂平面BCC1B1,满足定理所需条件;(Ⅱ)作AE⊥C1C交C1C于E点,连接BE,由三垂线定理知BE⊥CC1,从而∠AEB为二面角A﹣CC1﹣B的平面角,过C1作C1F⊥AC交AC于F点,在Rt△BAE中,求出二面角A﹣CC1﹣B的平面角即可.【解答】证明:(Ⅰ)∵A1A⊥平面ABC,BC⊂平面ABC,∴A1A⊥BC.在Rt△ABC中,,∴,∵BD:DC=1:2,∴,又,∴△DBA∽△ABC,∴∠ADB=∠BAC=90°,即AD⊥BC.又A1A∩AD=A,∴BC⊥平面A1AD,∵BC⊂平面BCC1B1,∴平面A1AD⊥平面BCC1B1.(Ⅱ)如图,作AE⊥C1C交C1C于E点,连接BE,由已知得AB⊥平面ACC1A1.∴AE是BE在面ACC1A1内的射影.由三垂线定理知BE⊥CC1,∴∠AEB为二面角A﹣CC1﹣B的平面角.过C1作C1F⊥AC交AC于F点,则CF=AC﹣AF=1,,∴∠C 1CF=60°.在Rt△AEC中,.在Rt△BAE中,.∴,即二面角A﹣CC1﹣B为.【点评】本题主要考查平面与平面垂直的判定,以及二面角的平面角的度量,同时考查了空间想象能力,计算能力和推理能力,以及转化与划归的思想,属于中档题.20.(12分)(2008•陕西)已知数列{a n}的首项a1=,a n+1=,n=1,2,….(Ⅰ)证明:数列{﹣1}是等比数列;(Ⅱ)求数列{}的前n项和.【考点】数列递推式;等比关系的确定;数列的求和.【专题】计算题;压轴题.【分析】(1)化简构造新的数列,进而证明数列是等比数列.(2)根据(1)求出数列的递推公式,得出a n,进而构造数列,求出数列的通项公式,进而求出前n项和S n.【解答】解:(Ⅰ)由已知:,∴,(2分)∴,又,∴,(4分)∴数列是以为首项,为公比的等比数列.(6分)(Ⅱ)由(Ⅰ)知,即,∴.(8分)设,①则,②由①﹣②得:,(10分)∴.又1+2+3+….(12分)∴数列的前n项和:.(14分)【点评】此题主要考查通过构造新数列达到求解数列的通项公式和前n项和的方法.21.(12分)(2008•陕西)已知抛物线C:y=2x2,直线y=kx+2交C于A,B两点,M是线段AB的中点,过M 作x轴的垂线交C于点N.(Ⅰ)证明:抛物线C在点N处的切线与AB平行;(Ⅱ)是否存在实数k使,若存在,求k的值;若不存在,说明理由.【考点】直线与圆锥曲线的综合问题;平面向量数量积的运算.【专题】计算题;压轴题.【分析】(1)设A(x1,2x12),B(x2,2x22),把直线方程代入抛物线方程消去y,根据韦达定理求得x1+x2和x1x2的值,进而求得N和M的横坐标,表示点M的坐标,设抛物线在点N处的切线l的方程将y=2x2代入进而求得m和k的关系,进而可知l∥AB.(2)假设存在实数k,使成立,则可知NA⊥NB,又依据M是AB的中点进而可知.根据(1)中的条件,分别表示出|MN|和|AB|代入求得k.【解答】解:(Ⅰ)如图,设A(x1,2x12),B(x2,2x22),把y=kx+2代入y=2x2得2x2﹣kx﹣2=0,由韦达定理得,x1x2=﹣1,∴,∴N点的坐标为.设抛物线在点N处的切线l的方程为,将y=2x2代入上式得,∵直线l与抛物线C相切,∴,∴m=k,即l∥AB.(Ⅱ)假设存在实数k,使,则NA⊥NB,又∵M是AB的中点,∴.由(Ⅰ)知=.∵MN⊥x轴,∴.又=.∴,解得k=±2.即存在k=±2,使.【点评】本题主要考查了直线与圆锥曲线的综合问题.考查了学生综合把握所学知识和基本的运算能力.22.(14分)(2008•陕西)设函数f(x)=x3+ax2﹣a2x+1,g(x)=ax2﹣2x+1,其中实数a≠0.(Ⅰ)若a>0,求函数f(x)的单调区间;(Ⅱ)当函数y=f(x)与y=g(x)的图象只有一个公共点且g(x)存在最小值时,记g(x)的最小值为h(a),求h(a)的值域;(Ⅲ)若f(x)与g(x)在区间(a,a+2)内均为增函数,求a的取值范围.【考点】利用导数研究函数的单调性.【专题】压轴题.【分析】(1)先对函数f(x)进行求导,令导函数大于0可求函数的增区间,令导函数小于0可求函数的减区间.(2)令f(x)=g(x)整理可得x[x2﹣(a2﹣2)]=0,故a2﹣2≤0求出a的范围,再根据g(x)存在最小值必有a>0,最后求出h(a)的值域即可.(3)分别求出函数f(x)与g(x)的单调区间,然后令(a,a+2)为二者单调增区间的子集即可.【解答】解:(Ⅰ)∵,又a>0,∴当时,f'(x)>0;当时,f'(x)<0,∴f(x)在(﹣∞,﹣a)和内是增函数,在内是减函数.(Ⅱ)由题意知x3+ax2﹣a2x+1=ax2﹣2x+1,即x[x2﹣(a2﹣2)]=0恰有一根(含重根).∴a2﹣2≤0,即≤a≤,又a≠0,∴.当a>0时,g(x)才存在最小值,∴.g(x)=a(x﹣)2+1﹣,∴.h(a)≤1﹣;∴h(a)的值域为.(Ⅲ)当a>0时,f(x)在(﹣∞,﹣a)和内是增函数,g(x)在内是增函数.由题意得,解得a≥1;当a<0时,f(x)在和(﹣a,+∞)内是增函数,g(x)在内是增函数.由题意得,解得a≤﹣3;综上可知,实数a的取值范围为(﹣∞,﹣3]∪[1,+∞).【点评】本题主要考查函数的单调性与其导函数的正负情况之间的关系,即当导函数小于0时原函数单调递减,当导函数大于0时原函数单调递增.11。

2008年普通高等学校招生全国统一考试数学卷陕西文含详解

2008年普通高等学校招生全国统一考试数学卷陕西文含详解

2008年普通高等学校招生全国统一考试(陕西卷)文科数学(必修+选修I)、选择题:在每小题给出的四个选项中,每小〕、题5分,共60 分).1.sin330 等于(B )A.1B .1C .—2 2 2解:si n330 = -sin30 二1 22.已知全集U 二{1,2,3,4,5},集合A 二{1,3} , B 二{3,4,5},则集合包(人门B)二(D )A . {3} B. {4,5} C. {3,4,5} D . {1,2,4,5}解:A={1,3} , B ={3,4,5} = A" B ={3}所以e/Afl B)二{1,2,4,5}3•某林场有树苗30000棵,其中松树苗4000棵•为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( C )A. 30B. 25C. 20D. 15150 x解:设样本中松树苗的数量为X,则X = 2030000 40004. 已知{a n}是等差数列,印飞2 =4 , a7 a^ ^28 ,则该数列前10项和S。

等于(B )A . 64 B. 100 C. 110 D. 120X23] d=4 —i at = 1 10 9解:设公差为d,则由已知得= 1= S10=1O 1 2=100I2a1+13d=28 Id =2 25. 直线、.3x -y • m = 0与圆X2y2-2x-2=0相切,则实数m等于(C )A. .3 或-B . -.3 或33 C . -3 • 3 或.3 D . -3、、3 或3- 3 解:圆的方程(x-1)2• y2 =3 ,圆心(1 ,倒直线的距离等于半径二|V3 m \=运二十讨=2 J3 n m = J3 或者二m = -3 J3a6. “ a =1 ”是“对任意的正数x , 2x > 1 ”的(A )xA .充分不必要条件B .必要不充分条件C.充要条件 D .既不充分也不必要条件只有一项是符合题目要求的(本大题共12小题,解:a /= 2x a-2x - _2 2x 1-2.2 1,显然a = 2 也能推出,所以“ a" ”x x Y Xa是“对任意的正数X , 2x > 1 ”的充分不必要条件。

2008年全国统一高考数学试卷(文科)(全国卷ⅱ)(含解析版)

2008年全国统一高考数学试卷(文科)(全国卷ⅱ)(含解析版)

2008 年全国统一高考数学试卷(文科)(全国卷Ⅱ)一、选择题(共12 小题,每小题5 分,满分60 分)1.(5 分)若sinα<0 且tanα>0,则α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角2.(5 分)设集合M={m∈Z|﹣3<m<2},N={n∈Z|﹣1≤n≤3},则M∩N=()A.{0,1} B.{﹣1,0,1}C.{0,1,2} D.{﹣1,0,1,2}3.(5 分)原点到直线x+2y﹣5=0 的距离为()A.1 B.C.2D.4.(5分)函数f(x)=﹣x 的图象关于()A.y 轴对称B.直线y=﹣x 对称C.坐标原点对称D.直线y=x 对称5.(5 分)若x∈(e﹣1,1),a=lnx,b=2lnx,c=ln3x,则()A.a<b<c B.c<a<b C.b<a<c D.b<c<a6.(5 分)设变量x,y 满足约束条件:,则z=x﹣3y 的最小值()A.﹣2 B.﹣4 C.﹣6 D.﹣87.(5 分)设曲线y=ax2在点(1,a)处的切线与直线2x﹣y﹣6=0 平行,则a= ()A.1 B.C.D.﹣18.(5 分)正四棱锥的侧棱长为,侧棱与底面所成的角为60°,则该棱锥的体积为()A.3 B.6 C.9 D.189.(5分)的展开式中x 的系数是()A.﹣4 B.﹣3 C.3 D.410.(5 分)函数f(x)=sinx﹣cosx 的最大值为()A.1 B.C.D.211.(5 分)设△ABC 是等腰三角形,∠ABC=120°,则以A,B 为焦点且过点C 的双曲线的离心率为()A.B.C.D.12.(5 分)已知球的半径为2,相互垂直的两个平面分别截球面得两个圆,若两圆的公共弦长为2,则两圆的圆心距等于()A.1 B.C.D.2二、填空题(共4 小题,每小题5 分,满分20 分)13.(5分)设向量,若向量与向量共线,则λ=.14.(5 分)从10 名男同学,6 名女同学中选3 名参加体能测试,则选到的3 名同学中既有男同学又有女同学的不同选法共有种(用数字作答)15.(5 分)已知F 是抛物线C:y2=4x 的焦点,A,B 是C 上的两个点,线段AB 的中点为M(2,2),则△ABF 的面积等于.16.(5 分)平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件①;充要条件②.(写出你认为正确的两个充要条件)三、解答题(共6 小题,满分70 分)17.(10 分)在△ABC 中,cosA=﹣,cosB=.(I)求sinC 的值;(II)设BC=5,求△ABC 的面积.18.(12 分)等差数列{a n}中,a4=10 且a3,a6,a10 成等比数列,求数列{a n}前20 项的和S20.19.(12 分)甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一发子弹.根据以往资料知,甲击中8 环,9 环,10 环的概率分别为0.6,0.3,0.1,乙击中8 环,9 环,10 环的概率分别为0.4,0.4,0.2.设甲、乙的射击相互独立.(I)求在一轮比赛中甲击中的环数多于乙击中环数的概率;(II)求在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数的概率.20.(12 分)如图,正四棱柱ABCD﹣A1B1C1D1 中,AA1=2AB=4,点E 在CC1 上且C1E=3EC.(I)证明:A1C⊥平面BED;(II)求二面角A1﹣DE﹣B 的大小.21.(12 分)设a∈R,函数f(x)=ax3﹣3x2.(I)若x=2 是函数y=f(x)的极值点,求a 的值;(II)若函数g(x)=f(x)+f′(x),x∈[0,2],在x=0 处取得最大值,求a 的取值范围.22.(12 分)设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB 相交于点D,与椭圆相交于E、F 两点.(I)若,求k 的值;(II)求四边形AEBF 面积的最大值.2008 年全国统一高考数学试卷(文科)(全国卷Ⅱ)参考答案与试题解析一、选择题(共12 小题,每小题5 分,满分60 分)1.(5 分)若sinα<0 且tanα>0,则α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角【考点】GC:三角函数值的符号.【分析】由正弦和正切的符号确定角的象限,当正弦值小于零时,角在第三四象限,当正切值大于零,角在第一三象限,要同时满足这两个条件,角的位置是第三象限,实际上我们解的是不等式组.【解答】解:sinα<0,α在三、四象限;tanα>0,α在一、三象限.故选:C.【点评】记住角在各象限的三角函数符号是解题的关键,可用口诀帮助记忆:一全部,二正弦,三切值,四余弦,它们在上面所述的象限为正2.(5 分)设集合M={m∈Z|﹣3<m<2},N={n∈Z|﹣1≤n≤3},则M∩N=()A.{0,1} B.{﹣1,0,1} C.{0,1,2} D.{﹣1,0,1,2}【考点】1E:交集及其运算.【分析】由题意知集合M={m∈z|﹣3<m<2},N={n∈z|﹣1≤n≤3},然后根据交集的定义和运算法则进行计算.【解答】解:∵M={﹣2,﹣1,0,1},N={﹣1,0,1,2,3},∴M∩N={﹣1,0,1},故选:B.【点评】此题主要考查集合和交集的定义及其运算法则,是一道比较基础的题.3.(5 分)原点到直线x+2y﹣5=0 的距离为()A.1 B.C.2 D.【考点】IT:点到直线的距离公式.【分析】用点到直线的距离公式直接求解.【解答】解析:.故选:D.【点评】点到直线的距离公式是高考考点,是同学学习的重点,本题是基础题.4.(5 分)函数f(x)=﹣x 的图象关于()A.y 轴对称B.直线y=﹣x 对称C.坐标原点对称D.直线y=x 对称【考点】3M:奇偶函数图象的对称性.【分析】根据函数f(x)的奇偶性即可得到答案.【解答】解:∵f(﹣x)=﹣+x=﹣f(x)∴是奇函数,所以f(x)的图象关于原点对称故选:C.【点评】本题主要考查函数奇偶性的性质,是高考必考题型.5.(5 分)若x∈(e﹣1,1),a=lnx,b=2lnx,c=ln3x,则()A.a<b<c B.c<a<b C.b<a<c D.b<c<a【考点】4M:对数值大小的比较.【分析】根据函数的单调性,求a 的范围,用比较法,比较a、b 和a、c 的大小.【解答】解:因为a=lnx 在(0,+∞)上单调递增,故当x∈(e﹣1,1)时,a∈(﹣1,0),于是b﹣a=2lnx﹣lnx=lnx<0,从而b<a.又a﹣c=lnx﹣ln3x=a(1+a)(1﹣a)<0,从而a<c.综上所述,b<a<c.故选:C.【点评】对数值的大小,一般要用对数的性质,比较法,以及0 或1 的应用,本题是基础题.6.(5 分)设变量x,y 满足约束条件:,则z=x﹣3y 的最小值()A.﹣2 B.﹣4 C.﹣6 D.﹣8【考点】7C:简单线性规划.【专题】11:计算题.【分析】我们先画出满足约束条件:的平面区域,求出平面区域的各角点,然后将角点坐标代入目标函数,比较后,即可得到目标函数z=x﹣3y 的最小值.【解答】解:根据题意,画出可行域与目标函数线如图所示,由图可知目标函数在点(﹣2,2)取最小值﹣8故选:D.【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.7.(5 分)设曲线y=ax2在点(1,a)处的切线与直线2x﹣y﹣6=0 平行,则a= ()A.1 B.C.D.﹣1【考点】6H:利用导数研究曲线上某点切线方程.【分析】利用曲线在切点处的导数为斜率求曲线的切线斜率;利用直线平行它们的斜率相等列方程求解.【解答】解:y'=2ax,于是切线的斜率k=y'|x=1=2a,∵切线与直线2x﹣y﹣6=0 平行∴有2a=2∴a=1故选:A.【点评】本题考查导数的几何意义:曲线在切点处的导数值是切线的斜率.8.(5 分)正四棱锥的侧棱长为,侧棱与底面所成的角为60°,则该棱锥的体积为()A.3 B.6 C.9 D.18【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题.【分析】先求正四棱锥的高,再求正四棱锥的底面边长,然后求其体积.【解答】解:高,又因底面正方形的对角线等于,∴底面积为,∴体积故选:B.【点评】本题考查直线与平面所成的角,棱锥的体积,注意在底面积的计算时,要注意多思则少算.9.(5 分)的展开式中x 的系数是()A.﹣4 B.﹣3 C.3 D.4【考点】DA:二项式定理.【分析】先利用平方差公式化简代数式,再利用二项展开式的通项公式求出第r+1 项,令x 的指数为1 求得展开式中x 的系数.【解答】解:=(1﹣x)4(1﹣x)4的展开式的通项为T r+1=C4r(﹣x)r=(﹣1)r C4r x r令r=1 得展开式中x 的系数为﹣4故选:A.【点评】本题考查二项展开式的通项公式是解决二项展开式的特定想问题的工具.10.(5 分)函数f(x)=sinx﹣cosx 的最大值为()A.1 B.C.D.2【考点】H4:正弦函数的定义域和值域;HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11:计算题.【分析】根据两角和与差的正弦公式进行化简,即可得到答案.【解答】解:,所以最大值是故选:B.【点评】本题主要考查两角和与差的正弦公式和正弦函数的最值问题.三角函数中化为一个角的三角函数问题是三角函数在高考中的热点问题.11.(5 分)设△ABC 是等腰三角形,∠ABC=120°,则以A,B 为焦点且过点C 的双曲线的离心率为()A.B.C.D.【考点】KC:双曲线的性质.【专题】11:计算题;16:压轴题.【分析】根据题设条件可知2c=|AB|,所以,由双曲线的定义能够求出2a,从而导出双曲线的离心率.【解答】解:由题意2c=|AB|,所以,由双曲线的定义,有,∴故选:B.【点评】本题考查双曲线的有关性质和双曲线定义的应用.12.(5 分)已知球的半径为2,相互垂直的两个平面分别截球面得两个圆,若两圆的公共弦长为2,则两圆的圆心距等于()A.1 B.C.D.2【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】求解本题,可以从三个圆心上找关系,构建矩形利用对角线相等即可求解出答案.【解答】解:设两圆的圆心分别为O1、O2,球心为O,公共弦为AB,其中点为E,则OO1EO2 为矩形,于是对角线O1O2=OE,而OE==,∴O1O2=故选:C.【点评】本题考查球的有关概念,两平面垂直的性质,是基础题.10 610 6 10 6 10 6二、填空题(共 4 小题,每小题 5 分,满分 20 分) 13.(5 分)设向量 ,若向量与向量共线,则 λ= 2 .【考点】96:平行向量(共线).【分析】用向量共线的充要条件:它们的坐标交叉相乘相等列方程解. 【解答】解:∵a=(1,2),b=(2,3), ∴λα+b=(λ,2λ)+(2,3)=(λ+2,2λ+3). ∵向量 λα+b 与向量 c=(﹣4,﹣7)共线, ∴﹣7(λ+2)+4(2λ+3)=0, ∴λ=2. 故答案为 2【点评】考查两向量共线的充要条件.14.(5 分)从 10 名男同学,6 名女同学中选 3 名参加体能测试,则选到的 3 名同学中既有男同学又有女同学的不同选法共有 420种(用数字作答)【考点】D5:组合及组合数公式. 【专题】11:计算题;32:分类讨论.【分析】由题意分类:①男同学选 1 人,女同学中选 2 人,确定选法;②男同学 选 2 人,女同学中选 1 人,确定选法;然后求和即可.【解答】解:由题意共有两类不同选法,①男同学选 1 人,女同学中选 2 人,不同选法 C 1C 2=150; ②男同学选 2 人,女同学中选 1 人,不同选法 C 2C 1=270;共有:C 1C 2+C 2C 1=150+270=420 故答案为:420【点评】本题考查组合及组合数公式,考查分类讨论思想,是基础题.15.(5 分)已知 F 是抛物线 C :y 2=4x 的焦点,A ,B 是 C 上的两个点,线段 AB, 的中点为 M (2,2),则△ABF 的面积等于 2 .【考点】K8:抛物线的性质.【专题】5D :圆锥曲线的定义、性质与方程. 【分析】设 A (x 1,y 1),B (x 2,y 2),则=4x 2,两式相减可得:(y 1+y 2)(y 1﹣y 2)=4(x 1﹣x 2),利用中点坐标公式、斜率计算公式可得 k AB ,可得直线 AB 的方程为:y ﹣2=x ﹣2,化为 y=x ,与抛物线方程联立可得 A ,B 的坐标,利用弦长公式可得|AB |,再利用点到直线的距离公式可得点 F 到直线 AB 的距离 d ,利用三角形面积公式求得答案.【解答】解:∵F 是抛物线 C :y 2=4x 的焦点,∴F (1,0).设 A (x 1,y 1),B (x 2,y 2),则, =4x 2,两式相减可得:(y 1+y 2)(y 1﹣y 2)=4(x 1﹣x 2), ∵线段 AB 的中点为 M (2,2),∴y 1+y 2=2×2=4,又=k AB ,4k AB =4,解得 k AB =1,∴直线 AB 的方程为:y ﹣2=x ﹣2,化为 y=x ,联立 ,解得,,∴|AB |==4.点 F 到直线 AB 的距离 d=,∴S △ABF ===2,故答案为:2.【点评】本题主要考查了直线与抛物线相交问题弦长问题、“点差法”、点到直线的距离公式、三角形的面积计算公式,考查了推理能力与计算能力,属于难题.16.(5 分)平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件①三组对面分别平行的四棱柱为平行六面体;充要条件②平行六面体的对角线交于一点,并且在交点处互相平分;.(写出你认为正确的两个充要条件)【考点】29:充分条件、必要条件、充要条件;L2:棱柱的结构特征.【专题】16:压轴题;21:阅读型.【分析】本题考查的知识点是充要条件的定义及棱柱的结构特征及类比推理,由平行六面体与平行四边形的定义相似,故我们可以类比平行四边形的性质,类比推断平行六面体的性质.【解答】解:类比平行四边形的性质:两组对边分别平行的四边形为平行四边形,则我们类比得到:三组对面分别平行的四棱柱为平行六面体.类比平行四边形的性质:两条对角线互相平分,则我们类比得到:平行六面体的对角线交于一点,并且在交点处互相平分;故答案为:三组对面分别平行的四棱柱为平行六面体;平行六面体的对角线交于一点,并且在交点处互相平分;【点评】类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).三、解答题(共6 小题,满分70 分)17.(10 分)在△ABC 中,cosA=﹣,cosB=.(I)求sinC 的值;(II)设BC=5,求△ABC 的面积.【考点】GG:同角三角函数间的基本关系;GP:两角和与差的三角函数.【专题】11:计算题.【分析】(Ⅰ)先利用同角三角函数的基本关系求得sinA 和sinB 的值,进而根据sinC=sin(A+B)利用正弦的两角和公式求得答案.(Ⅱ)先利用正弦定理求得AC,进而利用三角形面积公式求得三角形的面积.【解答】解:(Ⅰ)∵在△ABC 中,A+B+C=180°,sinC=sin(180﹣(A+B))=sin(A+B)由,得,由,得.所以.(Ⅱ)由正弦定理得.所以△ABC 的面积S=BC•AC•sinC=×5××=.【点评】本题主要考查了同角三角函数的基本关系的应用和正弦的两角和公式的应用.考查了学生对三角函数基础知识的理解和灵活运用.18.(12 分)等差数列{a n}中,a4=10 且a3,a6,a10 成等比数列,求数列{a n}前20 项的和S20.【考点】85:等差数列的前n 项和.【专题】54:等差数列与等比数列.【分析】先设数列{a n}的公差为d,根据a3,a6,a10 成等比数列可知a3a10=a62,把d 和a4 代入求得d 的值.再根据a4 求得a1,最后把d 和a1 代入S20 即可得到答案.【解答】解:设数列{a n}的公差为d,则a3=a4﹣d=10﹣d,a6=a4+2d=10+2d,a10=a4+6d=10+6d.由a3,a6,a10 成等比数列得a3a10=a62,即(10﹣d)(10+6d)=(10+2d)2,整理得10d2﹣10d=0,解得d=0 或d=1.当d=0 时,S20=20a4=200.当d=1 时,a1=a4﹣3d=10﹣3×1=7,于是=20×7+190=330.【点评】本题主要考查了等差数列和等比数列的性质.属基础题.19.(12 分)甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一发子弹.根据以往资料知,甲击中8 环,9 环,10 环的概率分别为0.6,0.3,0.1,乙击中8 环,9 环,10 环的概率分别为0.4,0.4,0.2.设甲、乙的射击相互独立.(I)求在一轮比赛中甲击中的环数多于乙击中环数的概率;(II)求在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数的概率.【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】11:计算题.【分析】(Ⅰ)甲、乙的射击相互独立,在一轮比赛中甲击中的环数多于乙击中环数包括三种情况,用事件分别表示为A=A1•B1+A2•B1+A2•B2,且这三种情况是互斥的,根据互斥事件和相互独立事件的概率公式得到结果.(Ⅱ)由题意知在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数表示三轮中恰有两轮或三轮甲击中环数多于乙击中的环数,这两种情况是互斥的,根据互斥事件和相互独立事件的概率公式得到结果.【解答】解:记A1,A2 分别表示甲击中9 环,10 环,B1,B2 分别表示乙击中8环,9 环,A 表示在一轮比赛中甲击中的环数多于乙击中的环数,B 表示在三轮比赛中至少有两轮甲击中的环数多于乙击中的环数,C1,C2 分别表示三轮中恰有两轮,三轮甲击中环数多于乙击中的环数.(I)甲、乙的射击相互独立在一轮比赛中甲击中的环数多于乙击中环数包括三种情况,用事件分别表示为A=A1•B1+A2•B1+A2•B2,且这三种情况是互斥的,根据互斥事件和相互独立事件的概率公式得到∴P(A)=P(A1•B1+A2•B1+A2•B2)=P(A1•B1)+P(A2•B1)+P(A2•B2)=P(A1)•P(B1)+P(A2)•P(B1)+P(A2)•P(B2)=0.3×0.4+0.1×0.4+0.1×0.4=0.2.(II)由题意知在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数表示三轮中恰有两轮或三轮甲击中环数多于乙击中的环数,这两种情况是互斥的,即B=C1+C2,∵P(C1)=C32[P(A)]2[1﹣P(A)]=3×0.22×(1﹣0.2)=0.096,P(C2)=[P(A)]3=0.23=0.008,∴P(B)=P(C1+C2)=P(C1)+P(C2)=0.096+0.008=0.104.【点评】考查运用概率知识解决实际问题的能力,包括应用互斥事件和相互独立事件的概率,相互独立事件是指两事件发生的概率互不影响,这是可以作为一个解答题的题目,是一个典型的概率题.20.(12 分)如图,正四棱柱ABCD﹣A1B1C1D1 中,AA1=2AB=4,点E 在CC1 上且C1E=3EC.(I)证明:A1C⊥平面BED;(II)求二面角A1﹣DE﹣B 的大小.【考点】LW:直线与平面垂直;MJ:二面角的平面角及求法.【专题】14:证明题;15:综合题;35:转化思想.【分析】法一:(Ⅰ)要证A1C⊥平面BED,只需证明A1C 与平面BED 内两条相交直线BD,EF 都垂直;(Ⅱ)作GH⊥DE,垂足为H,连接A1H,说明∠A1HG 是二面角A1﹣DE﹣B 的平面角,然后解三角形,求二面角A1﹣DE﹣B 的大小.法二:建立空间直角坐标系,(Ⅰ)求出,证明A1C⊥平面DBE.(Ⅱ)求出 平面 DA 1E 和平面 DEB 的法向量,求二者的数量积可求二面角 A 1﹣ DE ﹣B 的大小. 【解答】解:解法一:依题设知 AB=2,CE=1.(I ) 连接 AC 交 BD 于点 F ,则BD ⊥AC .由三垂线定理知,BD ⊥A 1C .(3 分)在平面 A 1CA 内,连接 EF 交 A 1C 于点 G , 由于,故 Rt △A 1AC ∽Rt △FCE ,∠AA 1C=∠CFE ,∠CFE 与∠FCA 1 互余.于是 A 1C ⊥EF .A 1C 与平面 BED 内两条相交直线 BD ,EF 都垂直,所以 A 1C ⊥平面 BED .(6 分)(II ) 作 GH ⊥DE ,垂足为 H ,连接 A 1H .由三垂线定理知 A 1H ⊥DE ,故∠A 1HG 是二面角 A 1﹣DE ﹣B 的平面角.(8 分),. ,又, ..所以二面角 A 1﹣DE ﹣B 的大小为.((12 分))解法二:以 D 为坐标原点,射线 DA 为 x 轴的正半轴,建立如图所示直角坐标系 D ﹣xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).,.(3 分)(Ⅰ)因为,,故 A 1C ⊥BD ,A 1C ⊥DE . 又 DB ∩DE=D ,所以 A 1C ⊥平面 DBE .(6 分)(Ⅱ)设向量=(x ,y ,z )是平面 DA 1E 的法向量,则,.,.故2y+z=0,2x+4z=0.令y=1,则z=﹣2,x=4,=(4,1,﹣2).(9 分)等于二面角A1 ﹣DE﹣B 的平面角,所以二面角A1﹣DE﹣B 的大小为.(12分)【点评】本题考查直线与平面垂直的判定,二面角的求法,考查空间想象能力,逻辑思维能力,是中档题.21.(12 分)设a∈R,函数f(x)=ax3﹣3x2.(I)若x=2 是函数y=f(x)的极值点,求a 的值;(II)若函数g(x)=f(x)+f′(x),x∈[0,2],在x=0 处取得最大值,求a 的取值范围.【考点】6C:函数在某点取得极值的条件;6D:利用导数研究函数的极值;6E:利用导数研究函数的最值.【专题】16:压轴题.【分析】(Ⅰ)导函数在x=2 处为零求a,是必要不充分条件故要注意检验(Ⅱ)利用最大值g(0)大于等于g(2)求出a 的范围也是必要不充分条件注意检验【解答】解:(Ⅰ)f'(x)=3ax2﹣6x=3x(ax﹣2).因为x=2 是函数y=f(x)的极值点,所以f'(2)=0,即6(2a﹣2)=0,因此a=1.经验证,当a=1 时,x=2 是函数y=f(x)的极值点.(Ⅱ)由题设,g(x)=ax3﹣3x2+3ax2﹣6x=ax2(x+3)﹣3x(x+2).当g(x)在区间[0,2]上的最大值为g(0)时,g(0)≥g(2),即0≥20a﹣24.故得.反之,当时,对任意x ∈ [0 ,2] ,==≤0,而g(0)=0,故g(x)在区间[0,2]上的最大值为g(0).综上,a 的取值范围为.【点评】当函数连续且可导,极值点处的导数等于零是此点为极值点的必要不充分条件,所以解题时一定注意检验.22.(12 分)设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB 相交于点D,与椭圆相交于E、F 两点.(I)若,求k 的值;(II)求四边形AEBF 面积的最大值.【考点】96:平行向量(共线);KH:直线与圆锥曲线的综合.【专题】11:计算题;16:压轴题.【分析】(1)依题可得椭圆的方程,设直线AB,EF 的方程分别为x+2y=2,y=kx,D(x0,kx0),E(x1,kx1),F(x2,kx2),且x1,x2 满足方程(1+4k2)x2=4,进而求得x2 的表达式,进而根据求得x0 的表达式,由D 在AB 上知x0+2kx0=2,进而求得x0 的另一个表达式,两个表达式相等求得k.(Ⅱ)由题设可知|BO|和|AO|的值,设y1=kx1,y2=kx2,进而可表示出四边形AEBF 的面积进而根据基本不等式的性质求得最大值.【解答】解:(Ⅰ)依题设得椭圆的方程为,直线AB,EF 的方程分别为x+2y=2,y=kx(k>0).如图,设D(x0,kx0),E(x1,kx1),F(x2,kx2),其中x1<x2,且x1,x2 满足方程(1+4k2)x2=4,故.①由知x0﹣x1=6(x2﹣x0),得;由D 在AB 上知x0+2kx0=2,得.所以,化简得24k2﹣25k+6=0,解得或.(Ⅱ)由题设,|BO|=1,|AO|=2.由(Ⅰ)知,E(x1,kx1),F(x2,kx2),不妨设y1=kx1,y2=kx2,由①得x2>0,根据E 与F 关于原点对称可知y2=﹣y1>0,故四边形AEBF 的面积为S=S△OBE +S△OBF+S△OAE+S△OAF=•(﹣y1)==x2+2y2= = = ,当x2=2y2时,上式取等号.所以S 的最大值为.【点评】本题主要考查了直线与圆锥曲线的综合问题.直线与圆锥曲线的综合问题是支撑圆锥曲线知识体系的重点内容,问题的解决具有入口宽、方法灵活多样等,而不同的解题途径其运算量繁简差别很大.。

2008高考全国卷Ⅱ数学文科试卷含详细解答(全word版)080625

2008高考全国卷Ⅱ数学文科试卷含详细解答(全word版)080625

2008年普通高等学校招生全国统一考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至10页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)kkn kk n P k C p p k n -=-= ,,,,一、选择题1.若sin 0α<且tan 0α>是,则α是( )A .第一象限角B . 第二象限角C . 第三象限角D . 第四象限角【答案】C【解析】sin 0α<,α在三、四象限;tan 0α>,α在一、三象限,∴选C2.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( ) A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,, 【答案】B【解析】{}1,0,1,2--=M ,{}3,2,1,0,1-=N ,∴{}1,0,1-=N M 【高考考点】集合的运算,整数集的符号识别 3.原点到直线052=-+y x 的距离为( ) A .1B .3C .2D .5【答案】D【解析】52152=+-=d【高考考点】点到直线的距离公式 4.函数1()f x x x=-的图像关于( )A .y 轴对称B . 直线x y -=对称C . 坐标原点对称D . 直线x y =对称 【答案】C 【解析】1()f x x x=-是奇函数,所以图象关于原点对称【高考考点】函数奇偶性的性质5.若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( )A .a <b <cB .c <a <bC . b <a <cD . b <c <a【答案】C【解析】由0ln 111<<-⇒<<-x x e ,令x t ln =且取21-=t 知b <a <c6.设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值为( )A .2-B .4-C .6-D .8- 【答案】D【解析】如图作出可行域,知可行域的顶点是A (-2,2)、B(32,32)及C(-2,-2) 于是8)(min -=A z7.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( )A .1B .12C .12-D .1-【答案】A【解析】ax y 2'=,于是切线的斜率a y k x 2'1===,∴有122=⇒=a a8.正四棱锥的侧棱长为32,侧棱与底面所成的角为︒60,则该棱锥的体积为( ) A .3 B .6 C .9 D .18【答案】B【解析】高360sin 32=︒=h ,又因底面正方形的对角线等于32,∴底面积为 6332212=⨯⨯⨯=S ,∴体积63631=⨯⨯=V【备考提示】在底面积的计算时,要注意多思则少算9.44)1()1(x x +-的展开式中x 的系数是( )A .4-B .3-C .3D .4【答案】A【解析】41666141404242404-=-+=-+C C C C C C【易错提醒】容易漏掉1414C C 项或该项的负号10.函数x x x f cos sin )(-=的最大值为( ) A .1 B . 2 C .3D .2【答案】B【解析】)4sin(2cos sin )(π-=-=x x x x f ,所以最大值是2【高考考点】三角函数中化为一个角的三角函数问题【备考提示】三角函数中化为一个角的三角函数问题是三角函数在高考中的热点问题11.设A B C △是等腰三角形,120ABC ∠= ,则以A B ,为焦点且过点C 的双曲线的离心率为( )A .221+ B . 231+ C . 21+ D .31+【答案】B【解析】由题意BC c =2,所以c c AC 3260sin 220=⨯⨯=,由双曲线的定义,有c a c c BC AC a )13(2322-=⇒-=-=,∴231131+=-==ac e【高考考点】双曲线的有关性质,双曲线第一定义的应用12.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于( ) A .1 B .2 C .3 D .2【答案】C【解析】设两圆的圆心分别为1O 、2O ,球心为O ,公共弦为AB ,其中点为E ,则21EO OO 为矩形,于是对角线OE O O =21,而3122222=-=-=AEOAOE ,∴321=O O【高考考点】球的有关概念,两平面垂直的性质2008年普通高等学校招生全国统一考试文科数学(必修+选修I)第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. 13.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ . 【答案】 2【解析】λ+a b =)32,2(++λλ则向量λ+a b 与向量(47)=--,c 共线274322=⇒--=++⇔λλλ14.从10名男同学,6名女同学中选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的不同选法共有 种(用数字作答) 【答案】 420【解析】4202701501621026110=+=+C C C C 15.已知F 是抛物线24C y x =:的焦点,A B ,是C 上的两个点,线段AB 的中点为(22)M ,,则A B F △的面积等于 . 【答案】 2【解析】设过M 的直线方程为)2(2-=-x k y ,由0)1(444)2(22222=-+-⇒⎩⎨⎧=-=-k kx x k xy x k y ∴kx x 421=+,2221)1(4kk x x -=,由题意144=⇒=k k,于是直线方程为x y =421=+x x ,021=x x ,∴24=AB ,焦点F (1,0)到直线x y =的距离21=d∴A B F △的面积是216.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件① ; 充要条件② . (写出你认为正确的两个充要条件)【答案】两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形.注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分. 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 在A B C △中,5cos 13A =-,3cos 5B =.(Ⅰ)求sin C 的值;(Ⅱ)设5B C =,求A B C △的面积.18.(本小题满分12分)等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S . 19.(本小题满分12分)甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一发子弹.根据以往资料知,甲击中8环,9环,10环的概率分别为0.6,0.3,0.1,乙击中8环,9环,10环的概率分别为0.4,0.4,0.2. 设甲、乙的射击相互独立.(Ⅰ)求在一轮比赛中甲击中的环数多于乙击中环数的概率;(Ⅱ)求在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数的概率. 20.(本小题满分12分)如图,正四棱柱1111ABC D A B C D -中,124AA AB ==,点E 在1CC 上且EC E C 31=. (Ⅰ)证明:1A C ⊥平面BED ; (Ⅱ)求二面角1A D E B --的大小.21.(本小题满分12分)设a ∈R ,函数233)(x ax x f -=.(Ⅰ)若2=x 是函数)(x f y =的极值点,求a 的值;(Ⅱ)若函数()()()[02]g x f x f x x '=+∈,,,在0=x 处取得最大值,求a 的取值范围.22.(本小题满分12分)设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点.(Ⅰ)若6ED DF =,求k 的值; (Ⅱ)求四边形AEBF 面积的最大值.AB CD EA 1B 1C 1D 12008年普通高等学校招生全国统一考试 文科数学试题(必修+选修Ⅰ)参考答案和评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要 考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分.一、选择题1.C 2.B 3.D 4.C 5.C 6.D 7.A 8.B 9.A 10.B 11.B 12.C二、填空题13.2 14.420 15.216.两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形. 注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分. 三、解答题 17.解:(Ⅰ)由5cos 13A =-,得12sin 13A =,由3cos 5B =,得4sin 5B =.······················································································· 2分所以16sin sin()sin cos cos sin 65C A B A B A B =+=+=. ·········································· 5分(Ⅱ)由正弦定理得45sin 13512sin 313BC BAC A ⨯⨯===. ················································· 8分所以A B C △的面积1sin 2S B C A C C =⨯⨯⨯1131652365=⨯⨯⨯83=. ·························10分18.解:设数列{}n a 的公差为d ,则3410a a d d =-=-, 642102a a d d =+=+,1046106a a d d =+=+. ···························································································· 3分由3610a a a ,,成等比数列得23106a a a =,即2(10)(106)(102)d d d -+=+, 整理得210100d d -=,解得0d =或1d =. ···································································································· 7分 当0d =时,20420200S a ==. ················································································· 9分 当1d =时,14310317a a d =-=-⨯=, 于是2012019202S a d ⨯=+207190330=⨯+=.······················································12分 19.解:记12A A ,分别表示甲击中9环,10环,12B B ,分别表示乙击中8环,9环,A 表示在一轮比赛中甲击中的环数多于乙击中的环数,B 表示在三轮比赛中至少有两轮甲击中的环数多于乙击中的环数,12C C ,分别表示三轮中恰有两轮,三轮甲击中环数多于乙击中的环数.(Ⅰ)112122A A B A B A B =++ , ············································································· 2分112122()()P A P A B A B A B =++ 112122()()()P A B P A B P A B =++112122()()()()()()P A P B P A P B P A P B =++0.30.40.10.40.10.40.2=⨯+⨯+⨯=. ······································································ 6分(Ⅱ)12B C C =+,···································································································· 8分22213()[()][1()]30.2(10.2)0.096P C C P A P A =-=⨯⨯-=, 332()[()]0.20.008P C P A ===,1212()()()()0.0960.0080.104P B P C C P C P C =+=+=+=. ·································12分20.解法一:依题设,2A B =,1C E =.(Ⅰ)连结A C 交B D 于点F ,则B D A C ⊥.由三垂线定理知,1BD A C ⊥. ···················································································· 3分 在平面1A C A 内,连结E F 交1A C 于点G ,由于1A A A C F CC E==故1R t R t A AC FC E △∽△,1AA C C FE ∠=∠,C F E ∠与1FC A ∠互余.于是1A C EF ⊥.1A C 与平面BED 内两条相交直线B D E F ,都垂直,所以1A C ⊥平面BED .······························································································· 6分 (Ⅱ)作G H D E ⊥,垂足为H ,连结1A H .由三垂线定理知1A H D E ⊥,故1A HG ∠是二面角1A D E B --的平面角. ································································ 8分EF ==C E C F C G E F ⨯==,3EG ==.13E G E F=,13E F F D G H D E⨯=⨯=又1A C ==,113A G A C C G =-=.11tan A G A H G H G∠==.所以二面角1A D E B --的大小为arctan ··························································12分 解法二:以D 为坐标原点,射线D A 为x 轴的正半轴, 建立如图所示直角坐标系D xyz -.依题设,1(220)(020)(021)(204)B C E A ,,,,,,,,,,,.(021)(220)D E D B ==,,,,,,11(224)(204)A C DA =--= ,,,,,. ·································· 3分 (Ⅰ)因为10A C DB = ,10A C DE =,故1A C BD ⊥,1A C D E ⊥.ABC D E A 1B 1C 1D 1 FH G又DB DE D = ,所以1A C ⊥平面D BE . ······························································································· 6分 (Ⅱ)设向量()x y z =,,n 是平面1D A E 的法向量,则DE ⊥n ,1D A ⊥ n .故20y z +=,240x z +=.令1y =,则2z =-,4x =,(412)=-,,n . ····························································· 9分 1A C <> ,n 等于二面角1A D E B --的平面角,111cos 42A C A C A C<>==,n n n . 所以二面角1A D E B --的大小为arccos 42. ·························································12分21.解:(Ⅰ)2()363(2)f x ax x x ax '=-=-.因为2x =是函数()y f x =的极值点,所以(2)0f '=,即6(22)0a -=,因此1a =. 经验证,当1a =时,2x =是函数()y f x =的极值点. ··············································· 4分 (Ⅱ)由题设,3222()336(3)3(2)g x ax x ax x ax x x x =-+-=+-+. 当()g x 在区间[02],上的最大值为(0)g 时,(0)(2)g g ≥,即02024a -≥. 故得65a ≤. ·············································································································· 9分反之,当65a ≤时,对任意[02]x ∈,,26()(3)3(2)5g x x x x x +-+≤23(210)5x x x =+- 3(25)(2)5x x x =+-0≤,而(0)0g =,故()g x 在区间[02],上的最大值为(0)g .综上,a 的取值范围为65⎛⎤-∞ ⎥⎝⎦,. ···············································································12分22.(Ⅰ)解:依题设得椭圆的方程为2214xy +=,直线A B E F ,的方程分别为22x y +=,(0)y kx k =>. ··········································· 2分 如图,设001122()()()D x kx E x kx F x kx ,,,,,,其中12x x <, 且12x x ,满足方程22(14)4k x +=,故21x x =-=.①由6ED DF = 知01206()x x x x -=-,得021215(6)77x x x x =+==;由D 在A B 上知0022x kx +=,得0212x k=+.所以212k=+化简得2242560k k -+=, 解得23k =或38k =. ··································································································· 6分(Ⅱ)解法一:根据点到直线的距离公式和①式知,点E F ,到A B 的距离分别为1h ==2h ==. ······························································· 9分又AB ==AEBF 的面积为121()2S A B h h =+12==2008年普通高等学校招生全国统一考试第 11 页 共 11 页=≤当21k =,即当12k =时,上式取等号.所以S的最大值为 ·····························12分 解法二:由题设,1BO =,2A O =.设11y kx =,22y kx =,由①得20x >,210y y =->,故四边形AEBF 的面积为BEF AEF S S S =+△△222x y =+···················································································································· 9分==≤=当222x y =时,上式取等号.所以S的最大值为. ··············································12分。

2008年高考数学试卷(陕西.文)含详解

2008年高考数学试卷(陕西.文)含详解

2008年普通高等学校招生全国统一考试(陕西卷)文科数学(必修+选修Ⅰ)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共12小题,每小题5分,共60分). 1.sin330︒等于( B ) A.B .12-C .12D解:1sin 330sin 302︒=-=-2.已知全集{12345}U =,,,,,集合{1,3}A =,{3,4,5}B =,则集合()UA B =( D )A .{3}B .{4,5}C .{3,4,5}D .{1245},,,解:{1,3}A =,{3,4,5}B ={3}A B ⇒=所以()UA B ={1245},,,3.某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( C ) A .30 B .25 C .20 D .15 解:设样本中松树苗的数量为x ,则15020300004000xx =⇒=4.已知{}n a 是等差数列,124a a +=,7828a a +=,则该数列前10项和10S 等于( B ) A .64B .100C .110D .120解:设公差为d ,则由已知得112421328a d a d +=⎧⎨+=⎩1101109101210022a S d =⎧⨯⇒⇒=⨯+⨯=⎨=⎩ 50y m -+=与圆22220x y x +--=相切,则实数m 等于( C )A或 B.或C.-D.-解:圆的方程22(1)3x y -+=,圆心(1,0)到直线的距离等于半径m⇒==m ⇒=m ⇒=-6.“1a =”是“对任意的正数x ,21ax x+≥”的( A ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解:1a=1221a x x x x ⇒+=+≥=>,显然2a =也能推出,所以“1a =”是“对任意的正数x ,21ax x+≥”的充分不必要条件。

2008高考全国卷Ⅱ数学文科试卷含答案(全word版)-推荐下载

2008高考全国卷Ⅱ数学文科试卷含答案(全word版)-推荐下载

A.1
B. 2
C.3
C. 3
D.18
11.设 △ABC 是等腰三角形, ABC 120 ,则以 A,B 为焦点且过点 C 的双曲线的离
心率为( )
1 2
A.
2
1 3
B.
2
C. 1 2
12.已知球的半径为 2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为 2,则两圆的圆心距等于( )


19.(本小题满分 12 分) 甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一发子弹.根据以往资料知,甲 击中 8 环,9 环,10 环的概率分别为 0.6,0.3,0.1,乙击中 8 环,9 环,10 环的概率分别 为 0.4,0.4,0.2. 设甲、乙的射击相互独立. (Ⅰ)求在一轮比赛中甲击中的环数多于乙击中环数的概率; (Ⅱ)求在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数的概率.
A.1
B. 3
C.2
C.0,1 2,
D. 5
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008年高考文科数学试题(陕西卷)
姓名
(山东建筑大学,**学院,学号)
摘要:
·········
关键词:
Subject
Name
(Shandong Jianzhu University,school of **,Student ID) ABSTRACT:
·········
Key W ords:
1 简介
介绍该物种的中文正名、拉丁文学名、中英文常用名、定种的时间及命名人、分类的地位、主要体态特征、大小、习性和价值等。

2 生存现状
介绍该物种的种群数量、种群发展历史、主要分布的区域、主要保护等级
3 主要威胁
介绍该物种面临的主要威胁。

4 主要保护措施
介绍在国内外为保护该物种运用保护生物学知识实施的主要保护措施。

5 感想与建议
你对该物种生存现状发表你的感想,并提出你的建议。

(不少于500字,应为自己的真实想法,不许抄袭,提出的建议应有想象力)
[1] 毛峡, 丁玉宽. 图
[2] Ozgokmen T . M . , Johns W . E . , Peters H ,a High-Resoluting Nonhydrostatic Model[J]
[3] 刘国钧, 王连成.图书馆史研究[M]
[4] .中国人工智能学会2001年全国学术年会论文集[C].北京:北京邮电大学出版社, 2001:739-740.
[5] Mao Xia, et al . Analysis of Affective Characteristics and Evaluation of Harmonious Feeling of Image Based on 1/f Fluctuation Theory[A] .International Conference on Industrial & Engineering Applications of Artific :17-19.
[6] 张和生. 地太原理工大学,1996.
[7] 姜锡洲. 一种温热外敷药制备方案[P] . 中国专利:
, 汉语拼音正词法基本规则[S] .
[9] 毛峡.情感工学破解“舒服”之迷[N] .光明日报, 2000-4-17(B1) .
[10]冯西桥.核反应堆压力容器的LBB 分析[R] .北京: 清华大学核能技术设计研究院,1996.
[11]王明亮.中国学术期刊标准化数据库系统工程的进展[EB/OL] ,/pub/wml.txt/980810-2.html, 1998-08-16/1998-10-04.
要求:
1.文章应有摘要和关键字,鼓励写英文摘要和关键字。

2.正文总字数不少于2000字。

3.引用文章要标明,例如:
目前已被证实卤代烃对人体健康具有较大危害,其中1,2—二氯乙烷、1,1,2,2—四氯乙烷、四氯乙烯、三氯乙烯、三溴甲烷、六氯苯为强致癌物[4][5]。

表示以上文字引用参考文献的[4][5],或由上述文献得出结论。

并在后面参考文献处列出该文献的信息。

4.用到图应有图号和图名,如下:
图1 空腹桁架钢框架图2 交错桁架结构体系5.用到表应有表号和表名,如下:
表2 试验值、文献分析的数值和ANSYS分析值的对比
6.感想与建议不少于500字,应为自己的真实想法,不许抄袭,提出的建议应有思想力。

相关文档
最新文档