通信原理课程设计

合集下载

通信原理课程设计电路

通信原理课程设计电路

通信原理课程设计电路一、课程目标知识目标:1. 理解并掌握通信原理中的基本电路概念,包括放大器、滤波器、调制解调器等;2. 学习并掌握通信电路的设计原理和方法,能够运用相关知识分析电路性能;3. 了解通信系统中各个模块的功能和相互关系,形成完整的通信原理知识体系。

技能目标:1. 培养学生运用所学知识设计简单通信电路的能力,提高动手实践操作技能;2. 能够运用仿真软件对通信电路进行模拟,分析并优化电路性能;3. 培养学生团队协作能力,通过小组合作完成课程设计任务。

情感态度价值观目标:1. 激发学生对通信原理课程的兴趣,培养其主动学习的热情;2. 培养学生严谨的科学态度,注重理论与实践相结合;3. 增强学生的国家使命感和社会责任感,认识到通信技术在国家发展和社会进步中的重要作用。

课程性质:本课程为通信原理课程设计部分,侧重于实践操作,旨在让学生将所学理论知识运用到实际电路设计中。

学生特点:学生已具备一定的电子技术和通信原理基础知识,具有较强的学习能力和动手能力。

教学要求:结合学生特点,注重理论与实践相结合,充分调动学生的主观能动性,提高学生的实际操作能力和创新能力。

通过课程设计,使学生将所学知识内化为具体的学习成果,为今后的学习和工作打下坚实基础。

二、教学内容1. 通信原理基础知识回顾:重点复习放大器、滤波器、调制解调器等基本电路原理,对应教材第二章和第三章内容。

2. 通信电路设计原理:学习通信电路的设计方法,包括电路图的绘制、元件选型、性能分析等,对应教材第五章内容。

3. 通信电路仿真:介绍仿真软件的使用,通过实际操作演示,让学生学会运用仿真软件对通信电路进行模拟和优化,对应教材第七章内容。

4. 通信电路实践:分组进行课程设计,每组设计一个简单的通信电路,如放大器、滤波器等,结合教材内容和实际需求,完成电路设计、搭建和测试。

5. 教学大纲:(1)第1周:通信原理基础知识回顾;(2)第2周:通信电路设计原理学习;(3)第3-4周:通信电路仿真实践;(4)第5-6周:分组进行通信电路实践,完成课程设计报告。

通信原理课程设计

通信原理课程设计

通信原理课程设计引言:通信原理是现代通信技术的基础,通过该课程的学习,可以帮助学生掌握通信原理的基本概念、原理和应用。

课程设计是该课程的重要组成部分,通过设计一个实际的通信系统,学生可以将理论知识应用于实践,加深对通信原理的理解和掌握。

本文将详细介绍通信原理课程设计的步骤、内容和要求。

一、课程设计步骤通信原理课程设计通常包括以下步骤:1. 确定课程设计的目标和要求:明确设计的目标是什么,要求学生达到什么样的水平。

2. 选择课程设计的主题:根据学生的实际情况和教学资源,选择一个合适的主题。

3. 确定课程设计的内容和范围:明确设计的内容是什么,需要学生完成哪些任务。

4. 分析和研究相关知识和技术:学生需要对通信原理相关的知识和技术进行深入的研究和分析。

5. 设计通信系统的结构和功能:根据课程设计的要求,设计通信系统的结构和功能。

6. 实现通信系统的硬件和软件:根据设计的结果,实现通信系统的硬件和软件。

7. 进行实验和测试:对设计的通信系统进行实验和测试,验证其性能和可靠性。

8. 分析和总结实验结果:对实验和测试结果进行分析和总结,评估设计的通信系统的优缺点。

9. 撰写课程设计报告:根据课程设计的要求,撰写课程设计报告,详细记录设计的过程和结果。

二、课程设计内容通信原理课程设计的内容可以根据具体的主题进行选择和确定,以下是一些常见的设计内容:1. 信号调制与解调:设计一个简单的模拟调制解调系统,实现信号的调制与解调过程。

2. 信道编码与解码:设计一个简单的信道编码解码系统,实现对信号进行编码和解码的过程。

3. 数字调制与解调:设计一个数字调制解调系统,实现数字信号的调制与解调过程。

4. 信道传输与接收:设计一个信道传输与接收系统,实现信号的传输和接收过程。

5. 信号处理与分析:设计一个信号处理与分析系统,实现对信号进行处理和分析的功能。

6. 无线通信系统设计:设计一个简单的无线通信系统,实现无线信号的传输和接收过程。

通信原理课程设计

通信原理课程设计

通信原理课程设计一、课程设计目的。

通信原理是电子信息类专业的重要基础课程,旨在使学生掌握通信原理的基本概念、基本原理和基本方法,为学生今后学习专业课程和从事相关工作打下坚实的基础。

因此,本课程设计旨在通过理论学习和实践操作,培养学生的通信原理分析和解决问题的能力,提高学生的创新意识和实践能力。

二、课程设计内容。

1. 通信原理基础知识的学习。

通过教材学习和课堂讲解,学生应该掌握通信系统的基本概念、信号的基本特性、传输介质的特性、调制解调原理等基础知识。

2. 通信原理实验操作。

学生应该通过实验操作,掌握信号的产生与采集、调制解调器的使用、传输介质的特性测试等实际操作技能,加深对通信原理知识的理解。

3. 通信原理课程设计。

学生应该根据所学知识,结合实际案例,进行通信原理课程设计,包括信号的传输与接收、调制解调器的设计与应用、通信系统的性能分析等内容。

三、课程设计方法。

1. 教学方法。

采用理论教学与实践操作相结合的教学方法,注重培养学生的动手能力和实际应用能力。

2. 学习方法。

学生应该注重理论知识的学习,同时积极参与实验操作,灵活运用所学知识进行课程设计。

3. 评估方法。

采用考试、实验报告、课程设计报告等多种评估方法,全面评价学生的学习情况和能力水平。

四、课程设计要求。

1. 学生应按时完成课程设计任务,按要求提交实验报告和课程设计报告。

2. 学生应积极参与课堂讨论、实验操作,主动学习,提高自主学习能力。

3. 学生应严格遵守实验室规章制度,注意实验室安全,保护实验设备。

4. 学生应认真对待课程设计,理论与实践相结合,力求做到学以致用。

五、课程设计效果评估。

1. 通过考试和实验报告评分,全面评价学生的学习情况和能力水平。

2. 通过课程设计报告评分,评价学生的课程设计能力和创新意识。

3. 学生对通信原理的理解和掌握情况,通过课程设计效果评估,指导教师调整教学方法,提高教学质量。

六、总结。

通信原理课程设计是通信原理课程的重要组成部分,通过课程设计,学生可以将所学理论知识与实际应用相结合,提高学习兴趣,增强动手能力,培养创新意识和实践能力。

通信原理课课程设计6

通信原理课课程设计6

通信原理课课程设计6一、教学目标本节课的教学目标是使学生掌握通信原理的基本概念、基本原理和基本方法,能够运用通信原理分析和解决实际问题。

具体目标如下:1.理解通信系统的组成和基本原理;2.掌握调制、解调、编码和解码的基本概念和方法;3.了解通信系统的性能评估方法。

4.能够运用通信原理分析和解决实际问题;5.能够使用仿真软件进行通信系统的模拟和分析;6.能够进行通信系统的调试和优化。

情感态度价值观目标:1.培养学生对通信技术的兴趣和热情,提高学生对通信技术的认识;2.培养学生团队合作意识和沟通能力,提高学生解决实际问题的能力;3.培养学生对科学研究的热情和责任感,提高学生的科学研究能力。

二、教学内容本节课的教学内容主要包括通信系统的组成、调制解调技术、编码解码技术以及通信系统的性能评估。

具体内容包括:1.通信系统的组成:通信系统的基本概念、发送端、接收端、传输介质等;2.调制解调技术:调制的基本概念、调制的方法、解调的基本概念和解调的方法;3.编码解码技术:编码的基本概念、编码的方法、解码的基本概念和解码的方法;4.通信系统的性能评估:通信系统的性能指标、性能评估的方法。

三、教学方法为了达到本节课的教学目标,将采用以下教学方法:1.讲授法:通过教师的讲解,使学生掌握通信原理的基本概念、基本原理和基本方法;2.讨论法:通过小组讨论,培养学生团队合作意识和沟通能力,提高学生解决实际问题的能力;3.案例分析法:通过分析实际案例,使学生能够运用通信原理分析和解决实际问题;4.实验法:通过实验操作,使学生能够掌握调制解调技术、编码解码技术,提高学生的实践能力。

四、教学资源为了支持本节课的教学内容和教学方法的实施,将选择和准备以下教学资源:1.教材:通信原理教材,用于引导学生学习和掌握通信原理的基本概念、基本原理和基本方法;2.参考书:通信原理相关参考书,用于丰富学生的知识体系;3.多媒体资料:通信原理相关视频、动画等多媒体资料,用于辅助学生理解和掌握通信原理;4.实验设备:通信原理实验设备,用于进行通信系统的模拟和分析,提高学生的实践能力。

通信原理相关课程设计

通信原理相关课程设计

通信原理相关课程设计一、课程目标知识目标:1. 理解并掌握通信原理的基本概念,包括信号、信道、调制与解调等;2. 学习并掌握通信系统中常用的数学模型和公式,能够运用相关理论知识分析通信过程;3. 了解现代通信技术的发展趋势,认识通信技术在生活中的应用。

技能目标:1. 能够运用通信原理分析并解决实际问题,具备一定的通信系统设计能力;2. 能够运用所学知识进行通信设备的调试与维护,具备实际操作能力;3. 能够通过查阅资料、开展讨论等方式,自主学习和拓展通信领域的相关知识。

情感态度价值观目标:1. 培养学生对通信原理的兴趣,激发学习热情,养成主动探究和积极思考的习惯;2. 增强学生的团队合作意识,培养在团队中沟通与协作的能力;3. 提高学生的信息素养,使他们对通信技术在我国社会经济发展中的重要作用有深刻认识。

本课程针对高中年级学生,结合通信原理相关知识,注重理论联系实际,提高学生的知识水平和实践能力。

在教学过程中,教师需关注学生的个体差异,因材施教,使学生在掌握基本通信原理的基础上,能够灵活运用所学知识解决实际问题。

通过本课程的学习,旨在培养学生具备通信领域的基本素养和创新能力,为我国通信事业的发展储备人才。

二、教学内容本章节教学内容围绕以下三个方面展开:1. 通信原理基础知识:- 信号与系统:信号的概念、分类及特性;系统的概念、线性时不变系统及其性质;- 信道:信道的概念、分类、特性及信道模型;- 调制与解调:调制原理、分类及性能指标;解调原理及方法。

2. 通信系统分析与设计:- 通信系统的数学模型:信号的数学表示、系统方程的建立;- 通信系统性能分析:误码率、带宽、功率等性能指标的计算与优化;- 通信系统设计:根据实际需求,选择合适的调制解调方式、信道编码等技术。

3. 现代通信技术应用:- 数字通信技术:数字信号传输、数字调制解调、多路复用技术;- 移动通信技术:移动通信系统的组成、多址技术、蜂窝技术;- 互联网通信技术:网络结构、协议、路由算法等。

通信原理课程设计

通信原理课程设计

通信原理课程设计姓名______学号_______班级_____目录一、目录 (2)二、任务书 (3)三、具体内容及要求 (4)3.1 题目一 (4)3.1.1题目内容 (4)3.1.2设计思想或方法 (4)3.1.3实现的功能或方法 (4)3.1.4程序流程图 (4)3.1.5程序代码 (5)3.1.6仿真框图 (5)3.1.7模块描述及参数设置 (5)3.1.8结果运行 (10)3.1.9结果分析 (11)3.2 题目二 (11)3.2.1题目内容 (11)3.2.2设计思想或方法 (11)3.2.2程序流程图 (12)3.2.4程序代码 (13)3.2.5仿真框图 (13)3.2.6模块描述及参数设置 (14)3.2.7结果运行 (20)3.2.8结果分析 (20)3.3 题目三 (20)3.3.1题目内容 (20)3.3.2设计思想或方法 (20)3.2.3程序流程图 (21)3.2.4程序代码 (21)3.2.5结果运行 (23)3.2.6结果分析 (23)四、心得与体会 (23)五、参考文献 (23)《通信原理课程设计》任务书一、目的和要求:要求学生在熟练掌握MATLAB和simulink仿真使用的基础上,学会通信仿真系统的基本设计与调试。

并结合通信原理的知识,对通信仿真系统进行性能分析。

二、实验环境PC机、Matlab/Simulink三、具体内容及要求(1)试用Matlab/Simulink研究BPSK在加性高斯白噪声信道下的误码率性能与信噪比之间的关系;(2)试用Matlab/Simulink研究BPSK+信道编码(取汉明码)在加性高斯白噪声信道下的误码率性能与信噪比之间的关系;分析不同码率对误码率性能的影响。

(3)试用Matlab编程实现HDB3码的编解码过程,并画出1 1 0 1 0 0 0 0 0 0 1 1 1 00 0 0 0 0 1 0的原始、编码和解码图形。

四、提交设计报告内容包括:●系统的基本原理框图以及每一个模块的作用;●系统Simulink 仿真过程中,每一个用到的模块中主要参数的意义;●仿真系统参数的设定和设定的依据;●仿真系统参数改变时,给仿真结果带来的影响(如高斯白噪声信道的信噪比增加,则误码率减小);●仿真程序(需要加注释)。

通信原理教案

通信原理教案

通信原理教案一、引言。

通信原理是现代信息技术中的重要基础课程,它涉及到信号传输、调制解调、信道编码、数字通信系统等多个方面的知识。

本教案旨在系统地介绍通信原理的基本概念、原理和技术,帮助学生全面理解通信原理的重要性和应用。

二、通信原理概述。

通信原理是指在通信系统中,信息的传输和处理原理。

通信原理的基本概念包括信号、调制解调、信道编码、数字通信系统等。

信号是指携带信息的载体,调制解调是将信息转换成适合传输的信号形式,信道编码是为了提高信号传输的可靠性和效率,数字通信系统是利用数字技术进行信息传输的系统。

三、通信原理教学内容。

1. 信号与系统。

信号与系统是通信原理的基础,学生需要了解信号的分类、性质和处理方法,以及系统对信号的处理过程和特性。

2. 调制解调。

调制解调是将信息转换成适合传输的信号形式的过程,学生需要掌握调制解调的基本原理和常见调制方式,如调幅调制、调频调制、调相调制等。

3. 信道编码。

信道编码是为了提高信号传输的可靠性和效率,学生需要学习信道编码的基本概念、编码原理和常见编码技术,如奇偶校验码、循环冗余校验码等。

4. 数字通信系统。

数字通信系统是利用数字技术进行信息传输的系统,学生需要了解数字通信系统的基本原理、结构和应用,以及数字调制解调技术、数字信道编码技术等。

四、教学方法与手段。

1. 理论教学。

通过讲授、讨论等方式,向学生介绍通信原理的基本概念和原理,帮助学生建立起对通信原理的整体认识。

2. 实验教学。

通过实验操作,让学生亲自动手,加深对通信原理的理解和掌握,培养学生的动手能力和实践能力。

3. 综合教学。

结合案例分析、课外阅读等方式,拓展学生对通信原理的应用和发展的认识,培养学生的综合素质和创新能力。

五、教学评估与建议。

1. 教学评估。

通过平时作业、实验报告、期末考试等方式,对学生的学习情况进行评估,及时发现问题,加强学生的学习指导和帮助。

2. 教学建议。

针对学生的学习情况和问题,及时调整教学内容和方法,提供个性化的学习指导和帮助,激发学生的学习兴趣和潜能。

教学大纲通信原理

教学大纲通信原理

教学大纲通信原理通信原理是电子信息类专业中的一门重要课程,旨在介绍通信系统的基本原理、方法和技术。

本文将分为三个部分来论述通信原理的教学大纲。

一、课程简介通信原理是电子信息类专业中的核心课程之一,主要涵盖了通信系统的基本概念、信号与系统、调制技术、解调技术、传输介质、误码控制、多址技术等内容。

通过学习通信原理,学生将深入了解通信系统的基本原理、方法和技术,为后续专业课程的学习打下坚实的基础。

二、教学目标1. 理论知识:掌握通信系统的基本概念、信号与系统的描述与分析方法、调制与解调技术、信道传输特性与传输介质的选择、误码控制的方法、多址技术等理论知识。

2. 实践技能:掌握通信系统的建模和仿真方法,能够使用相关软件工具进行通信系统的仿真实验设计与分析。

3. 创新意识:培养学生的创新意识,使其能够主动解决通信系统中的问题,提出优化方案,并具备一定的科研能力。

4.团队合作:培养学生的团队协作能力,使其能够在通信系统设计与实现过程中与他人进行有效的合作与沟通。

三、教学内容与模块划分1. 通信系统基本概念1.1 通信系统的定义与基本组成部分1.2 信道类型与信号传递方式1.3 通信系统的性能指标与评价方法2. 信号与系统2.1 信号的基本概念与分类2.2 信号的时域与频域表示2.3 系统的概念与特性2.4 线性时不变系统的数学描述与分析方法3. 调制与解调技术3.1 传输信号的调制方法与种类3.2 解调技术与信号恢复方法3.3 调制解调系统性能与优化4. 传输介质与信道传输特性4.1 传输介质的分类与性能特点4.2 信道传输特性的量化与评估4.3 信噪比、带宽与传输速率的关系5. 误码控制5.1 基本概念与误码控制的重要性5.2 编码与解码技术5.3 常用的误码控制编码方法6. 多址技术6.1 多用户接入的需求与挑战6.2 多址技术的分类与应用6.3 CDMA技术的原理与特点四、教学方法与手段1. 理论讲授:通过课堂讲解,向学生介绍通信原理的基本概念、理论知识和应用技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课 程 设 计课程设计名称: 通信综合课程设计专业班级: 电科0902 学生姓名: 张晓彬 学 号: 200948360223 指导教师: 王珂 课程设计时间: 2012.12.24至2012.12.30电子信息科学与技术专业课程设计任务书学生姓名张晓彬专业班级电科0902班学号200948360223题目抑制载波的双边带调制的仿真分析设计课题性质 A 课题来源 D指导教师王珂同组姓名张晓彬、陈凯亮、李飞、高亚飞、胡佳楠、孙浩铭、赵自振、马高超主要内容综合运用信号与系统、数字信号处理、通信原理等课程中学习的知识,利用Matlab软件编程,完成抑制载波的双边带调制的仿真分析设计。

任务要求1.利用Matlab软件编程实现抑制载波的双边带调制的设计;2.要求模拟基带信号是频率为2Hz、幅度为0.5V的余弦信号,载波频率为16Hz;3.分别画出模拟基带信号、模拟基带信号的功率谱密度、抑制载波的双边带调制的调制信号,并进行分析;4.认真撰写课程设计报告(论文),内容、结构要完整;5.在规定的时间内上交课程设计报告(论文),字数不少于学校的要求。

参考文献1.樊昌信,曹丽娜. 通信原理(第六版),国防教育出版社.2.Sanjit K.Mitra. 数字信号处理——基于计算机的方法(第三版),清华大学出版社.3.邱关源,罗先觉. 电路(第五版),高等教育出版社.4.童诗白,华成英. 模拟电子技术基础(第四版),高等教育出版社.5.阎石. 数字电子技术基础(第四版),高等教育出版社.6.吴大正. 信号与线性系统分析(第四版),高等教育出版社.审查意见指导教师签字:王珂教研室主任签字: 2012 年 12 月 20 日一、设计目的本课程设计是实现模拟DSB-SC 信号的调制解调。

加深对幅度调制的理解 建立对通信系统整体过程和框架的新认识 更好的理解幅度调制系统的各个模块的作用以及仿真实现方法。

同时加强对MATLAB 操作的熟练度 在使用中去感受MATLAB 的应用方式与特色。

利用自主的设计过程来锻炼自己独立思考 分析和解决问题的能力 加强动手能力 在实验中提高对理论的领悟层次明白通信的实质。

二、设计要求(1)熟悉MATLAB 中M 文件的使用方法,掌握DSB-SC 信号的调制解调原理,以此为基础用M 文件编程、Simulink 仿真实现DSB-SC 信号的调制解调。

(2)绘制出DSB-SC 信号调制解调前后在时域和频域中的波形,观察两者在解调前后的变化,通过对结果的分析来加强对DSB-SC 信号调制解调原理的理解。

(3)用随机噪声来模拟信道中的高斯白噪声。

三、系统原理 (一)系统框图:(二)各模块原理及M 文件实现 1.调制部分如果将AM 信号中的载波抑制,只需在将直流0A 去掉,即可输出抑制载波双边带信号(DSB-SC )。

DSB-SC 调制器模型如图1所示。

调制信号调制器信道发送滤波接收滤波载波解调器噪声低通滤波解调信号图1 DSB-SC 调制器模型其中,设正弦载波为0()cos()c c t A t ωϕ=+式中,A 为载波幅度;c ω为载波角频率;0ϕ为初始相位(假定0ϕ为0)。

假定调制信号()m t 的平均值为0,与载波相乘,即可形成DSB-SC 信号,其时域表达式为()cos DSB c s m t tω=式中,()m t 的平均值为0。

DSB-SC 的频谱为()1[()()]2D SB c c s M M ωωωωω=++-DSB-SC 信号的包络不再与调制信号的变化规律一致,因而不能采用简单的包络检波来恢复调制信号, 需采用相干解调(同步检波)。

另外,在调制信号()m t 的过零点处,高频载波相位有180°的突变。

除了不再含有载频分量离散谱外,DSB-SC 信号的频谱与AM 信号的频谱完全相同,仍由上下对称的两个边带组成。

所以DSB-SC 信号的带宽与AM 信号的带宽相同,也为基带信号带宽的两倍, 即2DSB AM HB B f ==式中,H f 为调制信号的最高频率。

仿真程序如下:Fs=500; %抽样频率为Fs/Hz T=[0:499]/Fs; %定义运算时间 Fc=50; %载波频率为Fc/Hz f=5; %调制信号频率为f/Hz x1=sin(2*pi*f*T); %调制信号 N=length(x1); %调制信号长度 X1=fft(x1); %傅里叶变换到频域 y1=amod(x1,Fc,Fs,'amdsb-sc');%调用函数amod()进行调制绘图得到结果如下: 2.高斯白噪声信道特性分析在实际信号传输过程中,通信系统不可避免的会遇到噪声,例如自然界中的各种电磁波噪声和设备本身产生的热噪声、散粒噪声等,它们很难被预测。

而且大部分噪声为随机的高斯白噪声,所以在设计时引入噪声,才能够真正模拟实际中信号传输所遇到的问题,进而思考怎样才能在接受端更好地恢复基带信号。

信道加性噪声主要取决于起伏噪声,而起伏噪声又可视为高斯白噪声,因此我在此环节将对双边带信号添加高斯白噪声来观察噪声对解调的影响情况。

在此过程中,我用函数randn 来添加噪声,正弦波通过加性高斯白噪声信道后的信号为 ()cos()()c r t A t n t ωθ=++ 故其有用信号功率为22AS =;噪声功率为2N σ=;信噪比SN 满足公式1010log ()SB N=到达接收端之前,已调信号通过信道,会叠加上信道噪声,使信号有一定程度的失真。

故接收端收到的信号应为:已调信号+信道噪声 仿真程序:noisy=randn(1,N); %模拟信道噪声y1=y1+noisy; %接收端收到的信号 Y1=fft(y1); %傅里叶变换到频域 调制信号、已调信号、加噪已调信号的绘图如下:3.发送与接收滤波器:主要为了滤除带外噪声,传递有用信息,提高信噪比,减小失真,采用巴特沃斯带通滤波器实现。

仿真程序:rp=1;rs=10; %通带衰减和阻带衰减wp=2*pi*[43,58];ws=2*pi*[40,61]; %通带截止频率和阻带截止频率[N,wc]=buttord(wp,ws,rp,rs,'s'); %得出巴特沃斯的阶数N1和3dB 截止频率[B,A]=butter(N,wc,'s'); %计算系统函数分子和分母多项式系数[Bz,Az]=impinvar(B,A,Fs); %用脉冲响应不变法设计IIR,将模拟转数字yf=filter(Bz,Az,y1); %过带通滤波器滤除带外噪声Yf=fft(yf); %变换到频域得到带限加噪已调信号如下:4.解调部分所谓同步检波是为了从接收的已调信号中,不失真地恢复原调制信号,要求本地载波和接收信号的载波保证同频同相。

同步检波的一般数学模型如图所示。

DSB-SC 同步检波模型设输入为DSB-SC 信号0()()()cos()m DSB c S t S t m t t ωϕ==+乘法器输出为000()()()cos()cos()1()[cos()cos(2)]2D SB c c c t S t m t t t m t t ρωϕωϕϕϕωϕϕ==++=-+++通过低通滤波器后001()()cos()2m t m t ϕϕ=-当0ϕϕ==常数时,解调输出信号为01()()2m t m t =程序实现:y2=ademod(y1,Fc,Fs,'amdsb-sc'); %用函数ademod()解调y1 Y2=fft(y2); %得出解调信号y2的频谱 fp1=6;fs1=9;rp1=1;rs1=10; %设计巴特沃斯低通滤波器 wp1=2*pi*fp1;ws1=2*pi*fs1; [N1,wc1]=buttord(wp1,ws1,rp1,rs1,'s');[B1,A1]=butter(N1,wc1,'s'); [Bz1,Az1]=impinvar(B1,A1,Fs);yout=filter(Bz1,Az1,y2); %将y2过低通滤波器得多最后输出信号Yout=fft(yout); %得出输出信号的频谱 调制信号与解调信号的对比:(三)Simulink仿真在Simulink 环境中进行可视化设计, 建立双边带幅度调制解调系统并实现对它的动态仿真, 系统框图如下所示。

本例中的仿真系统由信源模块调制和解调模块、模拟示波器、随机数产生器等构成。

调制信号幅度为1 , 频率为5Hz 的正弦信号,载波采用振幅为1,频率50HZ的正弦信号,调制和解调模块采用Simulink 中的乘法器; 最后的结果在示波器中实现出来。

模拟示波器显示的波形从上到下依次为:原始信号波形、载波、加噪已调信号波形、解调信号波形,过低通滤波的解调信号波形。

仿真结果:调制信号经过调制解调过程之后引入白噪声,分别经过带通滤波器和低通滤波器来将高斯白噪声滤波为窄带白噪声,再经过解调过程将调制信号解调出来,反应原来的信息(由于噪声必然存在,所以必然造成一定程度的失真,但都在可接受的范围内)。

四、M文件完整程序%*******************************************************调制部分Fs=500; %抽样频率为Fs/HzT=[0:499]/Fs; %定义运算时间Fc=50; %载波频率为Fc/Hzf=5; %调制信号频率为f/Hzx1=sin(2*pi*f*T); %调制信号N=length(x1); %调制信号长度X1=fft(x1); %傅里叶变换到频域y0=amod(x1,Fc,Fs,'amdsb-sc'); %调用函数amod()进行调制noisy=randn(1,N); %模拟信道噪声y1=y0+noisy/3; %接收端收到的信号Y0=fft(y0);Y1=fft(y1); %傅里叶变换到频域figure(1)subplot(3,2,1);plot(T,x1); %调制信号时域波形图title('调制信号波形');xlabel('时间');ylabel('幅度');s=abs(X1);frq=[0:N-1]*Fs/N; %横坐标频率/Hz subplot(3,2,2);plot(frq,s);axis([0 100 0 300]); %调制信号频谱图title('调制信号频谱');xlabel('频率');ylabel('幅度');subplot(3,2,3);plot(T,y0); %已调信号时域波形图title('已调信号波形');xlabel('时间');ylabel('幅度');s0=abs(Y0);subplot(3,2,4);plot(frq,s0);axis([0 100 0 150]);title('已调信号频谱');xlabel('频率');ylabel('幅度');subplot(3,2,5);plot(T,y1); %已调信号时域波形图title('加噪已调信号波形');xlabel('时间');ylabel('幅度');s1=abs(Y1);subplot(3,2,6);plot(frq,s1);axis([0 100 0 150]);title('加噪已调信号频谱');xlabel('频率');ylabel('幅度');%***************************************************************带通滤波器rp=1;rs=10; %四项指标wp=2*pi*[43,58];ws=2*pi*[40,61]; %通带角频率和截止角频率[N,wc]=buttord(wp,ws,rp,rs,'s'); %得出巴特沃斯的阶数N1和3dB截止频率[B,A]=butter(N,wc,'s'); %计算系统函数分子和分母多项式系数[Bz,Az]=impinvar(B,A,Fs); %用脉冲响应不变法设计IIR,将模拟转数字yf=filter(Bz,Az,y1);Yf=fft(yf);figure(2)subplot(2,2,1);plot(T,yf); %调制信号过带通滤波器title('带限信号波形');xlabel('时间');ylabel('幅度');s2=abs(Yf);subplot(2,2,2);plot(frq,s2);axis([0 100 0 120]);title('带限信号频谱');xlabel('时间');ylabel('幅度');%***************************************************************解调部分y2=ademod(y1,Fc,Fs,'amdsb-sc'); %用函数ademod()解调y1Y2=fft(y2); %得出解调信号y2的频谱subplot(2,2,3);plot(T,y2);title('接收信号波形');xlabel('时间');ylabel('幅度');s3=abs(Y2);subplot(2,2,4);plot(frq,s3);axis([0 100 0 250]);title('接收信号频谱');xlabel('时间');ylabel('幅度');%************************************************************接收低通滤波器fp1=6;fs1=9;rp1=1;rs1=10; %设计巴特沃斯低通滤波器wp1=2*pi*fp1;ws1=2*pi*fs1;[N1,wc1]=buttord(wp1,ws1,rp1,rs1,'s');[B1,A1]=butter(N1,wc1,'s');[Bz1,Az1]=impinvar(B1,A1,Fs);yout=filter(Bz1,Az1,y2); %将y2过低通滤波器得多最后输出信号Yout=fft(yout); %得出输出信号的频谱figure(3)subplot(2,2,1);plot(T,x1); %调制信号时域波形图title('调制信号波形');xlabel('时间');ylabel('幅度');s4=abs(X1);subplot(2,2,2);plot(frq,s4);axis([0 100 0 300]); %调制信号频谱图title('调制信号频谱');xlabel('频率');ylabel('幅度');subplot(2,2,3);plot(T,yout); %调制信号时域波形图title('解调信号波形');xlabel('时间');ylabel('幅度');s5=abs(Yout);subplot(2,2,4);plot(frq,s5);axis([0 100 0 250]); %调制信号频谱图title('解调信号频谱');xlabel('频率');ylabel('幅度');五、结束语:本文介绍了双边带幅度调制系统的基本原理和使用MATLAB/ M文件、MATLAB/ Simulink对其进行仿真的基本方法。

相关文档
最新文档