2014年福建省高职招考(面向普高)统一考试数学试题及参考答案
14年高考真题——文科数学(福建卷)-推荐下载

:
(D)240 元
x y 7 0
x
y 0
y
3
0
(D) 4OM
。若圆年高考真题文科数学(解析版) 卷
福建
只有一个正确,则100a 10b c 等于________。
三.解答题:本大题共 6 小题,共 74 分。解答应写出文字说明,证明过程和演算步骤。
|| P1P2 ||| x1 x2 | | y1 y2 | ,则平面内与 x 轴上两个不同的定点 F1, F2 的“ L 距离”之和
等于定值(大于 || F1F2 || )的点的轨迹可以是( )
二.填空题:本大题共 4 小题,每小题 4 分,共 16 分,把答案写在答题卡相应位置上。
19.(本小题满分 12 分)如图 16 所示,三棱锥 A BCD 中,
M
AB ⊥平面 BCD , CD ⊥ BD 。⑴求证: CD ⊥平面 ABD ;⑵若
AB BD CD 1 , M 为 AD 中点,求三棱锥 A MBC 的体 B
D
积。 20.(本小题满分 12 分)根据世行 2013 年新标准,人均
17.(本小题满分 12 分)在等比数列an中, a2 = 3 , a5 = 81 。⑴求 an ;⑵设
bn log3 an ,求数列bn的前 n 项和 Sn 。
18.(本小题满分 12 分)已知函数 f x 2 cos x sin x cos x。⑴求 f 5 4的值;
福建
2014 年高考真题文科数学(解析版) 卷
下列函数正确的是( )
9.要制作一个容积为 4 m3 ,高为 1 m 的无盖长方体容器。已知该容器的底面造价是每
平方米 20 元,侧面造价是每平方米 10 元,则该容器的最低总造价是( )
2014年普通高等学校招生全国统一考试福建卷

2014年普通高等学校招生全国统一考试(福建卷)数学(文史类)第I 卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一个项是符合题目要求的。
1. 若集合}42|{<≤=x x P ,}3|{≥=x x Q ,则=Q P 等于( )A .}43|{<≤x xB .}43|{<<x xC .}32|{<≤x xD .}32|{≤≤x x 2. 复数i i )23(+等于( )A .i 32--B .i 32+-C .i 32-D .i 32+3. 以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于( )A .π2B .πC .2D .14. 阅读右图所示的程序框图,运行相应的程序,输出n 的值是( )A .1B .2C .3D .4 5. 命题“0),,0[3≥++∞∈∀x x x ”的否定是( )A .0),0,(3<+-∞∈∀x x x B .0),0,(3≥+-∞∈∀x x x C .0),,0[0300<++∞∈∃x x x D .0),,0[0300≥++∞∈∃x x x 6. 已知直线l 过圆4)3(22=-+y x 的圆心,且与直线01=++y x 垂直,则直线l 的方程是( )A .02=-+y xB .02=+-y xC .03=-+y xD .03=+-y x 7. 将函数x y sin =的图像左移2π个单位,得到函数)(x f y =的图像,则下列说法正确的是( ) A .)(x f y =是奇函数 B .)(x f y =的周期是πC .)(x f y =的图像关于直线2π=x 对称 D .)(x f y =的图像关于直线)0,2(π-对称8. 若函数)1,0(log ≠>=a a x y a 的图像如右图所示,则下列函数图像正确的是()A B C D9. 要制作一个容积为34m ,高为m 1的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A .80元B .120元C .160元D .240元10. 设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内的任意一点,则→→→→+++OD OC OB OA 等于( )A .→OM B .2→OM C .3→OM D .4→OM11. 已知圆1)()(:22=-+-b y a x C ,平面区域⎪⎩⎪⎨⎧≥≥+-≤-+Ω00307:y y x y x ,若圆心Ω∈C ,且圆C 与x轴相切,则22b a +的最大值为( )A .5B .29C .37D .4912. 平面直角坐标系中,两点),(111y x P ,),(222y x P 间的“-L 距离”定义为||||||212121y y x x P P -+-=,则平面内与x 轴上两个不同的定点21,F F 的“-L 距离”之和等于定值(大于||21F F )的点的轨迹可以是( )A B C D第II 卷(非选择题 共90分)注意事项:用0.5毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答案无效。
2014年高考福建文科数学试题(卷)与答案(word解析版)

2014年普通高等学校招生全国统一考试(福建卷)数学(文科)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求. (1)【2014年福建,文1,5分】若集合{}|24P x x =≤<,{}|3Q x x =≥,则P Q =I ( )(A ){}|34x x ≤< (B ){}|34x x << (C ){}|23x x ≤< (D ){}|23x x ≤≤ 【答案】A【解析】{|34}P Q x x ≤I =<,故选A . (2)【2014年福建,文2,5分】复数()32i i +等于( )(A )23i -- (B )23i -+ (C )23i - (D )23i + 【答案】B【解析】232i i 3i 223()i i +=+=-+,故选B . (3)【2014年福建,文3,5分】以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于( )(A )2π(B )π (C )2 (D )1【答案】A 【解析】根据题意,可得圆柱侧面展开图为矩形,长212ππ⨯=,宽1,∴212S ππ=⨯=,故选A . (4)【2014年福建,文4,5分】阅读右图所示的程序框图,运行相应的程序,输出的n 的值为( )(A )1 (B )2 (C )3 (D )4 【答案】B【解析】第一次循环1n =,判断1221>成立,则112n =+=;第二次循环,判断2222>不成立,则输出2n =,故选B .(5)【2014年福建,文5,5分】命题“[)0,x ∀∈+∞,30x x +≥”的否定是( )(A )(),0x ∀∈-∞,30x x +< (B )(),0x ∀∈-∞,30x x +≥(C )[)00,x ∃∈+∞,3000x x +< (D )[)00,x ∃∈+∞,3000x x +≥ 【答案】C【解析】全称命题的否定是特称命题,故该命题的否定是[)00,x ∃∈+∞,300x x +<,故选C . (6)【2014年福建,文6,5分】直线l 过圆()2234x y +-=的圆心,且与直线10x y ++=垂直,则l 的方程是 ( )(A )20x y +-= (B )20x y -+= (C )30x y +-= (D )30x y -+= 【答案】D【解析】直线过圆心()0,3,与直线10x y ++=垂直,故其斜率1k =.所以直线的方程为()310y x -=⨯-,即30x y -+=,故选D .(7)【2014年福建,文7,5分】将函数sin y x =的图像向左平移2π个单位,得到函数()y f x =的图像,则下列说法正确的是( )(A )()y f x =是奇函数 (B )()y f x =的周期为π (C )()y f x =的图像关于直线2x π=对称 (D )()y f x =的图像关于点,02π⎛⎫- ⎪⎝⎭对称 【答案】D【解析】sin y x =的图象向左平移2π个单位,得π()=sin =cos 2y f x x x ⎛⎫=+ ⎪⎝⎭的图象,所以()f x 是偶函数,A 不正确;()f x 的周期为2π,B 不正确;()f x 的图象关于直线()x k k π=∈Z 对称,C 不正确;()f x 的图象关于点(),02k k ππ⎛⎫+∈ ⎪⎝⎭Z 对称,当1k =-时,点为π(,0)2-,故选D .(8)【2014年福建,文8,5分】若函数()log 0,1a y x a a =>≠且的图象如右图所示,则下列函数正确的是( )(A ) (B ) (C ) (D )【答案】B【解析】由题中图象可知log 31a =,所以3a =.A 选项,133xxy -⎛⎫== ⎪⎝⎭为指数函数,在R 上单调递减,故A 不正确.B 选项,3y x =为幂函数,图象正确.C 选项,()33y x x =-=-,其图象和B 选项中3y x =的图象关于x 轴对称,故C 不正确.D 选项,()3log y x =-,其图象与3log y x =的图象关于y 轴对称,故D 选项不正确,故选B .(9)【2014年福建,文9,5分】要制作一个容积为43m ,高为1m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )(A )80元 (B )120元 (C )160元 (D )240元 【答案】C【解析】设容器的底长x 米,宽y 米,则4xy =.所以4y x=,则总造价为:()()80420211080202080f x xy x y x x x x ⎛⎫=++⨯⨯=++=++ ⎪⎝⎭,()0,x ∈+∞.所以()20160f x ≥⨯=,当且仅当4x x=,即x =2时,等号成立,所以最低总造价是160元,故选C .(10)【2014年福建,文10,5分】设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA OB OC OD +++u u u r u u u r u u u r u u u r等于( )(A )OM u u u u r (B )2OM u u u u r (C )3OM u u u u r (D )4OM u u u u r 【答案】D【解析】因为M 是AC 和BD 的中点,由平行四边形法则,得2OA OC OM +=u u u r u u u r u u u u r ,2OB OD OM +=u u u r u u u r u u u u r,所以4OA OB OC OD OM +++=u u u r u u u r u u u r u u u r u u u u r,故选D .(11)【2014年福建,文11,5分】已知圆C :()()221x a y b -+-=,平面区域Ω:70300x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩.若圆心C ∈Ω,且圆C 与x 轴相切,则22a b +的最大值为( )(A )5 (B )29 (C )37 (D )49 【答案】C【解析】由题意,画出可行域Ω,圆心C ∈Ω,且圆C 与x 轴相切,所以1b =,所以圆心在直线1y =上,求得与直线30x y -+=,70x y +-=的两交点坐标分别为()2,1A -,()6,1B ,所以[]2,6a ∈-.所以[]22211,37a b a +=+∈,所以22a b +的最大值为37,故选C .(12)【2014年福建,文12,5分】在平面直角坐标系中,两点()111,P x y ,()222,P x y 间的“L -距离”定义为121212||||||||PP x x y y =-+-,则平面内与x 轴上两个不同的定点12,F F 的“L -距离”之和等于定值(大于12||||F F )的点的轨迹可以是( )(A ) (B ) (C ) (D )【答案】A【解析】不妨设()1,0F a -,()2,0F a ,其中0a >,点(),P x y 是其轨迹上的点,P 到1F ,2F 的“L -距离”之和等于定值b (大于12||||F F ),所以x a y x a y b +++-+=,即2x a x a y b -+++=.当x a <-,0y ≥时,上式可化为2b y x -=;当a x a -≤≤,0y ≥时,上式可化为2by =a -;当x a >,0y ≥时,上式可化为2b x+y =;当x a <-,0y <时,上式可化为2bx+y =-;当a x a -≤≤,0y <时,上式可化为2b y a =-;当x a >,0y <时,上式可化为2bx y =-,故选A .第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.(13)【2014年福建,文13,5分】如图,在边长为1的正方形中,随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为 . 【答案】0.18【解析】由几何概型可知18010001S S S ==阴影阴影正方形,所以0.18S 阴影=.故答案为0.18. (14)【2014年福建,文14,5分】在ABC ∆中,060A =,2AC =,BC =AB = .【答案】1【解析】由余弦定理可知:2222431cos 2222b c a c A bc c +-+-===⨯,所以1c =,故答案为1.(15)【2014年福建,文15,5分】函数()()()22026ln 0x x f x x x x ⎧-≤⎪=⎨-+>⎪⎩的零点个数是 .【答案】2【解析】当0x ≤时,令()220f x x =-=,得x =x =0x >时,()26ln f x x x =-+,()12+0f x x'=>.所以()f x 单调递增,当0x →时,()0f x <;当x →+∞时,()0f x >,所以()f x 在()0,+∞上有一个零点.综上可知共有两个零点.故答案为2.(16)【2014年福建,文16,5分】已知集合{}{},,0,1,2a b c =,且下列三个关系:①2a ≠;②2b =;③0c ≠有且只有一个正确,则10010a b c ++等于 . 【答案】201【解析】由题意可知三个关系只有一个正确分为三种情况:(1)当①成立时,则2a ≠,2b ≠,0c =,此种情况不成立; (2)当②成立时,则2a =,2b =,0c =,此种情况不成立;(3)当③成立时,则2a =,2b ≠,0c ≠,即2a =,0b =,1c =, 所以1001010021001201a b c ++=⨯+⨯+=.三、解答题:本大题共6题,共74分.解答应写出文字说明,演算步骤或证明过程. (17)【2014年福建,文17,12分】在等比数列{}n a 中,23a =,581a =.(1)求n a ;(2)设3log n n b a =,求数列{}n b 的前n 项和n S .解:(1)设{}n a 的公比为q ,依题意得141381a q a q =⎧⎨=⎩,解得113a q =⎧⎨=⎩,因此13n n a -=.(2)因为3log 1n n b a n ==-,所以数列{}n b 的前n 项和21()22n n n b b n nS +-==. (18)【2014年福建,文18,12分】已知函数()()2cos sin cos f x x x x =+.(1)求54f π⎛⎫⎪⎝⎭的值;(2)求函数()f x 的最小正周期及单调递增区间. 解:(1)55552cos sin cos 2cos sin cos 24444444f πππππππ⎛⎫⎛⎫⎛⎫=+=---=⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.(2)因()22sin cos 2cos sin 21cos 2214f x x x x x x x π⎛⎫=+=++++ ⎪⎝⎭,故周期T π=.由222242k x k πππππ-≤+≤+得()388k x k k Z ππππ-≤≤+∈.因此()f x 的单调递增区间为()3,88k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦.(19)【2014年福建,文19,12分】如图所示,三棱锥A BCD -中,AB ⊥平面BCD ,CD ⊥BD .(1)求证:CD ⊥平面ABD ;(2)若1AB BD CD ===,M 为AD 中点,求三棱锥A MBC -的体积. 解:(1)因AB ⊥平面BCD ,CD ⊂平面BCD ,故AB CD ⊥.又CD BD ⊥,AB BD B =I ,AB ⊂平面ABD ,BD ⊂平面ABD ,所以CD ⊥平面ABD .(2)由AB ⊥平面BCD ,得AB BD ⊥.因1AB BD ==,故12ABD S ∆=.因M 是AD 中点,故124ABD ABM S S ∆∆==.由(1)知,CD ⊥平面ABD ,故三棱锥C ABM -的高1h CD ==,因此三棱锥A MBC -的体积1312ABM A MBC C ABM S h V V ∆--⋅===.(20)【2014年福建,文20,12分】根据世行2013年新标准,人均GDP 低于1035美元为低收入国家;人均GDP为13054085-美元为中等偏下收入国家;人均GDP 为408512616-美元为中等偏上收入国家;人均GDP 不低于12616GDP 如下表.(1(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP 都达到中等偏上收入国家标准的概率. 解:(1)设该城市人口总数为a ,则该城市人均GDP 为:()80000.2540000.3060000.1530000.10100000.206400a a a a a a⨯+⨯+⨯+⨯+⨯=.因为[)64004085,12616∈,所以该城市人均GDP 达到了中等偏上收入国家标准.(2)“从5个行政区中随机抽取2个”的所有基本事件是:{}{}{}{},,,,,,,,A B A C A D A E {}{}{},,,,,,B C B D B E{}{}{},,,,,C D C E D E 共10个,设事件“抽到的2个行政区人均GDP 都达到中等偏上收入国家标准”为M ,则事件M 包含的基本事件是:{}{}{},,,,,A C A E C E 共3个,所以所求概率为()310P M =. (21)【2014年福建,文21,12分】已知曲线Γ上的点到点()0,1F 的距离比它到直线3y =- 的距离小2.(1)求曲线Γ的方程;(2)曲线Γ在点P 处的切线l 与x 轴交于点A ,直线3y =分别与直线l 及y 轴交于点,M N .以MN 为直径作圆C ,过点A 作圆C 的切线,切点为B .试探究:当点P 在曲线Γ上运动(点P 与原点不重合) 时,线段AB 的长度是否发生变化?证明你的结论.解:(1)设(),S x y 为曲线Γ上任意一点,依题意,点S 到()0,1F 的距离与它到直线1y =-的距离相等,所以曲线Γ是以点()0,1F 为焦点,直线1y =-为准线的抛物线,所以曲线Γ的方程为24x y =. (2)当点P 在曲线Γ上运动时,线段AB 的长度不变.证明如下:由(1)知抛物线Γ的方程为214y x =, 设()()000,0P x y x ≠,则20014y x =.由'12y x =得切线l 的斜率012k x =, 故切线l 的方程为()00012y y x x x -=-,即20042y x x x =-.由200420y x x x y ⎧=-⎪⎨=⎪⎩得01,02A x ⎛⎫ ⎪⎝⎭,由200423y x x x y ⎧=-⎪⎨=⎪⎩得0016,32M x x ⎛⎫+ ⎪⎝⎭.又()0,3N ,所以圆心0013,34C x x ⎛⎫+ ⎪⎝⎭,半径r =00||3||24x MN x =+,||AB ===所以点P 在曲线Γ上运动时,线段AB 的长度不变.(22)【2014年福建,文22,14分】已知函数()xf x e ax =-(a 为常数)的图像与y 轴交于点A ,曲线()y f x =在点A 处的切线斜率为1-.(1)求a 的值及函数()f x 的极值;(2)证明:当0x >时,2x x e <;(3)证明:对任意给定的正数c ,总存在0x ,使得当()0x x ∈+∞,,恒有x x ce <.解:(1)由题()x f x e a '=-,故()101f a '-==-,得2a =.故()2x f x e x =-,()2x f x e '=-.令()0f x '=,得ln2x =.当ln2x <时,()0f x '<,()f x 单调递减;当ln2x >时,()0f x '>,()f x 单调递增.所 以当ln2x =时,()f x 取得极小值,其值为()ln 22ln 4f =-,()f x 无极大值.(2)令()2x g x e x =-,则由(1)得()()()2ln 22ln 40x g x e x f x f '=-=≥=->,故()g x 在R 上单调递增.又()010g =>,故当时,()()00g x g >>,即2x x e <.(3)①若1c ≥,由(2)知,当0x >时,2x x e <,故当0x >时,2x x x e ce <≤.取00x =,当()0,x x ∈+∞时,恒有2xx ce <;②若01c <<,令11k c=>,要使不等式2x x ce <成立,只要2x e kx >成立,即要()2ln 2ln ln x kx x k>=+ 成立.令()2ln ln h x x x k =--,则()21h x x=-.所以当2x >时,()0h x '>,()h x 在()2,+∞单增.取01616x k =>,故()h x 在()0,x +∞单增.又()()()()0162ln 16ln 8ln 23ln 50h x k k k k k k k =--=-+-+>,即存在016x c=,当()0,x x ∈+∞时,恒有2x x ce <.综上得证.。
2014年普通高等学校招生全国统一考试数学(福建卷)理 (2)

2014年普通高等学校招生全国统一考试(福建卷)数学试题(理工农医类)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2014福建,理1)复数z=(3-2i)i 的共轭复数z 等于( ). A .-2-3i B .-2+3iC .2-3iD .2+3i答案:C解析:因为z=(3-2i)i =3i -2i 2=2+3i,所以z =2-3i .故选C .2.(2014福建,理2)某空间几何体的正视图是三角形,则该几何体不可能是( ). A .圆柱B .圆锥C .四面体D .三棱柱答案:A解析:因为圆锥、四面体、三棱柱的正视图均可以是三角形,而圆柱无论从哪个方向看均不可能是三角形,所以选A .3.(2014福建,理3)等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ). A .8 B .10C .12D .14答案:C解析:因为S 3=3a 1+3×(3-1)2d=3×2+3×22d=12,所以d=2.所以a 6=a 1+(6-1)d=2+5×2=12.故选C .4.(2014福建,理4)若函数y=log a x (a>0,且a ≠1)的图象如图所示,则下列函数图象正确的是( ).答案:B解析:由图象可知log a 3=1,所以a=3.A 选项,y=3-x =(13)x 为指数函数,在R 上单调递减,故A 不正确.B 选项,y=x 3为幂函数,图象正确.C 选项,y=(-x )3=-x 3,其图象和B 选项中y=x 3的图象关于x 轴对称,故C 不正确.D 选项,y=log 3(-x ),其图象与y=log 3x 的图象关于y 轴对称,故D 选项不正确.综上,可知选B .5.(2014福建,理5)阅读如图所示的程序框图,运行相应的程序,输出的S 的值等于( ).A.18B.20C.21D.40答案:B解析:该程序框图为循环结构,由S=0,n=1得S=0+21+1=3,n=1+1=2,判断S=3≥15不成立,执行第二次循环,S=3+22+2=9,n=2+1=3,判断S=9≥15不成立,执行第三次循环,S=9+23+3=20,n=3+1=4,判断S=20≥15成立,输出S=20.故选B.6.(2014福建,理6)直线l:y=kx+1与圆O:x2+y2=1相交于A,B两点,则“k=1”是“△OAB的面积为12”的().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分又不必要条件答案:A解析:k=1时,图象如图(1),此时△OAB的面积S=12×1×1=12,所以k=1是△OAB面积为12的充分条件;而当△OAB面积为12时,直线l有l1或l2两种可能,如图(2),k=1或k=-1.综上,可知选A.图(1)图(2)7.(2014福建,理7)已知函数f(x)={x2+1,x>0,cosx,x≤0,则下列结论正确的是().A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[-1,+∞)答案:D解析:由题意,可得函数图象如下:所以f(x)不是偶函数,不是增函数,不是周期函数,其值域为[-1,+∞).故选D.8.(2014福建,理8)在下列向量组中,可以把向量a=(3,2)表示出来的是().A.e1=(0,0),e2=(1,2)B.e1=(-1,2),e2=(5,-2)C.e1=(3,5),e2=(6,10)D.e1=(2,-3),e2=(-2,3)答案:B解析:由平面向量基本定理可知,平面内任意一个向量可用平面内两个不共线向量线性表示,A 中e 1=0·e 2,B 中e 1,e 2为两个不共线向量,C 中e 2=2e 1,D 中e 2=-e 1.故选B .9.(2014福建,理9)设P ,Q 分别为圆x 2+(y-6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是( ). A .5√2 B .√46+√2 C .7+√2 D .6√2答案:D 解析:设Q (x ,y ),则该点到圆心的距离d=√(x -0)2+(y -6)2=√x 2+(y -6)2=√10(1-y 2)+(y -6)2=√-9y 2-12y +46,y ∈[-1,1], ∴当y=--122×(-9)=-23时, d max =√-9×(-23)2-12×(-23)+46=√50=5√2.∴圆上点P 和椭圆上点Q 的距离的最大值为d max +r=5√2+√2=6√2.故选D .10.(2014福建,理10)用a 代表红球,b 代表蓝球,c 代表黑球.由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a )(1+b )的展开式1+a+b+ab 表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球、而“ab”则表示把红球和蓝球都取出来.依此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是( ).A .(1+a+a 2+a 3+a 4+a 5)(1+b 5)(1+c )5B .(1+a 5)(1+b+b 2+b 3+b 4+b 5)(1+c )5C .(1+a )5(1+b+b 2+b 3+b 4+b 5)(1+c 5)D .(1+a 5)(1+b )5(1+c+c 2+c 3+c 4+c 5) 答案:A解析:本题可分三步:第一步,可取0,1,2,3,4,5个红球,有1+a+a 2+a 3+a 4+a 5种取法;第二步,取0或5个蓝球,有1+b 5种取法;第三步,取5个有区别的黑球,有(1+c )5种取法.所以共有(1+a+a 2+a 3+a 4+a 5)(1+b 5)(1+c )5种取法.故选A .第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置.11.(2014福建,理11)若变量x ,y 满足约束条件{x -y +1≤0,x +2y -8≤0,x ≥0,则z=3x+y 的最小值为 .答案:1解析:由线性约束条件画出可行域如下图阴影部分所示.由线性目标函数z=3x+y ,得y=-3x+z ,可知其过A (0,1)时z 取最小值,故z min =3×0+1=1. 故答案为1.12.(2014福建,理12)在△ABC 中,A=60°,AC=4,BC=2√3,则△ABC 的面积等于 . 答案:2√3解析:由题意及余弦定理得cos A=b 2+c 2-a 22bc=c 2+16-122×4×c=12,解得c=2.所以S=12bc sin A=12×4×2×sin 60°=2√3.故答案为2√3.13.(2014福建,理13)要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是 (单位:元). 答案:160解析:设池底长x m,宽y m,则xy=4,所以y=4x,则总造价为:f (x )=20xy+2(x+y )×1×10=80+80x+20x=20(x +4x)+80,x ∈(0,+∞). 所以f (x )≥20×2√x ·4x+80=160,当且仅当x=4x,即x=2时,等号成立. 所以最低总造价是160元.14.(2014福建,理14)如图,在边长为e(e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为 .答案:2e2解析:根据题意y=e x 与y=ln x 互为反函数,图象关于y=x 对称,所以两个阴影部分的面积相等.联立y=e 与y=e x 得x=1,所以阴影部分的面积S=2∫ 1(e -e x )d x=2(e x-e x )|01=2[(e -e)-(0-1)]=2,由几何概型可知所求概率为2e2.故答案为2e 2. 15.(2014福建,理15)若集合{a ,b ,c ,d }={1,2,3,4},且下列四个关系:①a=1;②b ≠1;③c=2;④d ≠4有且只有一个是正确的,则符合条件的有序数组(a ,b ,c ,d )的个数是 . 答案:6解析:根据题意可分四种情况:(1)若①正确,则a=1,b=1,c ≠2,d=4,符合条件的有序数组有0个;(2)若②正确,则a ≠1,b ≠1,c ≠2,d=4,符合条件的有序数组为(2,3,1,4)和(3,2,1,4); (3)若③正确,则a ≠1,b=1,c=2,d=4,符合条件的有序数组为(3,1,2,4);(4)若④正确,则a ≠1,b=1,c ≠2,d ≠4,符合条件的有序数组为(2,1,4,3),(4,1,3,2),(3,1,4,2). 所以共有6个. 故答案为6.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分13分)(2014福建,理16)已知函数f (x )=cos x (sin x+cos x )-12. (1)若0<α<π2,且sin α=√22,求f (α)的值;(2)求函数f (x )的最小正周期及单调递增区间.分析:首先结合已知角的范围,利用同角三角函数的基本关系式及已知的正弦值,求出余弦值,注意符号的判断,然后代入已知的函数关系式,得出结果.在第(2)问中,结合式子特点,利用二倍角公式、两角和与差的三角函数公式以及辅助角公式,得出最终的目标——y=A sin(ωx+φ)+B 形式,运用T=2πω得出周期,再结合三角函数的图象与性质等基础知识求得单调区间,此时要注意复合函数的单调性.另外,也可先化简再分别求解.解法一:(1)因为0<α<π2,sin α=√22,所以cos α=√22.所以f (α)=√22(√22+√22)−12=12.(2)因为 f (x )=sin x cos x+cos 2x-12=12sin 2x+1+cos2x 2−12 =12sin 2x+12cos 2x =√22sin (2x +π4), 所以T=2π2=π.由2k π-π2≤2x+π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为[kπ-3π8,kπ+π8],k ∈Z .解法二:f (x )=sin x cos x+cos 2x-12=12sin 2x+1+cos2x 2−12=12sin 2x+12cos 2x =√22sin (2x +π4). (1)因为0<α<π2,sin α=√22,所以α=π4,从而f (α)=√22sin (2α+π4)=√22sin 3π4=12.(2)T=2π2=π.由2k π-π2≤2x+π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为[kπ-3π8,kπ+π8],k ∈Z .17.(本小题满分13分)(2014福建,理17)在平面四边形ABCD 中,AB=BD=CD=1,AB ⊥BD ,CD ⊥BD.将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图. (1)求证:AB ⊥CD ;(2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.分析:在第(1)问中,考查线线垂直问题,要寻求线线垂直的条件,可以是线面垂直或面面垂直.结合具体条件,利用面面垂直去证明线线垂直,只需在其中一个平面内的一条直线垂直于交线就可以了.在第(2)问中,欲求直线与平面所成角的正弦值,自然联想到借助于向量解决,建立合适的坐标系之后,求得平面的法向量n ,再在直线上确定一个方向向量,求得这两个向量夹角的余弦值,其绝对值即为线面角的正弦值.解:(1)∵平面ABD ⊥平面BCD ,平面ABD ∩平面BCD=BD ,AB ⊂平面ABD ,AB ⊥BD ,∴AB ⊥平面BCD.又CD ⊂平面BCD ,∴AB ⊥CD.(2)过点B 在平面BCD 内作BE ⊥BD ,如图.由(1)知AB ⊥平面BCD ,BE ⊂平面BCD ,BD ⊂平面BCD , ∴AB ⊥BE ,AB ⊥BD.以B 为坐标原点,分别以BE ⃗⃗⃗⃗⃗ ,BD ⃗⃗⃗⃗⃗⃗ ,BA ⃗⃗⃗⃗⃗ 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系. 依题意,得B (0,0,0),C (1,1,0),D (0,1,0),A (0,0,1),M (0,12,12),则BC ⃗⃗⃗⃗⃗ =(1,1,0),BM ⃗⃗⃗⃗⃗⃗ =(0,12,12),AD ⃗⃗⃗⃗⃗ =(0,1,-1).设平面MBC 的法向量n =(x 0,y 0,z 0),则{n ·BC⃗⃗⃗⃗⃗ =0,n ·BM⃗⃗⃗⃗⃗⃗ =0,即{x 0+y 0=0,12y 0+12z 0=0, 取z 0=1,得平面MBC 的一个法向量n =(1,-1,1).设直线AD 与平面MBC 所成角为θ,则sin θ=|cos <n ,AD ⃗⃗⃗⃗⃗ >|=|n ·AD ⃗⃗⃗⃗⃗⃗||n ||AD ⃗⃗⃗⃗⃗⃗ |=√63,即直线AD 与平面MBC 所成角的正弦值为√63.18.(本小题满分13分)(2014福建,理18)为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求: ①顾客所获的奖励额为60元的概率;②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.分析:在第(1)问中,主要考查古典概型概率问题,60元的组成为50+10,而摸到每个球都是等可能的,所以只要代入公式即可求得获得60元奖励的概率.而要求得分布列及期望值,依然利用古典概型,把X 的所有取值对应概率准确求出,再利用期望公式求出即可.(2)先根据两种方案中小球的面值估算期望值为60的各种可能:(10,10,50,50)和(20,20,40,40),再利用古典概型求出两种可能性方案对应的分布列和期望值进行验证;若两者的期望值相同,则需求出它的方差,利用方差大小确定更为合适的设计方案. 解:(1)设顾客所获的奖励额为X.①依题意,得P (X=60)=C 11C 31C 42=12,即顾客所获的奖励额为60元的概率为12. ②依题意,得X 的所有可能取值为20,60. P (X=60)=12,P (X=20)=C 32C 42=12,即X 的分布列为X 2060P 0.5 0.5所以顾客所获的奖励额的期望为E (X )=20×0.5+60×0.5=40(元).(2)根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),1的分布列为X 1的期望为E (X 1)=20×16+60×23+100×16=60,X 1的方差为D (X 1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=1 6003. 对于方案2,即方案(20,20,40,40),X 2的分布列为X 2的期望为E (X 2)=40×16+60×23+80×16=60,X 2的方差为D (X 2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003. 由于两种方案的奖励额的期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.19.(本小题满分13分)(2014福建,理19)已知双曲线E :x 2a 2−y 2b2=1(a>0,b>0)的两条渐近线分别为l 1:y=2x ,l 2:y=-2x.(1)求双曲线E 的离心率;(2)如图,O 为坐标原点,动直线l 分别交直线l 1,l 2于A ,B 两点(A ,B 分别在第一、四象限),且△OAB 的面积恒为8.试探究:是否存在总与直线l 有且只有一个公共点的双曲线E ?若存在,求出双曲线E 的方程;若不存在,说明理由.分析:在第(1)问中,已知渐近线方程,即a 与b 的关系,再结合双曲线本身a ,b ,c 的关系及离心率e=ca,便可求得离心率.(2)首先根据渐近线方程设双曲线方程,然后根据动直线l 的斜率是否存在进行分类讨论.显然斜率不存在时,由直线l 和双曲线有且只有一个公共点可知其方程为x=a ,此时只需检验△OAB 的面积是否为8即可;当直线l 的斜率存在时,设其方程为y=kx+m ,首先由△OAB 的面积为8求出k ,m 的关系式,然后根据直线和圆锥曲线有且只有一个公共点,利用判别式的符号判断其存在性. 解法一:(1)因为双曲线E 的渐近线分别为y=2x ,y=-2x ,所以b a=2, 所以√c 2-a 2a=2,故c=√5a ,从而双曲线E 的离心率e=ca=√5.(2)由(1)知,双曲线E 的方程为x 2a 2−y 24a2=1. 设直线l 与x 轴相交于点C.当l ⊥x 轴时,若直线l 与双曲线E 有且只有一个公共点, 则|OC|=a ,|AB|=4a , 又因为△OAB 的面积为8,所以12|OC|·|AB|=8,因此12a ·4a=8,解得a=2,此时双曲线E 的方程为x 24−y 216=1. 若存在满足条件的双曲线E ,则E 的方程只能为x 24−y 216=1. 以下证明:当直线l 不与x 轴垂直时,双曲线E :x 24−y 216=1也满足条件. 设直线l 的方程为y=kx+m ,依题意,得k>2或k<-2,则C (-mk,0).记A (x 1,y 1),B (x 2,y 2).由{y =kx +m ,y =2x得y 1=2m 2-k ,同理得y 2=2m 2+k ,由S △OAB =12|OC|·|y 1-y 2|得,12|-m k |·|2m 2-k -2m2+k|=8,即m 2=4|4-k 2|=4(k 2-4).由{y =kx +m ,x 24-y 216=1得,(4-k 2)x 2-2kmx-m 2-16=0.因为4-k 2<0,所以Δ=4k 2m 2+4(4-k 2)(m 2+16)=-16(4k 2-m 2-16),又因为m 2=4(k 2-4),所以Δ=0,即l 与双曲线E 有且只有一个公共点.因此,存在总与l 有且只有一个公共点的双曲线E ,且E 的方程为x 24−y 216=1. 解法二:(1)同解法一.(2)由(1)知,双曲线E 的方程为x 2a 2−y 24a 2=1. 设直线l 的方程为x=my+t ,A (x 1,y 1),B (x 2,y 2). 依题意得-12<m<12.由{x =my +t ,y =2x 得y 1=2t 1-2m ,同理得y 2=-2t 1+2m.设直线l 与x 轴相交于点C ,则C (t ,0). 由S △OAB =12|OC|·|y 1-y 2|=8,得12|t|·|2t 1-2m +2t1+2m|=8, 所以t 2=4|1-4m 2|=4(1-4m 2). 由{x =my +t ,x 2a2-y 24a2=1得,(4m 2-1)y 2+8mty+4(t 2-a 2)=0.因为4m 2-1<0,直线l 与双曲线E 有且只有一个公共点当且仅当Δ=64m 2t 2-16(4m 2-1)(t 2-a 2)=0, 即4m 2a 2+t 2-a 2=0,即4m 2a 2+4(1-4m 2)-a 2=0,即(1-4m 2)(a 2-4)=0, 所以a 2=4,因此,存在总与l 有且只有一个公共点的双曲线E ,且E 的方程为x 24−y 216=1. 解法三:(1)同解法一.(2)当直线l 不与x 轴垂直时,设直线l 的方程为y=kx+m ,A (x 1,y 1),B (x 2,y 2).依题意得k>2或k<-2. 由{y =kx +m ,4x 2-y 2=0得,(4-k 2)x 2-2kmx-m 2=0,因为4-k 2<0,Δ>0,所以x 1x 2=-m 24-k2,又因为△OAB 的面积为8, 所以12|OA|·|OB|·sin ∠AOB=8, 又易知sin ∠AOB=45,所以25√x 12+y 12·√x 22+y 22=8,化简得x 1x 2=4.所以-m 24-k2=4,即m 2=4(k 2-4).由(1)得双曲线E 的方程为x 2a 2−y 24a2=1,由{y =kx +m ,x 2a2-y 24a2=1得,(4-k 2)x 2-2kmx-m 2-4a 2=0,因为4-k 2<0,直线l 与双曲线E 有且只有一个公共点当且仅当Δ=4k 2m 2+4(4-k 2)(m 2+4a 2)=0, 即(k 2-4)(a 2-4)=0,所以a 2=4, 所以双曲线E 的方程为x 24−y 216=1. 当l ⊥x 轴时,由△OAB 的面积等于8可得l :x=2,又易知l :x=2与双曲线E :x 24−y 216=1有且只有一个公共点.综上所述,存在总与l 有且只有一个公共点的双曲线E ,且E 的方程为x 24−y 216=1.20.(本小题满分14分)(2014福建,理20)已知函数f (x )=e x -ax (a 为常数)的图象与y 轴交于点A ,曲线y=f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值;(2)证明:当x>0时,x 2<e x ;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x 2<c e x .分析:(1)由题意可知点A 的横坐标为0,先求出f (x )的导函数f'(x ),则曲线y=f (x )在点A 处的切线斜率为f'(0),由f'(0)=-1可求得a 的值.再利用求极值的步骤求解即可.对于(2),常对此类问题构造新函数g (x )=e x -x 2,只需g (x )>0在(0,+∞)上恒成立即可,利用导数得到g (x )的单调性,从而得证.(3)根据c的值与1的大小关系分类进行证明.当c≥1时,可直接根据(2)中的结论得证;当0<c<1时,证明的关键是找出x0.先将不等式转化为e x>1c x2,利用对数的性质,进一步转化为x>ln(1cx2)=2ln x-ln c,即可构造函数h(x)=x-ln x+ln c,然后利用导数研究其单调性,在该函数的增区间内找出一个值x0,使h(x0)>0即可得证.也可结合(2)的结论,合理利用e x>x2将x2中的一个x赋值,利用不等式的传递性来解决问题.解法一:(1)由f(x)=e x-ax,得f'(x)=e x-a.又f'(0)=1-a=-1,得a=2.所以f(x)=e x-2x,f'(x)=e x-2.令f'(x)=0,得x=ln2.当x<ln2时,f'(x)<0,f(x)单调递减;当x>ln2时,f'(x)>0,f(x)单调递增.所以当x=ln2时,f(x)取得极小值,且极小值为f(ln2)=e ln2-2ln2=2-ln4,f(x)无极大值.(2)令g(x)=e x-x2,则g'(x)=e x-2x.由(1)得g'(x)=f(x)≥f(ln2)>0,故g(x)在R上单调递增,又g(0)=1>0,因此,当x>0时,g(x)>g(0)>0,即x2<e x.(3)①若c≥1,则e x≤c e x.又由(2)知,当x>0时,x2<e x.所以当x>0时,x2<c e x.取x0=0,当x∈(x0,+∞)时,恒有x2<c e x.②若0<c<1,令k=1c>1,要使不等式x2<c e x成立,只要e x>kx2成立.而要使e x>kx2成立,则只要x>ln(kx2),只要x>2ln x+ln k成立.令h(x)=x-2ln x-ln k,则h'(x)=1-2x =x-2x.所以当x>2时,h'(x)>0,h(x)在(2,+∞)内单调递增.取x0=16k>16,所以h(x)在(x0,+∞)内单调递增,又h(x0)=16k-2ln(16k)-ln k=8(k-ln2)+3(k-ln k)+5k,易知k>ln k,k>ln2,5k>0,所以h(x0)>0.即存在x0=16c,当x∈(x0,+∞)时,恒有x2<c e x.综上,对任意给定的正数c,总存在x0,当x∈(x0,+∞)时,恒有x2<c e x.解法二:(1)同解法一.(2)同解法一.(3)对任意给定的正数c,取x0=√c, 由(2)知,当x>0时,e x>x2,所以e x=e x2·ex2>(x2)2(x2)2,当x>x0时,e x>(x2)2(x2)2>4c(x2)2=1cx2,因此,对任意给定的正数c,总存在x0,当x∈(x0,+∞)时,恒有x2<c e x.解法三:(1)同解法一.(2)同解法一.(3)首先证明当x∈(0,+∞)时,恒有13x3<e x.证明如下:令h(x)=13x3-e x,则h'(x)=x2-e x.由(2)知,当x>0时,x2<e x,从而h'(x)<0,h(x)在(0,+∞)单调递减,所以h(x)<h(0)=-1<0,即13x3<e x.取x0=3c ,当x>x0时,有1cx2<13x3<e x.因此,对任意给定的正数c,总存在x0,当x∈(x0,+∞)时,恒有x2<c e x.21.(2014福建,理21)本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.作答时,先用2B 铅笔在答题卡上把所选题目对应题号右边的方框涂黑,并将所选题号填入括号中.(1)(本小题满分7分)选修4—2:矩阵与变换已知矩阵A 的逆矩阵A -1=(2 11 2).①求矩阵A ;②求矩阵A -1的特征值以及属于每个特征值的一个特征向量. 分析:①求得|A -1|的值,利用求逆矩阵的公式便可求得A .②结合A -1的特征多项式,解方程,从而求得A -1的特征值. 解:(1)因为矩阵A 是矩阵A -1的逆矩阵,且|A -1|=2×2-1×1=3≠0,所以A =13(2 -1-1 2)=(23 -13-13 23). (2)矩阵A -1的特征多项式为f (λ)=|λ-2 -1-1 λ-2|=λ2-4λ+3=(λ-1)(λ-3),令f (λ)=0,得矩阵A -1的特征值为λ1=1或λ2=3,所以ξ1=( 1-1)是矩阵A -1的属于特征值λ1=1的一个特征向量,ξ2=(11)是矩阵A -1的属于特征值λ2=3的一个特征向量.(2)(本小题满分7分)选修4—4:坐标系与参数方程已知直线l 的参数方程为{x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为{x =4cosθ,y =4sinθ(θ为参数).①求直线l 和圆C 的普通方程;②若直线l 与圆C 有公共点,求实数a 的取值范围.分析:①通过消参,直线是代入消去法,圆是利用平方关系便可求得直线和圆的普通方程.在②中,利用直线和圆的位置关系,得d ≤r ,从而求得a 的范围. 解:(1)直线l 的普通方程为2x-y-2a=0,圆C 的普通方程为x 2+y 2=16. (2)因为直线l 与圆C 有公共点, 故圆C 的圆心到直线l 的距离d=√5≤4, 解得-2√5≤a ≤2√5.(3)(本小题满分7分)选修4—5:不等式选讲已知定义在R 上的函数f (x )=|x+1|+|x-2|的最小值为a. ①求a 的值;②若p ,q ,r 是正实数,且满足p+q+r=a ,求证:p 2+q 2+r 2≥3.分析:①利用绝对值不等式的性质容易得证,但要注意利用|a|+|b|≥|a±b|中的哪一个.②利用柯西不等式(a 2+b 2+c 2)(m 2+n 2+s 2)≥(am+bn+cs )2,结合所给式子特点,合理赋值,可得证结果. 解:(1)因为|x+1|+|x-2|≥|(x+1)-(x-2)|=3,当且仅当-1≤x ≤2时,等号成立,所以f (x )的最小值等于3,即a=3.(2)由(1)知p+q+r=3,又因为p ,q ,r 是正实数,所以(p 2+q 2+r 2)(12+12+12)≥(p×1+q×1+r×1)2=(p+q+r )2=9, 即p 2+q 2+r 2≥3.。
2014年福建普通高考各科试题及参考答案

福 建 省 教 育 考 试 院
二〇一四年六月
语文试题
一㊁古代诗文阅读( 27 分) ( 一) 默写常见的名句名篇(6 分) 1. 补写出下列名句名篇中的空缺部分㊂ (1) 顺风而呼,声非加疾也, ㊂ ( 荀子‘ 劝学“ ) (2) ,往来无白丁㊂ ( 刘禹锡‘ 陋室铭“ ) (3) ? 心远地自偏㊂ ( 陶渊明‘ 饮酒“ ) (4) 我寄愁心与明月, ㊂ ( 李白‘ 闻王昌龄左迁龙标遥有此寄“ ) (5) 庄生晓梦迷蝴蝶, ㊂ ( 李商隐‘ 锦瑟“ ) (6) 斜阳草树, ,人道寄奴曾住㊂ ( 辛弃疾‘ 永遇乐“ ) ( 二) 文言文阅读(15 分) 阅读下面的文言文,完成 2 ~ 5 题㊂ 张祖传 [ 明] 张岳 张祖,字彦宗,以字行㊂ 十三岁,父祖继殁,独奉母以居㊂ 洪武改元,闽中法令严核,绳 吏之法尤峻㊂ 惮应役者邀祖斩右大指以自黜㊂ 祖疑之, 入白母㊂ 母曰: 法 ㊃ 可避也,指斩不可复续,盍去诸?” 遂避匿㊂ 未几,斩指事觉,诏逮捕戍边㊂ 犯者言张某始与某辈约如此㊂ 逮久 弗获㊂ 会天变肆赦,乃归㊂ 室中空虚,至系马槛牛,毁斗桶为薪㊂ 念非力学无以树门户, 于是决意习儒业㊂ 是 时,诏民田八顷以上家,择子若 ① 孙一人为吏㊂ 县檄至,祖挥之弗受,执卷奋曰: 吾而吏耶?” 令白按察司,复檄 祖往,固弗受如县㊂ 使者熟视之,曰: 君,我辈中人也,勿辱于县㊂” 遂挟以去㊂ 祖既通儒术,兼晓九章算法㊂ 时方行方田 ② 令, 即以其事属 之㊂ 文案盈几, 祖精勤不舍, 昼夜栉理而错画 ㊃ 之,皆有绪可按据㊂ 建文时,祖为吏部吏㊂ 未几,云南布政张公 召入为尚书,于属吏多所更易,独言张某老成,守法不易也㊂ 时 帝方与方孝孺辈讲求古治,经济之事多变太祖旧章,章奏日下吏部㊂ 祖密言于 曰: 高皇帝起布衣,有天下,立 法创制,规模远矣㊂ 为治当责实效㊂ 今法制已定,日有变更,未必胜于旧,徒使异议者以为口实,盍先其急者?” 深然之,而夺于群议,不能用㊂会添设京卫知事一员,诏吏部选可者㊂ 曰: 无逾祖矣㊂” 授留守知事㊂ ㊃ 及靖难师渡江,祖为安吉县丞㊂ 被谴自经 ③ , 舁尸归, 属吏无敢往视, 祖独往经理其殡㊂ 殡毕, 哭奠而 去㊂ 时人义之㊂ 安吉在万山中,向多逋民 ④ ,隐田不以自实, 财赋甚少㊂ 祖至, 清勤自持, 敬礼贤士大夫, 与讲究磨砺㊂ 在 职九年,稽核财赋,修筑陂塘圩岸,不可胜计㊂ 逋民隐田者令以占籍 ⑤ 输税,免其罪㊂ 声称著闻,以最荐升湖广 ㊃ 按察司经历㊂ 行至吴桥卒,惟一子扶丧归㊂ ( 摘编自‘ 小山类稿“ ) [ 注] ① 若: 或者㊂ ② 方田: 指方田均税法㊂ ③ 被谴自经: 朱棣登位, 张 被解除职务后自杀㊂ ④ 逋民: 逃到本地的百
高职高考数学14年级试卷【含答案】

高职高考数学14年级试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若函数f(x) = x² 4x + 3,则f(2)的值为:A. 0B. 1C. -1D. 22. 下列函数中,奇函数是:A. f(x) = x³B. f(x) = x²C. f(x) = |x|D. f(x) = x² + 13. 若直线y = 2x + 3与x轴的交点为A,与y轴的交点为B,则线段AB的长度为:A. 3B. 4C. 5D. 64. 已知等差数列{an}的前n项和为Sn = 2n² + 3n,则a1的值为:A. 2B. 3C. 4D. 55. 若复数z满足|z 1| = |z + 1|,则z在复平面内对应点的轨迹为:A. 直线B. 圆C. 椭圆D. 双曲线二、判断题(每题1分,共5分)1. 若a, b是实数,则(a + b)² = a² + b². ( )2. 任何实系数多项式都有实数根. ( )3. 若函数f(x)在区间(a, b)内单调递增,则f'(x) ≥ 0. ( )4. 若函数f(x)在点x = a处连续,则f(x)在点x = a处可导. ( )5. 若直线y = kx + b与x轴的夹角为θ,则tanθ = k. ( )三、填空题(每题1分,共5分)1. 若函数f(x) = 2x³ 3x² + 4x 5,则f'(x) = ______.2. 若等差数列{an}的前n项和为Sn = 3n² + 2n,则a3 = ______.3. 若复数z = 3 + 4i,则|z| = ______.4. 若直线y = 2x + 3与圆(x 1)² + (y + 2)² = 16相交,则交点坐标为 ______.5. 若函数f(x) = x² + 2x + 1,则f(x)的最小值为 ______.四、简答题(每题2分,共10分)1. 简述导数的定义及其几何意义。
2014年普通高等学校招生全国统一考试(福建卷)数学文

15.(4 分)函数 f(x)=
2
的零点个数是
.
解析:当 x≤0 时,由 f(x)=0 得 x -2=0,解得 x= 或 x= (舍去), 当 x>0 时,由 f(x)=0 得 2x-6+lnx=0,即 lnx=6-2x, 作出函数 y=lnx 和 y=6-2x 在同一坐标系图象,由图象可知此时两个函数只有 1 个零点,
sin(2x+ ≤2kπ+
)+1,故它的最小正周期为 ,k∈Z,求得 kπ,kπ+ ],k∈Z.
≤x≤kπ+
故函数的单调递增区间为[kπ-
19.(12 分)如图,三棱锥 A-BCD 中,AB⊥平面 BCD,CD⊥BD.
(Ⅰ)求证:CD⊥平面 ABD; (Ⅱ)若 AB=BD=CD=1,M 为 AD 中点,求三棱锥 A-MBC 的体积. 解析:(Ⅰ)证明 CD⊥平面 ABD,只需证明 AB⊥CD; (Ⅱ)利用转换底面,VA-MBC=VC-ABM= S△ABM•CD,即可求出三棱锥 A-MBC 的体积. 答案:(Ⅰ)∵AB⊥平面 BCD,CD⊂平面 BCD,∴AB⊥CD, ∵CD⊥BD,AB∩BD=B,∴CD⊥平面 ABD; (Ⅱ)∵AB⊥平面 BCD,BD⊂平面 BCD,∴AB⊥BD. ∵AB=BD=1,∴S△ABD= , ∵M 为 AD 中点,∴S△ABM= S△ABD= ,
圆心为(a,b),半径为 1 2 2 2 ∵圆心 C∈Ω,且圆 C 与 x 轴相切,∴b=1,则 a +b =a +1, 2 2 ∴要使 a +b 的取得最大值,则只需 a 最大即可, 由图象可知当圆心 C 位于 B 点时,a 取值最大, 由 37, 答案:C 12.在平面直角坐标系中,两点 P1(x1,y1),P2(x2,y2)间的“L-距离”定义为 |P1P2|=|x1-x2|+|y1-y2|.则平面内与 x 轴上两个不同的定点 F1, F2 的“L-距离”之和等于定值 (大于|F1F2|)的点的轨迹可以是( ) ,解得 ,即 B(6,1),∴当 a=6,b=1 时,a +b =36+1=37,即最大值为
2014年普通高等学校招生全国统一考试(福建卷)数学(文史类)

2014年普通高等学校招生全国统一考试(福建卷)数学试题(文史类)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2014福建,文1)若集合P={x|2≤x<4},Q={x|x≥3},则P∩Q等于().A.{x|3≤x<4}B.{x|3<x<4}C.{x|2≤x<3}D.{x|2≤x≤3}答案:A解析:结合数轴,得P∩Q={x|3≤x<4}.故选A.2.(2014福建,文2)复数(3+2i)i等于().A.-2-3iB.-2+3iC.2-3iD.2+3i答案:B解析:(3+2i)i=3i+2i2=-2+3i.故选B.3.(2014福建,文3)以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于().A.2πB.πC.2D.1答案:A解析:根据题意,可得圆柱侧面展开图为矩形,长为2π×1=2π,宽为1,∴S=2π×1=2π.故选A.4.(2014福建,文4)阅读如图所示的程序框图,运行相应的程序,输出的n的值为().A.1B.2C.3D.4答案:B解析:第一次循环n=1,判断21>12成立,则n=1+1=2;第二次循环,判断22>22不成立,则输出n=2.故选B.5.(2014福建,文5)命题“∀x∈[0,+∞),x3+x≥0”的否定是().A.∀x∈(-∞,0),x3+x<0B.∀x∈(-∞,0),x3+x≥0C.∃x0∈[0,+∞),x03+x0<0D.∃x0∈[0,+∞),x03+x0≥0答案:C解析:全称命题的否定是特称命题,故该命题的否定是∃x0∈[0,+∞),x03+x0<0.故选C.6.(2014福建,文6)已知直线l过圆x2+(y-3)2=4的圆心,且与直线x+y+1=0垂直,则l的方程是().A.x+y-2=0B.x-y+2=0C.x+y-3=0D.x-y+3=0答案:D解析:直线过圆心(0,3),与直线x+y+1=0垂直,故其斜率k=1.所以直线的方程为y-3=1×(x-0),即x-y+3=0.故选D.7.(2014福建,文7)将函数y=sin x的图象向左平移π个单位,得到函数y=f(x)的图象,则下列说法正确的是().A.y=f(x)是奇函数B.y=f(x)的周期为πC.y=f(x)的图象关于直线x=π2对称D.y=f(x)的图象关于点-π2,0对称答案:D解析:y=sin x的图象向左平移π个单位,得y=f(x)=sin x+π=cos x的图象,所以f(x)是偶函数,A不正确;f(x)的周期为2π,B不正确;f(x)的图象关于直线x=kπ(k∈Z)对称,C不正确;f(x)的图象关于点 kπ+π2,0(k∈Z)对称,当k=-1时,点为-π2,0,故D正确.综上可知选D.8.(2014福建,文8)若函数y=log a x(a>0,且a≠1)的图象如图所示,则下列函数图象正确的是().答案:B解析:由题中图象可知log a3=1,所以a=3.A选项,y=3-x=13x为指数函数,在R上单调递减,故A不正确.B选项,y=x3为幂函数,图象正确.C选项,y=(-x)3=-x3,其图象和B选项中y=x3的图象关于x轴对称,故C不正确.D选项,y=log3(-x),其图象与y=log3x的图象关于y轴对称,故D选项不正确.综上可知选B.9.(2014福建,文9)要制作一个容积为4m3,高为1m的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是().A.80元B.120元C.160元D.240元答案:C解析:设容器的底长x米,宽y米,则xy=4.所以y=4,则总造价为:f(x)=20xy+2(x+y)×1×10=80+80x+20x=20 x+4x+80,x∈(0,+∞).所以f(x)≥20×2x·4x+80=160,当且仅当x=4,即x=2时,等号成立,所以最低总造价是160元.故选C.10.(2014福建,文10)设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD所在平面内任意一点,则OA+OB+OC+OD等于().A.OMB.2OMC.3OMD.4OM答案:D解析:因为M是AC和BD的中点,由平行四边形法则,得OA+OC=2OM,OB+OD=2OM,所以OA+OB+OC+ OD=4OM.故选D.11.(2014福建,文11)已知圆C:(x-a)2+(y-b)2=1,平面区域Ω:x+y-7≤0,x-y+3≥0,y≥0.若圆心C∈Ω,且圆C与x轴相切,则a2+b2的最大值为().A.5B.29C.37D.49答案:C解析:由题意,画出可行域Ω,圆心C∈Ω,且圆C与x轴相切,所以b=1.所以圆心在直线y=1上,求得与直线x-y+3=0,x+y-7=0的两交点坐标分别为A(-2,1),B(6,1),所以a∈[-2,6].所以a2+b2=a2+1∈[1,37],所以a2+b2的最大值为37.故选C.12.(2014福建,文12)在平面直角坐标系中,两点P1(x1,y1),P2(x2,y2)间的“L-距离”定义为||P1P2|=|x1-x2|+|y1-y2|,则平面内与x轴上两个不同的定点F1,F2的“L-距离”之和等于定值(大于||F1F2|)的点的轨迹可以是().答案:A解析:不妨设F1(-a,0),F2(a,0),其中a>0,点P(x,y)是其轨迹上的点,P到F1,F2的“L-距离”之和等于定值b(大于||F1F2|),所以|x+a|+|y|+|x-a|+|y|=b,即|x-a|+|x+a|+2|y|=b.当x<-a,y≥0时,上式可化为y-x=b2;当-a≤x≤a,y≥0时,上式可化为y=b2-a;当x>a,y≥0时,上式可化为x+y=b2;当x<-a,y<0时,上式可化为x+y=-b;当-a≤x≤a,y<0时,上式可化为y=a-b2;当x>a,y<0时,上式可化为x-y=b;可画出其图象.(也可利用前三种情况,再关于x轴对称)故选A.第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.13.(2014福建,文13)如图,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为 . 答案:0.18解析:由几何概型可知180=S 阴影正方形=S 阴影,所以S 阴影=0.18.故答案为0.18.14.(2014福建,文14)在△ABC 中,A=60°,AC=2,BC= 3,则AB 等于 . 答案:1解析:由余弦定理可知:cos A=b 2+c 2-a 22bc=4+c 2-32×2c=12,所以c=1.故答案为1.15.(2014福建,文15)函数f (x )= x 2-2,x ≤0,2x -6+ln x ,x >0的零点个数是 .答案:2解析:当x ≤0时,令f (x )=x 2-2=0,得x=± ∴x=- .当x>0时,f (x )=2x-6+ln x ,f'(x )=2+1x>0.所以f (x )单调递增,当x →0时,f (x )<0;当x →+∞时,f (x )>0,所以f (x )在(0,+∞)上有一个零点. 综上可知共有两个零点.故答案为2.16.(2014福建,文16)已知集合{a ,b ,c }={0,1,2},且下列三个关系:①a ≠2;②b=2;③c ≠0有且只有一个正确,则100a+10b+c 等于 . 答案:201解析:由题意可知三个关系只有一个正确分为三种情况:(1)当①成立时,则a ≠2,b ≠2,c=0,此种情况不成立; (2)当②成立时,则a=2,b=2,c=0,此种情况不成立; (3)当③成立时,则a=2,b ≠2,c ≠0,即a=2,b=0,c=1, 所以100a+10b+c=100×2+10×0+1=201.故答案为201.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)(2014福建,文17)在等比数列{a n }中,a 2=3,a 5=81. (1)求a n ;(2)设b n =log 3a n ,求数列{b n }的前n 项和S n .分析:(1)等比数列中已知两项,从而求得公比q ,结合通项公式a n =a 1q n-1或a n =a m q n-m 得a n 的通项公式. (2)借助(1)的结论,先求得b n ,可得b n 为等差数列,利用等差数列求和公式S n =n (a 1+a n )2,求得S n .解:(1)设{a n }的公比为q ,依题意,得 a 1q =3,a 1q 4=81,解得 a 1=1,q =3.因此,a n =3n-1.(2)因为b n =log 3a n =n-1, 所以数列{b n }的前n 项和S n =n (b 1+b n )2=n 2-n2. 18.(本小题满分12分)(2014福建,文18)已知函数f (x )=2cos x (sin x+cos x ).(1)求f 5π4的值;(2)求函数f (x )的最小正周期及单调递增区间.分析:对于(1),可把x=5π4代入f (x )的解析式,认真运算,便可求得结果,另外也可先化简再求值,化简时要把两角和与差的三角函数、二倍角公式、辅助角公式及诱导公式利用好,注意化简的最终形式一般为f (x )=A sin(ωx+φ).对于(2),根据化简的结果结合三角函数的图象与性质以及三角函数的单调性,准确求出周期与单调区间. 解法一:(1)f 5π =2cos5π sin 5π+cos 5π=-2cos π4-sin π4-cos π4=2.(2)因为f (x )=2sin x cos x+2cos 2x =sin 2x+cos 2x+1 = 2sin 2x +π+1,所以T=2π=π. 由2k π-π2≤2x+π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为 kπ-3π,k π+π,k ∈Z . 解法二:f (x )=2sin x cos x+2cos 2x=sin 2x+cos 2x+1= 2sin 2x +π+1.(1)f 5π=2sin 11π+1= 2sin 3π+1=2.(2)T=2π2=π.由2k π-π≤2x+π≤2k π+π,k ∈Z ,得k π-3π≤x ≤k π+π,k ∈Z .所以f (x )的单调递增区间为 kπ-3π,k π+π,k ∈Z . 19.(本小题满分12分)(2014福建,文19)如图,三棱锥A-BCD 中,AB ⊥平面BCD ,CD ⊥BD. (1)求证:CD ⊥平面ABD ;(2)若AB=BD=CD=1,M 为AD 中点,求三棱锥A-MBC 的体积.分析:(1)线面垂直的证法有线线垂直与面面垂直两种,结合本题条件,可证明CD 垂直于平面ABD 内的两条相交直线即可证得CD 垂直于平面ABD.(2)三棱锥体积V=13Sh ,但要注意转换顶点和底面,对于本题,可将S △ABM 求出,高即为CD=h ,代入公式可求得,也可借助图中关系,利用V A-MBC =V A-BCD -V M-BCD 求得. 解法一:(1)∵AB ⊥平面BCD ,CD ⊂平面BCD ,∴AB ⊥CD.又∵CD ⊥BD ,AB ∩BD=B ,AB ⊂平面ABD ,BD ⊂平面ABD ,∴CD ⊥平面ABD. (2)由AB ⊥平面BCD ,得AB ⊥BD , ∵AB=BD=1,∴S △ABD =1.∵M 是AD 的中点,∴S △ABM =12S △ABD =14. 由(1)知,CD ⊥平面ABD , ∴三棱锥C-ABM 的高h=CD=1, 因此三棱锥A-MBC 的体积 V A-MBC =V C-ABM =13S △ABM ·h=112. 解法二:(1)同解法一.(2)由AB ⊥平面BCD 知,平面ABD ⊥平面BCD , 又平面ABD ∩平面BCD=BD ,如图,过点M作MN⊥BD交BD于点N, 则MN⊥平面BCD,且MN=1AB=1.又CD⊥BD,BD=CD=1,∴S△BCD=12.∴三棱锥A-MBC的体积V A-MBC=V A-BCD-V M-BCD=13AB·S△BCD-13MN·S△BCD=112.20.(本小题满分12分)(2014福建,文20)根据世行2013年新标准,人均GDP低于1035美元为低收入国家;人均GDP为1035~4085美元为中等偏下收入国家;人均GDP为4085~12616美元为中等偏上收入国家;人均GDP 不低于12616GDP如下表:(1)判断该城市人均GDP是否达到中等偏上收入国家标准;(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP都达到中等偏上收入国家标准的概率.分析:(1)该城市人均GDP即为求平均值,利用公式代入认真运算,可得人均GDP,判断其所在范围,可知是否达到中等偏上收入国家标准.(2)从5个行政区中随机抽取2个,列出所有基本事件,再找出抽到的2个行政区人均GDP都达到中等偏上收入国家标准的基本事件.利用古典概型概率公式可求得其概率.解:(1)设该城市人口总数为a,则该城市人均GDP为8000×0.25a+4000×0.30a+6000×0.15a+3000×0.10a+10000×0.20aa=6400.因为6400∈[4085,12616),所以该城市人均GDP达到了中等偏上收入国家标准.(2)“从5个行政区中随机抽取2个”的所有的基本事件是:{A,B},{A,C},{A,D},{A,E},{B,C},{B,D},{B,E},{C,D},{C,E},{D,E},共10个.设事件“抽到的2个行政区人均GDP都达到中等偏上收入国家标准”为M,则事件M包含的基本事件是:{A,C},{A,E},{C,E},共3个,所以所求概率为P(M)=310.21.(本小题满分12分)(2014福建,文21)已知曲线Γ上的点到点F(0,1)的距离比它到直线y=-3的距离小2.(1)求曲线Γ的方程;(2)曲线Γ在点P处的切线l与x轴交于点A,直线y=3分别与直线l及y轴交于点M,N.以MN为直径作圆C,过点A作圆C的切线,切点为B.试探究:当点P在曲线Γ上运动(点P与原点不重合)时,线段AB的长度是否发生变化?证明你的结论.分析:(1)根据题意,可知曲线Γ上的点到点F(0,1)的距离等于它到直线y=-1的距离,结合抛物线的定义可得曲线Γ的方程;或利用求方程的一般做法,设点坐标,建立几何关系,转化为代数关系,整理便可得到其方程.对于(2),先求导,得斜率,利用点斜式可得直线l的方程,与y=0联立,得A点坐标,与y=3联立,得M点坐标,直线y=3与y轴的交点N易知,进而得出圆心和半径,结合勾股定理可得|AB|为定值,问题得证.解法一:(1)设S(x,y)为曲线Γ上任意一点,依题意,点S到F(0,1)的距离与它到直线y=-1的距离相等,所以曲线Γ是以点F(0,1)为焦点、直线y=-1为准线的抛物线, 所以曲线Γ的方程为x2=4y.(2)当点P在曲线Γ上运动时,线段AB的长度不变.证明如下:由(1)知抛物线Γ的方程为y=1x2,设P(x0,y0)(x0≠0),则y0=14x02,由y'=12x,得切线l的斜率k=y'|x=x0=12x0,所以切线l的方程为y-y0=1x0(x-x0),即y=1x0x-1x02.由y=1x0x-1x02,y=0得A12x0,0.由y=12x0x-14x02,y=3得M1x0+6,3.又N(0,3),所以圆心C1x0+3,3,半径r=1|MN|=1x0+3,|AB|=|AC|2-r2=1x0-1x0+302+32-1x0+32=.所以点P在曲线Γ上运动时,线段AB的长度不变.解法二:(1)设S(x,y)为曲线Γ上任意一点,则|y-(-3)|-(x-0)2+(y-1)2=2,依题意,点S(x,y)只能在直线y=-3的上方,所以y>-3,所以(x-0)2+(y-1)2=y+1,化简得,曲线Γ的方程为x2=4y.(2)同解法一.22.(本小题满分14分)(2014福建,文22)已知函数f(x)=e x-ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为-1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<e x;(3)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x<c e x.分析:(1)由题意可知点A的横坐标为0,先求出f(x)的导函数f'(x),则曲线y=f(x)在点A处的切线斜率为f'(0),由f'(0)=-1可求得a的值.再利用求极值的步骤求解即可.对于(2),常对此类问题构造新函数g(x)=e x-x2,只需g(x)>0在(0,+∞)上恒成立即可,利用导数得到g(x)的单调性,从而得证.(3)中存在性问题处理,可结合(2)的结论,合理利用e x>x2,只是将e x>x2的x2中一个x赋值即可,所以可令x0=1,当x>x0时,e x>x2>1x,利用不等式的传递性来解决问题.或根据c的值与1的大小关系分类进行证明.当c≥1时,可直接根据(2)中的结论得证;当0<c<1时,证明的关键是找出x0.可构造函数,然后利用导数研究其单调性,在该函数的增区间内找出一个值x0满足条件即可得证.解法一:(1)由f(x)=e x-ax,得f'(x)=e x-a.又f'(0)=1-a=-1,得a=2.所以f(x)=e x-2x,f'(x)=e x-2.令f'(x)=0,得x=ln2.当x<ln2时,f'(x)<0,f(x)单调递减;当x>ln2时,f'(x)>0,f(x)单调递增.所以当x=ln2时,f(x)有极小值,且极小值为f(ln2)=e ln2-2ln2=2-ln4,f(x)无极大值.(2)令g(x)=e x-x2,则g'(x)=e x-2x.由(1)得,g'(x)=f(x)≥f(ln2)=2-ln4>0,即g'(x)>0.所以g(x)在R上单调递增,又g(0)=1>0,所以当x>0时,g(x)>g(0)>0,即x2<e x.(3)对任意给定的正数c,取x0=1c,由(2)知,当x>0时,x2<e x.所以当x>x0时,e x>x2>1cx,即x<c e x.因此,对任意给定的正数c,总存在x0,当x∈(x0,+∞)时,恒有x<c e x.解法二:(1)同解法一.(2)同解法一.(3)令k=1(k>0),要使不等式x<c e x成立,只要e x>kx成立.而要使e x>kx成立,则只需要x>ln(kx),即x>ln x+ln k成立.①若0<k≤1,则ln k≤0,易知当x>0时,x>ln x≥ln x+ln k成立.即对任意c∈[1,+∞),取x0=0,当x∈(x0,+∞)时,恒有x<c e x.②若k>1,令h(x)=x-ln x-ln k,则h'(x)=1-1x =x-1x,所以当x>1时,h'(x)>0,h(x)在(1,+∞)内单调递增.取x0=4k,h(x0)=4k-ln(4k)-ln k=2(k-ln k)+2(k-ln2),易知k>ln k,k>ln2,所以h(x0)>0.因此对任意c∈(0,1),取x0=4,当x∈(x0,+∞)时,恒有x<c e x.综上,对任意给定的正数c,总存在x0,当x∈(x0,+∞)时,恒有x<c e x.解法三:(1)同解法一.(2)同解法一.(3)①若c≥1,取x0=0,由(2)的证明过程知,e x>2x,所以当x∈(x0,+∞)时,有c e x≥e x>2x>x,即x<c e x.②若0<c<1,令h(x)=c e x-x,则h'(x)=c e x-1.令h'(x)=0,得x=ln1.当x>ln1c时,h'(x)>0,h(x)单调递增.取x0=2ln2c ,h(x0)=c e2ln2c-2ln2c=22c-ln2c,易知2-ln2>0,又h(x)在(x0,+∞)内单调递增,所以当x∈(x0,+∞)时,恒有h(x)>h(x0)>0,即x<c e x.综上,对任意给定的正数c,总存在x0,当x∈(x0,+∞)时,恒有x<c e x.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(Ⅱ)若函数 f x 在[k, k 1] 是单调函数,求实数 k 的取值范围。
24.(本小题满分 12 分)
已知椭圆 :
x2 a2
y2 b2
1(a
b 0)
过点 P(
3,
1 2
)
,且其一个焦点为
F1
(
3, 0) .
(Ⅰ)求椭圆 的方程;
(Ⅱ)设 O 为坐标原点,过椭圆的另一个焦点 F2 且斜率为 k 的直线 l 交椭圆 于 A, B 两
点,
(1)证明:对于任意给定的 k (k 0) ,在线段 OF2 上总存在相应的点 C ,使得以 CA,CB 为邻边的平行四边形 CADB 为菱形;
(2)试探究:是否存在 k ,使得(1)中的菱形 CADB 的顶点 D 也在椭圆 上。
y P
F1 O
F2
x
4
2014 福建省高职招考(面向普高)统一考试
20.(本小题满分 8 分)
已知函数 f (x) sin x cos x 3 cos 2x , 2
(Ⅰ)求 f ( ) 的值;
4 (Ⅱ)求 f (x) 的最小正周期T 。
21.(本小题满分 10 分) 某铁制零件是如图所示的几何体,其底面是边长为 6cm
的正方形,高为 5cm,内孔半径为 1cm。 (Ⅰ)求该零件的体积;
B. (0,1)
C. (1, 2)
12.以抛物线 y2 4x 的焦点为圆心,1为半径的圆方程为(
开始
输入 x
是
x 4?
否
输出 x
结束
D. (2,3)
)
x x2
A. (x 1)2 y2 1
B. (x 1)2 y2 1
C. x2 ( y 1)2 1
D. x2 ( y 1)2 1
A.{1, 2}
B.{1, 2,3}
C.{1, 2, 4}
D .{1, 2,3, 4}
2.函数 f (x) 2x 的图象大致为( )
y
y
y
y
1
O
xO
xO 1
xO
1 x
A.
B.
C.
D.
3.下列平面图形绕直线 l 旋转一周,能得到下图 1 所示的几何体的是( )
l
l
l
l
A.
B.
C.
图1 D.
4.函数 y x 的定义域是( )
5.41
5.44
5.39
5.42
5.38
规定内径尺寸落在区间 [5.37,5.43] 的零件为合格品。
(Ⅰ)若将频率是为概率,试用样本估计总体的思想,估计这批零件中合格品的数量;
(Ⅱ)从这 5 个零件中随机抽取 2 个,求抽到的两个零件均为合格品的概率.
23.(本小题满分 12 分)
已知函数 f x x3 ax 在 x 1 处取得极值。
A. {x x 1}
B. {x x 1}
C.{x x 1}
D. {x x 1}
5.复数 i(1 i) 等于( )
A.1 i
B. 1 i
6.“ x 1 ”是“ x2 1 ”的( )
C. 1 i
D. 1 i
A. 充分不必要条件
B. 必要不充分条件
C. 充要条件
D. 既不充分也不必要条件
2014 福建省高职招考(面向普高)统一考试
数学试题
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分 150 分。考试时间 120 分钟。
第Ⅰ卷(选择题 共 70 分)
一、选择题:本大题共 14 小题,每小题 5 分,共 70 分。在每小题给出的四个选项中,只有
一项是符合题目要求的。
1.设集合 A {1, 2,3}, B {1, 2, 4} ,则 A B ( )
A. 6
B. 10
C. 25
D. 30
2
第Ⅱ卷(非选择题 共 80 分)
二、填空题:本大题共 4 小题,每小题 5 分,共 20 分。把答案填在答题卡相应位置。
15、某志愿者服务队有男队员 48 人,女队员 36 人,为了解志愿者的工作情况,用分层抽样
的方法从全体队员中抽取一个容量为 21 的样本,则抽取女队员的人数为
。
xy
16、设
x,
y
满足约束条件
x
y
y
0
2
,则
z
1 2
x
y
的最大值为
。
17.已知 ABC 的内角 A, B,C 的对边分别为 a,b, c ,且 a 1,b 2,C 60 ,
则c
。
18、已知函数
f
(x)
lxo2g, 3
x,
x x
1
,则
1
13.函数 f (x) x 1 (x 1) 的最小值是( ) x 1
A. 0
B. 1
C. 2
D. 3
14.某城市为节约用水,在保证居民正常用水的前提下制定了如下收费方案:每户居民每月
用水量不超过 5 吨时,水费按基本价每吨 1.5 元计算,超过部分每吨按基本价的 5 倍收
费。若某户居民 12 月份的水费为 45 元,则该户居民 12 月份用水的吨数为( )
(Ⅱ)已知铁的密度为当 7.8g / cm3 ,问制造 1000 个这样
的零件,需要铁多少千克?
(注: 取 3.14,质量 密度 体积)
3
22.(本小题满分 10 分)
某工厂生产一种内径为 5.40mm 的零件 1000 个,为了对该批零件的质量进行检测,随
机抽取 5 个零件,量得其内径尺寸如下(单位:mm):
f
[
f
(3)]
。
三.解答题:本大题共 6 小题,共 60 分,解答应写出文字说明、证明过程或验算步骤。 19.(本小题满分 8 分)
在等差数列 an 中,公差 d 1 ,且 a2 a4 8 。 (Ⅰ)求等差数列 an 的通项公式; (Ⅱ)求数列 an 的前 10 项和 S10 。
7. 在如图所示的图形上随机撒一粒黄豆,则它落在阴影部分的概
率是( )
5
1
3
1
A.
B.
C.
D.
8
2
8
4
1
8.已知 (0, ),sin( ) 1 ,则 cos 等于( )
2
2
1
A.
2
B. 1 2
3
C.
2
D. 3 2
9.执行如图的程序框图,若输入的 x 值为1,则输出的
x 值为是( )
A. 2
B. 3
ห้องสมุดไป่ตู้C. 4
D. 5
10.已知向量
a
(1,
k
),
b
(2,
3)
,且
a
/
/b
,则实数
k 的值为( )
2
A.
3
B. 2 3
3
C.
2
D. 3 2
11.函数 f x ex 4x 7(e 2.71828) 的零点所在的
区间是( )
A. (1, 0)