华东师大版九年级上册数学习题22.2第4课时一元二次方程根的判别式

合集下载

华师大版初中数学九年级上册22.2.4 一元二次方程根的判别式

华师大版初中数学九年级上册22.2.4 一元二次方程根的判别式

华师大版初中数学重点知识精选掌握知识点,多做练习题,基础知识很重要!华师大初中数学和你一起共同进步学业有成!4.一元二次方程根的判别式1.理解并掌握一元二次方程根的判别式,能运用判别式,在不解方程的前提下判断一元二次方程根的情况;(重点、难点) 2.通过一元二次方程根的情况的探究过程,体会从特殊到一般、猜想及分类讨论的数学思想,提高观察、分析、归纳的能力. 一、情境导入老师写了4个一元二次方程让同学们判断它们是否有解,大家都才解第一个方程呢,小强突然站起来说出每个方程解的情况,你想知道他是如何判断的吗?二、合作探究探究点一:一元二次方程的根的情况【类型一】判断一元二次方程根的情况不解方程,判断下列方程的根的情况.(1)2x 2+3x -4=0; (2)x 2-x +=0; 14(3)x 2-x +1=0.解析:根据根的判别式我们可以知道当b 2-4ac ≥0时,方程才有实数根,而b 2-4ac <0时,方程没有实数根.由此我们不解方程就能判断一元二次方程根的情况. 解:(1)2x 2+3x -4=0,a =2,b =3,c =-4,∴b 2-4ac =32-4×2×(-4)=41>0.∴方程有两个不相等的实数根. (2)x 2-x +=0,a =1,b =-1,c =14.∴b 2-4ac =(-1)2-4×1×=0.∴方程1414有两个相等的实数根.(3)x 2-x +1=0,a =1,b =-1,c =1.∴b 2-4ac =(-1)2-4×1×1=-3<0.∴方程没有实数根. 方法总结:给出一个一元二次方程,不解方程,可由b 2-4ac 的值的符号来判断方程根的情况.当b 2-4ac >0时,一元二次方程有两个不相等的实数根;当b 2-4ac =0时,一元二次方程有两个相等的实数根;当b 2-4ac <0时,一元二次方程无实数根.【类型二】由一元二次方程根的情况确定字母系数的取值已知关于x 的一元二次方程(a -1)x 2-2x +1=0有两个不相等的实数根,则a 的取值范围是( )A .a >2B .a <2C .a <2且a ≠1D .a <-2解析:由于一元二次方程有两个不相等的实数根,判别式大于0,得到一个不等式,再由二次项系数不为0知a -1不为0.即4-4(a -1)>0且a -1≠0,解得a <2且a ≠1.选C. 方法总结:若方程有实数根,则b 2-4ac ≥0.由于本题强调说明方程是一元二次方程,所以,二次项系数不为0.因此本题还是一道易错题. 【类型三】 一元二次方程根的判别式与三角形的综合已知a ,b ,c 分别是△ABC 的三边长,求证:关于x 的方程b 2x 2+(b 2+c 2-a 2)x +c 2=0没有实数根. 解析:欲证一元二次方程没有实数根,只需证明它的判别式Δ<0即可.由a ,b ,c 是三角形三条边的长可知a ,b ,c都是正数.由三角形的三边关系可知a +b >c ,a +c >b ,b +c >a . 证明:∵b 为三角形一边的长,∴b ≠0,∴b 2≠0,∴b 2x 2+(b 2+c 2-a 2)x +c 2=0是关于x 的一元二次方程.∴Δ=(b 2+c 2-a2)2-4b 2c 2=(b 2+c 2-a 2+2bc )(b 2+c 2-a 2-2bc )=[(b +c )2-a 2][(b -c )2-a 2]=(b +c+a)(b+c-a)(b-c+a)(b-c-a)=(a+b+c)[(b+c)-a][(a+b)-c][b-(a+c)].∵a,b,c是三角形三条边的长,∴a>0,b>0,c>0,且a+b+c>0,a+b>c,b+c>a,a +c>b.∴(b+c)-a>0,(a+b)-c>0,b-(a +c)<0,∴(a+b+c)[(b+c)-a][(a+b)-c][b-(a+c)]<0,即Δ<0.∴原方程没有实数根.方法总结:利用根的判别式与三角形的三边关系:常根据判别式得到关于三角形三边的式子,再结合三边关系确定Δ符号.【类型四】利用根的判别式解决存在性问题是否存在这样的非负整数m,使关于x的一元二次方程m2x2-(2m-1)x+1=0有两个不相等的实数根?若存在,请求出m的值;若不存在,请说明理由.解:不存在,理由如下:假设m2x2-(2m-1)x+1=0有两个不相等的实数根,则[-(2m-1)]2-4m2>0,解得m<.∵m为非负整数,∴m=0.14而当m=0时,原方程m2x2-(2m-1)x+1=0是一元一次方程,只有一个实数根,与假设矛盾.∴不存在这样的非负整数,使原方程有两个不相等的实数根.易错提醒:在求出m=0后,常常会草率地认为m=0就是满足条件的非负整数,而忽略了二次项系数不为0的这一隐含条件,因此解题过程中务必考虑全面.三、板书设计本节课是在一元二次方程的解法的基础上,学习根的判别式的应用.学生容易在计算取值范围的时候忘记二次项系数不能为零,这是本节课需要注意的地方,应予以特别强调.相信自己,就能走向成功的第一步教师不光要传授知识,还要告诉学生学会生活。

22.2.4一元二次方程根的判别式课件华东师大版数学九年级上册

22.2.4一元二次方程根的判别式课件华东师大版数学九年级上册

C.无实数根
D.只有一个实数根
4.不解方程,判断下列方程的根的情况: (1)2x2 + 3x − 4 = 0; (2)x2 − x + 1 = 0;
4
解:(1)a = 2,b = 3,c = −4,
∴ Δ = b2 − 4ac = 32 − 4×2×(−4) = 41>0.
∴ 方程有两个不等的实数根.
情境导入
知识讲解
随堂小测
当堂检测
课堂小结
1.理解一元二次方程根的判别式的作用.(难点) 2.会用一元二次方程根的判别式判断方程是否有实数根及两 个根是否相等.(重点) 3.能灵活运用一元二次方程根的判别式进行相关的计算与证 明.(难点)




一元二次方程的求根公式是什么?
对于一元二次方程ax2+bx+c=0(a≠0),它的根是: x b b2 4ac(b2 4ac 0). 2a
4 (3)原方程可变形为4y2+7y+4=0.因为Δ=(7)2-4×4×4=49-64=-15<0,所以方
程没有实数根.
不解方程,判断下列方程的根的情况.
(1) - 1 x2 x 1;
4
(2) x2
2x 1 .
3
解:(1)原方程化为 1 x2 x 1 0,
4
Δ
(2)原方程化为 x2 2x 1 0,
解:(1)∵关于x的方程x2-2x+k-1=0有两个不相等的实数根, ∴Δ=(-2)2-4(k-1)>0,解得k<2. (2)把x=k+1代入方程,得(k+1)2-2(k+1)+k-1=4, 整理,得k2+k-6=0,解得k1=2,k2=-3. ∵k<2,∴k的值为-3.

华师大版九年级数学上册22.2.4 一元二次方程根的判别式

华师大版九年级数学上册22.2.4 一元二次方程根的判别式

A.4
B.-4
C.1
D.-1
9.(2014·益阳)一元二次方程x2-2x+m=0总有实数根,则m应
满足的条件是( )D A.m>1 B.m=1
C.m<1 D.m≤1
10.对于方程x2+5x+m=0,其判别式Δ=__2_5_-__4_m____,当 m有_两<_2_4个5__相时等,的方实程数有根两;个当不m相_>_等2_45_的__实时数,根方;程当没m有_=_实_24_5数_时根,.方程 11.如果关于x的方程x2-x+k=0(k为常数)有两个实数根,那 么k的取值范围是___k_≤_14_____.
A.有两个不相等的实数根
B.有两个相等的实数根
C.只有一个实数根
D.没有实数根
4.下列一元二次方程中,有两个相等的实数根的是( B )
A.x2+6=0
B.4x2-4x+1=0
C.x2-x+2=0 D.x2-2x-3=0
5.一元二次方程x2-3x-5=0的根的情况为
______有__两__个__不__相__等__的__实__数__根________________.
6.不解方程,判定下列一元二次方程根的情况. (1)9x2+6x+1=0; 解:∵a=9,b=6,c=1,∴Δ=b2-4ac=36-36=0.∴此方程有 两个相等的实数根 (2)16x2+8x=-3; 解:化为一般形式为:16x2+8x+3=0.∵a=16,b=8,c=3, ∴Δ=b2-4ac=64-4×16×3=-128<0.∴此方程没有实数根 (3)3(x2-1)-5x=0. 解:化为一般形式为:3x2-5x-3=0.∵a=3,b=-5,c=-3, ∴Δ=(-5)2-4×3×(-3)=25+36=61>0.∴此方程有两个不相等 的实数根

华东师大版九年级数学上册《22章 一元二次方程 22.2 一元二次方程的解法 根的判别式》精品课件_1

华东师大版九年级数学上册《22章 一元二次方程  22.2 一元二次方程的解法  根的判别式》精品课件_1

根的判别式情况
写出根
根的情况
△>0 △=0 △<0
x1 = -b +
b 2 - 4ac 2a
x2 = -b -
b 2 - 4ac 2a
-b? 0 b
x1 =x2 =
2a
=2a
方程有两个不相等的实数根 方程有两个相等的实数根
b 2 - 4ac <0 x1,x2不存在 方程没有实数根
你能迅速判断下列方程根的情况吗? (1)x2 + 3x +2=0 (2)x2 - 4x + 4=0 (3)x2 + 2x + 3=0
判断方没程有化根成一的般形情式况: 3x2 + 5x =4
解:化为一般形式,得
解:∵a=3,b=5,c=4 3x2 + 5x -4=0
∴ △=52-4×3×4 = 25-48 =-24<0
∵a=3,b=5,c=-4 ∴ △=52-4×3×(-4)
= 25+48 =73>0
∴方程没有实数根 ∴方程有两个不相等的实数根
选做题:
说明不论k取何值,关于x的方程x2+(2k+1)x+k-1=0.
总有两个不相等的实根
A.x2+1=0
B. x2+x-1=0
C. x2+2x+3=0 D. 4x2-4x+1=0
2、关于x的一元二次方程kx2-6x+1=0有两个
不相等的实数根,则k的取值范围是( D )
A.k<9 C. k≤9且且k≠0
B.k >9 D. k<9且k≠0
必做题:
1、不解方程判定下列方程根的情况 (1)2x-x2-2=0 (2)4(y2-y)+1=0 2、当k取何值时,关于x的方程x2-(2k+1)x+k2=2没有实数根?

华东师大版九年级数学上册《22章 一元二次方程 22.2 一元二次方程的解法 根的判别式》公开课教案_3

华东师大版九年级数学上册《22章 一元二次方程  22.2 一元二次方程的解法  根的判别式》公开课教案_3

一元二次方程根与系数的关系55号教学目标:(一)知识与技能:掌握一元二次方程根与系数的关系,会运用关系定理求已知一元二次方程的两根之和及两根之积,并会解一些简单的问题。

(二)过程与方法:经历一元二次方程根与系数关系的探究过程,培养学生的观察思考、归纳概括能力,在运用关系解决问题的过程中,培养学生解决问题能力,渗透整体的数学思想,求简思想。

(三)情感态度:通过学生自己探究,发现根与系数的关系,增强学习的信心,培养科学探究精神。

教学重点:根与系数关系及运用教学难点:定理的发现及运用。

教学过程:一、 创设情境,激发探究欲望我们知道生活中许多事物存在着一定的规律,有人发现并验证后就得到伟大的定理。

那么一元二次方程中是否也存在什么规律呢?探究规律 先填空,再找规律:思考:观察表中1x +2x 与1x .2x 的值,它们与前面的一元二次方程的各项系数之间有什么关系?从中你能发现什么规律? 二、 得出定理并证明(韦达定理)若一元二次方程a 2x +bx+c=0(a ≠0)的两根为1x 、2x ,则1x +2x = -b a 1x . 2x =ca特殊的:若一元二次方程2x +px+q=0的两根为1x 、2x ,则1x +2x =-p 1x . 2x =q证明此处略(师生合作完成) 三、 运用定理解决问题练习:不解方程说出下列方程的两根的和与两根的积各是多少?⑴ X 2-3X+1=0 ⑵ 3X 2-2X=2 ⑶ 2X 2+3X=0 ⑷ 3X 2=1 1.已知方程x 2-(k+1)x+3k=0的一个根是2 ,求它的另一个根及k的值.2.方程2x 2-3x+1=0的两根记作x 1,x 2,不解方程,求:进一步巩固根与系数的关系,体会“整体代入”思想在解题中的运用,可起到简便运算的作用。

3.(2013•荆州)已知:关于x 的方程kx 2-(3k -1)x +2(k -1)=0(1)求证:无论k 为何实数,方程总有实数根; (2)若此方程有两个实数根x 1,x 2, 且│x 1-x 2│=2,求k 的值. 四、 课堂小结:让学生谈谈本节课的收获与体会:知识?方法?思想?等,教师可适当引导和点拨。

22.2.4 一元二次方程根的判别式 说课稿-华东师大版九年级数学上册

22.2.4 一元二次方程根的判别式 说课稿-华东师大版九年级数学上册
四基三点
四基三点
基础知识:一元二次方程及其相关概念
基本技能:能从具体实例中抽象出一元二次方程;能识别一元二次方程;能将一元二次方程化为一般形式,识别方程中各元素;能判断一个数是否是一元二次方程的解
基本思想:类比思想
基本活动经验:经历方程概念的探究过程,积累依据方程特点定义概念的经验。
重点:一元二次方程的概念及成立条件
知识水平:学生已经学习了一元二次方程的求根公式,二次根式有意义的条件
方法经验:学生已经经历了公式的求解过程。
课程标准与学习目标设置
课标要求:会用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等。
教学目标:
1、会用一元二次方程根的判别式判断根的情况;能根据一元二次方程根的情况确定一元二次方程中字母的取值范围。
难点:理解根的判别式取值范围对根的情况的影响;
易错点:混淆一元二次方程有实数根和有2个不相等的实数根的条件
重难点处理方法
通过具体的例子,让学生理解当△<0时,求根公式中的二次根式部分无意义,由此认识利用△的取值范围可以直接判定一元二次方程有无实数根。
教法学法
教法:启发式、引导式、讲授式融合教学
学法:学生经历动手计算、合作交流、总结归纳、定义练习等活动进行学习
年级
九年级
科目
数学
课型
概念课
课时
1
主备
主说
课题
一元二次方程根的判别式
教材结构分析
一元二次方程根的判别式是继学生学程根的情况提供了依据,同时也为二次函数图象与x轴交点个数提供了代数依据。本节的学习重在培养学生的运算能力。
学情分析
2、经历一元二次方程根的判别式的探究过程,培养学生的数学运算能力、观察能力、分类能力。

华师大版数学九年级上册一元二次方程根的判别式课件

华师大版数学九年级上册一元二次方程根的判别式课件
2a
回顾
用公式法求下列方程的根:
12x2 x 2 0
2 1 x2 x 1 0
4
3x2 x 1 0
解:a 2,b 1,c 2 b2 4ac116170
解:a 1 ,b 1, c 1 4
b2 4ac 11 0
解:a 1,b 1,c 1 b2 4ac 1 4 3 0
反之,同样成立!
完 毕 感 谢
·
The user can perform the presentation on a projector or computer, and the powerpoint can be printed out and made into film.
练习
例:不解方程,判断下列一元二次方程根的个数:
(1)2x2 5x 3 0
b2 4ac 1 0, 方程有两个不相等的根.
23x2 3 6x
b2 4ac 0,
方程有两个相等的根.
(3)x2 x 1 0
b2 4ac 习1
一元二次方程的根的情况
x b b2 4ac 1 17
2a
4
1 17 1 17 x1 4 , x2 4
x b b2 4ac 1 0 2
2a
1
2
x1 x2 2
所以原方程无实数根
视察与思考
思考1:究竟是谁决定了一元二次方程根的情况?
b2 4ac
思考2:一元二次方程根的情况有几种?
一元二次方程的根
当 b2 4ac 0 时,方程有两个不相等的实数根
一元二次方程的根
我们把 b2 4ac 叫做一元二次方程 ax2 bx c 0(a 0) 的根的
判别式,用符号“ ”来表示. 即一元二次方程ax2+bx+c=0(a≠0),

华东师大版九年级数学上册22.2.4一元二次方程根的判别式

华东师大版九年级数学上册22.2.4一元二次方程根的判别式

华东师大版九年级数学上册22.2.4一元二次方程根的判别式 学校:___________姓名:___________班级:___________考号:___________一、填空题1.因为关于x 的一元二次方程220x x =++中,a = ________,b = ________,c = ________,故∆=____________=________,所以方程的根的情况是______________. 2.如果关于x 的一元二次方程x 2﹣6x+c=0(c 是常数)没有实根,那么c 的取值范围是 .二、单选题3.一元二次方程4x 2﹣2x+14=0的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根C .没有实数根D .无法判断 4.若关于 x 的方程 x 2+mx+1=0 有两个不相等的实数根,则 m 的值可以是( ) A .0 B .﹣1 C .2 D .﹣3 5.若关于x 的不等式12a x -<的解集为1x <,则关于x 的一元二次方程210x ax =++根的情况是( ) A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .无法确定6.若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数 y kx b =+的图象可能是:A .B .C .D .7.关于x 的一元二次方程()200ax bx c a =≠++,给出下列说法:①若0a c =+,则方程必有两个实数根;②若0a b c =++,则方程必有两个实数根;③若23b a c =+,则方程有两个不相等的实数根;④若250b ac <-,则方程一定没有实数根.其中说法正确的序号是( )A .①②③B .①②④C .①③④D .②③④三、解答题8.不解方程,判断下列一元二次方程根的情况:(1)21683x x =-+; (2)29610x x =++;(3)2()3150x x =--; (4)()2346x x x =++.9.已知关于x 的方程x 2+mx+m-2=0.(1)若此方程的一个根为1,求m 的值;(2)求证:不论m 取何实数,此方程都有两个不相等的实数根.10.已知a b c ,,为三角形的三边长,且关于x 的一元二次方程2()2(0)b c x a b x b a -+-+-=有两个相等的实数根,试判断这个三角形的形状,并说明理由.参考答案1.1 1 2 21412⨯⨯- -7 没有实数根【解析】【分析】根据一元二次方程的一般形式直接填空即可.根据判别式△=b 2-4ac 进行计算即可解得.【详解】解:关于x 的一元二次方程220x x =++中,二次项系数a =1,一次项系数b =1,常数项c =2,故24b ac ∆=-=21412⨯⨯-=-7,因为0∆<,所以方程没有实数根.故答案为:1;1;2;21412⨯⨯-;-7;没有实数根.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)根的判别式△=b 2-4ac .也考查了一元二次方程ax 2+bx +c =0(a ≠0)的定义.一元二次方程的一般形式是:ax 2+bx +c =0(a ,b ,c 是常数且a ≠0)特别要注意a ≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项. 2.c >9【分析】根据关于x 的一元二次方程没有实数根时△<0,得出△=(-6)2-4c <0,再解不等式即可.【详解】∵关于x 的一元二次方程x 2-6x+c=0(c 是常数)没有实根,∴△=(-6)2-4c <0,即36-4c <0,解得:c >9.故答案为c >9.3.B【详解】试题解析:在方程4x 2﹣2x+ =0中,△=(﹣2)2﹣4×4×14 =0, ∴一元二次方程4x 2﹣2x+14=0有两个相等的实数根. 故选B .考点:根的判别式.4.D【解析】试题解析:∵a=1,b=m ,c=1,∴△=b 2﹣4ac=m 2﹣4×1×1=m 2﹣4,∵关于x 的方程x 2+mx+1=0有两个不相等的实数根,∴m 2﹣4>0,则m 的值可以是:﹣3,故选D .考点:根的判别式.5.C【解析】试题解析:解不等式12a x -<得x <12a +,而不等式12a x -<的解集为x <1,所以12a +=1,解得a =0,又因为△=24a -=﹣4,所以关于x 的一元二次方程210x ax ++=没有实数根.故选C .点睛:本题考查了根的判别式:一元二次方程20ax bx c ++=(a ≠0)的根与△=24b ac -有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.6.B【详解】由方程2210x x kb ++=-有两个不相等的实数根,可得()4410kb =-+>,解得0kb <,即k b 、异号,当00k b >,<时,一次函数y kx b =+的图象过一三四象限,当00k b <,>时,一次函数y kx b =+的图象过一二四象限,故答案选B.7.A【解析】【分析】利用c =-a 可判断△=b 2+4a 2>0,从而根据判别式的意义可对①进行判断;利用c =-(a +b )得到△=b 2-4ac =(2a +b )2≥0,则可根据判别式的意义对②进行判断;利用b =2a +3c 得到△=4(a +c )2+5c 2>0,则可根据判别式的意义对③进行判断;由于b 2-5ac <0,不能判断△=b 2-4ac =b 2-5ac +ac 与0的大小关系,则可根据判别式的意义对④进行判断.【详解】解:①当a +c =0,即c =-a ,则△=b 2-4ac =b 2+4a 2>0,方程必有两个不相等的实数根,所以①正确;②当a +b +c =0,即c =-(a +b ),则△=b 2-4ac =b 2+4a (a +b )=(2a +b )2≥0,方程必有两个实数根,所以②正确;③当b =2a +3c ,则△=b 2-4ac =(2a +3c )2-4ac =4(a +c )2+5c 2>0,方程必有两个不相等的实数根,所以③正确;④当b 2-5ac <0,△=b 2-4ac =b 2-5ac +ac 可能大于0,所以不能判断方程根的情况,所以④错误.故选:A .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx +c =0(a ≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.8.(1)此方程没有实数根;(2)此方程有两个相等的实数根;(3)此方程有两个不相等的实数根;(4)此方程有两个不相等的实数根.【解析】【分析】(2)直接计算根的判别式,然后根据判别式的意义判断根的情况;(1)、(3)、(4)先把方程整理为一般式,再计算根的判别式,然后根据判别式的意义判断根的情况.【详解】解:(1)将一元二次方程化为一般形式,得216830x x =++.∵1683a b c ===,,,∴△=246441631280b ac =-⨯⨯=-<-,∴此方程没有实数根.(2)∵961a b c ===,,,∴△=2436360b ac =-=-,∴此方程有两个相等的实数根.(3)将一元二次方程化为一般形式,得23530x x -=-.∵353a b c ==-=-,,,∴△=224543325366()(1)0b ac =⨯⨯==>----+,∴此方程有两个不相等的实数根.(4)将一元二次方程化为一般形式,得2260x x =--.∵216a b c ==-=-,,,∴△=22414264)()9(0b ac =⨯⨯-=-->-,∴此方程有两个不相等的实数根.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根. 9.(1)12;(2)证明见解析. 【解析】试题分析:一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2﹣4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根. (1)直接把x=1代入方程x 2+mx+m ﹣2=0求出m 的值;(2)计算出根的判别式,进一步利用配方法和非负数的性质证得结论即可.解:(1)根据题意,将x=1代入方程x 2+mx+m ﹣2=0,得:1+m+m ﹣2=0,解得:m=12; (2)∵△=m 2﹣4×1×(m ﹣2)=m 2﹣4m+8=(m ﹣2)2+4>0,∴不论m 取何实数,该方程都有两个不相等的实数根.考点:根的判别式;一元二次方程的解.10.等腰三角形.【解析】【分析】由方程有两个相等的实数根可得其判别式等于0,整理可求得a 、b 、c 的关系,则可判断三角形的形状.【详解】解:这个三角形是等腰三角形.理由:∵一元二次方程有两个相等的实数根,∴2[()](24)()0a b b c b a ----=,0b c -≠,∴222()20a ab b b bc ab ac +-+--=-,∴20a ab bc ac +-=-,从而(()0)a a b c a b ---=,∴()0()a b a c --=,∴0a b -=或0a c -=,∴a b =或a c =,∴这个三角形是等腰三角形.【点睛】本题主要考查根的判别式,由根的情况求得判别式为0,从而求得a 、b 、c 的关系是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档