专题4 等差数列与等比数列(教师版)
等差数列与等比数列教案

等差数列与等比数列教案本文为等差数列与等比数列教案,按照教案的格式进行书写。
教案主题:等差数列与等比数列一、教学目标1. 了解等差数列和等比数列的定义;2. 掌握求解等差数列和等比数列的通项公式;3. 能够应用等差数列和等比数列解决实际问题;4. 培养学生的逻辑思维和问题解决能力。
二、教学内容及方法1. 等差数列a. 定义:等差数列是指数列中相邻两项之差保持恒定的数列。
b. 公式:第n项公式为an = a1 + (n-1)d。
c. 求和公式:Sn = (a1 + an) * n / 2。
d. 实例演练:通过练习题让学生熟悉等差数列的求解过程。
2. 等比数列a. 定义:等比数列是指数列中相邻两项之比保持恒定的数列。
b. 公式:第n项公式为an = a1 * r^(n-1)。
c. 求和公式:Sn = (a1 * (r^n - 1)) / (r - 1),其中r不等于1。
d. 实例演练:通过练习题让学生掌握等比数列的求解方法。
三、教学步骤1. 等差数列教学a. 引入:通过引入一组连续的数字,介绍等差数列的概念,并引发学生对等差数列的思考。
b. 定义:给出等差数列的定义,并通过示例展示等差数列的规律。
c. 公式推导:由示例引出等差数列的通项公式和求和公式的推导过程,让学生理解推导的思路。
d. 实例演练:让学生通过计算练习题来掌握等差数列的求解方法。
e. 总结归纳:引导学生总结等差数列的性质和应用场景。
2. 等比数列教学a. 引入:通过一组倍增或倍减的数字,介绍等比数列的概念,并引发学生对等比数列的思考。
b. 定义:给出等比数列的定义,并通过示例展示等比数列的规律。
c. 公式推导:由示例引出等比数列的通项公式和求和公式的推导过程,让学生理解推导的思路。
d. 实例演练:让学生通过计算练习题来掌握等比数列的求解方法。
e. 总结归纳:引导学生总结等比数列的性质和应用场景。
四、教学资源1. 教师准备:黑板、彩色粉笔、练习题;2. 学生使用:练习题、作业本。
等差数列与等比数列数学教案

等差数列与等比数列数学教案引言:数列是数学中一种重要的数学概念,是指按照一定规律排列的数的集合。
其中,等差数列和等比数列是数学中最常见的两种数列。
它们是数学中的基础概念,掌握它们的性质与运算方法对深入理解数学知识、提高解决问题的能力具有非常重要的意义。
本教案将通过丰富的案例和实际问题,帮助学生全面掌握等差数列和等比数列的相关知识。
一、等差数列1. 等差数列的定义与公式等差数列是指数列中任意两个相邻项之差都是一个常数的数列。
设等差数列的首项为a1,公差为d,则第n项可表示为an=a1+(n-1)d。
其中,a1为首项,d为公差,n为项数。
案例:一个等差数列的首项为3,公差为4,求该等差数列的第10项。
2. 等差数列的通项公式推导与应用等差数列的通项公式是指可以通过首项、公差和项数,直接求得等差数列的第n项。
通项公式为an=a1+(n-1)d。
案例:已知一个等差数列的第5项为21,公差为7,求该等差数列的前10项和。
3. 等差数列的性质与运算等差数列具有以下性质和运算方法:(1)等差数列的任意两项的和等于这两项所夹项的两倍。
(2)等差数列的前n项和可以通过n(n+1)/2求得。
案例:某等差数列的前5项和为30,公差为2,求该等差数列的首项和第7项。
二、等比数列1. 等比数列的定义与公式等比数列是指数列中任意两个相邻项之比都是一个常数的数列。
设等比数列的首项为a1,公比为q,则第n项可表示为an=a1 * q^(n-1)。
其中,a1为首项,q为公比,n为项数。
案例:一个等比数列的首项为2,公比为3,求该等比数列的第5项。
2. 等比数列的通项公式推导与应用等比数列的通项公式是指可以通过首项、公比和项数,直接求得等比数列的第n项。
通项公式为an=a1 * q^(n-1)。
案例:已知一个等比数列的第3项为16,公比为2,求该等比数列的前6项和。
3. 等比数列的性质与运算等比数列具有以下性质和运算方法:(1)等比数列的任意两项的比等于这两项所夹项的指数幂。
2020年高三总复习数学人教旧版--[第11讲 等差数列和等比数列] 讲义(教师版)
![2020年高三总复习数学人教旧版--[第11讲 等差数列和等比数列] 讲义(教师版)](https://img.taocdn.com/s3/m/9a4bd1c0a32d7375a5178065.png)
通项公式:
前 n 项和公式:
()
(2)和等比中项的概念.
等比中项:如果 ,h, 成等差数列,那么 h 叫做 与 的等比中项,且有 h
.
2.有关等差、等比数列的性质
(1)等比数列{an}中,若 m n p q ,则 am an ap aq
(2)等比数列 的任意连 续 m 项的和 构成的数列 Sm , S2m Sm , S3m S2m , 仍为等比
为
,故 = .
【答案】
练习
2.数列 {an }
满足
an1
2an , 0
2an
1,
1 2
an an
1 2
1
,若
a1=
,则 a2016 的值是(
)
A.
B.
C.
D.
【答案】C
【解析】:由数列的递推公式及首项
a1
6 7
可得
a2
5 7
, a3
3 7
, a4
6 7
,所以数列具有周
期性,所以 a2016
a3
3 7
第 3页
例 2. 已知数列an , a1 1 ,前n项部分和 Sn 满足
Sn Sn1 Sn1 Sn 2 SnSn1 ,则 an
.
【答案】 an
1 8(n 1)
n 1 n 1
【解析】 Sn Sn1 Sn1 Sn 2 SnSn1 SnSn1 ( Sn Sn1 2) 0
Sn Sn1 2 Sn 2(n 1) 1 2n 1 Sn (2n 1)2 . 于是 an Sn Sn1 (2n 1)2 (2n 3)2 8(n 1) ,( n 1 ).
A. 充分不必要条件
B. 必要不充分条件
专题4 第1讲等差数列、等比数列 课件(42张)

个量中已知其中的三个量,求另外两个量
2.考查等差(比)数列的通项公式,前n项和公式,
考查方程的思想以及运算能力 1.以递推数列为载体,考查等差(比)数列的定义
或等差(比)中项
2.以递堆数列为命题背景考查等差(比)数列的
证明方法
• 备考策略 • 本部分内容在备考时应注意以下几个方面: • (1)加强对等差(比)数列概念的理解,掌握等差(比)数列的 判定与证明方法. • (2)掌握等差(比)数列的通项公式、前n项和公式,并会应 用. • (3)掌握等差(比)数列的简单性质并会应用. • 预测2018年命题热点为: • (1)在解答题中,涉及等差、等比数列有关量的计算、求 解. • (2)已知数列满足的关系式,判定或证明该数列为等差(比)
-
• an=___________________.
• 2.重要结论 am+(n-m)d • (1)通项公式的推广:等差数列中, an= n-m a · q m _________________ ; 递增数列 • 等比数列中,an=__________. 递减数列 • (2)增减性:①等差数列中,若公差大于零,则数列为 递增数列 __________;若公差小于零,则数列为__________. 递减数列 • ②等比数列中,若a1>0且q>1或S a, 且 0< q <1 ,则数列为 1<0 S - S , S - S2n,… n 2n n 3n ___________;若a1>0且0<q<1或a1<0且q>1,则数列为 ___________. • (3)等差数列{an}中,Sn为前n项 和.__________________________仍成等差数列;等比数
解得 d=-2. 6×5×-2 所以 S6=6×1+ =-24. 2 故选 A.
专题4 第1讲 等差数列与等比数列

第1讲 等差数列与等比数列「考情研析」 1.从具体内容上,主要考查等差数列、等比数列的基本计算和基本性质及等差、等比数列中项的性质、判定与证明. 2.从高考特点上,难度以中、低档题为主,一般设置一道选择题和一道解答题.核心知识回顾1.等差数列(1)01a n =a 1+(n -1)d =a m +(n -m )d . (2)022a n =a n -1+a n +1(n ∈N *,n ≥2). (3)前n 03S n =n (a 1+a n )2=na 1+n (n -1)d2.2.等比数列(1)01a n =a 1q n -1=a m q n -m .(2)02a 2n =a n -1·a n +1(n ∈N *,n ≥2).(3)等比数列的前n 项和公式:03S n =⎩⎨⎧na 1(q =1),a 1-a n q 1-q =a 1(1-q n )1-q (q ≠1).3.等差数列的性质(n ,m ,l ,k ,p 均为正整数)(1)若m +n =l +k ,01a m +a n =a l +a k (反之不一定成立);特别地,当m +n =2p 02a m +a n =2a p .(2)若{a n },{b n }是等差数列,则{ka n +tb n }(k ,t 是非零常数)(3)等差数列“依次m 项的和”即S m …仍是等差数列.(4)等差数列{a n },当项数为2n 时,S 偶-S 奇,S 奇S 偶=a n +12n -1时,S 奇-S 偶,S 奇S 偶=n -1其中S 偶表示所有的偶数项之和,S 奇表示所有的奇数项之和)4.等比数列的性质(n ,m ,l ,k ,p 均为正整数)(1)若m +n =l +k 反之不一定成立);特别地,当m +n =2p(2)当n 为偶数时,S 偶S 奇=公比为q ).(其中S 偶表示所有的偶数项之和,S奇表示所有的奇数项之和)(3)等比数列“依次m 项的和”,即S m …(S m ≠0)成等比数列.热点考向探究考向1 等差数列、等比数列的运算例1 (1)(2020·山东省青岛市模拟)已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,S n 是{a n }的前n 项和,则S 9等于( )A .-8B .-6C .10D .0答案 D解析 ∵a 1,a 3,a 4成等比数列,∴a 23=a 1a 4,∴(a 1+2×2)2=a 1·(a 1+3×2),即2a 1=-16,解得a 1=-8.则S 9=-8×9+9×82×2=0,故选D.(2)(2020·山东省泰安市肥城一中模拟)公比不为1的等比数列{a n }的前n 项和为S n ,若a 1,a 3,a 2成等差数列,mS 2,S 3,S 4成等比数列,则m =( )A.78 B .85 C .1 D .95答案 D解析 设{a n }的公比为q (q ≠0且q ≠1), 根据a 1,a 3,a 2成等差数列, 得2a 3=a 1`+a 2,即2a 1q 2=a 1+a 1q ,因为a 1≠0,所以2q 2-1-q =0,即(q -1)(2q +1)=0. 因为q ≠1,所以q =-12, 则S 2=a 1(1-q 2)1-q =34·a 11-q ,S 3=a 1(1-q 3)1-q =98·a 11-q ,S 4=a 1(1-q 4)1-q =1516·a 11-q,因为mS 2,S 3,S 4成等比数列,所以S 23=mS 2·S 4, 即⎝ ⎛⎭⎪⎫98·a 11-q 2=m ·34·a 11-q ·1516·a 11-q ,因为a 1≠0,所以a 11-q ≠0,所以⎝ ⎛⎭⎪⎫982=m ×34×1516, 得m =95,故选D.利用等差数列、等比数列的通项公式、前n 项和公式,能够在已知三个元素的前提下求解另外两个元素,其中等差数列的首项和公差、等比数列的首项和公比为最基本的量,解题中首先要注意求解最基本的量.1.(多选)(2020·山东省青岛市模拟)已知等差数列{a n }的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( )A .a 1=22B .d =-2C .当n =10或n =11时,S n 取得最大值D .当S n >0时,n 的最大值为20 答案 BCD解析 等差数列{a n }的前n 项和为S n ,公差d ≠0, 由S 6=90,可得6a 1+15d =90,即2a 1+5d =30, ①由a 7是a 3与a 9的等比中项,可得a 27=a 3a 9,即(a 1+6d )2=(a 1+2d )(a 1+8d ),化为a 1+10d =0, ② 由①②解得a 1=20,d =-2,则a n =20-2(n -1)=22-2n ,S n =12n (20+22-2n )=21n -n 2, 由S n =-⎝ ⎛⎭⎪⎫n -2122+4414,可得n =10或n =11时,S n 取得最大值110.由S n >0,可得0<n <21,即n 的最大值为20.故选BCD. 2.定义:在数列{a n }中,若满足a n +2a n +1-a n +1a n =d (n ∈N *,d 为常数),称{a n }为“等差比数列”.已知在“等差比数列”{a n }中,a 1=a 2=1,a 3=3,则a 2022a 2020=( )A .4×20202-1B .4×20192-1C .4×20222-1D .4×20192答案 A解析 ∵a 1=a 2=1,a 3=3,∴a 3a 2-a 2a 1=2,∴⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n +1a n 是以1为首项,2为公差的等差数列,∴a n +1a n=2n -1,∴a 2022a 2020=a 2022a 2021·a 2021a2020=(2×2021-1)×(2×2020-1)=4×20202-1.故选A.考向2 等差数列、等比数列的判定与证明例2 (1)设数列{a n }满足a 1=1,a n +1=44-a n (n ∈N *).求证:数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n -2是等差数列.证明 ∵a n +1=44-a n ,∴1a n +1-2-1a n -2=144-a n -2-1a n -2=4-a n 2a n -4-1a n -2=2-a n 2a n -4=-12为常数,又a 1=1, ∴1a 1-2=-1,∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n -2是以-1为首项,-12为公差的等差数列.(2)数列{a n }的前n 项和为S n ,且满足S n +a n =n -1n (n +1)+1,n =1,2,3,…,设b n =a n +1n (n +1),求证:数列{b n }是等比数列.证明 S n =1-a n +n -1n (n +1),∴S n +1=1-a n +1+n(n +1)(n +2),当n =1时,易知a 1=12,∴a n +1=S n +1-S n =n(n +1)(n +2)-a n +1-n -1n (n +1)+a n ,∴2a n +1=n +2-2(n +1)(n +2)-n -1n (n +1)+a n =1n +1-2(n +1)(n +2)-1n +1+1n (n +1)+a n ,∴2⎣⎢⎡⎦⎥⎤a n +1+1(n +1)(n +2)=a n +1n (n +1),b n =a n +1n (n +1),则b n +1=a n +1+1(n +1)(n +2),上式可化为2b n +1=b n ,∴数列{b n }是以b 1=1为首项,12为公比的等比数列,b n =⎝ ⎛⎭⎪⎫12n -1.(1)判断或者证明数列为等差数列、等比数列最基本的方法是用定义判断或证明,其他方法最后都会回到定义,如证明等差数列可以证明通项公式是n的一次函数,但最后还得使用定义才能说明其为等差数列.(2)证明数列{a n}为等比数列时,不能仅仅证明a n+1=qa n,还要说明a1≠0,才能递推得出数列中的各项均不为零,最后断定数列{a n}为等比数列.(3)证明等差、等比数列,还可利用等差、等比数列的中项公式.1.(多选)(2020·日照一中摸底考试)已知数列{a n}满足:a1=3,当n≥2时,a n=( a n-1+1+1)2-1,则关于数列{a n},下列说法正确的是()A.a2=8 B.数列{a n}为递增数列C.数列{a n}为周期数列D.a n=n2+2n答案ABD解析由a n=(a n-1+1+1)2-1得a n+1=(a n-1+1+1)2,∴a n+1=a n-1+1+1,即数列{a n+1}是首项为a1+1=2,公差为1的等差数列,∴a n+1=2+(n-1)×1=n+1.∴a n=n2+2n.所以易知A,B,D正确.2.已知正项数列{a n}满足a2n+1-6a2n=a n+1a n,若a1=2,则数列{a n}的前n 项和为________.答案3n-1解析∵a2n+1-6a2n=a n+1a n,∴(a n+1-3a n)(a n+1+2a n)=0,∵a n>0,∴a n+1=3a n,∴{a n}为等比数列,且首项为2,公比为3,∴S n=3n-1.考向3数列中a n与S n的关系问题例3(1)(2020·河南省高三阶段性测试)设正项数列{a n}的前n项和为S n,且4S n=(1+a n)2(n∈N*),则a5+a6+a7+a8=()A.24 B.48C.64 D.72答案 B解析 当n =1时,由S 1=a 1=(1+a 1)24,得a 1=1,当n ≥2时,⎩⎨⎧4S n =(1+a n )2,4S n -1=(1+a n -1)2,得4a n =(1+a n )2-(1+a n -1)2,∴a 2n -a 2n -1-2a n -2a n -1=0,(a n +a n -1)(a n -a n -1-2)=0.∵a n >0,∴a n -a n -1=2,∴{a n }是等差数列,∴a n =2n -1,∴a 5+a 6+a 7+a 8=2(a 6+a 7)=48.(2)(2020·山东省德州市二模)给出以下三个条件: ①数列{a n }是首项为 2,满足S n +1=4S n +2的数列; ②数列{a n }是首项为2,满足3S n =22n +1+λ(λ∈R )的数列; ③数列{a n }是首项为2,满足3S n =a n +1-2的数列. 请从这三个条件中任选一个将下面的题目补充完整,并求解. 设数列{a n }的前n 项和为S n ,a n 与S n 满足________.记数列b n =log 2a 1+log 2a 2+…+log 2a n ,c n =n 2+n b n b n +1,求数列{c n }的前n 项和T n .解 选①,由已知S n +1=4S n +2, (*) 当n ≥2时,S n =4S n -1+2, (**) (*)-(**),得a n +1=4(S n -S n -1)=4a n , 即a n +1=4a n .当n =1时,S 2=4S 1+2,即2+a 2=4×2+2,所以a 2=8,满足a 2=4a 1, 故{a n }是以2为首项,4为公比的等比数列, 所以a n =22n -1.b n =log 2a 1+log 2a 2+…+log 2a n =1+3+…+(2n -1)=n 2,c n =n 2+n b n b n +1=n (n +1)n 2(n +1)2=1n (n +1)=1n -1n +1.所以T n =c 1+c 2+…+c n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1.选②,由已知3S n =22n +1+λ, (*) 当n ≥2时,3S n -1=22n -1+λ, (**) (*)-(**),得3a n =22n +1-22n -1=3·22n -1, 即a n =22n -1.当n =1时,a 1=2满足a n =22n -1,所以a n =22n -1, 下同选①.选③,由已知3S n =a n +1-2, (*) 则n ≥2时,3S n -1=a n -2, (**) (*)-(**),得3a n =a n +1-a n ,即a n +1=4a n .当n =1时,3a 1=a 2-2,而a 1=2,得a 2=8,满足a 2=4a 1, 故{a n }是以2为首项,4为公比的等比数列, 所以a n =22n -1, 下同选①.由a n 与S n 的关系求通项公式的注意点(1)应重视分类讨论思想的应用,分n =1和n ≥2两种情况讨论,特别注意a n =S n -S n -1成立的前提是n ≥2.(2)由S n -S n -1=a n 推得a n ,当n =1时,a 1也适合,则需统一表示(“合写”). (3)由S n -S n -1=a n 推得a n ,当n =1时,a 1不适合,则数列的通项公式应分段表示(“分写”),即a n =⎩⎨⎧S 1(n =1),S n-S n -1(n ≥2).已知数列{a n }中,a 1=1,其前n 项的和为S n ,且满足a n =2S 2n2S n -1(n ≥2,n ∈N *).(1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)证明:13S 1+15S 2+17S 3+…+12n +1S n <12.证明 (1)当n ≥2时,S n -S n -1=2S 2n2S n -1,S n -1-S n =2S n ·S n -1,1S n -1S n -1=2,所以数列⎩⎨⎧⎭⎬⎫1S n 是以1为首项,2为公差的等差数列.(2)由(1)可知,1S n =1S 1+(n -1)·2=2n -1,所以S n =12n -1.13S 1+15S 2+17S 3+…+12n +1S n =11×3+13×5+15×7+…+1(2n -1)(2n +1) =12×⎝ ⎛⎭⎪⎫1-13+13-15+15-17+…+12n -1-12n +1=12×⎝ ⎛⎭⎪⎫1-12n +1<12.真题押题『真题检验』1.(2020·全国卷Ⅰ)设{a n }是等比数列,且a 1+a 2+a 3=1,a 2+a 3+a 4=2,则a 6+a 7+a 8=( )A .12B .24C .30D .32答案 D解析 设等比数列{a n }的公比为q ,则a 1+a 2+a 3=a 1(1+q +q 2)=1,a 2+a 3+a 4=a 1q +a 1q 2+a 1q 3=a 1q (1+q +q 2)=q =2,因此,a 6+a 7+a 8=a 1q 5+a 1q 6+a 1q 7=a 1q 5(1+q +q 2)=q 5=32.故选D.2.(2020·全国卷Ⅱ)记S n 为等比数列{a n }的前n 项和.若a 5-a 3=12,a 6-a 4=24,则S na n=( )A .2n -1B .2-21-nC .2-2n -1D .21-n -1答案 B解析 设等比数列{a n }的公比为q ,由a 5-a 3=12,a 6-a 4=24可得⎩⎨⎧ a 1q 4-a 1q 2=12,a 1q 5-a 1q 3=24,解得⎩⎨⎧q =2,a 1=1,所以a n =a 1q n -1=2n -1,S n =a 1(1-q n )1-q =1-2n1-2=2n -1.因此S na n =2n-12n -1=2-21-n .故选B.3.(2020·新高考卷Ⅰ)将数列{2n -1}与{3n -2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为________.答案 3n 2-2n解析 因为数列{2n -1}是以1为首项,以2为公差的等差数列,数列{3n -2}是以1为首项,以3为公差的等差数列,所以这两个数列的公共项所构成的新数列{a n }是以1为首项,以6为公差的等差数列,所以{a n }的前n 项和为n ·1+n (n -1)2·6=3n 2-2n . 4.(2020·全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和.若a 1=-2,a 2+a 6=2,则S 10=________.答案 25解析 设等差数列{a n }的公差为d ,由a 1=-2,a 2+a 6=2,可得a 1+d +a 1+5d =2,即-2+d +(-2)+5d =2,解得d =1.所以S 10=10×(-2)+10×(10-1)2×1=-20+45=25.5.(2020·江苏高考)设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和S n =n 2-n +2n -1(n ∈N *),则d +q 的值是________.答案 4解析 等差数列{a n }的前n 项和公式为P n =na 1+n (n -1)2d =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n ,等比数列{b n }的前n 项和公式为Q n =b 1(1-q n )1-q =-b 11-q q n +b 11-q ,依题意S n =P n+Q n ,即n 2-n +2n -1=d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n -b 11-q q n +b 11-q,通过对比系数可知⎩⎪⎨⎪⎧d2=1,a 1-d 2=-1,q =2,b11-q =-1,得⎩⎪⎨⎪⎧d =2,a 1=0,q =2,b 1=1,故d +q =4.6.(2020·新高考卷Ⅰ)已知公比大于1的等比数列{a n }满足a 2+a 4=20,a 3=8.(1)求{a n }的通项公式;(2)记b m 为{a n }在区间(0,m ](m ∈N *)中的项的个数,求数列{b m }的前100项和S 100.解 (1)设等比数列{a n }的首项为a 1,公比为q , 依题意有⎩⎨⎧a 1q +a 1q 3=20,a 1q 2=8,解得a 1=2,q =2或a 1=32,q =12(舍去), 所以a n =2n ,所以数列{a n }的通项公式为a n =2n . (2)由于21=2,22=4,23=8,24=16,25=32,26=64,27=128, b 1对应的区间为(0,1],则b 1=0;b 2,b 3对应的区间分别为(0,2],(0,3],则b 2=b 3=1,即有2个1; b 4,b 5,b 6,b 7对应的区间分别为(0,4],(0,5],(0,6],(0,7], 则b 4=b 5=b 6=b 7=2,即有22个2;b 8,b 9,…,b 15对应的区间分别为(0,8],(0,9],…,(0,15], 则b 8=b 9=…=b 15=3,即有23个3;b 16,b 17,…,b 31对应的区间分别为(0,16],(0,17],…,(0,31], 则b 16=b 17=…=b 31=4,即有24个4;b 32,b 33,…,b 63对应的区间分别为(0,32],(0,33],…,(0,63], 则b 32=b 33=…=b 63=5,即有25个5;b 64,b 65,…,b 100对应的区间分别为(0,64],(0,65],…,(0,100], 则b 64=b 65=…=b 100=6,即有37个6.所以S 100=1×2+2×22+3×23+4×24+5×25+6×37=480. 7.(2020·全国卷Ⅲ)设等比数列{a n }满足a 1+a 2=4,a 3-a 1=8. (1)求{a n }的通项公式;(2)记S n 为数列{log 3a n }的前n 项和.若S m +S m +1=S m +3,求m . 解 (1)设等比数列{a n }的公比为q ,根据题意,有 ⎩⎨⎧ a 1+a 1q =4,a 1q 2-a 1=8,解得⎩⎨⎧a 1=1,q =3, 所以a n =3n -1.(2)令b n =log 3a n =log 33n -1=n -1, 则S n =n (0+n -1)2=n (n -1)2,根据S m +S m +1=S m +3,可得 m (m -1)2+m (m +1)2=(m +2)(m +3)2, 整理得m 2-5m -6=0,因为m >0,所以m =6.『金版押题』8.已知数列{a n }满足na n -28a n +1=n -1(n ∈N *),a 1+a 2+a 3=75,记S n =a 1a 2a 3+a 2a 3a 4+a 3a 4a 5+…+a n a n +1·a n +2,则a 2=________,使得S n 取得最大值的n 的值为________.答案 25 10解析 由na n -28a n +1=n -1(n ∈N *),可取n =1,即a 1-28=0,可得a 1=28,取n =2,可得2a 2-28a 3=1,即a 3=2a 2-28,又a 1+a 2+a 3=75,可得a 2=25,a 3=22,当n ≥2时,由na n -28a n +1=n -1可得a n +1n -a nn -1=-28n (n -1),可令c n =a n +1n ,则c n -1=a nn -1(n ≥2),c n -c n -1=28⎝ ⎛⎭⎪⎫1n -1n -1(n ≥2), 由c n =c 1+(c 2-c 1)+…+(c n -c n -1)=c 1+28⎝ ⎛⎭⎪⎫12-1+13-12+…+1n -1n -1, 可得c n =c 1+28⎝ ⎛⎭⎪⎫1n -1=a 2+28⎝ ⎛⎭⎪⎫1n -1,则a n +1=nc n =na 2+28(1-n )=28+n (a 2-28), 故a n +1=28-3n (n ≥2),所以a n =31-3n (n ≥3), 又a 1=28,a 2=25,也符合上式,所以a n =31-3n . 令b n =a n a n +1a n +2=(31-3n )(28-3n )(25-3n ), 由b n ≥0,可得(31-3n )(28-3n )(25-3n )≥0, 解得1≤n ≤8(n ∈N *)或n =10,又b 9=-8,b 10=10,所以n =10时,S n 取得最大值.9.记数列{a n }的前n 项和为S n ,已知2a n +1+n =4S n +2p ,a 3=7a 1=7. (1)求p ,S 4的值;(2)若b n =a n +1-a n ,求证:数列{b n }是等比数列. 解 (1)由a 3=7a 1=7知,a 3=7,a 1=1.当n =1时,由2a n +1+n =4S n +2p ,得a 2=32+p ,当n =2时,由2a n +1+n =4S n +2p ,得a 3=4+3p =7,所以p =1, 当n =3时,由2a n +1+n =4S n +2p ,得2a 4+3=4S 3+2,解得a 4=412.所以S 4=1+52+7+412=31.(2)证明:由(1)可得a n +1=2S n -12n +1, 则a n +2=2S n +1-12(n +1)+1. 两式作差得a n +2-a n +1=2a n +1-12, 即a n +2=3a n +1-12(n ∈N *). 由(1)得a 2=52,所以a 2=3a 1-12, 所以a n +1=3a n -12对n ∈N *恒成立, 由上式变形可得a n +1-14=3⎝ ⎛⎭⎪⎫a n -14.而a 1-14=34≠0,所以⎩⎨⎧⎭⎬⎫a n -14是首项为34,公比为3的等比数列,所以a n -14=34×3n -1=3n4,所以b n =a n +1-a n =a n +1-14-⎝ ⎛⎭⎪⎫a n -14=3n +14-3n 4=3n 2,所以b n +1=3n +12,b n +1b n=3.又b 1=32,所以数列{b n }是首项为32,公比为3的等比数列.专题作业一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2020·山东德州高三下学期联考)在等比数列{a n }中,a 1=1,a 5+a 7a 2+a 4=8,则a 6的值为( )A .4B .8C .16D .32答案 D解析 设等比数列{a n }的公比为q ,∵a 1=1,a 5+a 7a 2+a 4=8,∴a 1(q 4+q 6)a 1(q +q 3)=8,解得q =2,则a 6=25=32.故选D. 2.(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( )A .a n =2n -5B .a n =3n -10C .S n =2n 2-8nD .S n =12n 2-2n答案 A解析 设等差数列{a n }的首项为a 1,公差为d .由S 4=0,a 5=5可得⎩⎨⎧ a 1+4d =5,4a 1+6d =0,解得⎩⎨⎧a 1=-3,d =2.所以a n =-3+2(n -1)=2n -5,S n =n ×(-3)+n (n -1)2×2=n 2-4n .故选A. 3.等差数列{a n }的公差为d ,若a 1+1,a 2+1,a 4+1成以d 为公比的等比数列,则d =( )A .2B .3C .4D .5答案 A解析 将a 1+1,a 2+1,a 4+1转化为a 1,d 的形式为a 1+1,a 1+1+d ,a 1+1+3d ,由于这三个数成以d 为公比的等比数列,故a 1+1+d a 1+1=a 1+1+3da 1+1+d =d ,化简得a 1+1=d ,代入a 1+1+d a 1+1=d ,得2dd =2=d ,故选A.4.(2020·河北省张家口市二模)已知正项等比数列{a n }的公比为q ,若a 1=q≠1,且a m=a1a2a3…a10,则m=()A.19 B.45C.55 D.100答案 C解析∵正项等比数列{a n}的公比为q,a1=q≠1,∴a n=q.q n-1=q n,∵a m=a1a2a3...a10,∴q m=q.q2.q3.....q10=q1+2+3+ (10)q55.∴m=55.故选C.5.(2020·河北省保定市一模)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有五人五钱,令上二人所得与下三人等,问各得几何?”其意思是:“现有甲、乙、丙、丁、戊,五人依次差值等额分五钱,要使甲、乙两人所得的钱数与丙、丁、戊三人所得的钱数相等,问每人各得多少钱?”请问上面的问题里,五人中所得的最少钱数为()A.76钱B.56钱C.13钱D.23钱答案 D解析依题意设甲、乙、丙、丁、戊所得钱数分别为a-2d,a-d,a,a+d,a+2d,又有a-2d+a-d=a+a+d+a+2d,得a=-6d,∵a-2d+a-d+a+a+d+a+2d=5a=5,∴a=1,则d=-16,∴a+2d=23.故选D.6.(2020·广州模拟)正项等比数列{a n}满足a2a4=1,S3=13,则其公比是()A.1 B.1 2C.13D.14答案 C解析设{a n}的公比为q,因为a2a4=1,且a2a4=a23,所以a23=1,易知q>0,所以a3=1.由S3=1+1q +1q2=13,得13q2=1+q+q2,即12q2-q-1=0,解得q=13.故选C.7.已知S n 为等比数列{a n }的前n 项和,若S 3,S 9,S 6成等差数列,则( ) A .S 6=-2S 3 B .S 6=-12S 3 C .S 6=12S 3 D .S 6=2S 3答案 C解析 设等比数列{a n }的公比为q (q ≠1),则S 6=(1+q 3)S 3,S 9=(1+q 3+q 6)S 3,因为S 3,S 9,S 6成等差数列,所以2(1+q 3+q 6)S 3=S 3+(1+q 3)S 3,易知S 3≠0,解得q 3=-12,故S 6=12S 3.8.已知函数y =f (x +1)的图象关于y 轴对称,且函数f (x )在(1,+∞)上单调,若数列{a n }是公差不为0的等差数列,且f (a 4)=f (a 18),则{a n }的前21项和为( )A .0B .252 C .21 D .42 答案 C解析 函数y =f (x +1)的图象关于y 轴对称,平移可得y =f (x )的图象关于直线x =1对称,且函数f (x )在(1,+∞)上单调,由数列{a n }是公差不为0的等差数列,且f (a 4)=f (a 18),可得a 4+a 18=2,所以a 1+a 21=a 4+a 18=2,可得数列{a n }的前21项和S 21=21(a 1+a 21)2=21.故选C.二、选择题:在每小题给出的选项中,有多项符合题目要求.9.已知无穷数列{a n }的前n 项和S n =an 2+bn +c ,其中a ,b ,c 为实数,则( )A .{a n }可能为等差数列B .{a n }可能为等比数列C .{a n }中一定存在连续的三项构成等差数列D .{a n }中一定存在连续的三项构成等比数列 答案 ABC解析解法一:因为S n=an2+bn+c,所以S n-1=a(n-1)2+b(n-1)+c(n≥2),所以a n=S n-S n-1=2na-a+b(n≥2),若数列{a n}为等差数列,则a1=a+b+c=a+b,c=0,验证知,当c=0时,{a n}为等差数列,所以A正确;在a n=2na-a +b(n≥2)中,当a=0,b≠0时,a n=b(n≥2),若数列{a n}为等比数列,则a1=b +c=b,c=0,验证知,当a=c=0,b≠0时,{a n}为等比数列,所以B正确;由a n=2na-a+b(n≥2)可知,{a n}中一定存在连续的三项构成等差数列,所以C 正确;假设a k,a k+1,a k+2(k≥2,且k∈N*)成等比数列,则[2(k+1)a-a+b]2=(2ka -a+b)·[2(k+2)a-a+b],整理得(k+1)2=k(k+2),即1=0(不成立),所以{a n}中不存在连续的三项构成等比数列,所以D错误.故选ABC.解法二:当c=0,a≠0时,数列{a n}为等差数列,所以A正确;当a=c=0,b≠0时,数列{a n}为常数列,也是等比数列,所以B正确;当n≥2时,a n=S n -S n-1=2na-a+b,则{a n}中一定存在连续的三项构成等差数列,所以C正确;假设a k,a k+1,a k+2(k≥2,且k∈N*)成等比数列,则[2(k+1)a-a+b]2=(2ka-a +b)·[2(k+2)a-a+b],整理得(k+1)2=k(k+2),即1=0(不成立),所以{a n}中不存在连续的三项构成等比数列,所以D错误.故选ABC.10.(2020·海南省海口市模拟)已知正项等比数列{a n}满足a1=2,a4=2a2+a3,若设其公比为q,前n项和为S n,则()A.q=2 B.a n=2nC.S10=2047 D.a n+a n+1<a n+2答案ABD解析根据题意,对于A,正项等比数列{a n}满足2q3=4q+2q2,变形可得q2-q-2=0,解得q=2或q=-1,又{a n}为正项等比数列,则q=2,故A正确;对于B,a n=2×2n-1=2n,B正确;对于C,S n=2×(1-2n)1-2=2n+1-2,所以S10=2046,C错误;对于D,a n+a n+1=2n+2n+1=3×2n=3a n,而a n+2=2n+2=4×2n =4a n>3a n,D正确.故选ABD.11.等差数列{a n}的前n项和记为S n,若a1>0,S10=S20,则()A.公差d<0 B.a16<0C .S n ≤S 15D .当且仅当S n <0时n ≥32答案 ABC解析 因为等差数列中,S 10=S 20,所以a 11+a 12+…+a 19+a 20=5(a 15+a 16)=0,又a 1>0,所以a 15>0,a 16<0,所以d <0,S n ≤S 15,故A ,B ,C 正确;因为S 31=31(a 1+a 31)2=31a 16<0,故D 错误.故选ABC.12.设正项等差数列{a n }满足(a 1+a 10)2=2a 2a 9+20,则( ) A .a 2a 9的最大值为10 B .a 2+a 9的最大值为210 C.1a 22+1a 29的最大值为15D .a 42+a 49的最小值为200答案 ABD解析 因为正项等差数列{a n }满足(a 1+a 10)2=2a 2a 9+20,所以(a 2+a 9)2=2a 2a 9+20,即a 22+a 29=20,则a 2a 9≤a 22+a 292=202=10,当且仅当a 2=a 9=10时等号成立,故A 正确;由于⎝ ⎛⎭⎪⎫a 2+a 922≤a 22+a 292=10,所以a 2+a 92≤10,a 2+a 9≤210,当且仅当a 2=a 9=10时等号成立,故B 正确;1a 22+1a 29=a 22+a 29a 22·a 29=20a 22·a 29≥20⎝ ⎛⎭⎪⎫a 22+a 2922=20102=15,当且仅当a 2=a 9=10时等号成立,所以1a 22+1a 29的最小值为15,故C 错误;a 42+a 49=(a 22+a 29)2-2a 22·a 29=400-2a 22·a 29≥400-2×102=200,当且仅当a 2=a 9=10时等号成立,故D 正确.故选ABD. 三、填空题13.已知数列{a n }的前n 项和为S n ,a 1=1,2S n =a n +1,则S n =________. 答案 3n -1解析 由2S n =a n +1得2S n =a n +1=S n +1-S n ,所以3S n =S n +1,即S n +1S n =3,所以数列{S n }是以S 1=a 1=1为首项,q =3为公比的等比数列,所以S n =3n -1.14.(2020·山东省聊城市三模)已知数列{a n }中,a 1=1,a n +1=a n +n ,则a 6=________.答案 16解析 由题意,得a 2=a 1+1=2,a 3=a 2+2=4,a 4=a 3+3=7,a 5=a 4+4=11,a 6=a 5+5=16.15.各项均为正数的数列{a n }和{b n }满足:a n ,b n ,a n +1成等差数列,b n ,a n+1,b n +1成等比数列,且a 1=1,a 2=3,则数列{a n }的通项公式为________. 答案 a n =n (n +1)2解析 由题设可得a n +1=b n b n +1,a n =b n b n -1,得2b n =a n +a n +1⇒2b n =b n b n -1+b n b n +1,即2b n =b n -1+b n +1,又a 1=1,a 2=3⇒2b 1=4⇒b 1=2,则{b n }是首项为2的等差数列.由已知得b 2=a 22b 1=92,则数列{b n }的公差d =b 2-b 1=322-2=22,所以b n =2+(n -1)·22=2(n +1)2,即b n =n +12.当n=1时,b 1=2,当n ≥2时,b n -1=n2,则a n =b n b n -1=n (n +1)2,a 1=1符合上式,所以数列{a n }的通项公式为a n =n (n +1)2.16.已知数列{a n }满足13a 1+132a 2+…+13n a n =3n +1,则a n =________,a 1+a 2+a 3+…+a n =________.答案 ⎩⎨⎧12,n =1,3n +1,n ≥2⎩⎨⎧12,n =1,3n +2-32,n ≥2解析 由题意可得,当n =1时,13a 1=4,解得a 1=12.当n ≥2时,13a 1+132a 2+…+13n -1a n -1=3n -2,所以13n a n =3,n ≥2,即a n =3n +1,n ≥2,又当n =1时,a n =3n +1不成立,所以a n =⎩⎨⎧12,n =1,3n +1,n ≥2.当n ≥2时,a 1+a 2+…+a n =12+33-3n +21-3=3n +2-32. 四、解答题17.(2020·江西省南昌市三模)已知数列{a n }中,a 1=2,a n a n +1=2pn +1(p 为常数) .(1)若-a 1,12a 2,a 4成等差数列,求p 的值;(2)是否存在p ,使得{a n }为等比数列?若存在,求{a n }的前n 项和S n ;若不存在,请说明理由.解 (1)令n =1,a 1a 2=2p +1⇒a 2=2p ,且a n +1a n +2=2pn +p +1,与已知条件相除得a n +2a n=2p ,故a 4=2p a 2=(2p )2, 而-a 1,12a 2,a 4成等差数列,则a 4-2=a 2,即(2p )2-2=2p ,解得2p =2,即p =1.(2)若{a n }是等比数列,则由a 1>0,a 2>0,知此数列首项和公比均为正数.设其公比为q ,则q =2p 2,故2p 2=a 2a 1=2p 2⇒p =2, 此时a 1=2,q =2⇒a n =2n ,故a n a n +1=22n +1, 而2pn +1=22n +1,因此p =2时,{a n }为等比数列,其前n 项和S n =2(1-2n )1-2=2n +1-2. 18.(2020·山东省威海二模)从条件①2S n =(n +1)a n ,② S n +S n -1=a n (n ≥2),③a n >0,a 2n +a n =2S n 中任选一个,补充到下面问题中,并给出解答.已知数列{a n }的前n 项和为S n ,a 1=1,________.若a 1,a k ,S k +2成等比数列,求k 的值.解 若选择①,∵2S n =(n +1)a n ,n ∈N *,∴2S n +1=(n +2)a n +1,n ∈N *.两项相减得2a n +1=(n +2)a n +1-(n +1)a n ,整理得na n +1=(n +1)a n .即a n +1n +1=a n n ,n ∈N *, ∴⎩⎨⎧⎭⎬⎫a n n 为常数列.a n n =a 11=1,∴a n =n . ⎝ ⎛⎭⎪⎫或由a n +1a n =n +1n ,利用相乘相消法,求得a n =n a k =k ,S k +2=(k +2)×1+(k +2)(k +1)2×1 =(k +2)(k +3)2. 又a 1,a k ,S k +2成等比数列,∴(k +2)(k +3)=2k 2, k 2-5k -6=0,解得k =6或k =-1(舍去). ∴k =6.若选择②, 由S n +S n -1=a n (n ≥2)变形得S n +S n -1=S n -S n -1, S n +S n -1=( S n +S n -1)( S n -S n -1), 易知S n >0,∴ S n -S n -1=1,{S n }为等差数列, 而S 1=a 1=1,∴ S n =n ,S n =n 2, ∴a n =S n -S n -1=2n -1(n ≥2),且n =1时也满足, ∴a n =2n -1.∵a 1,a k ,S k +2成等比数列,∴(k +2)2=(2k -1)2,∴k =3或k =-13,又k ∈N *,∴k =3.若选择③,∵a 2n +a n =2S n (n ∈N *),∴a 2n -1+a n -1=2S n -1(n ≥2).两式相减得a 2n -a 2n -1+a n -a n -1=2S n -2S n -1=2a n (n ≥2),整理得(a n -a n -1)(a n +a n -1)=a n +a n -1(n ≥2). ∵a n >0,∴a n -a n -1=1(n ≥2),∴{a n }是等差数列,∴a n =1+(n -1)×1=n ,S k +2=(k +2)×1+(k +2)(k +1)2×1=(k +2)(k +3)2. 又a 1,a k ,S k +2成等比数列,∴(k +2)(k +3)=2k 2,解得k =6或k =-1,又k ∈N *,∴k =6.19.设数列{a n }的前n 项和为S n ,且满足a n -12S n -1=0(n ∈N *).(1)求数列{a n }的通项公式;(2)是否存在实数λ,使得数列{S n +(n +2n )λ}为等差数列?若存在,求出λ的值;若不存在,请说明理由.解 (1)由a n -12S n -1=0(n ∈N *),可知当n =1时, a 1-12a 1-1=0,即a 1=2.又由a n -12S n -1=0(n ∈N *),可得a n +1-12S n +1-1=0,两式相减,得⎝ ⎛⎭⎪⎫a n +1-12S n +1-1-⎝ ⎛⎭⎪⎫a n -12S n -1=0, 即12a n +1-a n =0,即a n +1=2a n .所以数列{a n }是以2为首项,2为公比的等比数列, 故a n =2n (n ∈N *).(2)由(1)知,S n =a 1(1-q n )1-q=2(2n -1),所以S n+(n+2n)λ=2(2n-1)+(n+2n)λ.若数列{S n+(n+2n)λ}为等差数列,则S1+(1+2)λ,S2+(2+22)λ,S3+(3+23)λ成等差数列,即有2[S2+(2+22)λ]=[S1+(1+2)λ]+[S3+(3+23)λ],即2(6+6λ)=(2+3λ)+(14+11λ),解得λ=-2.经检验λ=-2时,{S n+(n+2n)λ}成等差数列,故λ的值为-2.。
专题四 第1讲 等差数列、等比数列

专题升级训练等差数列、等比数列(时间:60分钟满分:100分)一、选择题(本大题共6小题,每小题6分,共36分)1.已知数列{a n}满足a1=1,且,则a2 014=( )A.2 012B.2 013C.2 014D.2 0152.已知各项均为正数的等比数列{a n}中,a1a2a3=5,a7a8a9=10,则a4a5a6=( )A.5B.4C.6D.73.(2018·山东青岛模拟,6)等比数列{a n}的前n项和为S n,且4a1,2a2,a3成等差数列.若a1=1,则S4=( )A.7B.8C.15D.164.已知等差数列{a n}的前n项和为S n,若=a1+a200,且A,B,C三点共线(该直线不过原点O),则S200=( )A.100B.101C.200D.20185.在等差数列{a n}中,a n>0,且a1+a2+…+a10=30,则a5·a6的最大值等于( )A.3B.6C.9D.36[:6.设{a n},{b n}分别为等差数列与等比数列,且a1=b1=4,a4=b4=1,则以下结论正确的是( )A.a2>b2B.a3<b3C.a5>b5D.a6>b6二、填空题(本大题共3小题,每小题6分,共18分)7.定义“等积数列”:在一个数列中,如果每一项与它的后一项的积都为同一个常数,那么这个数列叫做等积数列,这个常数叫做该数列的公积,已知数列{a n}是等积数列,且a1=3,公积为15,那么a21= .8.在数列{a n}中,如果对任意n∈N*都有=k(k为常数),则称数列{a n}为等差比数列,k称为公差比.现给出下列①等差比数列的公差比一定不为零;②等差数列一定是等差比数列;③若a n=-3n+2,则数列{a n}是等差比数列;④若等比数列是等差比数列,则其公比等于公差比.其中正确9.已知a,b,c是递减的等差数列,若将其中两个数的位置互换,得到一个等比数列,则= .三、解答题(本大题共3小题,共46分.解答应写出必要的文字说明、证明过程或演算步骤)10.(本小题满分15分)已知数列{a n}为公差不为零的等差数列,a1=1,各项均为正数的等比数列{b n}的第1项、第3项、第5项分别是a1,a3,a21.(1)求数列{a n}与{b n}的通项公式;(2)求数列{a n b n}的前n项和.11.(本小题满分15分)(2018·山东东营模拟,19)已知三个正整数2a,1,a2+3按某种顺序排列成等差数列.(1)求a的值;(2)若等差数列{a n}的首项、公差都为a,等比数列{b n}的首项、公比也都为a,前n项和分别为S n,T n,且>S n-108,求满足条件的正整数n的最大值.[:12.(本小题满分16分)等差数列{a n}的前n项和为S n,a1=1+,S3=9+3.(1)求数列{a n}的通项a n与前n项和S n;(2)设b n=(n∈N*),求证:数列{b n}中任意不同的三项都不可能成为等比数列.##一、选择题(本大题共6小题,每小题6分,共36分)1.C 解析:由,可得a n=n,故a2 014=2 014.2.A 解析:(a1a2a3)·(a7a8a9)==50,且a n>0,∴a4a5a6==5.3.C 解析:设数列{a n}的公比为q,则由题意得4a2=4a1+a3,即4a1q=4a1+a1q2,即q2-4q+4=0,得q=2.∴S4==15.4.A 解析:∵=a1+a200,且A,B,C三点共线,∴a1+a200=1,故根据等差数列的前n项和公式得S200==100.5.C 解析:∵a1+a2+…+a10=30,得a5+a6==6,又a n>0,∴a5·a6≤=9.6.A 解析:设等差数列{a n}的公差为d,等比数列{b n}的公比为q,由a1=b1=4,a4=b4=1,得d=-1,q=,∴a2=3,b2=2;a3=2,b3=;a5=0,b5=;a6=-1,b6=.故选A.二、填空题(本大题共3小题,每小题6分,共18分)7.3 解析:由题意知a n·a n+1=15,即a2=5,a3=3,a4=5,…观察可得:数列的奇数项都为3,偶数项都为5.故a21=3.8.①③④解析:若k=0,{a n}为常数列,分母无意义,①正确;公差为零的等差数列不是等差比数列,②错误;=3,满足定义,③正确;设a n=a1q n-1(q≠0),则=q,④正确.[:9.20 解析:依题意得①或者②或者③由①得a=b=c,这与a,b,c是递减的等差数列矛盾;由②消去c整理得(a-b)(a+2b)=0.又a>b,因此有a=-2b,c=4b,故=20;由③消去a整理得(c-b)(c+2b)=0.又b>c,因此有c=-2b,a=4b,故=20.三、解答题(本大题共3小题,共46分.解答应写出必要的文字说明、证明过程或演算步骤)10.解:(1)设数列{a n}的公差为d(d≠0),数列{b n}的公比为q(q>0),由题意得=a1a21,∴(1+2d)2=1×(1+20d),∴4d2-16d=0.∵d≠0,∴d=4.∴a n=4n-3.于是b1`=1,b3=9,b5=81,{b n}的各项均为正数,∴q=3.∴b n=3n-1.(2)a n b n=(4n-3)3n-1,∴S n=30+5×31+9×32+…+(4n-7)×3n-2+(4n-3)×3n-1,3S n=31+5×32+9×33+…+(4n-7)×3n-1+(4n-3)×3n.两式两边分别相减得-2S n=1+4×3+4×32+4×33+…+4×3n-1-(4n-3)×3n=1+4(3+32+33+…+3n-1)-(4n-3)×3n=1+-(4n-3)×3n=(5-4n)×3n-5,∴S n=.11.解:(1)∵2a,a2+3是正整数,∴a是正整数,∴a2+3>2a>1,∴4a=a2+3+1,∴a=2.(2)S n=2n+·2=n2+n,T n==2n+1-2,∴=2.∴S n<110,即n2+n-110<0,∴-11<n<10.∵n是正整数,∴n的最大值是9.[:12.解:(1)由已知得∴d=2.故a n=2n-1+,S n=n(n+).(2)由(1)得b n==n+.假设数列{b n}中存在三项b p,b q,b r(p,q,r互不相等)成等比数列,则=b p b r,即(q+)2=(p+)(r+),[:∴(q2-pr)+(2q-p-r)=0.∵p,q,r∈N*,∴∴=pr,(p-r)2=0.∴p=r,这与p≠r矛盾.∴数列{b n}中任意不同的三项都不可能成等比数列.。
教案4(教师用) 等差数列与等比数列(2)

教案4 等差数列与等比数列(2)一、课前检测1.(2010年海淀二模12)已知数列{}n a 满足11a =,12n n n a a +=(n ∈N *),则910a a +的值为 . 答案:48。
2.首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是( D )A.d>83B.d<3C.83≤d<3D.83<d ≤3二、知识梳理1.基本量的思想:常设首项、公比为基本量,借助于消元思想及解方程组思想等。
转化为“基本量”是解决问题的基本方法。
解读:对于a n q a S n n 1,,,,中五个量可“知三求二”。
在解决等比数列的有关问题时常用除法消元....的方法。
要注意对公比q ≠1,q =1时进行分类讨论。
2.等比数列的判定:{a n }为等比数列⎪⎪⎩⎪⎪⎨⎧≠=++=≠===⇔+++)()(0,00/2211aq b a b aq S cq cq a a a a qa a n nnn n n n n n 解读:3.ab G ab G G b a ±=⇔=⇔2的等比中项与。
推广:m n m n n a a a +-⨯=2解读:1)并非任何两数总有等比中项.仅当实数a,b 同号时,实数a,b 才存在等比中项,且同号两实数a,b 的等比中项不仅存在,而且有一对为±ab, 也就是说,两实数要么没有等比中项(非同号时),如果有,必有一对(同号时).2){a n }为等比数列是a n+12=a n ·a n+2的充分但不必要条件.3)若证{a n }不是等比数列,只需证a k 2≠a k -1a k+1(k 为常数,k ∈N ,且k ≥2). 4.解题小技巧:三个数成等比的设法:,,aq a aq ;四个数成等比的错误设法:3,,,a aqqaq aq (2q 是公比)。
解读:5.等比数列与函数1)等比数列的通项公式类似于n 的指数函数,即:n n a cq =,其中1a c q=2)等比数列的前n 项和公式是一个平移加振幅的n 的指数函数,即:(1)n n s cq c q =-≠ 解读:6.待定系数法:等比数列}{n a ,设1,0,,1≠≠-==-q Aq A Aq S Aqa n n n n三、典型例题分析题型1 等比数列的基本运算例1 (1)已知等比数列{a n }中,a 1+a n =66,a 2a n -1=128,S n =126,求项数n 和公比q 的值.(2)设等比数列{a n }的公比为q(q>0),它的前n 项和为40,前2n 项和为3280,且前n 项中数值最大项为27,求首项、公比及项数n . 解:(1)∵{a n }是等比数列,∴a 1·a n =a 2·a n -1, ∴⎩⎨⎧=⋅=+1286611n n a a a a , 解得⎩⎨⎧==6421n a a 或⎩⎨⎧==2641n a a若a 1=2,a n =64,则2·q n -1=64 ∴q n=32q ,由S n =1261)321(21)1(1=--=--qq q q a n , 解得q =2,于是n =6若a 1=64,a n =2,则64·qn -1=2 ∴q n=q 321 由S n =1261)3211(641)1(1=--=--qq qq a n解得q =21,n =6(2)若q =1,则na 1=40,2na 1=3280矛盾,∴ q≠1.∴ ⎪⎪⎩⎪⎪⎨⎧=--=--32801)1(401)1(211q q a qq a nn 两式相除得:q n=81,q =1+2a 1 又∵q>0,∴ q>1,a 1>0 ∴ {a n }是递增数列. ∴ a n =27=a 1qn -1=112181a a +⨯ 解得 a 1=1,q =3,n =4变式训练1 已知等比数列{a n }中,a 1·a 9=64,a 3+a 7=20,则a 11= .答案:64或1 解:由⎩⎨⎧=+=⋅20647391a a a a ⇒⎩⎨⎧=+=20647373a a a a ⇒⎩⎨⎧==41673a a 或⎩⎨⎧==16473a a ∴ q 2=21或q 2=2,∴ a 11=a 7 q 2, ∴ a 11=64或a 11=1小结与拓展:1)方程的思想:等比数列中五个元素a 1、a n 、n 、q 、S n 可以“知三求二”。
高三数学专题复习 1.4.1等差数列与等比数列教案(第1课时)-人教版高三全册数学教案

课 题 等差数列与等比数列课 时 共 3课时本节第1课时选用教材 专题四知识模块数列课 型复习教学目标 熟练掌握等差数列与等比数列的公式性质等 重 点 熟练掌握等差数列与等比数列的公式性质等 难 点 熟练掌握等差数列与等比数列的公式性质等 关 键 熟练掌握等差数列与等比数列的公式性质等教学方法 及课前准备多媒体辅助教学 学生自主探究 讲练结合教学流程多媒体辅助教学内容 网络构建考点溯源[思考1] 等差数列中的公式及性质有哪些? 提示:(1)定义式:a n +1-a n =d (n ∈N *,d 为常数). (2)通项公式:a n =a 1+(n -1)d . (3)前n 项和公式:S n =n a 1+a n2=na 1+n n -1d2.(4)等差中项公式:2a n =a n -1+a n +1(n ∈N *,n ≥2). (5)性质:①a n =a m +(n -m )d (n ,m ∈N *).②若m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *). ③等差数列中,S n ,S 2n -S n ,S 3n -S 2n ,……也成等差数列.复习知识点,用多媒体展示,带领学生对相关知识进行回忆与记忆[思考2] 等比数列中的公式及性质有哪些? 提示:(1)定义式:a n +1a n=q (n ∈N *,q 为非零常数). (2)通项公式:a n =a 1q n -1.(3)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1 q =1,a 11-q n1-qq ≠1.(4)等比中项公式:a 2n =a n -1a n +1(n ∈N *,n ≥2). (5)性质:①a n =a m qn -m (n ,m ∈N *).②若m +n =p +q ,则a m a n =a p a q (p ,q ,m ,n ∈N *).③等比数列中,q ≠-1时,S n ,S 2n -S n ,S 3n -S 2n ,……也成等比数列. [思考3] 已知数列的前n 项和S n ,如何求通项a n ?需要注意什么问题?提示:a n =⎩⎪⎨⎪⎧S 1n =1,S n -S n -1n ≥2.由S n -S n -1=a n 推出的a n 是在n ≥2的条件下成立的,若当n =1时,a 1也适合“a n 式”,则数列的通项需要统一“合写”;若当n =1时,a 1不适合“a n 式”,则数列的通项需要分段表示. 考向一 等差、等比数列基本运算的考查高考经常考查等差(等比)中a 1、n 、d (q )、a n 与S n 的基本运算,或考查等差、等比数列的交汇计算.求解这类问题要重视方程思想与整体思想的应用,难度中档.【例1】 (2013·武汉调研)已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和. [思路点拨](1)列出关于a 1、d 的方程组求解;(2)根据a 2,a 3,a 1成等比数列确定数列{a n },求数列{|a n |}的通项公式,最后求数列{|a n |}的前n 项和.解 (1)设等差数列{a n }的公差为d , 则a 2=a 1+d ,a 3=a 1+2d .由题意得⎩⎪⎨⎪⎧3a 1+3d =-3,a 1a 1+d a 1+2d =8,解得⎩⎪⎨⎪⎧a 1=2,d =-3或⎩⎪⎨⎪⎧a 1=-4,d =3.所以由等差数列的通项公式可得a n =2-3(n -1)=-3n +5或a n =-4+3(n -1)=3n -7.故a n =-3n +5或a n =3n -7.(2)当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列;当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件.故|a n |=|3n -7|=⎩⎪⎨⎪⎧-3n +7,n =1,2,3n -7,n ≥3.记数列{|a n |}的前n 项和为S n . 当n =1时,S 1=|a 1|=4; 当n =2时,S 2=|a 1|+|a 2|=5; 当n ≥3时,S n =S 2+|a 3|+|a 4|+…+|a n | =5+(3×3-7)+(3×4-7)+…+(3n -7) =5+n -2[2+3n -7]2=32n 2-112n +10. 当n =2时,满足此式. 综上知S n =⎩⎪⎨⎪⎧4,n =1,32n 2-112n +10,n ≥2.[探究提升] 1.涉及等差(比)数列的运算,一般是利用等差(比)数列的通项公式、求和公式“知三求二”.体现了方程思想的应用.2.在使用等比数列前n 项和公式时,若公比q 不能确定是否为1,应分q =1和q ≠1两种情况讨论.【变式训练1】 (1)等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =________. (2)(2013·福建高考)已知等差数列{a n }的公差d =1,前n 项和为S n . ①若1,a 1,a 3成等比数列,求a 1; ②若S 5>a 1a 9,求a 1的取值范围.(1)解析 法一 当q =1时,S 3=3a 1,S 2=2a 1, 由S 3+3S 2=0,得9a 1=0,∴a 1=0,这与{a n }为等比数列矛盾,则q ≠1. 由S 3+3S 2=0,得a 11-q 31-q +3a 11-q21-q=0,解得q =-2.法二 ∵S 3+3S 2=0, ∴a 1+a 2+a 3+3(a 1+a 2)=0. ∴a 1(4+4q +q 2)=0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.(理)已知数列 的值为(C)
(A) (B) (C)1(D)-2
(文)直角三角形三边成等比数列,公比为 ,则 的值为(D)
(A) (B) (C) (D)
3.设{an}为等差数列,a1>0,a6+a7>0,a6a7<0,则使其前n项和Sn>0成立的最大自然数n是(B)
其中一定能成为该数列“基本量”的是第①④组.(写出所有符合要求的组号)
6.设数列{an}的首项 ,且 ,记 .
(I)求a2,a3;
( )判断数列{bn}是否为等比数列,并证明你的结论;
( )(理)求 .
【专家解答】
(I)a2=a1+ =a+ ,a3= a2= a+ ;
( )∵a4=a3+ = a+ ,∴a5= a4= a+ ,
解析(1) 在直线x-y+1=0上
(2) ,
,
.
(3) ,
.
……………………………………
故存在关于n的整式 使等式对于一切不小2的自然数n恒成立.
【点睛】点在直线上的充要条件是点的坐标满足直线的方程,即得递推式.第(3)小题的探索性设问也是本题的升华.
【变式】设数列 是等差数列, .
(Ⅰ)当 时,请在数列 中找一项 ,使得 成等比数列;
(1)求数列{ }的通项公式 ;
(2)数列{ }中是否存在三项,它们可以构成等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由.
解析:(1)当 时有:
两式相减得:
∴数列{ }是首项6,公比为2的等比数列.
从而
(2)假设数列{ }中存在三项 ,它们可以构成等差数列,
因此只能是 ,
即
、 、 均为正整数,
【范例2】已知正项数列{an},其前n项和Sn满足10Sn=an2+5an+6且a1,a3,a15成等比数列,求数列{an}的通项an.
解析∵10Sn=an2+5an+6,① ∴10a1=a12+5a1+6,解之得a1=2或a1=3.
又10Sn-1=an=(an2-an-12)+6(an-an-1),即(an+an-1)(an-an-1-5)=0
(Ⅰ)若a11=0,S14=98,求数列{an}的通项公式;
(Ⅱ)若a1≥6,a11>0,S14≤77,求所有可能的数列{an}的通项公式.
解析:(Ⅰ)由S14=98得2a1+13d=14,又a11=a1+10d=0,故解得d=-2,a1=20.
因此,{an}的通项公式是an=22-2n,n=1,2,3…
(1)写出这个命题的逆命题;(2)判断逆命题是否为真,并给出证明
解析(1)逆命题:在等比数列{an}中,前n项和为Sn,若am,am+2,am+1成等差数列,则Sm,Sm+2,Sm+1成等差数列
(2)设{an}的首项为a1,公比为q.由已知得2am+2=am+am+1
∴2a1qm+1=a1 +a1qm∵a1≠0 q≠0,∴2q2-q-1=0,∴q=1或q=-
专题等差数列与等比数列
★★★高考在考什么
【考题回放】
1.设数列{an}的首项a1=-7,且满足an+1=an+2(n∈N),则a1+a2+……
+a17=153.
2.设Sn是等差数列{an}的前n项和,若 = ,则 =( A )
(A) (B) (C) (D)
3.已知数列 、 都是公差为1的等差数列,其首项分别为 、 ,且
(Ⅱ)由 得 即
由①+②得-7d<11。即d>- .由①+③得13d≤-1,即d≤- .
于是- <d≤- ,又d∈Z,故d=-1,将④代入①②得10<a1≤12.
又a1∈Z,故a1=11或a1=12.
所以,所有可能的数列{an}的通项公式是an=12-n和an=13-n,n=1,2,3,…
8.(理)数列{ }的前 项和 满足:
★★★突破重难点
【范例1】已知等差数列前三项为a,4,3a,前n项和为Sn,Sk= 2550.
(Ⅰ)求a及k的值;(Ⅱ)求 ( … ).
解析(Ⅰ)设该等差数列为{an},则a1=a,a2= 4,a3=3a,Sk= 2550.
由已知得a+3a= 2×4,解得a1=a= 2,公差d=a2-a1= 2.
由 得 ,解得k= 50.
∴a= 2,k= 50.
(Ⅱ)由 得Sn=n(n+1),
∴
,
∴ .
【点睛】错位相减法、裂项相消法等等是常用的数列求和方法.
【文】 是等差数列 的前n项和,已知 的等比中项为 , 的等差中项为1,求数列 的通项.
解析由已知得 ,即 ,
解得 或 或
经验证 或 均满足题意,即为所求.
【点睛】若 是等差数列 的前n项和,则数列 也是等差数列.本题是以此背景设计此题.
即 .
∴(*)式左边为奇数右边为偶数,不可能成立。
因此数列{ }中不存在可以构成等差数列的三项。
【文】在等差数列 中, ,前 项和 满足 ,
(Ⅰ)求数列 的通项公式;
(Ⅱ)记 ,求数列 的前 项和 .
解析(Ⅰ)设等差数列 的公差为 ,由 得 ,
所以 ,即 ,所以 .
(Ⅱ)由 ,得 .故 ,
当 时, ;
当 时, ,
所以b1=a1- =a- ,b2=a3- = (a- ),b3=a5- = (a- ),
猜想:{bn}是公比为 的等比数列.证明如下:
因为bn+1=a2n+1- = a2n- = (a2n-1- )= bn,(n∈N*)
所以{bn}是首项为a- ,公比为 的等比数列·
( )(理) .
★★★高考要考什么
, .设 ( ),则数列 的前10项和等于(C)
(A)55(B)70(C)85(D)100
4.在等比数列 中, ,前 项和为 ,若数列 也是等比数列,则 等于(C)
(A) (B) (C) (D)
5.若干个能唯一确定一个数列的量称为该数列的“基本量”.设{an}是公比为q的无穷等比数列,下列{an}的四组量中:①S1与S2;②a2与S3;③a1与an;④q与an.
当n=1时,a1=S1=3×12-2=6×1-5,所以,an=6n-5( )
(Ⅱ)由(Ⅰ)得知 = = ,
故Tn= = = (1- ).
因此,要使 (1- )< ( )恒成立的m,必须且仅须满足 ≤ ,即m≥10,所以满足要求的最小正整数m为10.
【文】设等差数列{an}的首项a1及公差d都为整数,前n项和为Sn..
【文】已知等比数列 的前 项和为 ,且 .
(1)求 、 的值及数列 的通项公式;
(2)设 ,求数列 的前 项和 .
解析(1)当 时, .
而 为等比数列,得 ,即 ,从而 .
又 .
(2) ,
两式相减得 ,
因此, .
【范例3】下表给出一个“三角形数阵”:
,
, ,
…………
已知每一列的数成等差数列;从第三行起,每一行的数成等比数列,每一行的公比都相等.记第i行第j列的数为aij(i≥j,i,j∈N*).
(1)求a83;
(2)试写出aij关于i,j的表达式;
(3)记第n行的和为An,求
解析(1)由题知 成等差数列,且 ,所以公差 。
又 成等比数列,且 .又公比都相等,∴每行的公比是 .
∴ .
(2)由(1)知, ,∴ .
(3) .
【点睛】在新颖背景——数表中运用数列知识.
【文】在等比数列{an}中,前n项和为Sn,若Sm,Sm+2,Sm+1成等差数列,则am,am+2,am+1成等差数列
(A)11(B)12(C)13(D)14
4.三个数 成等比数列,且 ,则 的取值范围是(D)
(A) (B) (C) (D)
5.令an为 的展开式中含xn项的系数,则数列{an}的前n项和为__________.
6.这是一个计算机程序的操作说明:
(1)初始值为x=1,y=1,z=0,n=0;
(2)n=n+1(将当前n+1的值赋予新的n)
(Ⅰ)求数列 的通项公式;
(Ⅱ)设 , 是数列 的前n项和,求使得 对所有 都成立的最小正整数m;
解析(Ⅰ)设二次函数f(x)=ax2+bx (a≠0),则 =2ax+b,又 =6x-2,得a=3,b=-2,所以f(x)=3x2-2x.
又因为点 均在函数 的图像上,所以 =3n2-2n.
当n≥2时,an=Sn-Sn-1=(3n2-2n)- =6n-5.
(Ⅱ)当 时,若 满足 ,
使得 是等比数列,求数列 的通项公式.
解析(Ⅰ)设 公差为 ,则由 ,得
∵ 成等比数列,∴ 解得 .故 成等比数列.
(Ⅱ) ,∴ ,故 .
又 是等比数列,
则 ,∴ ,
又 ,∴ ,∴
【点睛】等差数列中寻找等比子数列是数列的重要内容.
★★★自我提升
1.在等差数列 中, ,则 (A)
∵an+an-1>0,∴an-an-1=5 (n≥2).
当a1=3时,a3=13,a15=73.a1,a3,a15不成等比数列∴a1≠3;
当a1=2时,a3=12,a15=72,有a32=a1a15,∴a1=2,∴an=5n-3.
【点睛】求数列的通项公式是数列的基本问题,一般有三种类型:(1)已知数列是等差或等比数列,求通项,破解方法:公式法或待定系数法;(2)已知Sn,求通项,破解方法:利用Sn-Sn-1=an,但要注意分类讨论,本例的求解中检验必不可少,值得重视;(3)已知数列的递推公式,求通项,破解方法:猜想证明法或构造法。