等差数列练习题(文科)(教师版)

合集下载

2020届高三文理科数学一轮复习《等差数列及其前n项和》专题汇编(教师版)

2020届高三文理科数学一轮复习《等差数列及其前n项和》专题汇编(教师版)

《等差数列及其前n 项和》专题一、相关知识点1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列(5)数列S m ,S 2m -S m ,S 3m -S 2m ,…(m ∈N *)也是等差数列,公差为m 2d .(6)S 2n -1=(2n -1)a n ,S 2n =n (a 1+a 2n )=n (a n +a n +1),遇见S 奇,S 偶时可分别运用性质及有关公式求解.(7)若{a n },{b n }均为等差数列且其前n 项和为S n ,T n ,则a n b n =S 2n -1T 2n -1.(8)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也是等差数列,其首项与{a n }首项相同,公差是{a n }的公差的12.(9)若等差数列{a n }的项数为偶数2n ,则①S 2n =n (a 1+a 2n )=…=n (a n +a n +1);②S 偶-S 奇=nd ,S 奇S 偶=a na n +1. (10)若等差数列{a n }的项数为奇数2n +1,则 ①S 2n +1=(2n +1)a n +1; ②S 奇S 偶=n +1n .二.等差数列的常用结论1.等差数列前n 项和的最值在等差数列{a n }中,若a 1>0,d <0,则S n 有最大值,即所有正项之和最大,若a 1<0, d >0,则S n 有最小值,即所有负项之和最小.2.等差数列的前n 项和公式与函数的关系:S n =d2n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).题型一 等差数列基本量的运算1.已知等差数列{a n }前9项的和为27,a 10=8,则a 100等于解析:由等差数列性质,知S 9=9(a 1+a 9)2=9×2a 52=9a 5=27,得a 5=3,而a 10=8,因此公差d =a 10-a 510-5=1,∴a 100=a 10+90d =98.2.记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为解析:设等差数列{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,即⎩⎪⎨⎪⎧2a 1+7d =24,2a 1+5d =16,解得d =4. 3.记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=A .-12B .-10C .10D .12解析:设等差数列{a n }的公差为d ,由3S 3=S 2+S 4,得; 3⎣⎡⎦⎤3a 1+3×(3-1)2×d =2a 1+2×(2-1)2×d +4a 1+4×(4-1)2×d , 将a 1=2代入上式,解得d =-3,故a 5=a 1+(5-1)d =2+4×(-3)=-10. 4.在等差数列{a n }中,若前10项的和S 10=60,且a 7=7,则a 4=解析:法一:由题意得⎩⎪⎨⎪⎧10a 1+45d =60,a 1+6d =7,解得⎩⎪⎨⎪⎧a 1=3,d =23,∴a 4=a 1+3d =5.法二:由等差数列的性质有a 1+a 10=a 7+a 4,∵S 10=10(a 1+a 10)2=60,∴a 1+a 10=12.又∵a 7=7,∴a 4=5.5.已知数列{a n }满足a 1=15,且3a n +1=3a n -2.若a k ·a k +1<0,则正整数k = 解析:由3a n +1=3a n -2⇒a n +1-a n =-23⇒{a n }是等差数列,则a n =473-23n .∵a k ·a k +1<0,∴⎝⎛⎭⎫473-23k ⎝⎛⎭⎫453-23k <0,∴452<k <472,又∵k ∈N +,∴k =23. 6.已知等差数列{a n }的前n 项和为S n ,a 3=3,a 5=5,则S 7的值是解析:由题意,设等差数列的公差为d ,则d =a 5-a 35-3=1,故a 4=a 3+d =4,所以S 7=7(a 1+a 7)2=7×2a 42=7×4=28.7.数列{2n -1}的前10项的和是解析:∵数列{2n -1}是以1为首项,2为公差的等差数列,∴S 10=(a 1+a 10)×102=100.8.已知数列{a n }中a 1=1,a n +1=a n -1,则a 4等于解析:因为a 1=1,a n +1=a n -1,所以数列{a n }为等差数列,公差d 为-1,所以a 4=a 1+3d =1-3=-2.9.设等差数列{a n }的公差为d ,且a 1a 2=35,2a 4-a 6=7,则d =解析:∵{a n }是等差数列,∴2a 4-a 6=a 4-2d =a 2=7,∵a 1a 2=35,∴a 1=5,∴d =a 2-a 1=2. 10.已知等差数列{a n }的前n 项和为S n ,且S 5=50,S 10=200,则a 10+a 11的值为 解析:设等差数列{a n}的公差为d ,由已知得⎩⎨⎧S 5=5a 1+5×42d =50,S 10=10a 1+10×92d =200,即⎩⎪⎨⎪⎧a 1+2d =10,a 1+92d =20,解得⎩⎪⎨⎪⎧a 1=2,d =4.∴a 10+a 11=2a 1+19d =80. 11.设等差数列{a n }的前n 项和为S n .若a 3=5,且S 1,S 5,S 7成等差数列,则数列{a n }的通项公式a n =________.解析:设等差数列{a n }的公差为d ,∵a 3=5,且S 1,S 5,S 7成等差数列,∴⎩⎪⎨⎪⎧ a 1+2d =5,a 1+7a 1+21d =10a 1+20d ,解得⎩⎪⎨⎪⎧a 1=1,d =2,∴a n =2n -1. 12.设{a n }是等差数列,且a 1=3,a 2+a 5=36,则{a n }的通项公式为________.解析:法一:设数列{a n }的公差为d .∵a 2+a 5=36,∴(a 1+d )+(a 1+4d )=36,∴2a 1+5d =36.∵a 1=3,∴d =6,∴a n =6n -3.法二:设数列{a n }的公差为d ,∵a 2+a 5=a 1+a 6=36,a 1=3,∴a 6=33,∴d =a 6-a 15=6.∵a 1=3,∴a n =6n -3.13.已知等差数列{a n }的前n 项和为S n ,a 6+a 18=54,S 19=437,则a 2 018的值是 解析:设等差数列{a n }的公差为d ,由题意可知⎩⎪⎨⎪⎧ 2a 1+22d =54,19a 1+171d =437,解得⎩⎪⎨⎪⎧a 1=5,d =2,所以a 2 018=5+2017×2=4 039. 14.已知数列{a n }是等差数列,a 1+a 7=-8,a 2=2,则数列{a n }的公差d 等于解析:由题意知⎩⎪⎨⎪⎧ a 1+a 7=2a 1+6d =-8,a 2=a 1+d =2.解得⎩⎪⎨⎪⎧d =-3,a 1=5,.15.《张丘建算经》卷上第22题为:“今有女善织,日益功疾.初日织五尺,今一月日织九匹三丈.”其意思为今有一女子擅长织布,且从第2天起,每天比前一天多织相同量的布,若第一天织5尺布,现在一个月(按30天计)共织390尺布.则该女子最后一天织布的尺数为( )A .18B .20C .21D .25 解析:C ,用a n 表示第n 天织布的尺数,由题意知,数列{a n }是首项为5,项数为30的等差数列.所以30(a 1+a 30)2=390,即30(5+a 30)2=390,解得a 30=21,故选C .16.设S n 为等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=__________.解析:设等差数列{a n }的首项为a 1,公差为d ,由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9×82d =-9,解得⎩⎪⎨⎪⎧a 1=3,d =-1.∴S 16=16×3+16×152×(-1)=-72.17.已知在等差数列{a n }中,a 1=1,a 3=2a +1,a 5=3a +2,若S n =a 1+a 2+…+a n ,且S k=66,则k 的值为解析:∵在等差数列中,2a 3=a 1+a 5,∴2(2a +1)=1+3a +2, 解得a =1,即a 1=1,a 3=3,a 5=5,∴公差d =1,∴S k =k ×1+k (k -1)2×1=66,解得k =11或k =-12(舍).18.已知数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,且a 3=2,a 9=12,则a 15=解析:法一:设数列⎩⎨⎧⎭⎬⎫a n n 是公差为d 的等差数列,∵a 3=2,a 9=12,∴6d =a 99-a 33=129-23=23,∴d =19,a 1515=a 33+12d =2.故a 15=30.法二:由于数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,故2×a 99=a 33+a 1515,即a 1515=2×129-23=2,故a 15=30.19.在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为( )A .a n =1nB .a n =2n +1C .a n =2n +2D .a n =3n解析:A ,由已知式2a n +1=1a n +1a n +2可得1a n +1-1a n =1a n +2-1a n +1,知⎩⎨⎧⎭⎬⎫1a n 是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n =n ,即a n =1n. 20.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何?”其意思为“已知甲、乙、丙、丁、戊五人分五钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代一种质量单位),在这个问题中,甲得________钱.( )A.53 B .32 C.43 D .54解析:选C 甲、乙、丙、丁、戊五人所得钱数依次设为成等差数列的a 1,a 2,a 3,a 4,a 5,设公差为d ,由题意知a 1+a 2=a 3+a 4+a 5=52,即⎩⎨⎧2a 1+d =52,3a 1+9d =52,解得⎩⎨⎧a 1=43,d =-16,故甲得43钱,故选C.21.已知等差数列{a n }的前n 项和为S n ,a 9=12a 12+6,a 2=4,则数列⎩⎨⎧⎭⎬⎫1S n 的前10项和为( )A.1112 B .1011 C.910 D .89解析:选B ,设等差数列{a n }的公差为d ,由a 9=12a 12+6及等差数列的通项公式得a 1+5d=12,又a 2=4,∴a 1=2,d =2,∴S n =n 2+n ,∴1S n =1n (n +1)=1n -1n +1,∴1S 1+1S 2+…+1S 10=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫110-111=1-111=1011.22.已知等差数列{a n }各项均为正数,其前n 项和为S n ,若a 1=1,S 3=a 2,则a 8=解析:法一:设等差数列{a n }的公差为d ,由题意得3+3d =1+d ,解得d =2或d =-1(舍去),所以a 8=1+7×2=15.法二:S 3=a 1+a 2+a 3=3a 2,由S 3=a 2可得3a 2=a 2,解得a 2=3或a 2=0(舍去), 则d =a 2-a 1=2,所以a 8=1+7×2=15.23.若x ≠y ,数列x ,a 1,a 2,y 和x ,b 1,b 2,b 3,y 各自成等差数列,则a 1-a 2b 1-b 2=________.解析:由题意得a 1-a 2=x -y 3,b 1-b 2=x -y 4,所以a 1-a 2b 1-b 2=43.24.设{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是________.解析:2 25.数列{a n }满足1a n +1=1a n +1(n ∈N +),数列{b n }满足b n =1a n ,且b 1+b 2+…+b 9=45,则b 4b 6( )A .最大值为100B .最大值为25C .为定值24D .最大值为50解析:C ,由1a n +1=1a n +1(n ∈N +),得1a n +1-1a n =1,∵b n =1a n ,∴b n +1-b n =1,则数列{b n }是公差为1的等差数列,∵b 1+b 2+…+b 9=45,∴9b 1+9×82=45,即b 1=1,则b n =1+(n -1)×1=n ,则b 4b 6=4×6=24.26.设数列{a n }的通项公式为a n =2n -10(n ∈N +),则|a 1|+|a 2|+…+|a 15|=________. 解析:由a n =2n -10(n ∈N +)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0,得n ≥5,∴当n ≤5时,a n ≤0,当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130.27.设数列{a n }满足:a 1=1, a 2=3, 且2na n =(n -1)a n -1+(n +1)a n +1,则a 20的值是________. 解析:∵2na n =(n -1)a n -1+(n +1)a n +1,∴数列{na n }是以a 1=1为首项,2a 2-a 1=5为公差的等差数列,∴20a 20=1+5×19=96,解得a 20=9620=245.28.已知等差数列{a n }为递增数列,其前3项的和为-3,前3项的积为8.(1)求数列{a n }的通项公式;(2)求数列{a n }的前n 项和S n . 解析:(1)设等差数列{a n }的公差为d ,d >0,∵等差数列{a n }的前3项的和为-3,前3项的积为8,∴⎩⎪⎨⎪⎧ 3a 1+3d =-3,a 1(a 1+d )(a 1+2d )=8,∴⎩⎪⎨⎪⎧ a 1=2,d =-3或⎩⎪⎨⎪⎧a 1=-4,d =3. ∵d >0,∴a 1=-4,d =3,∴a n =3n -7.(2)∵a n =3n -7,∴a 1=3-7=-4,∴S n =n (-4+3n -7)2=n (3n -11)2.28.已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列.(1)求{a n }的通项公式;(2)求a 1+a 4+a 7+…+a 3n -2. 解析:(1)设{a n }的公差为d .由题意,得a 211=a 1a 13,即(a 1+10d )2=a 1(a 1+12d ).于是d (2a 1+25d )=0. 又a 1=25,所以d =0(舍去)或d =-2.故a n =-2n +27. (2)令S n =a 1+a 4+a 7+…+a 3n -2.由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列. 从而S n =n 2(a 1+a 3n -2)=n2(-6n +56)=-3n 2+28n .题型二 等差数列的性质及应用类型一 等差数列项的性质的应用1.在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8=________. 解析:依题意,得a 2+a 4+a 6+a 8=(a 2+a 8)+(a 4+a 6)=2(a 3+a 7)=74.2.在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则该数列前13项的和是________. 解析:263.若数列{a n }为等差数列,S n 为其前n 项和,且a 1=2a 3-3,则S 9=________.解析:设等差数列{a n }的公差为d ,a 1=2a 3-3=2a 1+4d -3,∴a 5=a 1+4d =3,S 9=9a 5=27.4.在等差数列{a n }中, a 1,a 2 019为方程x 2-10x +16=0的两根,则a 2+a 1 010+a 2 018=____ 解析:因为a 1,a 2 019为方程x 2-10x +16=0的两根,所以a 1+a 2 019=10.由等差数列的性质可知,a 1 010=a 1+a 2 0192=5,a 2+a 2 018=a 1+a 2 019=10,所以a 2+a 1 010+a 2 018=10+5=15.5.已知等差数列{a n }的前n 项和为S n ,且S 6=39,则a 3+a 4=解析:由等差数列{a n }的性质及其S 6=39,可得6(a 1+a 6)2=3(a 3+ a 4)=39,则a 3+ a 4=13.6.数列{a n }满足2a n =a n -1+a n +1(n ≥2),且a 2+a 4+a 6=12,则a 3+a 4+a 5等于解析:数列{a n }满足2a n =a n -1+a n +1(n ≥2),则数列{a n }是等差数列,利用等差数列的性质可知,a 3+a 4+a 5=a 2+a 4+a 6=12.7.设等差数列{a n }的前n 项和为S n ,且a 2+a 7+a 12=24,则S 13= 解析:由a 2+a 7+a 12=24得3a 7=24,即a 7=8,∴S 13=13(a 1+a 13)2=13a 7=13×8=104.8.等差数列{a n }中,a 3+a 7=6,则{a n }的前9项和等于解析:法一:设等差数列的公差为d ,则a 3+a 7=a 1+2d +a 1+6d =2a 1+8d =6,所以a 1+4d =3.于是{a n }的前9项和S 9=9a 1+9×82d =9(a 1+4d )=9×3=27.法二:由等差数列的性质,得a 1+a 9=a 3+a 7=6,所以数列{a n }的前9项和S 9=9(a 1+a 9)2=9×62=27. 9.数列{a n }满足2a n =a n -1+a n +1(n ≥2),且a 2+a 4+a 6=12,则a 3+a 4+a 5等于 解析:数列{a n }满足2a n =a n -1+a n +1(n ≥2),则数列{a n }是等差数列,利用等差数列的性质可知,a 3+a 4+a 5=a 2+a 4+a 6=12.10.等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 的值为 解析:由a 3+a 6+a 10+a 13=32得4a 8=32,即a 8=8.又d ≠0,所以等差数列{a n }是单调数列,由a m =8,知m =8.11.设S n 为公差不为零的等差数列{a n }的前n 项和,若S 9=3a 8,则S 153a 5等于解析:因为S 9=a 1+a 2+…+a 9=9a 5=3a 8,即3a 5=a 8.又S 15=a 1+a 2+…+a 15=15a 8, 所以S 153a 5=15a 8a 8=15.12.等差数列{a n }的前n 项和为S n ,若a m =10,S 2m -1=110,则m =________. 解析:S 2m -1=(2m -1)(a 1+a 2m -1)2=2(2m -1)a m2=110,解得m =6.类型二:等差数列前n 项和的性质1.在项数为2n +1的等差数列{a n }中,所有奇数项的和为165,所有偶数项的和为150,则n 等于( )A .9B .10C .11D .12解析:选B ,∵等差数列有2n +1项,∴S 奇=(n +1)(a 1+a 2n +1)2,S 偶=n (a 2+a 2n )2.又a 1+a 2n +1=a 2+a 2n ,∴S 偶S 奇=n n +1=150165=1011,∴n =10.2.等差数列{a n }的前n 项和为S n 且S m -1=-2,S m =0,S m +1=3,m ≥2,m ∈N *,则m = 解析:∵{a n }是等差数列,S m -1=-2,S m =0,∴a m =S m -S m -1=2.又S m +1=3,∴a m +1=S m +1-S m =3,∴d =a m +1-a m =1.又 S m =m (a 1+a m )2=m (a 1+2)2=0,∴a 1=-2,∴a m =-2+(m -1)·1=2,∴m =5.3.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于 解析:由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列.即2(S 6-S 3)=S 3+(S 9-S 6),得到S 9-S 6=2S 6-3S 3=45,即a 7+a 8+a 9=45. 4.已知S n 是等差数列{a n }的前n 项和,若a 1=-2 014,S 2 0142 014-S 2 0082 008=6,则S 2 019=________.解析:由等差数列的性质可得⎩⎨⎧⎭⎬⎫S n n 也为等差数列.设其公差为d ,则S 2 0142 014-S 2 0082 008=6d =6,∴d =1.故S 2 0192 019=S 11+2 018d =-2 014+2 018=4,∴S 2 019=8 076. 5.已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________. 解析:由题意知,S 10,S 20-S 10,S 30-S 20成等差数列.则2(S 20-S 10)=S 10+(S 30-S 20),即40=10+(S 30-30),解得S 30=60. 6.若等差数列{a n }的前n 项和S n 满足S 4=4,S 6=12,则S 2=解析:根据等差数列的性质,可得S 2,S 4-S 2,S 6-S 4成等差数列,即2(S 4-S 2)=S 2+S 6-S 4,因此S 2=0.7.设S n 是等差数列{a n }的前n 项和,S 10=16,S 100-S 90=24,则S 100=________. 解析:依题意,S 10,S 20-S 10,S 30-S 20,…,S 100-S 90依次成等差数列,设该等差数列的公差为d .又S 10=16,S 100-S 90=24,因此S 100-S 90=24=16+(10-1)d =16+9d ,解得d =89,因此S 100=10S 10+10×92d =10×16+10×92×89=200.8.在等差数列{a n }中,a 1=-2 015,其前n 项和为S n ,若S 1212-S 1010=2,则S 2 018=解析:设等差数列{a n }的前n 项和为S n =An 2+Bn ,则S n n =An +B ,所以⎩⎨⎧⎭⎬⎫S n n 是等差数列.因为S 1212-S 1010=2,所以⎩⎨⎧⎭⎬⎫S n n 的公差为1,又S 11=a 11=-2 015,所以⎩⎨⎧⎭⎬⎫S n n 是以-2 015为首项,1为公差的等差数列,所以S 2 0182 018=-2 015+2 017×1=2,所以S 2 018=4 036.9.等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7=________.解析:a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=132(a 1+a 13)132(b 1+b 13)=S 13T 13=3×13-22×13+1=3727.10.设等差数列{a n }、{b n }的前n 项和分别为S n 、T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________. 解析:∵{a n },{b n }为等差数列,∴a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6.∵S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941,∴a 6b 6=1941. 类型三:等差数列前n 项和的最值 求等差数列前n 项和S n 最值的2种方法(1)二次函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解. (2)通项变号法①a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .1.已知等差数列{a n }中,a 1=11,a 5=-1,则{a n }的前n 项和S n 的最大值是 解析:设数列{a n }的公差为d ,则d =a 5-a 15-1=-3,所以a n =a 1+(n -1)d =-3n +14,由⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0⇒⎩⎪⎨⎪⎧14-3n ≥0,11-3n ≤0,解得113≤n ≤143,即n =4,所以{a n }的前4项和最大,且S 4=4×11+4×32×(-3)=26. 2.等差数列{a n }的前n 项和为S n ,已知a 1=13,S 3=S 11,当S n 最大时,n 的值是 解析:法一:由S 3=S 11,得a 4+a 5+…+a 11=0,根据等差数列的性质,可得a 7+a 8=0.根据首项等于13可推知这个数列递减,从而得到a 7>0,a 8<0,故n =7时,S n 最大. 法二:由S 3=S 11,可得3a 1+3d =11a 1+55d ,把a 1=13代入,得d =-2,故S n =13n -n (n -1)=-n 2+14n .根据二次函数的性质,知当n =7时S n 最大. 法三:根据a 1=13,S 3=S 11,知这个数列的公差不等于零,且这个数列的和是先递增后递减.根据公差不为零的等差数列的前n 项和是关于n 的二次函数,以及二次函数图像的对称性,可得只有当n =3+112=7时,S n 取得最大值. 4.等差数列{a n }的前n 项和为S n ,已知a 5+a 7=4,a 6+a 8=-2,则当S n 取最大值时,n 的值是________.解析:依题意得2a 6=4,2a 7=-2,a 6=2>0,a 7=-1<0.又数列{a n }是等差数列,所以在该数列中,前6项均为正数,自第7项起以后各项均为负数,于是当S n 取最大值时,n =6.5.等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为( )A .S 7B .S 6C .S 5D .S 4解析:C ,∵⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎪⎨⎪⎧a 5>0,a 6<0,∴S n 的最大值为S 5. 6.记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15.(1)求{a n }的通项公式;(2)求S n ,并求S n 的最小值.解析:(1)设{a n }的公差为d ,由题意得3a 1+3d =-15.又a 1=-7,所以d =2.所以{a n }的通项公式为a n =2n -9.(2)法一:(二次函数法)由(1)得S n =n (a 1+a n )2=n 2-8n =(n -4)2-16, 所以当n =4时,S n 取得最小值,最小值为-16.法二:(通项变号法)由(1)知a n =2n -9,则S n =n (a 1+a n )2=n 2-8n .由S n 最小⇔⎩⎪⎨⎪⎧a n ≤0,a n +1≥0, 即⎩⎪⎨⎪⎧2n -9≤0,2n -7≥0,∴72≤n ≤92,又n ∈N *,∴n =4,此时S n 的最小值为S 4=-16. 7.已知等差数列{a n }的前n 项和为S n ,n ∈N *,满足a 1+a 2=10,S 5=40.(1)求数列{a n }的通项公式;(2)设b n =|13-a n |,求数列{b n }的前n 项和T n . 解析:(1)设等差数列{a n }的公差为d ,由题意知,a 1+a 2=2a 1+d =10,S 5=5a 3=40,即a 3=8,所以a 1+2d =8, 所以⎩⎪⎨⎪⎧ a 1=4,d =2,所以a n =4+(n -1)·2=2n +2. (2)令c n =13-a n =11-2n ,b n =|c n |=|11-2n |=⎩⎪⎨⎪⎧11-2n ,n ≤5,2n -11,n ≥6, 设数列{c n }的前n 项和为Q n ,则Q n =-n 2+10n .当n ≤5时,T n =b 1+b 2+…+b n =Q n =-n 2+10n .当n ≥6时,T n =b 1+b 2+…+b n =c 1+c 2+…+c 5-(c 6+c 7+…+c n )=-Q n +2Q 5=n 2-10n +2(-52+10×5)=n 2-10n +50.8.已知等差数列{a n }的前三项和为-3,前三项的积为8.(1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和T n . 解析:(1)设等差数列{a n }的公差为d ,则a 2=a 1+d ,a 3=a 1+2d . 由题意得⎩⎪⎨⎪⎧ 3a 1+3d =-3,a 1(a 1+d )(a 1+2d )=8,解得⎩⎪⎨⎪⎧ a 1=2,d =-3或⎩⎪⎨⎪⎧a 1=-4,d =3.所以由等差数列通项公式可得,a n =2-3(n -1)=-3n +5或a n =-4+3(n -1)=3n -7. 故a n =-3n +5或a n =3n -7.(2)当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件.故|a n |=|3n -7|=⎩⎪⎨⎪⎧-3n +7,n =1,2,3n -7,n ≥3.记数列{3n -7}的前n 项和为S n , 则S n =n [(-4)+(3n -7)]2=32n 2-112n . 当n ≤2时,T n =|a 1|+|a 2|+…+|a n |=-(a 1+a 2+…+a n )=-32n 2+112n , 当n ≥3时,T n =|a 1|+|a 2|+|a 3|+…+|a n |=-(a 1+a 2)+(a 3+a 4+…+a n ) =S n -2S 2=32n 2-112n +10,综上知:T n =⎩⎨⎧ -32n 2+112n ,n ≤2,32n 2-112n +10,n ≥3.题型三 等差数列的判定与证明等差数列的判定与证明方法与技巧1.设数列{a n }的前n 项和为S n ,且a n =-2n +1,则数列⎩⎨⎧⎭⎬⎫S n n 的前11项和为解析:∵a n =-2n +1,∴数列{a n }是以-1为首项,-2为公差的等差数列,∴S n =n [-1+(-2n +1)]2=-n 2,∴S n n =-n 2n =-n ,∴数列⎩⎨⎧⎭⎬⎫S n n 是以-1为首项,-1为公差的等差数列,∴数列⎩⎨⎧⎭⎬⎫S n n 的前11项和为11×(-1)+11×102×(-1)=-66. 2.已知S n 是等差数列{a n }的前n 项和,S 2=2,S 3=-6.(1)求数列{a n }的通项公式和前n 项和S n ;(2)是否存在正整数n ,使S n ,S n +2+2n ,S n +3成等差数列?若存在,求出n ;若不存在,请说明理由.解析:(1)设数列{a n }的公差为d ,则⎩⎪⎨⎪⎧ 2a 1+d =2,3a 1+3×22d =-6,∴⎩⎪⎨⎪⎧a 1=4,d =-6, ∴a n =4-6(n -1)=10-6n ,S n =na 1+n (n -1)2d =7n -3n 2. (2)由(1)知S n +S n +3=7n -3n 2+7(n +3)-3(n +3)2=-6n 2-4n -6, 2(S n +2+2n )=2(-3n 2-5n +2+2n )=-6n 2-6n +4,若存在正整数n 使得S n ,S n +2+2n ,S n +3成等差数列,则-6n 2-4n -6=-6n 2-6n +4,解得n =5,∴存在n =5,使S n ,S n +2+2n ,S n +3成等差数列.3.已知数列{a n }是等差数列,且a 1,a 2(a 1<a 2)分别为方程x 2-6x +5=0的两个实根.(1)求数列{a n }的前n 项和S n ;(2)在(1)中,设b n =S n n +c,求证:当c =-12时,数列{b n }是等差数列. 解析:(1)∵a 1,a 2(a 1<a 2)分别为方程x 2-6x +5=0的两个实根,∴a 1=1,a 2=5,∴等差数列{a n }的公差为4,∴S n =n ·1+n (n -1)2·4=2n 2-n . (2)证明:当c =-12时,b n =S n n +c =2n 2-n n -12=2n , ∴b n +1-b n =2(n +1)-2n =2,b 1=2.∴数列{b n }是以2为首项,2为公差的等差数列.4.已知等差数列的前三项依次为a ,4,3a ,前n 项和为S n ,且S k =110.(1)求a 及k 的值;(2)已知数列{b n }满足b n =S n n,证明数列{b n }是等差数列,并求其前n 项和T n . 解析:(1)设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a ,由已知有a +3a =8,得a 1=a =2,公差d =4-2=2,所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k . 由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10.(2)由(1)得S n =n (2+2n )2=n (n +1),则b n =S n n=n +1, 故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列,所以T n =n (2+n +1)2=n (n +3)2. 5.已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数.(1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由.解析:(1)证明 由题设知a n a n +1=λS n -1,a n +1a n +2=λS n +1-1,两式相减得a n +1(a n +2-a n )=λa n +1,由于a n +1≠0,所以a n +2-a n =λ.(2)解 由题设知a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1.由(1)知,a 3=λ+1.令2a 2=a 1+a 3,解得λ=4.故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1.所以a n =2n -1,a n +1-a n =2, 因此存在λ=4,使得数列{a n }为等差数列.6.已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *). (1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由.解析:(1)证明:因为a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1(n ∈N *), 所以b n +1-b n =1a n +1-1-1a n -1=1⎝⎛⎭⎫2-1a n -1-1a n -1=a n a n -1-1a n -1=1. 又b 1=1a 1-1=-52. 所以数列{b n }是以-52为首项,1为公差的等差数列. (2)由(1)知b n =n -72,则a n =1+1b n =1+22n -7.设f (x )=1+22x -7, 则f (x )在区间⎝⎛⎭⎫-∞,72和⎝⎛⎭⎫72,+∞上为减函数.所以当n =3时,a n 取得最小值-1,当n =4时,a n 取得最大值3.7.已知数列{a n }满足a 1=1,且na n +1-(n +1)a n =2n 2+2n .(1)求a 2,a 3;(2)证明数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,并求{a n }的通项公式. 解析:(1)由已知,得a 2-2a 1=4,则a 2=2a 1+4,又a 1=1,所以a 2=6.由2a 3-3a 2=12,得2a 3=12+3a 2,所以a 3=15.(2)由已知na n +1-(n +1)a n =2n (n +1),得na n +1-(n +1)a n n (n +1)=2,即a n +1n +1-a n n=2, 所以数列⎩⎨⎧⎭⎬⎫a n n 是首项为a 11=1,公差d =2的等差数列. 则a n n=1+2(n -1)=2n -1,所以a n =2n 2-n . 8.已知数列{a n }满足a 1=2,n (a n +1-n -1)=(n +1)(a n +n )(n ∈N *).(1)求证:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,并求其通项公式; (2)设b n =2a n -15,求数列{|b n |}的前n 项和T n .解析:(1)证明:∵n (a n +1-n -1)=(n +1)(a n +n )(n ∈N *),∴na n +1-(n +1)a n =2n (n +1),∴a n +1n +1-a n n=2, ∴数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,其公差为2,首项为2,∴a n n =2+2(n -1)=2n . (2)由(1)知a n =2n 2,∴b n =2a n -15=2n -15,则数列{b n }的前n 项和S n =n (-13+2n -15)2=n 2-14n . 令b n =2n -15≤0,n ∈N *,解得n ≤7.∴n ≤7时,数列{|b n |}的前n 项和T n =-b 1-b 2-…-b n =-S n =-n 2+14n . n ≥8时,数列{|b n |}的前n 项和T n =-b 1-b 2-…-b 7+b 8+…+b n =-2S 7+S n = -2×(72-14×7)+n 2-14n =n 2-14n +98.∴T n =⎩⎪⎨⎪⎧14n -n 2,n ≤7,n 2-14n +98,n ≥8.。

数列专题1教师版(复印4份)

数列专题1教师版(复印4份)

数列专题1——基本概念,基本量,基本公式(2课时) 一体验浙江高考1.(2015,3)已知{〃〃}是等差数列,公差d不为零,前〃项和是S”,若〃广为,火成等比数列,则()A. a x d > 0, dS4 > 0B. a x d < 0, dS4 < 0C. a x d > 0, dS4 < 0D. a l d < 0, dS4 > 0【答案】B.【解析】・・♦等差数列{4} , %,% , 6成等比数列,J) 5(a∣ + 3d) = (”1 + 2d)(cι∣+ 7d)“∣ = — d ,2 5 2工S4=2(q+%) = 2(q+q+3d) = —d , Λ a i d = — J2 <0, dS4 =—d2<0,故选B.考点:1.等差数列的通项公式及其前〃项和;2.等比数列的概念2.(2012,7) 7.设S〃是公差为d(d≠O)的无穷等差数列{〃〃}的前〃项和,则下列命题错误的♦♦是A.若d<(),则数列{S〃}有最大项B.若数列{S“}有最大项,则dV0C.若数列{S“}是递增数列,则对任意的〃∈N*,均有S〃>0D.若对任意的〃wN*,均有S“>0,则数列{S〃}是递增数列【解析】选项C显然是错的,举出反例:一1, 0, 1, 2, 3,….满足数列{S.}是递增数列,但是S〃>()不成立.【答案】C3.(2012,13) 13.设公比为讥q>0)的等比数列{。

〃}的前〃项和为{S“}.若S2 = 3«, + 2 , S4 = 3a4 + 2 ,则q=.【解析】将S2 =3%+2, S4 =3q+2两个式子全部转化成用q ,4表示的式子.*即『+卬/ = 3"+ 2 3两式作差得:4∕+4∕=3αα(∕f,即:2qj-3 = 0,a1 + 44 + aq + a x q = 3qq + 2解之得:q or4=-1(舍去).【答案】I4.(2010, 3)设S〃为等比数列{。

等差数列练习题(有答案)

等差数列练习题(有答案)

一、等差数列选择题1.记n S 为等差数列{}n a 的前n 项和.若5620a a +=,11132S =,则{}n a 的公差为( ) A .2B .43C .4D .4-2.已知数列{}n a 的前n 项和为n S ,且满足212n n n a a a ++=-,534a a =-,则7S =( ) A .7B .12C .14D .213.等差数列{}n a 中,已知14739a a a ++=,则4a =( ) A .13B .14C .15D .164.已知n S 为等差数列{}n a 的前n 项和,3518a S +=,633a a =+,则n a =( ) A .1n -B .nC .21n -D .2n5.数列{}n a 为等差数列,11a =,34a =,则通项公式是( ) A .32n -B .322n - C .3122n - D .3122n + 6.等差数列{}n a 中,12318192024,78a a a a a a ++=-++=,则此数列的前20项和等于( ) A .160B .180C .200D .2207.设a ,0b ≠,数列{}n a 的前n 项和(21)[(2)22]n nn S a b n =---⨯+,*n N ∈,则存在数列{}n b 和{}n c 使得( )A .n n n a b c =+,其中{}n b 和{}n c 都为等比数列B .n n n a b c =+,其中{}n b 为等差数列,{}n c 为等比数列C .·n n n a b c =,其中{}n b 和{}n c 都为等比数列 D .·n n n a b c =,其中{}n b 为等差数列,{}n c 为等比数列 8.已知等差数列{}n a 中,5470,0a a a >+<,则{}n a 的前n 项和n S 的最大值为( ) A .4SB .5SC . 6SD . 7S9.等差数列{}n a 中,22a =,公差2d =,则10S =( ) A .200B .100C .90D .8010.设n S 是等差数列{}n a (*n N ∈)的前n 项和,且141,16a S ==,则7a =( ) A .7B .10C .13D .1611.已知{}n a 为等差数列,n S 是其前n 项和,且100S =,下列式子正确的是( ) A .450a a +=B .560a a +=C .670a a +=D .890a a +=12.在等差数列{}n a 中,10a >,81335a a =,则n S 中最大的是( )A .21SB .20SC .19SD .18S13.已知{}n a 是公差为2的等差数列,前5项和525S =,若215m a =,则m =( ) A .4B .6C .7D .814.设等差数列{}n a 的前n 项之和为n S ,已知10100S =,则47a a +=( ) A .12B .20C .40D .10015.“中国剩余定理”又称“孙子定理”,1852年英国来华传教伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将正整数中能被3除余2且被7除余2的数按由小到大的顺序排成一列,构成数列{} n a ,则5a =( ) A .103B .107C .109D .10516.在等差数列{}n a 中,()()3589133224a a a a a ++++=,则此数列前13项的和是( ) A .13 B .26 C .52 D .56 17.若等差数列{a n }满足a 2=20,a 5=8,则a 1=( )A .24B .23C .17D .1618.设等差数列{}n a 的前n 和为n S ,若()*111,m m a a a m m N +-<<->∈,则必有( )A .0m S <且10m S +>B .0m S >且10m S +>C .0m S <且10m S +<D .0m S >且10m S +<19.已知数列{}n a 的前n 项和为n S ,且()11213n n n n S S a n +++=+-+,现有如下说法:①541a a =;②222121n n a a n ++=-;③401220S =. 则正确的个数为( ) A .0B .1C .2D .320.已知数列{}n a 是公差不为零的等差数列,且1109a a a +=,则12910a a a a ++⋅⋅⋅+=( )A .278B .52C .3D .4二、多选题21.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,….,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a =B .733S =C .135********a a a a a +++⋅⋅⋅+=D .22212201920202019a a a a a ++⋅⋅⋅⋅⋅⋅+= 22.已知S n 是等差数列{}n a (n ∈N *)的前n 项和,且S 5>S 6>S 4,以下有四个命题,其中正确的有( )A .数列{}n a 的公差d <0B .数列{}n a 中S n 的最大项为S 10C .S 10>0D .S 11>023.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,若612S S =,则下列结论中正确的有( ) A .1:17:2a d =-B .180S =C .当0d >时,6140a a +>D .当0d <时,614a a >24.题目文件丢失!25.已知数列{}n a 的前4项为2,0,2,0,则该数列的通项公式可能为( )A .0,2,n n a n ⎧=⎨⎩为奇数为偶数B .1(1)1n n a -=-+C .2sin2n n a π= D .cos(1)1n a n π=-+26.设等差数列{}n a 的前n 项和为n S .若30S =,46a =,则( ) A .23n S n n =- B .2392-=n n nSC .36n a n =-D .2n a n =27.等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则( ) A .若59S >S ,则150S > B .若59S =S ,则7S 是n S 中最大的项 C .若67S S >, 则78S S >D .若67S S >则56S S >.28.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,且3201911111a a e e +≤++,则( ) A .当数列{}n a 为等差数列时,20210S ≥ B .当数列{}n a 为等差数列时,20210S ≤ C .当数列{}n a 为等比数列时,20210T > D .当数列{}n a 为等比数列时,20210T <29.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a =B .当9n =或10时,n S 取最大值C .911a a <D .613S S =30.已知数列{}n a 是递增的等差数列,5105a a +=,6914a a ⋅=-.12n n n n b a a a ++=⋅⋅,数列{}n b 的前n 项和为n T ,下列结论正确的是( )A .320n a n =-B .325n a n =-+C .当4n =时,n T 取最小值D .当6n =时,n T 取最小值【参考答案】***试卷处理标记,请不要删除一、等差数列选择题 1.C 【分析】由等差数列前n 项和公式以及等差数列的性质可求得6a ,再由等差数列的公式即可求得公差. 【详解】 解:()11111611111322a a S a+⨯===,612a ∴=,又5620a a +=,58a ∴=,654d a a ∴=-=.故选:C . 2.C 【分析】判断出{}n a 是等差数列,然后结合等差数列的性质求得7S . 【详解】∵212n n n a a a ++=-,∴211n n n n a a a a +++-=-,∴数列{}n a 为等差数列. ∵534a a =-,∴354a a +=,∴173577()7()1422a a a a S ++===. 故选:C 3.A 【分析】利用等差数列的性质可得1742a a a +=,代入已知式子即可求解. 【详解】由等差数列的性质可得1742a a a +=, 所以1474339a a a a ++==,解得:413a =, 故选:A 4.B 【分析】根据条件列出关于首项和公差的方程组,求解出首项和公差,则等差数列{}n a 的通项公式可求. 【详解】因为3518a S +=,633a a =+,所以11161218523a d a d a d +=⎧⎨+=++⎩,所以111a d =⎧⎨=⎩,所以()111n a n n =+-⨯=, 故选:B. 5.C 【分析】根据题中条件,求出等差数列的公差,进而可得其通项公式. 【详解】因为数列{}n a 为等差数列,11a =,34a =, 则公差为31322a a d -==, 因此通项公式为()33111222n a n n =+-=-. 故选:C. 6.B 【分析】把已知的两式相加得到12018a a +=,再求20S 得解. 【详解】由题得120219318()()()247854a a a a a a +++++=-+=, 所以1201203()54,18a a a a +=∴+=. 所以2012020()10181802S a a =+=⨯=. 故选:B 7.D 【分析】由题设求出数列{}n a 的通项公式,再根据等差数列与等比数列的通项公式的特征,逐项判断,即可得出正确选项.【详解】 解:(21)[(2)22](2)2(2)n n n n S a b n a b bn a b =---⨯+=+-⋅-+,∴当1n =时,有110S a a ==≠;当2n ≥时,有11()2n n n n a S S a bn b --=-=-+⋅, 又当1n =时,01()2a a b b a =-+⋅=也适合上式,1()2n n a a bn b -∴=-+⋅,令n b a b bn =+-,12n n c -=,则数列{}n b 为等差数列,{}n c 为等比数列,故n n n a b c =,其中数列{}n b 为等差数列,{}n c 为等比数列;故C 错,D 正确;因为11()22n n n a a b bn --+=-⋅⋅,0b ≠,所以{}12n bn -⋅即不是等差数列,也不是等比数列,故AB 错. 故选:D. 【点睛】 方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解,考查学生的计算能力. 8.B 【分析】根据已知条件判断0n a >时对应的n 的范围,由此求得n S 的最大值. 【详解】依题意556475600000a a a a a a a d >⎧>⎧⎪⇒<⎨⎨+=+<⎩⎪<⎩,所以015n a n >⇒≤≤, 所以{}n a 的前n 项和n S 的最大值为5S . 9.C 【分析】先求得1a ,然后求得10S . 【详解】依题意120a a d =-=,所以101104545290S a d =+=⨯=. 故选:C 10.C 【分析】由题建立关系求出公差,即可求解. 【详解】设等差数列{}n a 的公差为d ,141,16a S ==,41464616S a d d ∴=+=+=,2d ∴=, 71613a a d ∴=+=.故选:C 11.B 【分析】由100S =可计算出1100a a +=,再利用等差数列下标和的性质可得出合适的选项. 【详解】由等差数列的求和公式可得()110101002a a S +==,1100a a ∴+=, 由等差数列的基本性质可得561100a a a a +=+=. 故选:B. 12.B 【分析】设等差数列的公差为d .由已知得()()1137512a d a d +=+,可得关系1392a d =-.再运用求和公式和二次函数的性质可得选项. 【详解】设等差数列的公差为d .由81335a a =得,()()1137512a d a d +=+,整理得,1392a d =-. 又10a >,所以0d <,因此222120(20)2002222n d d d dS n a n n dn n d ⎛⎫=+-=-=-- ⎪⎝⎭, 所以20S 最大. 故选:B. 13.A 【分析】由525S =求出1a ,从而可求出数列的通项公式,进而可求出m 的值 【详解】 解:由题意得15452252a ⨯+⨯=,解得11a =, 所以1(1)12(1)21n a a n d n n =+-=+-=-, 因为215m a =,所以22115m ⋅-=,解得4m =, 故选:A 14.B由等差数列的通项公式可得47129a a a d +=+,再由1011045100S a d =+=,从而可得结果. 【详解】 解:1011045100S a d =+=,12920a d ∴+=, 4712920a a a d ∴+=+=.故选:B. 15.B 【分析】根据题意可知正整数能被21整除余2,即可写出通项,求出答案. 【详解】根据题意可知正整数能被21整除余2,21+2n a n ∴=, 5215+2107a ∴=⨯=.故选:B. 16.B 【分析】利用等差数列的下标性质,结合等差数列的求和公式即可得结果. 【详解】由等差数列的性质,可得3542a a a +=,891371013103a a a a a a a ++=++=, 因为()()3589133224a a a a a ++++=, 可得410322324a a ⨯+⨯=,即4104a a +=, 故数列的前13项之和()()11341013131313426222a a a a S ++⨯====. 故选:B. 17.A 【分析】 由题意可得5282045252a a d --===---,再由220a =可求出1a 的值 【详解】 解:根据题意,5282045252a a d --===---,则1220(4)24a a d =-=--=, 故选:A. 18.D 【分析】由等差数列前n 项和公式即可得解.由题意,1110,0m m a a a a ++>+<, 所以1()02m m m a a S +=>,111(1)()02m m m a a S ++++=<. 故选:D. 19.D 【分析】由()11213n n n n S S a n +++=+-+得到()11132n n n a a n ++=-+-,再分n 为奇数和偶数得到21262k k a a k +=-+-,22165k k a a k -=+-,然后再联立递推逐项判断. 【详解】因为()11213n n n n S S a n +++=+-+,所以()11132n n n a a n ++=-+-,所以()212621k k a a k +=-+-,()221652k k a a k -=+-, 联立得:()212133k k a a +-+=, 所以()232134k k a a +++=, 故2321k k a a +-=,从而15941a a a a ===⋅⋅⋅=,22162k k a a k ++=-,222161k k a a k ++=++,则222121k k a a k ++=-,故()()()4012345383940...S a a a a a a a a =++++++++,()()()()234538394041...a a a a a a a a =++++++++,()()201411820622k k =+⨯=-==∑1220,故①②③正确. 故选:D 20.A 【分析】根据数列{}n a 是等差数列,且1109a a a +=,求出首项和公差的关系,代入式子求解. 【详解】因为1109a a a +=, 所以11298a d a d +=+, 即1a d =-,所以()11295101019927278849a a a a a d a a d d a d ++⋅⋅⋅+====++.二、多选题21.ABCD 【分析】由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,对照四个选项可得正确答案. 【详解】对A ,写出数列的前6项为1,1,2,3,5,8,故A 正确; 对B ,71123581333S =++++++=,故B 正确;对C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-, 可得:135********a a a a a +++⋅⋅⋅+=.故1352019a a a a +++⋅⋅⋅+是斐波那契数列中的第2020项.对D ,斐波那契数列总有21n n n a a a ++=+,则2121a a a =,()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,……,()220182018201920172018201920172018a a a a a a a a =-=-,220192019202020192018a a a a a =-2222123201920192020a a a a a a +++⋅⋅⋅⋅⋅⋅+=,故D 正确;故选:ABCD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,考查方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意递推关系的灵活转换. 22.AC 【分析】由564S S S >>,可得650,0a a ,且650a a +>,然后逐个分析判断即可得答案 【详解】解:因为564S S S >>,所以650,0a a ,且650a a +>,所以数列的公差0d <,且数列{}n a 中S n 的最大项为S 5,所以A 正确,B 错误, 所以110105610()5()02a a S a a +==+>,11111611()1102a a S a +==<, 所以C 正确,D 错误, 故选:AC 23.ABC 【分析】因为{}n a 是等差数列,由612S S =可得9100a a +=,利用通项转化为1a 和d 即可判断选项A ;利用前n 项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质961014a d a a d a =++=+即可判断选项C ;由0d <可得6140a a d +=<且60a >,140a <即可判断选项D ,进而得出正确选项.【详解】因为{}n a 是等差数列,前n 项和为n S ,由612S S =得:1267891011120S S a a a a a a -=+++++=,即()91030a a +=,即9100a a +=, 对于选项A :由9100a a +=得12170a d +=,可得1:17:2a d =-,故选项A 正确; 对于选项B :()()118910181818022a a a a S ++===,故选项B 正确;对于选项C :911691014a a a a a a d d =+=++=+,若0d >,则6140a a d +=>,故选项C 正确;对于选项D :当0d <时,6140a a d +=<,则614a a <-,因为0d <,所以60a >,140a <, 所以614a a <,故选项D 不正确,故选:ABC【点睛】关键点点睛:本题的关键点是由612S S =得出9100a a +=,熟记等差数列的前n 项和公式和通项公式,灵活运用等差数列的性质即可.24.无25.BD【分析】根据选项求出数列的前4项,逐一判断即可.【详解】解:因为数列{}n a 的前4项为2,0,2,0,选项A :不符合题设;选项B :01(1)12,a =-+=12(1)10,a =-+= 23(1)12,a =-+=34(1)10a =-+=,符合题设;选项C :,12sin 2,2a π==22sin 0,a π==332sin 22a π==-不符合题设; 选项D :1cos 012,a =+=2cos 10,a π=+=3cos 212,a π=+=4cos310a π=+=,符合题设.故选:BD.【点睛】本题考查数列的通项公式的问题,考查了基本运算求解能力,属于基础题.26.BC【分析】由已知条件列方程组,求出公差和首项,从而可求出通项公式和前n 项和公式【详解】解:设等差数列{}n a 的公差为d ,因为30S =,46a =, 所以113230236a d a d ⨯⎧+=⎪⎨⎪+=⎩,解得133a d =-⎧⎨=⎩, 所以1(1)33(1)36n a a n d n n =+-=-+-=-,21(1)3(1)393222n n n n n n n S na d n ---=+=-+=, 故选:BC27.BC【分析】根据等差数列的前n 项和性质判断.【详解】A 错:67895911415000S a a a a a S a S ⇒+++<>⇒+<⇒<;B 对:n S 对称轴为n =7;C 对:6770S S a >⇒<,又10a >,887700a S a d S ⇒⇒<<⇒<>;D 错:6770S S a >⇒<,但不能得出6a 是否为负,因此不一定有56S S >. 故选:BC .【点睛】关键点点睛:本题考查等差数列的前n 项和性质,(1)n S 是关于n 的二次函数,可以利用二次函数性质得最值;(2)1n n n S S a -=+,可由n a 的正负确定n S 与1n S -的大小;(3)1()2n n n a a S +=,因此可由1n a a +的正负确定n S 的正负. 28.AC【分析】 将3201911111a a e e +≤++变形为32019111101212a a e e -+-≤++,构造函数()1112x f x e =-+,利用函数单调性可得320190a a +≥,再结合等差数列与等比数列性质即可判断正确选项【详解】由3201911111a a e e +≤++,可得32019111101212a a e e -+-≤++,令()1112x f x e =-+, ()()1111101111xx x x x e f x f x e e e e --+=+-=+-=++++, 所以()1112x f x e =-+是奇函数,且在R 上单调递减,所以320190a a +≥, 所以当数列{}n a 为等差数列时,()320192*********a a S +=≥; 当数列{}n a 为等比数列时,且3a ,1011a ,2019a 同号,所以3a ,1011a ,2019a 均大于零, 故()2021202110110T a =>. 故选:AC【点睛】本题考查等差数列与等比数列,考查逻辑推理能力,转化与化归的数学思想,属于中档题 29.AD【分析】由1385a a S +=求出100a =,即19a d =-,由此表示出9a 、11a 、6S 、13S ,可判断C 、D 两选项;当0d >时,10a <,n S 有最小值,故B 错误.【详解】解:1385a a S +=,111110875108,90,02d a a d a a d a ⨯++=++==,故正确A. 由190a d +=,当0d >时,10a <,n S 有最小值,故B 错误.9101110,a a d d a a d d =-==+=,所以911a a =,故C 错误.61656+5415392d S a d d d ⨯==-+=-, 131131213+11778392d S a d d d ⨯==-+=-,故D 正确. 故选:AD【点睛】考查等差数列的有关量的计算以及性质,基础题.30.AC【分析】由已知求出数列{}n a 的首项与公差,得到通项公式判断A 与B ;再求出n T ,由{}n b 的项分析n T 的最小值.【详解】解:在递增的等差数列{}n a 中,由5105a a +=,得695a a +=,又6914a a =-,联立解得62a =-,97a =, 则967(2)3963a a d ---===-,16525317a a d =-=--⨯=-. 173(1)320n a n n ∴=-+-=-.故A 正确,B 错误;12(320)(317)(314)n n n n b a a a n n n ++==---可得数列{}n b 的前4项为负,第5项为正,第六项为负,第六项以后均为正. 而5610820b b +=-=>.∴当4n =时,n T 取最小值,故C 正确,D 错误.故选:AC .【点睛】本题考查等差数列的通项公式,考查数列的求和,考查分析问题与解决问题的能力,属于中档题.。

人教A版(文科数学)等差数列、等比数列名师精编单元测试

人教A版(文科数学)等差数列、等比数列名师精编单元测试

9 等差数列、等比数列(2)第1卷一、选择题1、《莱因德纸草书》是世界上最古老的数著作之一,书中有这样的一道题目:把个面包分给个人,使每人所得成等差数列,且使较大的三份之和的是较小的两份之和,则最小的一份为( )A.B.C.D.2、设等比数列中,前项和为,已知,,则( )A.B.C.D.3、已知等差数列的前项和为,,则数列的前项和为( )A.B.C.D.4、设是等差数列,是其前项和,且,,则下列结论错误的是( )A.B.C.D.和均为的最大值5、设是公差为正数的等差数列,若,且,则( )A.120B.105C.90D.756、设是等差数列,且,,则等于()A.13B.35C.49D.637、S n是等差数列{a n}的前n项和,若=,则=()A.B.C.D.8、设等差数列的前项和为,且满足,,对任意正整数,都有,则的值为( )A.1006B.1007C.1008D.10099、已知等差数列{a n}的前n项和为S n,若,且A、B、C三点共线(该直线不过原点O),则S200=()A.100 B.101 C.200 D.20110、已知数列为等比数列,,,则( )A.7B.5C.-5D.-711、我国古代数名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座层塔共挂了盏灯,且相邻两层中的下一层灯数是上一层灯数的倍,则塔的顶层共有灯( )A.盏B.盏C.盏D.盏12、等差数列的前项和为,已知,,则的最小值为.13、已知等比数列的公比为正数,且,,则____________.14、若等差数列的前5项和,且,则.15、正项等比数列中,,,则数列的前项和等于.16、在各项都为正数的等比数列{a n}中,首项a1=3,前3项和为21,则a3+a4+a5=_____.17、在等差数列{}中且则18、已知各项都不相等的等差数列的前项和为,且为和的等比中项.1.求数列的通项公式;2.若数列满足,且,求数列的前项和.19、等比数列的前项和为,已知成等差数列.1.求的公比;2.已知,求20、已知为数列的前项和,且,.1.求的通项公式;2.设,求数列的前项和。

高二文科数学数列练习题

高二文科数学数列练习题

高二文科数学数列练习题1. 已知等差数列的首项为2,公差为3,请求该数列的前10项的和。

解析:根据等差数列的通项公式,第n项的公式为an = a1 + (n-1)d。

其中,a1为首项,d为公差,n为项数。

题目中给出首项a1 = 2,公差d = 3,项数n = 10。

根据公式,计算前10项的和:S10 = (a1 + a10) * n / 2= (2 + (2 + (10-1)3)) * 10 / 2= (2 + 29) * 5= 31 * 5= 155所以,该数列前10项的和为155。

2. 设等差数列的首项为5,末项为25,求该数列的项数。

解析:根据等差数列的末项公式,an = a1 + (n-1)d。

题目中给出首项a1 = 5,末项an = 25,公差d = ?将已知值带入公式并解方程:25 = 5 + (n-1)d20 = (n-1)d由于等差数列的项数为整数,所以我们要找到满足上式的整数解n 和d。

20可以被分解为2 * 2 * 5。

满足条件的n-1可以是1、2、4、5、10、20。

根据等差数列的末项公式,已知首项和末项可以确定项数,所以我们只需要选取n-1 = 4的情况即可。

n-1 = 4n = 5所以,该数列的项数为5。

3. 已知等差数列的首项为3,项数为10,求该数列的公差并计算末项。

解析:根据等差数列的末项公式,an = a1 + (n-1)d。

题目中给出首项a1 = 3,项数n = 10,末项an = ?将已知值带入公式,并根据an求出公差d:an = a1 + (n-1)dan = 3 + (10-1)dan = 3 + 9d由题意可知,an为等差数列的末项。

所以我们需要求解末项。

根据题目,等差数列的项数为10,所以n = 10。

将n = 10带入公式,得到:an = 3 + 9dan = 3 + 9d = 10解方程得到d的值:9d = 7d = 7/9将d = 7/9带入公式,求解末项an:an = 3 + 9dan = 3 + 9 * (7/9)an = 3 + 7an = 10所以,该数列的公差为7/9,末项为10。

2020届高三文理科数学一轮复习《等差数列及其前n项和》专题汇编(教师版)

2020届高三文理科数学一轮复习《等差数列及其前n项和》专题汇编(教师版)

《等差数列及其前n 项和》专题一、相关知识点1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列(5)数列S m ,S 2m -S m ,S 3m -S 2m ,…(m ∈N *)也是等差数列,公差为m 2d .(6)S 2n -1=(2n -1)a n ,S 2n =n (a 1+a 2n )=n (a n +a n +1),遇见S 奇,S 偶时可分别运用性质及有关公式求解.(7)若{a n },{b n }均为等差数列且其前n 项和为S n ,T n ,则a n b n =S 2n -1T 2n -1.(8)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也是等差数列,其首项与{a n }首项相同,公差是{a n }的公差的12.(9)若等差数列{a n }的项数为偶数2n ,则①S 2n =n (a 1+a 2n )=…=n (a n +a n +1);②S 偶-S 奇=nd ,S 奇S 偶=a na n +1. (10)若等差数列{a n }的项数为奇数2n +1,则 ①S 2n +1=(2n +1)a n +1; ②S 奇S 偶=n +1n .二.等差数列的常用结论1.等差数列前n 项和的最值在等差数列{a n }中,若a 1>0,d <0,则S n 有最大值,即所有正项之和最大,若a 1<0, d >0,则S n 有最小值,即所有负项之和最小.2.等差数列的前n 项和公式与函数的关系:S n =d2n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).题型一 等差数列基本量的运算1.已知等差数列{a n }前9项的和为27,a 10=8,则a 100等于解析:由等差数列性质,知S 9=9(a 1+a 9)2=9×2a 52=9a 5=27,得a 5=3,而a 10=8,因此公差d =a 10-a 510-5=1,∴a 100=a 10+90d =98.2.记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为解析:设等差数列{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,即⎩⎪⎨⎪⎧2a 1+7d =24,2a 1+5d =16,解得d =4. 3.记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=A .-12B .-10C .10D .12解析:设等差数列{a n }的公差为d ,由3S 3=S 2+S 4,得; 3⎣⎡⎦⎤3a 1+3×(3-1)2×d =2a 1+2×(2-1)2×d +4a 1+4×(4-1)2×d , 将a 1=2代入上式,解得d =-3,故a 5=a 1+(5-1)d =2+4×(-3)=-10. 4.在等差数列{a n }中,若前10项的和S 10=60,且a 7=7,则a 4=解析:法一:由题意得⎩⎪⎨⎪⎧10a 1+45d =60,a 1+6d =7,解得⎩⎪⎨⎪⎧a 1=3,d =23,∴a 4=a 1+3d =5.法二:由等差数列的性质有a 1+a 10=a 7+a 4,∵S 10=10(a 1+a 10)2=60,∴a 1+a 10=12.又∵a 7=7,∴a 4=5.5.已知数列{a n }满足a 1=15,且3a n +1=3a n -2.若a k ·a k +1<0,则正整数k = 解析:由3a n +1=3a n -2⇒a n +1-a n =-23⇒{a n }是等差数列,则a n =473-23n .∵a k ·a k +1<0,∴⎝⎛⎭⎫473-23k ⎝⎛⎭⎫453-23k <0,∴452<k <472,又∵k ∈N +,∴k =23. 6.已知等差数列{a n }的前n 项和为S n ,a 3=3,a 5=5,则S 7的值是解析:由题意,设等差数列的公差为d ,则d =a 5-a 35-3=1,故a 4=a 3+d =4,所以S 7=7(a 1+a 7)2=7×2a 42=7×4=28.7.数列{2n -1}的前10项的和是解析:∵数列{2n -1}是以1为首项,2为公差的等差数列,∴S 10=(a 1+a 10)×102=100.8.已知数列{a n }中a 1=1,a n +1=a n -1,则a 4等于解析:因为a 1=1,a n +1=a n -1,所以数列{a n }为等差数列,公差d 为-1,所以a 4=a 1+3d =1-3=-2.9.设等差数列{a n }的公差为d ,且a 1a 2=35,2a 4-a 6=7,则d =解析:∵{a n }是等差数列,∴2a 4-a 6=a 4-2d =a 2=7,∵a 1a 2=35,∴a 1=5,∴d =a 2-a 1=2. 10.已知等差数列{a n }的前n 项和为S n ,且S 5=50,S 10=200,则a 10+a 11的值为 解析:设等差数列{a n}的公差为d ,由已知得⎩⎨⎧S 5=5a 1+5×42d =50,S 10=10a 1+10×92d =200,即⎩⎪⎨⎪⎧a 1+2d =10,a 1+92d =20,解得⎩⎪⎨⎪⎧a 1=2,d =4.∴a 10+a 11=2a 1+19d =80. 11.设等差数列{a n }的前n 项和为S n .若a 3=5,且S 1,S 5,S 7成等差数列,则数列{a n }的通项公式a n =________.解析:设等差数列{a n }的公差为d ,∵a 3=5,且S 1,S 5,S 7成等差数列,∴⎩⎪⎨⎪⎧ a 1+2d =5,a 1+7a 1+21d =10a 1+20d ,解得⎩⎪⎨⎪⎧a 1=1,d =2,∴a n =2n -1. 12.设{a n }是等差数列,且a 1=3,a 2+a 5=36,则{a n }的通项公式为________.解析:法一:设数列{a n }的公差为d .∵a 2+a 5=36,∴(a 1+d )+(a 1+4d )=36,∴2a 1+5d =36.∵a 1=3,∴d =6,∴a n =6n -3.法二:设数列{a n }的公差为d ,∵a 2+a 5=a 1+a 6=36,a 1=3,∴a 6=33,∴d =a 6-a 15=6.∵a 1=3,∴a n =6n -3.13.已知等差数列{a n }的前n 项和为S n ,a 6+a 18=54,S 19=437,则a 2 018的值是 解析:设等差数列{a n }的公差为d ,由题意可知⎩⎪⎨⎪⎧ 2a 1+22d =54,19a 1+171d =437,解得⎩⎪⎨⎪⎧a 1=5,d =2,所以a 2 018=5+2017×2=4 039. 14.已知数列{a n }是等差数列,a 1+a 7=-8,a 2=2,则数列{a n }的公差d 等于解析:由题意知⎩⎪⎨⎪⎧ a 1+a 7=2a 1+6d =-8,a 2=a 1+d =2.解得⎩⎪⎨⎪⎧d =-3,a 1=5,.15.《张丘建算经》卷上第22题为:“今有女善织,日益功疾.初日织五尺,今一月日织九匹三丈.”其意思为今有一女子擅长织布,且从第2天起,每天比前一天多织相同量的布,若第一天织5尺布,现在一个月(按30天计)共织390尺布.则该女子最后一天织布的尺数为( )A .18B .20C .21D .25 解析:C ,用a n 表示第n 天织布的尺数,由题意知,数列{a n }是首项为5,项数为30的等差数列.所以30(a 1+a 30)2=390,即30(5+a 30)2=390,解得a 30=21,故选C .16.设S n 为等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=__________.解析:设等差数列{a n }的首项为a 1,公差为d ,由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9×82d =-9,解得⎩⎪⎨⎪⎧a 1=3,d =-1.∴S 16=16×3+16×152×(-1)=-72.17.已知在等差数列{a n }中,a 1=1,a 3=2a +1,a 5=3a +2,若S n =a 1+a 2+…+a n ,且S k=66,则k 的值为解析:∵在等差数列中,2a 3=a 1+a 5,∴2(2a +1)=1+3a +2, 解得a =1,即a 1=1,a 3=3,a 5=5,∴公差d =1,∴S k =k ×1+k (k -1)2×1=66,解得k =11或k =-12(舍).18.已知数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,且a 3=2,a 9=12,则a 15=解析:法一:设数列⎩⎨⎧⎭⎬⎫a n n 是公差为d 的等差数列,∵a 3=2,a 9=12,∴6d =a 99-a 33=129-23=23,∴d =19,a 1515=a 33+12d =2.故a 15=30.法二:由于数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,故2×a 99=a 33+a 1515,即a 1515=2×129-23=2,故a 15=30.19.在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为( )A .a n =1nB .a n =2n +1C .a n =2n +2D .a n =3n解析:A ,由已知式2a n +1=1a n +1a n +2可得1a n +1-1a n =1a n +2-1a n +1,知⎩⎨⎧⎭⎬⎫1a n 是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n =n ,即a n =1n. 20.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何?”其意思为“已知甲、乙、丙、丁、戊五人分五钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代一种质量单位),在这个问题中,甲得________钱.( )A.53 B .32 C.43 D .54解析:选C 甲、乙、丙、丁、戊五人所得钱数依次设为成等差数列的a 1,a 2,a 3,a 4,a 5,设公差为d ,由题意知a 1+a 2=a 3+a 4+a 5=52,即⎩⎨⎧2a 1+d =52,3a 1+9d =52,解得⎩⎨⎧a 1=43,d =-16,故甲得43钱,故选C.21.已知等差数列{a n }的前n 项和为S n ,a 9=12a 12+6,a 2=4,则数列⎩⎨⎧⎭⎬⎫1S n 的前10项和为( )A.1112 B .1011 C.910 D .89解析:选B ,设等差数列{a n }的公差为d ,由a 9=12a 12+6及等差数列的通项公式得a 1+5d=12,又a 2=4,∴a 1=2,d =2,∴S n =n 2+n ,∴1S n =1n (n +1)=1n -1n +1,∴1S 1+1S 2+…+1S 10=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫110-111=1-111=1011.22.已知等差数列{a n }各项均为正数,其前n 项和为S n ,若a 1=1,S 3=a 2,则a 8=解析:法一:设等差数列{a n }的公差为d ,由题意得3+3d =1+d ,解得d =2或d =-1(舍去),所以a 8=1+7×2=15.法二:S 3=a 1+a 2+a 3=3a 2,由S 3=a 2可得3a 2=a 2,解得a 2=3或a 2=0(舍去), 则d =a 2-a 1=2,所以a 8=1+7×2=15.23.若x ≠y ,数列x ,a 1,a 2,y 和x ,b 1,b 2,b 3,y 各自成等差数列,则a 1-a 2b 1-b 2=________.解析:由题意得a 1-a 2=x -y 3,b 1-b 2=x -y 4,所以a 1-a 2b 1-b 2=43.24.设{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是________.解析:2 25.数列{a n }满足1a n +1=1a n +1(n ∈N +),数列{b n }满足b n =1a n ,且b 1+b 2+…+b 9=45,则b 4b 6( )A .最大值为100B .最大值为25C .为定值24D .最大值为50解析:C ,由1a n +1=1a n +1(n ∈N +),得1a n +1-1a n =1,∵b n =1a n ,∴b n +1-b n =1,则数列{b n }是公差为1的等差数列,∵b 1+b 2+…+b 9=45,∴9b 1+9×82=45,即b 1=1,则b n =1+(n -1)×1=n ,则b 4b 6=4×6=24.26.设数列{a n }的通项公式为a n =2n -10(n ∈N +),则|a 1|+|a 2|+…+|a 15|=________. 解析:由a n =2n -10(n ∈N +)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0,得n ≥5,∴当n ≤5时,a n ≤0,当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130.27.设数列{a n }满足:a 1=1, a 2=3, 且2na n =(n -1)a n -1+(n +1)a n +1,则a 20的值是________. 解析:∵2na n =(n -1)a n -1+(n +1)a n +1,∴数列{na n }是以a 1=1为首项,2a 2-a 1=5为公差的等差数列,∴20a 20=1+5×19=96,解得a 20=9620=245.28.已知等差数列{a n }为递增数列,其前3项的和为-3,前3项的积为8.(1)求数列{a n }的通项公式;(2)求数列{a n }的前n 项和S n . 解析:(1)设等差数列{a n }的公差为d ,d >0,∵等差数列{a n }的前3项的和为-3,前3项的积为8,∴⎩⎪⎨⎪⎧ 3a 1+3d =-3,a 1(a 1+d )(a 1+2d )=8,∴⎩⎪⎨⎪⎧ a 1=2,d =-3或⎩⎪⎨⎪⎧a 1=-4,d =3. ∵d >0,∴a 1=-4,d =3,∴a n =3n -7.(2)∵a n =3n -7,∴a 1=3-7=-4,∴S n =n (-4+3n -7)2=n (3n -11)2.28.已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列.(1)求{a n }的通项公式;(2)求a 1+a 4+a 7+…+a 3n -2. 解析:(1)设{a n }的公差为d .由题意,得a 211=a 1a 13,即(a 1+10d )2=a 1(a 1+12d ).于是d (2a 1+25d )=0. 又a 1=25,所以d =0(舍去)或d =-2.故a n =-2n +27. (2)令S n =a 1+a 4+a 7+…+a 3n -2.由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列. 从而S n =n 2(a 1+a 3n -2)=n2(-6n +56)=-3n 2+28n .题型二 等差数列的性质及应用类型一 等差数列项的性质的应用1.在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8=________. 解析:依题意,得a 2+a 4+a 6+a 8=(a 2+a 8)+(a 4+a 6)=2(a 3+a 7)=74.2.在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则该数列前13项的和是________. 解析:263.若数列{a n }为等差数列,S n 为其前n 项和,且a 1=2a 3-3,则S 9=________.解析:设等差数列{a n }的公差为d ,a 1=2a 3-3=2a 1+4d -3,∴a 5=a 1+4d =3,S 9=9a 5=27.4.在等差数列{a n }中, a 1,a 2 019为方程x 2-10x +16=0的两根,则a 2+a 1 010+a 2 018=____ 解析:因为a 1,a 2 019为方程x 2-10x +16=0的两根,所以a 1+a 2 019=10.由等差数列的性质可知,a 1 010=a 1+a 2 0192=5,a 2+a 2 018=a 1+a 2 019=10,所以a 2+a 1 010+a 2 018=10+5=15.5.已知等差数列{a n }的前n 项和为S n ,且S 6=39,则a 3+a 4=解析:由等差数列{a n }的性质及其S 6=39,可得6(a 1+a 6)2=3(a 3+ a 4)=39,则a 3+ a 4=13.6.数列{a n }满足2a n =a n -1+a n +1(n ≥2),且a 2+a 4+a 6=12,则a 3+a 4+a 5等于解析:数列{a n }满足2a n =a n -1+a n +1(n ≥2),则数列{a n }是等差数列,利用等差数列的性质可知,a 3+a 4+a 5=a 2+a 4+a 6=12.7.设等差数列{a n }的前n 项和为S n ,且a 2+a 7+a 12=24,则S 13= 解析:由a 2+a 7+a 12=24得3a 7=24,即a 7=8,∴S 13=13(a 1+a 13)2=13a 7=13×8=104.8.等差数列{a n }中,a 3+a 7=6,则{a n }的前9项和等于解析:法一:设等差数列的公差为d ,则a 3+a 7=a 1+2d +a 1+6d =2a 1+8d =6,所以a 1+4d =3.于是{a n }的前9项和S 9=9a 1+9×82d =9(a 1+4d )=9×3=27.法二:由等差数列的性质,得a 1+a 9=a 3+a 7=6,所以数列{a n }的前9项和S 9=9(a 1+a 9)2=9×62=27. 9.数列{a n }满足2a n =a n -1+a n +1(n ≥2),且a 2+a 4+a 6=12,则a 3+a 4+a 5等于 解析:数列{a n }满足2a n =a n -1+a n +1(n ≥2),则数列{a n }是等差数列,利用等差数列的性质可知,a 3+a 4+a 5=a 2+a 4+a 6=12.10.等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 的值为 解析:由a 3+a 6+a 10+a 13=32得4a 8=32,即a 8=8.又d ≠0,所以等差数列{a n }是单调数列,由a m =8,知m =8.11.设S n 为公差不为零的等差数列{a n }的前n 项和,若S 9=3a 8,则S 153a 5等于解析:因为S 9=a 1+a 2+…+a 9=9a 5=3a 8,即3a 5=a 8.又S 15=a 1+a 2+…+a 15=15a 8, 所以S 153a 5=15a 8a 8=15.12.等差数列{a n }的前n 项和为S n ,若a m =10,S 2m -1=110,则m =________. 解析:S 2m -1=(2m -1)(a 1+a 2m -1)2=2(2m -1)a m2=110,解得m =6.类型二:等差数列前n 项和的性质1.在项数为2n +1的等差数列{a n }中,所有奇数项的和为165,所有偶数项的和为150,则n 等于( )A .9B .10C .11D .12解析:选B ,∵等差数列有2n +1项,∴S 奇=(n +1)(a 1+a 2n +1)2,S 偶=n (a 2+a 2n )2.又a 1+a 2n +1=a 2+a 2n ,∴S 偶S 奇=n n +1=150165=1011,∴n =10.2.等差数列{a n }的前n 项和为S n 且S m -1=-2,S m =0,S m +1=3,m ≥2,m ∈N *,则m = 解析:∵{a n }是等差数列,S m -1=-2,S m =0,∴a m =S m -S m -1=2.又S m +1=3,∴a m +1=S m +1-S m =3,∴d =a m +1-a m =1.又 S m =m (a 1+a m )2=m (a 1+2)2=0,∴a 1=-2,∴a m =-2+(m -1)·1=2,∴m =5.3.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于 解析:由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列.即2(S 6-S 3)=S 3+(S 9-S 6),得到S 9-S 6=2S 6-3S 3=45,即a 7+a 8+a 9=45. 4.已知S n 是等差数列{a n }的前n 项和,若a 1=-2 014,S 2 0142 014-S 2 0082 008=6,则S 2 019=________.解析:由等差数列的性质可得⎩⎨⎧⎭⎬⎫S n n 也为等差数列.设其公差为d ,则S 2 0142 014-S 2 0082 008=6d =6,∴d =1.故S 2 0192 019=S 11+2 018d =-2 014+2 018=4,∴S 2 019=8 076. 5.已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________. 解析:由题意知,S 10,S 20-S 10,S 30-S 20成等差数列.则2(S 20-S 10)=S 10+(S 30-S 20),即40=10+(S 30-30),解得S 30=60. 6.若等差数列{a n }的前n 项和S n 满足S 4=4,S 6=12,则S 2=解析:根据等差数列的性质,可得S 2,S 4-S 2,S 6-S 4成等差数列,即2(S 4-S 2)=S 2+S 6-S 4,因此S 2=0.7.设S n 是等差数列{a n }的前n 项和,S 10=16,S 100-S 90=24,则S 100=________. 解析:依题意,S 10,S 20-S 10,S 30-S 20,…,S 100-S 90依次成等差数列,设该等差数列的公差为d .又S 10=16,S 100-S 90=24,因此S 100-S 90=24=16+(10-1)d =16+9d ,解得d =89,因此S 100=10S 10+10×92d =10×16+10×92×89=200.8.在等差数列{a n }中,a 1=-2 015,其前n 项和为S n ,若S 1212-S 1010=2,则S 2 018=解析:设等差数列{a n }的前n 项和为S n =An 2+Bn ,则S n n =An +B ,所以⎩⎨⎧⎭⎬⎫S n n 是等差数列.因为S 1212-S 1010=2,所以⎩⎨⎧⎭⎬⎫S n n 的公差为1,又S 11=a 11=-2 015,所以⎩⎨⎧⎭⎬⎫S n n 是以-2 015为首项,1为公差的等差数列,所以S 2 0182 018=-2 015+2 017×1=2,所以S 2 018=4 036.9.等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7=________.解析:a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=132(a 1+a 13)132(b 1+b 13)=S 13T 13=3×13-22×13+1=3727.10.设等差数列{a n }、{b n }的前n 项和分别为S n 、T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________. 解析:∵{a n },{b n }为等差数列,∴a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6.∵S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941,∴a 6b 6=1941. 类型三:等差数列前n 项和的最值 求等差数列前n 项和S n 最值的2种方法(1)二次函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解. (2)通项变号法①a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .1.已知等差数列{a n }中,a 1=11,a 5=-1,则{a n }的前n 项和S n 的最大值是 解析:设数列{a n }的公差为d ,则d =a 5-a 15-1=-3,所以a n =a 1+(n -1)d =-3n +14,由⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0⇒⎩⎪⎨⎪⎧14-3n ≥0,11-3n ≤0,解得113≤n ≤143,即n =4,所以{a n }的前4项和最大,且S 4=4×11+4×32×(-3)=26. 2.等差数列{a n }的前n 项和为S n ,已知a 1=13,S 3=S 11,当S n 最大时,n 的值是 解析:法一:由S 3=S 11,得a 4+a 5+…+a 11=0,根据等差数列的性质,可得a 7+a 8=0.根据首项等于13可推知这个数列递减,从而得到a 7>0,a 8<0,故n =7时,S n 最大. 法二:由S 3=S 11,可得3a 1+3d =11a 1+55d ,把a 1=13代入,得d =-2,故S n =13n -n (n -1)=-n 2+14n .根据二次函数的性质,知当n =7时S n 最大. 法三:根据a 1=13,S 3=S 11,知这个数列的公差不等于零,且这个数列的和是先递增后递减.根据公差不为零的等差数列的前n 项和是关于n 的二次函数,以及二次函数图像的对称性,可得只有当n =3+112=7时,S n 取得最大值. 4.等差数列{a n }的前n 项和为S n ,已知a 5+a 7=4,a 6+a 8=-2,则当S n 取最大值时,n 的值是________.解析:依题意得2a 6=4,2a 7=-2,a 6=2>0,a 7=-1<0.又数列{a n }是等差数列,所以在该数列中,前6项均为正数,自第7项起以后各项均为负数,于是当S n 取最大值时,n =6.5.等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为( )A .S 7B .S 6C .S 5D .S 4解析:C ,∵⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎪⎨⎪⎧a 5>0,a 6<0,∴S n 的最大值为S 5. 6.记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15.(1)求{a n }的通项公式;(2)求S n ,并求S n 的最小值.解析:(1)设{a n }的公差为d ,由题意得3a 1+3d =-15.又a 1=-7,所以d =2.所以{a n }的通项公式为a n =2n -9.(2)法一:(二次函数法)由(1)得S n =n (a 1+a n )2=n 2-8n =(n -4)2-16, 所以当n =4时,S n 取得最小值,最小值为-16.法二:(通项变号法)由(1)知a n =2n -9,则S n =n (a 1+a n )2=n 2-8n .由S n 最小⇔⎩⎪⎨⎪⎧a n ≤0,a n +1≥0, 即⎩⎪⎨⎪⎧2n -9≤0,2n -7≥0,∴72≤n ≤92,又n ∈N *,∴n =4,此时S n 的最小值为S 4=-16. 7.已知等差数列{a n }的前n 项和为S n ,n ∈N *,满足a 1+a 2=10,S 5=40.(1)求数列{a n }的通项公式;(2)设b n =|13-a n |,求数列{b n }的前n 项和T n . 解析:(1)设等差数列{a n }的公差为d ,由题意知,a 1+a 2=2a 1+d =10,S 5=5a 3=40,即a 3=8,所以a 1+2d =8, 所以⎩⎪⎨⎪⎧ a 1=4,d =2,所以a n =4+(n -1)·2=2n +2. (2)令c n =13-a n =11-2n ,b n =|c n |=|11-2n |=⎩⎪⎨⎪⎧11-2n ,n ≤5,2n -11,n ≥6, 设数列{c n }的前n 项和为Q n ,则Q n =-n 2+10n .当n ≤5时,T n =b 1+b 2+…+b n =Q n =-n 2+10n .当n ≥6时,T n =b 1+b 2+…+b n =c 1+c 2+…+c 5-(c 6+c 7+…+c n )=-Q n +2Q 5=n 2-10n +2(-52+10×5)=n 2-10n +50.8.已知等差数列{a n }的前三项和为-3,前三项的积为8.(1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和T n . 解析:(1)设等差数列{a n }的公差为d ,则a 2=a 1+d ,a 3=a 1+2d . 由题意得⎩⎪⎨⎪⎧ 3a 1+3d =-3,a 1(a 1+d )(a 1+2d )=8,解得⎩⎪⎨⎪⎧ a 1=2,d =-3或⎩⎪⎨⎪⎧a 1=-4,d =3.所以由等差数列通项公式可得,a n =2-3(n -1)=-3n +5或a n =-4+3(n -1)=3n -7. 故a n =-3n +5或a n =3n -7.(2)当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件.故|a n |=|3n -7|=⎩⎪⎨⎪⎧-3n +7,n =1,2,3n -7,n ≥3.记数列{3n -7}的前n 项和为S n , 则S n =n [(-4)+(3n -7)]2=32n 2-112n . 当n ≤2时,T n =|a 1|+|a 2|+…+|a n |=-(a 1+a 2+…+a n )=-32n 2+112n , 当n ≥3时,T n =|a 1|+|a 2|+|a 3|+…+|a n |=-(a 1+a 2)+(a 3+a 4+…+a n ) =S n -2S 2=32n 2-112n +10,综上知:T n =⎩⎨⎧ -32n 2+112n ,n ≤2,32n 2-112n +10,n ≥3.题型三 等差数列的判定与证明等差数列的判定与证明方法与技巧1.设数列{a n }的前n 项和为S n ,且a n =-2n +1,则数列⎩⎨⎧⎭⎬⎫S n n 的前11项和为解析:∵a n =-2n +1,∴数列{a n }是以-1为首项,-2为公差的等差数列,∴S n =n [-1+(-2n +1)]2=-n 2,∴S n n =-n 2n =-n ,∴数列⎩⎨⎧⎭⎬⎫S n n 是以-1为首项,-1为公差的等差数列,∴数列⎩⎨⎧⎭⎬⎫S n n 的前11项和为11×(-1)+11×102×(-1)=-66. 2.已知S n 是等差数列{a n }的前n 项和,S 2=2,S 3=-6.(1)求数列{a n }的通项公式和前n 项和S n ;(2)是否存在正整数n ,使S n ,S n +2+2n ,S n +3成等差数列?若存在,求出n ;若不存在,请说明理由.解析:(1)设数列{a n }的公差为d ,则⎩⎪⎨⎪⎧ 2a 1+d =2,3a 1+3×22d =-6,∴⎩⎪⎨⎪⎧a 1=4,d =-6, ∴a n =4-6(n -1)=10-6n ,S n =na 1+n (n -1)2d =7n -3n 2. (2)由(1)知S n +S n +3=7n -3n 2+7(n +3)-3(n +3)2=-6n 2-4n -6, 2(S n +2+2n )=2(-3n 2-5n +2+2n )=-6n 2-6n +4,若存在正整数n 使得S n ,S n +2+2n ,S n +3成等差数列,则-6n 2-4n -6=-6n 2-6n +4,解得n =5,∴存在n =5,使S n ,S n +2+2n ,S n +3成等差数列.3.已知数列{a n }是等差数列,且a 1,a 2(a 1<a 2)分别为方程x 2-6x +5=0的两个实根.(1)求数列{a n }的前n 项和S n ;(2)在(1)中,设b n =S n n +c,求证:当c =-12时,数列{b n }是等差数列. 解析:(1)∵a 1,a 2(a 1<a 2)分别为方程x 2-6x +5=0的两个实根,∴a 1=1,a 2=5,∴等差数列{a n }的公差为4,∴S n =n ·1+n (n -1)2·4=2n 2-n . (2)证明:当c =-12时,b n =S n n +c =2n 2-n n -12=2n , ∴b n +1-b n =2(n +1)-2n =2,b 1=2.∴数列{b n }是以2为首项,2为公差的等差数列.4.已知等差数列的前三项依次为a ,4,3a ,前n 项和为S n ,且S k =110.(1)求a 及k 的值;(2)已知数列{b n }满足b n =S n n,证明数列{b n }是等差数列,并求其前n 项和T n . 解析:(1)设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a ,由已知有a +3a =8,得a 1=a =2,公差d =4-2=2,所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k . 由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10.(2)由(1)得S n =n (2+2n )2=n (n +1),则b n =S n n=n +1, 故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列,所以T n =n (2+n +1)2=n (n +3)2. 5.已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数.(1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由.解析:(1)证明 由题设知a n a n +1=λS n -1,a n +1a n +2=λS n +1-1,两式相减得a n +1(a n +2-a n )=λa n +1,由于a n +1≠0,所以a n +2-a n =λ.(2)解 由题设知a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1.由(1)知,a 3=λ+1.令2a 2=a 1+a 3,解得λ=4.故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1.所以a n =2n -1,a n +1-a n =2, 因此存在λ=4,使得数列{a n }为等差数列.6.已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *). (1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由.解析:(1)证明:因为a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1(n ∈N *), 所以b n +1-b n =1a n +1-1-1a n -1=1⎝⎛⎭⎫2-1a n -1-1a n -1=a n a n -1-1a n -1=1. 又b 1=1a 1-1=-52. 所以数列{b n }是以-52为首项,1为公差的等差数列. (2)由(1)知b n =n -72,则a n =1+1b n =1+22n -7.设f (x )=1+22x -7, 则f (x )在区间⎝⎛⎭⎫-∞,72和⎝⎛⎭⎫72,+∞上为减函数.所以当n =3时,a n 取得最小值-1,当n =4时,a n 取得最大值3.7.已知数列{a n }满足a 1=1,且na n +1-(n +1)a n =2n 2+2n .(1)求a 2,a 3;(2)证明数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,并求{a n }的通项公式. 解析:(1)由已知,得a 2-2a 1=4,则a 2=2a 1+4,又a 1=1,所以a 2=6.由2a 3-3a 2=12,得2a 3=12+3a 2,所以a 3=15.(2)由已知na n +1-(n +1)a n =2n (n +1),得na n +1-(n +1)a n n (n +1)=2,即a n +1n +1-a n n=2, 所以数列⎩⎨⎧⎭⎬⎫a n n 是首项为a 11=1,公差d =2的等差数列. 则a n n=1+2(n -1)=2n -1,所以a n =2n 2-n . 8.已知数列{a n }满足a 1=2,n (a n +1-n -1)=(n +1)(a n +n )(n ∈N *).(1)求证:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,并求其通项公式; (2)设b n =2a n -15,求数列{|b n |}的前n 项和T n .解析:(1)证明:∵n (a n +1-n -1)=(n +1)(a n +n )(n ∈N *),∴na n +1-(n +1)a n =2n (n +1),∴a n +1n +1-a n n=2, ∴数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,其公差为2,首项为2,∴a n n =2+2(n -1)=2n . (2)由(1)知a n =2n 2,∴b n =2a n -15=2n -15,则数列{b n }的前n 项和S n =n (-13+2n -15)2=n 2-14n . 令b n =2n -15≤0,n ∈N *,解得n ≤7.∴n ≤7时,数列{|b n |}的前n 项和T n =-b 1-b 2-…-b n =-S n =-n 2+14n . n ≥8时,数列{|b n |}的前n 项和T n =-b 1-b 2-…-b 7+b 8+…+b n =-2S 7+S n = -2×(72-14×7)+n 2-14n =n 2-14n +98.∴T n =⎩⎪⎨⎪⎧14n -n 2,n ≤7,n 2-14n +98,n ≥8.。

2018北师大版文科数学高考总复习练习:6-2等差数列及其前n项和含答案

2018北师大版文科数学高考总复习练习:6-2等差数列及其前n项和含答案

第2讲等差数列及其前n项和基础巩固题组(建议用时:40分钟)一、选择题1.(2017·汉中调研)已知数列{a n}是等差数列,a1+a7=-8,a2=2,则数列{a n}的公差d等于() A.-1 B.-2 C.-3 D.-4解析法一由题意可得错误!解得a1=5,d=-3。

法二a1+a7=2a4=-8,∴a4=-4,∴a4-a2=-4-2=2d,∴d=-3。

答案C2.已知等差数列{a n}的公差为2,项数是偶数,所有奇数项之和为15,所有偶数项之和为25,则这个数列的项数为()A.10 B.20 C.30 D.40解析设项数为2n,则由S偶-S奇=nd得,25-15=2n解得n=5,故这个数列的项数为10.答案A3.已知等差数列{a n}满足a1+a2+a3+…+a101=0,则有() A.a1+a101>0 B.a2+a100<0C.a3+a99=0 D.a51=51解析由题意,得a1+a2+a3+…+a101=错误!×101=0.所以a1+a101=a2+a100=a3+a99=0。

答案C4.设数列{a n},{b n}都是等差数列,且a1=25,b1=75,a2+b2=100,则a37+b37等于( )A.0 B.37 C.100 D.-37解析设{a n},{b n}的公差分别为d1,d2,则(a n+1+b n+1)-(a n +b n)=(a n+1-a n)+(b n+1-b n)=d1+d2,∴{a n+b n}为等差数列,又a1+b1=a2+b2=100,∴{a n+b n}为常数列,∴a37+b37=100。

答案C5.(2017·泰安模拟)设等差数列{a n}的前n项和为S n,若a2=-11,a5+a9=-2,则当S n取最小值时,n=( )A.9 B.8 C.7 D.6解析设等差数列{a n}的首项为a1,公差为d,由错误!得错误!解得错误!∴a n=-15+2n。

文科等差、等比数列基础题练习

文科等差、等比数列基础题练习

文科等差、等比数列基础题练习一.选择题(共40小题)1.已知a,b,c∈R,若1,a,2,b,c成等比数列,则abc的值为()A.8B.±8C.±16D.162.已知数列,,2,,…,则12是这个数列的()A.第9项B.第10项C.第11项D.第12项3.已知等差数列{a n},a3+a7=10,a8=8,则公差d=()A.1B.C.D.﹣14.设S n为等差数列{a n}的前n项和,a1=﹣2016,﹣=2,则S2018的值为()A.﹣2 018B.2 018C.2 017D.﹣2 0195.公差不为零的等差数列{a n}的前n项和为S n,若a4是a3与a7的等比中项,S8=32,则S11等于()A.30B.77C.96D.1176.在等差数列{a n}中,a3+a4=3,a5+a6=11,则数列{a n}的公差d=()A.2B.1C.D.7.若数列{a n}为等比数列,且a2=1,q=2,则a4=()A.1B.2C.3D.48.在等比数列{a n}中,已知a2a4a6=8,则a3a5=()A.3B.5C.4D.29.已知{a n}是等差数列,其前n项和为S n,若a3=2,a6=6,则S8等于()A.16B.32C.44D.6410.若等差数列{a n}满足a1+a8+a9>0,a3+a10<0,则当n=()时,{a n}的前n项和最大.A.6B.7C.8D.911.两个等差数列{a n},{b n}的前n项和分别为S n,T n,且,则=()12.设数列{a n}是等差数列,且a1=1,a3=5(n∈N*),则a10=()A.17B.19C.21D.2813.在等差数列{a n}中,若a1007+a1008+a1009=18,则该数列的前2015项的和为()A.2015B.4030C.6045D.12 09014.记{S n}是为正项等差数列{a n}的前n项和.若S5=a32,a1=1,则数列{a n}的公差d为()A.﹣2B.﹣1C.1D.215.已知等差数列{a n}的公差为d,前n项和为S n,若a2=S4=﹣2,则d=()A.1B.3C.5D.716.《张丘建算经》卷上有“女子织布”问题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布6尺,30天共织布540尺,则该女子织布每天增加()A.尺B.尺C.尺D.尺17.已知等比数列{a n}的前n项和为S n,若S3=4,S6=6,则S9=()A.9B.8C.7D.118.等差数列{a n}满足a3+a6=6,则a2+a3+a4+a5+a6+a7=()A.6B.12C.18D.2419.已知等差数列{a n}的前n项和为S n,若a1+a2+a3=0,S8=40,则{a n}的公差为()A.1B.2C.3D.420.已知3,7,x成等差数列,则实数x的值为()A.9B.10C.11D.1221.在等比数列{a n}中,a3=8,a6=64,则公比q是()A.2B.3C.4D.522.已知等比数列{a n}中,a3=12,a4=18,则a2﹣a1=()A.B.C.D.823.已知等比数列{a n}中,a5=1,a9=16,则a7=()24.在等差数列{a n}中,已知a2=2,a8=10,则a5=()A.6B.4C.5D.825.已知等比数列{a n}中,a1=﹣1,a4=8,该数列的公比为()A.2B.﹣2C.±2D.326.设等差数列{a n}的前n项和为S n,S8=4a4,a6=﹣2,则a8=()A.﹣6B.﹣4C.﹣2D.227.在等差数列{a n}中,已知a2=5,a4=11,那么a6=()A.15B.16C.17D.1828.若等差数列{a n}和等比数列{b n}满足a1=b1=﹣1,a4=b4=8,=()A.﹣4B.﹣1C.1D.429.等差数列{a n}中,a3=﹣2,a11=8,则a7=()A.0B.1C.2D.330.数列{a n}是等差数列,a1=1,a4=8,则a5=()A.16B.﹣16C.32D.31.已知S n为等比数列{a n}的前n项和,且,则S8=()A.510B.﹣510C.1022D.﹣1022 32.等比数列{a n}中,a4=4,a7=,则公比q等于()A.﹣2B.2C.﹣D.33.设等差数列{a n}的前n项和S n,若a4+a10=4,则S13=()A.13B.14C.26D.5234.在等差数列{a n}中,a1+a3+a5=9,a4+a5+a6=21,则a7=()A.9B.11C.13D.1535.数列{a n}为等比数列,若a3=3,a4=﹣6,则a6为()A.﹣24B.12C.18D.2436.在等差数列{a n}中,已知a2=1,a8=13,则公差d=()A.3B.2C.4D.537.在等差数列{a n}中,a2=2,a5=4,则a8=()A.5B.6C.7D.838.在等比数列{a n}中,已知a3=3,a3+a5+a7=21,则a5=()A.6B.9C.12D.1839.已知等差数列{a n},a3=6,a7=8,则a5=()A.6B.7C.8D.940.已知数列{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a17的值为()A.1B.3C.5D.7文科等差、等比数列基础题练习参考答案一.选择题(共40小题)1.D;2.B;3.A;4.B;5.B;6.A;7.D;8.C;9.B;10.A;11.C;12.B;13.D;14.D;15.B;16.C;17.C;18.C;19.B;20.C;21.A;22.B;23.A;24.A;25.B;26.A;27.C;28.C;29.D;30.D;31.B;32.D;33.C;34.B;35.A;36.B;37.B;38.A;39.B;40.D;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列(2)——等差数列一、 基础知识(一)等差数列的定义1、等差数列的判定通常有两种方法: 第一种是利用定义,)2(1≥=--n d a a n n 常数第二种是利用等差中项,即112-++=n n n a a a (2≥n a )。

2、解选择题、填空题时,亦可用通项或前n 项和直接判断。

(1)通项法:若数列}{n a {的通项公式为n 的一次函数,即B An a n +=则是等差数列;(2)前n 项和法:若数列}{n a 的前n 项和n S 是Bn An S n +=2的形式(A ,B 是常数),则}{n a 是等差数列。

(二)等差数列的通项公式与求和公式1、通项公式: ;2、:求和公式: ; ; ; (三)等差数列的性质 1、等差数列的单调性:等差数列公差为d ,若d>0,则数列递增;若d<0,则数列递减;若d=0,则数列为常数列。

2、等差数列的简单性质:已知数列}{n a 是等差数列,n S 是其前n 项和。

(1)若m+n=p+q,则q p n m a a a a +=+,特别:若m+n=2p ,则。

p n m a a a 2=+ (2)....,,,32k m k m k m m a a a a +++仍是等差数列,公差为kd; (3)数列...,,232m m m m m S S S S S --也是等差数列; (4)n n a n S )12(1-=-; (5)若n 为偶数,则d nS S 2-=奇偶;若n 为奇数,则中奇偶S S S =-(中间项); (6)数列}{},{},{n n n n qb pa c a ca ++也是等差数列,其中q p c ,,均为常数,是}{n b 等差数列。

二、题型分类(一)等差数列的判定与证明 1、等差数列的判定通常有两种方法:第一种是利用定义,1()(2)n n a a d n --=≥常数,第二种是利用等差中项,即112(2)n n n a a a n +-=+≥。

2、解选择题、填空题时,亦可用通项或前n 项和直接判断。

(1)通项法:若数列{n a }的通项公式为n 的一次函数,即n a =An+B,则{n a }是等差数列;(2)前n 项和法:若数列{n a }的前n 项和n S 是2n S An Bn =+的形式(A ,B 是常数),则{n a }是等差数列。

注:若判断一个数列不是等差数列,则只需说明任意连续三项不是等差数列即可。

例题1、若S n 是数列{}n a 的前n 项和,2n S n =,则{}n a 是 ( C ). A.等比数列,但不是等差数列 B.等差数列,但不是等比数列 C.等差数列,而且也是等比数列D.既非等比数列又非等差数列例题2.已知数列{a n }的通项公式是a n =2n+5,则此数列是 ( A )例题3、已知数列{n a }的前n 项和为n S ,且满足11120(2),2n n n n S S S S n a ---+=≥=(1)求证:{1nS }是等差数列; (2)求n a 的表达式。

解(1)等式两边同除以1n n S S - 得11n S --1n S +2=0,即1n S -11n S -=2(n ≥2).∴{1n S }是以11S =11a =2为首项,以2为公差的等差数列。

(2)由(1)知1n S =11S +(n-1)d=2+(n-1)×2=2n,∴n S =12n ,当n ≥2时,n a =n S -1n S -=-12(1)n n -。

又∵112a =,不适合上式,故1(2)2(1){1(1)2n n n n a n -≥-==。

针对性练习一 1、已知数列{}n a 中,()*+∈+==N n a a a n n 3111,111,则50a = 3522、已知数列{}n a 满足()22,2121≥-==-n a a a a a a n n ,其中a 是不为零的常数,令a a b n n -=1(1) 求证:数列{}n b 是等差数列 (2)求数列{}n a 的通项公式 解析:(1)121111()2n n n n n a b a a aa a a a aa ---===---,则111111()n n n n n a b b a a a a a a -----=-=-- 所以,数列{}n b 是等差数列 (2) 由(1)知:11b a =,则11(1)n n b n a a a=+-= 所以,1n n n b a a a==-,n a a a n =+ 3、 已知数列{a n }的前n 项和为2n S n C =+(C 为常数),求数列{}n a 的通项公式,并判断{a n }是不是等差数列。

解答.当n=1时,a 1=S 1=1+c 当n 2≥时,a n =S n -S n-1=(n 2+c)-[(n 2+c)]-[(n-1)2+C]=2n-1。

∴a n =⎩⎨⎧-+121n c 21≥=n n ,当C =0时,是等差数列,否则不是(二)等差数列的基本运算1、等差数列的通项公式n a =1a +(n-1)d 及前n 项和公式11()(1)22n n n a a n n S na d +-==+,共涉及五个量1a ,n a ,d,n, n S ,知其中三个就能求另外两个,体现了用方程的思想解决问题;2、数列的通项公式和前n 项和公式在解题中起到变量代换作用,而1a 和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法。

注:因为11(1)222n S d d dn a a n n =+-=+-,故数列{n S n}是等差数列。

例题4(通项公式、求和公式的直接运用)(1)已知S n 为等差数列{a n }的前n 项的和,a 2+a 5=4,S 7=21,则a 7的值为 ( D )A 、6B 、7、C 、 8D 、92)已知数列{a n }为等差数列,a 1+a 3+a 5=15,a 4=7,则s 6的值为 ( C )A 、30B 、35C 、36D 、24 (3)等差数列{a n }的公差d <0,且,则数列{a n }的前n 项和S n 取得最大值时的项数n 是 ( C )A 、5B 、6C 、5或6D 、6或74)在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11= ( B )A 、58B 、88C 、143D 、176 例5、在等差数列{}n a 中,前n 项和记为n S ,已知50,302010==a a (1)求通项n a ;(2)若242=n S ,求n 答案:(1)210n a n =+,(2)11n = 例6、在等差数列{}n a 中,(1)941,0S S a =>,求n S 取最大值时,n 的值; (2)1241,15S S a ==,求n S 的最大值。

答案:(1)67n n ==或,(2)864n S S =的最大值是针对性练习二1、等差数列{}n a 中,已知1251,4,33,3n a a a a n =+==则为 50.在等差数列{a n }中,a 1=13,a 3=12,若a n =2,则n 等于 ( A )A 、23B 、24C 、25 D26.等差数列{a n }的前n 项和为S n ,已知S 3=6,a 4=8,则公差d= ( C )A 、-1B 、2C 、3D 、-2.两个数1与5的等差中项是( B )A 、1B 、3C 、2D 、.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是( C )A 、—2B 、—3C 、—4D 、—5.等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为 ( B )A 、1B 、2C 、3D 、47.数列{}n a 的首项为3,{}n b 为等差数列且1n n n b a a +=-,若32b =-,1012b =,则8a = ( C ) A 、0 B 、8 C 、3 D 、118.已知两个等差数列5,8,11,…和3,7,11,…都有100项,则它们的公共项的个数为 ( A )A 、25B 、24C 、20D 、199、已知{a n }是一个公差大于0的等差数列,且满足a 3a 6=55,a 2+a 7=16. (1)求数列{a n }的通项公式:(2)若数列{a n }和数列{b n }满足等式:a n==(n 为正整数),求数列{b n }的前n 项和S n .,则有(三)等差数列的性质例题7.等差数列{}n a 中, 若100,252==n n S S ,则=n S 3=________;225例题8.已知等差数列{a n }的前n 项和为Sn ,若714S =,则35a a +的值为 ( B )A .2B .4C .7D .8例题9、设等差数列{}n a 的前n 项和为n S ,若972S =,则249a a a ++= 24例题10、在项数为2n+1的等差数列中,若所有奇数项的和为165,所有偶数项的和为150,则n 等于( B )(A)9 (B)10 (C)11 (D)12例题11、等差数列{a n } 的前m 项和为30,前2m 项和为100,则它的前3m 项和为( C )(A)130 (B)170 (C)210 (D)160 例题12、等差数列{a n }的公差为21,且S 100=145,则奇数项的和a 1+a 3+a 5+……+ a 99=( A ) (A)60 (B)80 (C)72.5 (D)其它的值 例题13.若两个等差数列{a n }、{b n }的前n 项和分别为A n 、B n ,且满足5524-+=n n B A n n ,则135135b b a a ++的值为( D ) (A )97 (B )78 (C )2019 (D )87例题14.在-1,7之间插入三个数,使它们顺次成等差数列,则这三个数分别是_ 1,3,5 ______. 例题15、若两个等差数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,且满足733n n S n T n +=+, 则88a b = 6 .例题16、在等差数列{}n a 中,n S 为前n 项和: (1)若20191220a a a a +++=,求20S ;(2)若14S =,48S =,求17181920a a a a +++的值;(3)若已知首项131a =,且311S S =,问此数列前多少项的和最大? 答案:(1)100, (2)9,(3)前7项针对性练习三1、等差数列{}n a 的前n 项和为n s ,若1845a a =-,则8s 等于 722、在等差数列{}n a 中,n a m =,m a n = (m ,n ∈N +),则=+n m a 03、若{}n a 为等差数列,2a ,10a 是方程0532=--x x 的两根,则=+75a a ______3______。

相关文档
最新文档