第2节 核磁共振与化学位移
核磁共振氢谱(化学位移)ppt课件

精选PPT课件
4
化学位移的表示方法与测定
•高场与低场的区分
•化学位移的表示方法——位移常数
•测定和计算方法——标准物质(通常用TMS,即四甲基 硅)对照法:
样品TMS 106 仪器
精选PPT课件
精选PPT课件
6
化学位移的表示方法与测定
2.05 3.66
精选PPT课件
7
影响化学位移的因素
1. 诱导效应:吸电子诱导效应降低原子核周围的电子云 密度,化学位移向低场移动,增大。
CH3X中甲基和各种取代基连接后的化学位移
-X
F OCH3 Cl Br CH3 H
4.26 3.24 3.05 2.68 0.88 0.2
(1)自旋核(I≠0)
(2)外加磁场B0 (3)外加射频的能量hv等于自旋核磁能级的能量差:
hv
E
h
2
B0
1 2
B0
2. 面临的问题:
从核磁共振条件式可以看出,磁性原子核的共振频率ν只和
磁旋比γ和外加磁场强度B0有关。那么,在一定条件下测定 时,所有1H只产生一条谱线,所有的13C也只产生一条谱线
5
化学位移的表示方法与测定
四甲基硅(TMS)作为标准物质的优点:
•TMS化学性质不活泼,与样品之间不发生化学反应和分子间缔合 ; •TMS是一个对称结构,四个甲基的化学环境完全相同,不论在氢 谱还是碳谱都只产生一个吸收峰; •Si的电负性小(1.9),TMS中氢核与碳核周围的电子云密度高,屏 蔽效应大,产生NMR信号所需的磁场强度比一般有机物中的氢核 和碳核产生NMR信号所需的磁场强度大得多,处于较高场,与绝 大部分样品信号不发生重叠和干扰; •TMS沸点低(27℃),容易去除,有利于回收样品。
核磁化学位移影响因素

核磁化学位移影响因素
1. 分子结构:分子的几何结构、轨道能量以及化学键等对核磁共振的化学位移有直接影响。
2. 电子云密度:周围电子云的密度和形状对核磁共振的化学位移也有影响,因为电子云对原子核的磁场产生局部屏蔽和脱屏蔽效应,从而改变了相应的磁场强度。
3. 分子环境:分子内或外的溶剂分子、配体分子、表面催化剂等都会对化学物质的化学位移产生影响。
4. 磁场强度:核磁共振技术中磁场强度会对化学位移产生影响,强磁场中化学位移会更大。
5. 小分子的挠曲和旋转:对于一些小分子,分子的挠曲和旋转会导致某些原子或分子团体的化学位移发生变化。
6. 离子态/氢键形成:当反应物发生离子态或氢键形成时,化
学位移也会发生变化。
7. 分子运动:温度、压力等条件的改变也会对分子的运动造成影响,从而对化学位移产生影响。
核磁共振与化学位移

H CC
~0.9 H3C C
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 化学位移 δ(ppm)
2020/7/17
精品课件
2020/7/17
内容选择:
• 第一节 核磁共振基本原理
principle of nuclear magnetic resonance
• 第二节 核磁共振与化学位移
-O-H,
-C-
H,
2020/7/17
精品课件
大 小
电负性对化学位移的影响
3.5
3.0
2.5
OC3H NC3H CC3H
3.42-4.02 2.12-3.10 0.77-1.88
F C 3H CC l3H BC r3H IC 3H
4 .2 6 3 .0 5 2 .6 8 2 .6 0
碳杂化轨道电负性:SP>SP2>SP3
O H 3C C H
2020/7/17
δ 3 .5 5
OH H
精品课件
δ 2 .3 1
O H C CH 3
δ 3 .7 5
HO H
空间效应
去屏蔽效应
δ
1.H10Cδ
2.40 δ 4.68
HbHa OH
δ 0.88HCδ3.55 δHbHO3.92
Ha
(A)
Ha=4.68ppm
Hb=2.40ppm
价电子产生诱导 磁场,质子位于其磁力 线上,与外磁场方向一 致,去屏蔽。
2020/7/17
精品课件
影响化学位移的因素3
价电子产生诱 导磁场,质子位于其磁 力线上,与外磁场方向 一致,去屏蔽。
2020/7/17
NMR-核磁共振(含化学位移概念)

NMRNMR(Nuclear Magnetic Resonance)为核磁共振。
是磁矩不为零的原子核,在外磁场作用下自旋能级发生蔡曼分裂,共振吸收某一定频率的射频辐射的物理过程。
核磁共振波谱学是光谱学的一个分支,其共振频率在射频波段,相应的跃迁是核自旋在核蔡曼能级上的跃迁。
国内叫NMR,国外叫MR,因为国外比较避讳Nuclear这个单词。
目录基本原理核磁共振应用核磁共振发展动向二维核磁共振波谱的基本原理划分区域基本原理自旋量子数I不为零的核与外磁场 H0相互作用,使核能级发生2I+1重分裂,此为蔡曼分裂。
核磁共振是1946年由美国斯坦福大学布洛赫(F.Block)和哈佛大学珀赛尔(E.M.Purcell)各自独立发现的,两人因此获得1952年诺贝尔物理学奖。
50多年来,核磁共振已形成为一门有完整理论的新学科。
核磁共振应用核磁共振适合于液体、固体。
如今的高分辨技术,还将核磁用于了半固体及微量样品的研究。
核磁谱图已经从过去的一维谱图(1D)发展到如今的二维(2D)、三维(3D)甚至四维(4D)谱图,陈旧的实验方法被放弃,新的实验方法迅速发展,它们将分子结构和分子间的关系表现得更加清晰。
在世界的许多大学、研究机构和企业集团,都可以听到核磁共振这个名词,包括我们在日常生活中熟悉的大集团。
而且它在化工、石油、橡胶、建材、食品、冶金、地质、国防、环保、纺织及其它工业部门用途日益广泛。
在中国,其应用主要在基础研究方面,企业和商业应用普及率不高,主要原因是产品开发不够、使用成本较高。
但在石油化工、医疗诊断方法应用较多。
核磁共振发展动向20世纪后半叶,NMR技术和仪器发展十分快速,从永磁到超导,从60MHz到800MHz的NMR谱仪磁体的磁场差不多每五年提高一点五倍,这是被NMR在有机结构分析和医疗诊断上特有功能所促进的。
现在有机化学研究中NMR已经成为分析常规测试手段,同样,在医疗上MRI(核磁共振成像仪器)亦成为某些疾病的诊断手段。
核磁H谱化学位移

在有机化合物中,氢核受核外电子的屏蔽作用, 使其共振频率发生变化,即引起共振吸收峰的 位移,这种现象称为化学位移。(不同的氢核, 所处的化学环境不同,化学位移的值也不相 同。)
2、化学位移的表示方法
如定义中所提到的,不同的氢核,所处的化学环境 不同,出峰位置也不同,其峰的位置不便精确测定,
故在试验中采用某一标准物质作为基准,以基准物
如图,苯上的六个π电子产生较强的感应磁场,H位于 去屏蔽区,处于低场。 化学位移为6.8-8.
3、影响化学位移的因素
3.4、氢键的影响
键合在杂原子(N、O等)上的 质子易形成氢键。氢键质子相 比于没有形成氢键的质子有较 小的屏蔽效应,共振吸收峰出 现在低场。
3.5、温度的影响 温度:大多数信号的共振位置受温度影响很小,但-OH、-NH和-SH在升高温度时形 成氢键的程度降低,化学位移移向高场。 3.6、溶剂效应 溶剂效应:溶剂的磁各向异性和溶质与溶剂之间形成氢键将对溶质中不同位置的 氢核的化学位移产生影响。
3.3、磁各向异性 屏蔽区:感应磁场与区域。
如图,双键的H处于去屏蔽区,故其处于低场。 化学位移为4.5-5.1
3、影响化学位移的因素
3.3、磁各向异性
如图,三键是直线构型,H所处感应磁场方向与外磁场 方向相反,处于屏蔽区,故其处于高场。 化学位移为2-3.
核磁共振与化学位移

2. 化学位移的表示方法
(1)位移的标准 (1)位移的标准 没有完全裸露的氢核,没 有绝对的标准。 相对标准:四甲基硅烷 Si(CH3)4 (TMS)(内标) 位移常数 δTMS=0 (2) 为什么用 为什么用TMS作为基准 作为基准? 作为基准 a. 12个氢处于完全相同的化学环境,只产生一个尖峰; b.屏蔽强烈,位移最大。与有机化合物中的质子峰不重迭; c.化学惰性;易溶于有机溶剂;沸点低,易回收。
18:01:48
4.37ppm
3.空间效应 3.空间效应
δ 1.77
O H3C C H
δ 2.31
O H C CH3
δ 3.55
H OH
δ 3.75
HO H
18:01:48
空间效应
去屏蔽效应
2.40
δ 1.10 H Cδ
δ 4.68 H bH a OH
δ
0.88
δ
3.55
HC
δ
3.92
H bHO
O ~2.1 H3C C
~3.0 H 3C
H
N
~1.8 H3 C C C
~3.7 H 3C O
H C
~0.9 H 3C C
O C OH
H C O
C
15 14 13 12 11 10 9
8
7
6
5
4
3
2
1
0
化学位移 δ(ppm)
18:01:48
内容选择: 内容选择:
• 第一节 核磁共振基本原理
principle of nuclear magnetic resonance
③芳香烃
芳烃质子: 芳烃质子:δH=6.5~8.0ppm 供电子基团取代-OR,-NR2 时:δH=6.5~7.0ppm , 供电子基团取代 吸电子基团取代-COCH3,-CN,-NO2 时:δH=7.2~8.0ppm 吸电子基团取代 ,
第2章 核磁共振碳谱的解析资料

2.3.5 羰基 羰基的谱峰在核磁共振碳谱的最低场,因此很容易识别 . 影 响羰基化学位移的主要因素有两个: 1. 杂原子的取代 羰基与杂原子相连会产生比较大的高场位移. 酮羰基的化学 位移数值一般超过 200 ppm.一旦和杂原子相连,其 值会下
降到180 ppm之内. 杂原子的高场位移作用超过共轭作用.
2.3.1 链状烷烃及其衍生物
1. 取代基的电负性 对饱和链状烷基来说,取代基的电负性是影响其化学位 移数值的主要因素 . 电负性基团的取代使被取代的碳原子产 生明显的低场位移,对于-位的碳原子也有一定的低场位移 作用. 这些都是诱导效应引起的.
表2. 2 列举了一些常见取代基的位移增量. 其中脚标和分别表示取 代基对于位和位碳原子的影响,脚标n 表示取代基在链端,脚标 iso表示取代基在链中间.
从化学位移的原理考虑碳谱和氢谱有极大的差别氢谱化学位移的决定因素是抗磁屏蔽而碳谱化学位移的决定因素是顺磁屏蔽但是从讨论化学位移的影响因素来看两者又有诸多相似点
第2 章核磁共振碳谱的解析 本章讨论核磁磁共振碳谱的解析. 首先分析碳谱的特点和优点.
核磁共振碳谱具有下列的特点:
(1)核磁共振碳谱的横坐标是化学位移,纵坐标是谱峰的强度, 其高度近似反映碳原子的数目. (2) 核磁共振碳谱化学位移数值的变化范围远远大于接磁共 振氢谱的范围. 它们碳谱的变化范围可超过200 ppm. (3) 核磁共振碳谱的化学位移数值变化范围约是氢谱的20 倍, 碳谱中呈现的是一条条的谱线. 很少遇到谱线重叠的情况. 分 子质量在4 00 以内的有机化合物,若分子无对称性,原则上 每个碳原子都对应一条谱线. 易从碳谱来区分. (4) 根据核磁共振碳谱和碳原子级数的确定, 未知物含有多 少个碳原子,伯、仲、叔、季碳原子各是多少. 大致是属于 哪类基团,都可以得到结论. (5) 核磁共振碳谱对于化合物的立体结构敏感,适宜解决立 体化学的问题.
第2节 核磁共振与化学位移

– 叔丁基上的质子间距很小,质子上的电子云可发生 相互排斥,而使屏蔽效应减少。
三、各类有机化合物的化学位移
1. 饱和烃
-CH3: CH3=0.791.10ppm -CH2: CH2 =0.981.54ppm -CH: CH= CH3 +(0.5 0.6)ppm
O CH3 N CH3 C C CH3 O C CH3 CH3
其他各类有机化合物的化学位移
-COOH:H=10~13ppm
-OH: (醇)H=1.0~6.0ppm (酚)H=4~12ppm -NH2:(脂肪)H=0.4~3.5ppm (芳香)H=2.9~4.8ppm (酰胺)H=9.0~10.2ppm -CHO:H=9~10ppm
常见结构单元化学位移范围
H=3.2~4.0ppm H=2.2~3.2ppm H=1.8ppm
H=2.1ppm
H=2~3ppm
2. 烯烃
端烯质子:H=4.8~5.0ppm 内烯质子:H=5.1~5.7ppm 与烯基,芳基共轭:H=4~7ppm
3. 芳香烃
芳烃质子:H=6.5~8.0ppm 供电子基团取代-OR,-NR2 时:H=6.5~7.0ppm 吸电子基团取代-COCH3,-CN,-NO2 时:H=7.2~8.0ppm
质子周围的电子云密度降低所致。
– 分子中含易形成氢键的基团,其上的氢质子的化学位移 范围往往很大。
• ROH • ArOH 0.5~5ppm 3.5~7.7ppm
• RCOOH
10.5~12ppm
(4)溶剂效应
1H核在不同溶剂中,因受溶剂的影响而使化学位移发生 变化,这种效应称为溶剂效应。 溶剂的影响是通过溶剂的极性、形成氢键、形成分子复 合物以及屏蔽效应而发生作用的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
nuclear magnetic resonance spectroscopy NMR
第二节 核磁共、核磁共振与化学位移
1.屏蔽作用与化学位移
理想化的、裸露的氢核;满足共振条件: 0 = H0 / (2 ) 产生单一的吸收峰; 实际上,氢核受周围不断运动着的电子 影响。在外磁场作用下,运动着的电子产生相对于外磁场方 向的感应磁场,方向与外加磁场相反,起到屏蔽作用,使氢 核实际受到的外磁场作用减小: H=(1- )H0 :屏蔽常数。 越大,屏蔽效应越大。 0 = [ / (2 ) ](1- )H0 屏蔽的存在,共振需更强的外磁场(相对于裸露的氢核)。
CCl 4 7.45ppm 4.37ppm
17:04:44
4.共轭效应
共轭效应使电子云密度发生变化,使化学位移向高 场和低场移动
CH2=CH2
17:04:44
三、各类有机化合物的化学位移
①饱和烃
-CH3: CH3=0.791.10ppm -CH2: CH2 =0.981.54ppm -CH: CH= CH3 +(0.5 0.6)ppm
17:04:44
常见结构单元化学位移范围
O ~2.1 H3C C
~3.0 H 3C
H
N
~.8 1 HC C C 3
~3.7 H3C O H C
~0.9 H3C C
O C OH
H C O
C
15 14 13 12 11 10 9
8
7
6
5
4
3
2
1
0
¯ §» Æ » Ñ Î Ò
17:04:44
Ä (ppm) ¦
H
0
H H H
δ: 7.3
7 6 5
H H
H
4 PPM
3
2
1
0
去屏蔽效应使核磁信号向低场移动。
17:04:44
3.氢键效应
形成氢键后1H核屏蔽作用减少,氢键属于去屏蔽效应, 低场。
H H3CH 2C O H O CH 2CH 3 CCl 4 5.72ppm 3.7ppm O H O H O
H O CH 3
17:04:44
CH3CH3
δ:0.86
2 PPM 1 0
CH2=CH2
δ: 5.3
5 4 3 PPM 2 1 0
17:04:44
影响化学位移的因素
苯环磁各向异性效应
苯环上的6个电子产生较 强的诱导磁场,质子位于其磁 力线上,与外磁场方向一致, 去屏蔽,低场。
17:04:44
δ:1.4
2 PPM 1
17:04:44
化学位移:
0 = [ / (2 ) ](1- )H0
由于屏蔽作用的存在,氢核产生 共振需要更大的外磁场强度(相对 于裸露的氢核),来抵消屏蔽影响。 在有机化合物中,各 种氢核 周围的电子云密度 不同(结构中不同位置) 共振频率有差异,即引起 共振吸收峰的位移,这种 现象称为化学位移。 有吸电子基团,电子云密度小,屏蔽作用小,共振时H较HO 发生较小变化(H>HO),Δ H小。反之,则大
17:04:44
2. 化学位移的表示方法
(1)位移的标准 没有完全裸露的氢核,没 有绝对的标准。 相对标准:四甲基硅烷 Si(CH3)4 (TMS)(内标)
位移常数 TMS=0
(2) 为什么用TMS作为基准? a. 12个氢处于完全相同的化学环境,只产生一个尖峰; b.屏蔽强烈,位移最大。与有机化合物中的质子峰不重迭; c.化学惰性;易溶于有机溶剂;沸点低,易回收。
17:04:44
位移的表示方法
与裸露的氢核相比,TMS 的化学位移最大,但规定 TMS=0,其他种类氢核的位 移为负值,负号不加。
小,屏蔽强,共振需
要的磁场强度大,在高场出 现,图右侧;
大,屏蔽弱,共振需
要的磁场强度小,在低场出 现,图左侧;
化学位移:由于屏蔽作用所引起的不同化学环境下同种 原子核共振所需的磁场强度发生移动的现象。 = [( 样 - TMS) / TMS ] 106 (ppm)
大
低场
小
高场
17:04:44
电负性的影响:
• • • • • δ: 0.23 0.86 H- CH3 CH3-CH3 3.1 Cl-CH3 3.39 HO-CH3 2.47 NH2-CH3 7.28 CHCl3
δ:
• • •
与甲基相连的吸电子基使质子峰向低场方向移动, 供电子基使质子峰向高场方向移动。 (即:随着电负性的增加,甲基的化学位移增大。)
17:04:44
请归属下各核磁共振吸收峰?
3
2
1
CH3CH2CH2Cl
3
2 PPM
1
0
17:04:44
2. 磁各向异性效应
双键磁各向异性效应
价电子产生诱导磁 场,质子位于其磁力线 上,与外磁场方向一致, 去屏蔽,低场。
17:04:44
影响化学位移的因素
叁键磁各向异性效应
价电子产生诱导磁 场,质子位于其磁力线 上,与外磁场方向相反, 屏蔽,高场。
③芳香烃
芳烃质子:H=6.5~8.0ppm 供电子基团取代-OR,-NR2 时:H=6.5~7.0ppm 吸电子基团取代-COCH3,-CN,-NO2 时:H=7.2~8.0ppm
17:04:44
各类有机化合物的化学位移
-COOH:H=10~13ppm
-OH: (醇)H=1.0~6.0ppm (酚)H=4~12ppm -NH2:(脂肪)H=0.4~3.5ppm (芳香)H=2.9~4.8ppm (酰胺)H=9.0~10.2ppm -CHO:H=9~10ppm
O CH3 N CH3 C C CH3 O C CH3 CH3
17:04:44
H=3.2~4.0ppm H=2.2~3.2ppm H=1.8ppm
H=2.1ppm
H=2~3ppm
各类有机化合物的化学位移 ②烯烃
端烯质子:H=4.8~5.0ppm
内烯质子:H=5.1~5.7ppm
与烯基,芳基共轭:H=4~7ppm
17:04:44
二、影响化学位移的因素(即影响电子云密度的因素)
1.电负性(诱导效应) --去屏蔽效应
与质子相连元素的电负性 越强,吸电子作用越强,价 电子偏离质子,屏蔽作用减 弱,信号峰在低场出现。
-CH3 , =1.6~2.0,高场; -CH2I, =3.0 ~ 3.5, -O-H, -C-H,