IMAGING AND ANALYSIS OF ANGIOGENESIS FOR SKIN TRANSPLANTATION BY MICROANGIOGRAPHY

合集下载

64排螺旋CT成像在原发性肝癌中的诊断价值

64排螺旋CT成像在原发性肝癌中的诊断价值

①湖北省松滋市人民医院 湖北 松滋 434200通信作者:曾海燕64排螺旋CT成像在原发性肝癌中的诊断价值曾海燕①【摘要】 目的:分析64排螺旋CT 成像在原发性肝癌中的诊断价值。

方法:选取2022年1—12月松滋市人民医院收治的原发性肝癌患者80例,以数字减影血管造影(DSA)检查为诊断金标准,所有患者均行64排螺旋CT 成像检查。

观察患者原发性肝癌、肿瘤直径检出情况,并分析图像特征。

结果:64排螺旋CT 成像对胆管细胞癌、肝细胞癌、混合型癌的检出率均低于DSA,但两者比较,差异均无统计学意义(P >0.05)。

64排螺旋CT 成像对肿瘤直径<1 cm 的检出率低于DSA,但两者比较,差异无统计学意义(P >0.05)。

结论:原发性肝癌患者行64排螺旋CT 成像,图像特征较为明显,对肿瘤直径和肝癌分型的检出率接近金标准。

【关键词】 64排螺旋CT 成像 原发性肝癌 影像特征 Diagnostic Value of 64-slice Spiral CT Imaging in Primary Hepatic Carcinoma/ZENG Haiyan. //Medical Innovation of China, 2023, 20(22): 139-142 [Abstract] Objective: To analyze the diagnostic value of 64-slice spiral CT imaging in primary hepatic carcinoma. Method: A total of 80 patients with primary hepatic carcinoma admitted to Songzi People's Hospital from January 2022 to December 2022 were selected. Digital substraction angiography (DSA) was used as the diagnostic gold standard, and all patients underwent 64-slice spiral CT imaging. The detection of primary hepatic carcinoma and tumor diameter in patients was observed, and the imaging features were analyzed. Result: The detection rate of 64-slice spiral CT imaging for cholangiocellular carcinoma, hepatocellular carcinoma and mixed type carcinoma were lower than that of DSA, but there were no significant differences between them (P >0.05). The detection rate of 64-slice spiral CT imaging for tumor diameter <1 cm was lower than that of DSA, but there was no statistical significance between them (P >0.05). Conclusion: The 64-slice spiral CT imaging was performed in the diagnosis of primary hepatic carcinoma, the image features were obvious, and the detection rate of tumor diameter and hepatic carcinoma classification was close to the gold standard diagnosis. [Key words] 64-slice spiral CT imaging Primary hepatic carcinoma Imaging features First-author's address: Songzi People's Hospital, Hubei Province, Songzi 434200, China doi:10.3969/j.issn.1674-4985.2023.22.033 原发性肝癌是一种死亡率仅次于胃癌的恶性肿瘤,此病的发生与遗传、心理、病毒感染等因素相关。

结肠息肉癌变过程中内镜微血管特征与MVD IGF-1 STAT3表达相关性研究

结肠息肉癌变过程中内镜微血管特征与MVD IGF-1 STAT3表达相关性研究

结肠息肉癌变过程中内镜微血管特征与MVD IGF-1 STAT3表达相关性研究刘红;吴静;林香春;刘揆亮;马艳会;余瑞金【摘要】目的:分析MVD、IGF-1、STAT3等血管生成因子在结肠癌及癌前病变组织中的表达与窄带成像内镜(NBI)下的微血管形态的相关性,探究内镜实时观测血管生成的可行性。

方法:将普通白光内镜以及NBI内镜均诊断为结肠息肉样病变并经病理组织学证实的结肠早期癌、结肠腺瘤纳入研究,将微血管形态分为三型:Ⅰ型:无微血管形态可见;Ⅱ型:微血管沿腺管开口排列,粗细均匀;Ⅲ型:微血管粗细不均,排列紊乱。

同时将病变组织进行CD34、IGF-1、STAT3免疫组织化学染色,比较NBI微血管形态特征和组织学结果的相关性。

结果:共有58例患者的64个部位(结肠早期癌15个,腺瘤29个,正常黏膜20个)进行NBI内镜检查,NBIⅡ型部位以腺瘤为主,占82.1%(23/28),而早癌多表现为Ⅲ型,占66.7%(10/15)。

免疫组织化学提示微血管密度(MVD-CD34)、IGF-1在正常黏膜、结肠腺瘤和结肠早癌中的表达有显著性差异(P<0.0001,P=0.0062),STAT3在三者间表达有逐渐增高的趋势(P=0.0713)。

在NBI微血管形态分型Ⅰ、Ⅱ、Ⅲ型组织中MVD-CD34、IGF-1、STAT3的表达均有显著性差异(P<0.0001,P=0.0010,P=0.0055)。

NBI的微血管类型和MVD、IGF-1、STAT3表达的相关系数分别为0.67、0.41和0.40。

结论:根据NBI内镜实时微血管形态评估组织血管生成,是一项非常有前景的结肠息肉癌变检测方法。

%Objective:To investigate the correlation between the expression of angiogenic factors (MVD, IGF-1, and STAT3) in colorectal carcinoma and adenoma and the microvascular characteristics under narrow band imaging (NBI), in order to evaluate the fea-sibility of NBI in real-timeobservation of angiogenesis. Methods:Patients with pathologically confirmed colorectal polyps were re-cruited and examined by NBI. Vascular patterns were classified into typeⅠ(invisible or faintly visible), typeⅡ(clearly visible and regularly arranged in a round, oval honeycomb-like pattern), and typeⅢ(clearly visible and irregularly arranged in terms of size and caliber or irregularly winded). Immunohistochemical staining was performed to determine the expression of CD34, IGF-1, and STAT3. Histological results were compared with the vascular patterns under NBI. Results:The NBI endoscopy results of 64 sites (15 adenocar-cinomas, 29 adenomas, and 20 normal tissues) from 58 patients were introduced and examined in this study. Adenomas ranked the first (82.1%, 23/28) among the vascular patternⅡcases, whereas early adenocarcinomas dominated the vascular patternⅢcases (66.7%, 10/15). The expression levels of MVD-CD34 and IGF-1 in normal mucosa, adenomas, and adenocarcinomas were significantly differ-ent (P<0.0001 and P=0.0062, respectively). All the expression levels of MVD-CD34, IGF-1, and STAT3 in sites displaying vascular pat-ternsⅠ,Ⅱ, andⅢwere significantly different (P<0.0001,P=0.0010, and P=0.0055, respectively). Spearman correlation coefficients between the NBI vascular patterns and the MVD-CD34, IGF-1, and STAT3 expression levels were 0.67, 0.41, and 0.40, respectively.Conclusion:Vascular pattern analysis through an NBI system can be a promising tool to evaluate angiogenesis of colorectal lesions in real-time endoscopic observation.【期刊名称】《中国肿瘤临床》【年(卷),期】2015(000)010【总页数】5页(P499-503)【关键词】窄带成像内镜;结肠腺瘤;结肠早期癌;微血管形态;肿瘤血管生成【作者】刘红;吴静;林香春;刘揆亮;马艳会;余瑞金【作者单位】首都医科大学附属北京世纪坛医院消化科北京市100038;首都医科大学附属北京世纪坛医院消化科北京市100038;首都医科大学附属北京世纪坛医院消化科北京市100038;首都医科大学附属北京世纪坛医院消化科北京市100038;首都医科大学附属北京世纪坛医院消化科北京市100038;首都医科大学附属北京世纪坛医院消化科北京市100038【正文语种】中文结肠癌在我国发病率日益增高,其发生发展与血管生成有密切的关系,有研究提示肿瘤血管生成开关位于癌前病变阶段[1],测定微血管密度(mi⁃crovessel density,MVD)是评价血管生成的常用指标,胰岛素样生长因子1(IGF-1)、信号转录子与转录活化子3(STAT3)等可促进血管生成[2-4]。

2021医学考研复试:影像科[SC长难句翻译文]

2021医学考研复试:影像科[SC长难句翻译文]

SCI长难句影像科第一章-CT骶髂关节炎Early diagnosis of sacroiliitis may lead to preventive treatment which can significantly improve the patient's quality of life in the long run.Oftentimes,a CT scan of the lower back or abdomen is acquired for suspected back pain.However,since the differences between a healthy and an inflamed sacroiliac joint in the early stages are subtle,the condition may be missed.We have developed a new automatic algorithm for the diagnosis and grading of sacroiliitis CT scans as incidental findings,for patients who underwent CT scanning as part of their lower back pain workout.The method is based on supervised machine and deep learning techniques.早期诊断骶髂关节炎可以进行预防性治疗,显著提高患者的长期生活质量。

通常,由于可疑的背部疼痛,需要对下背部或腹部进行CT扫描。

然而,因为发炎早期的骶髂关节和健康的骶髂关节之间的区别是很细微的,所以可能会被忽略。

我们开发了一种新的自动算法,对偶然发现的骶髂炎的CT扫描进行诊断和分级,适用于进行了CT扫描的下背部疼痛的患者。

影像基因组学在肝细胞癌诊疗中的应用研究进展

影像基因组学在肝细胞癌诊疗中的应用研究进展

国际医学放射学杂志IntJMedRadiol2021May 鸦44穴3雪:310-313影像基因组学在肝细胞癌诊疗中的应用研究进展刘斌杨雪孙君李宏军*【摘要】肝细胞癌(HCC )的发病率和病死率较高,早期精准诊疗对病人的预后至关重要。

以形态学为主的影像诊断模式已不能满足临床需求。

影像组学能深度挖掘影像提供的庞大数据信息,采用定量数据分析综合评价基因遗传、细胞分子、组织形态等各层次HCC 的表型,从而对HCC 进行精准诊疗和无创监测;基因组学从分子及基因层面揭示HCC 的发病机制;影像基因组学主要为HCC 形态学特征和影像组学表型特征与基因组学的关联。

就HCC 的影像基因组学研究进展进行综述。

【关键词】肝细胞癌;影像组学;基因组学;影像基因组学中图分类号:R735.7;R445文献标志码:AResearch progress of radiogenomics in diagnosis and treatment of hepatocellular carcinoma LIU Bin,YANGXue,SUN Jun,LI Hongjun.Department of Radiology,Beijing YouAn Hospital,Capital Medical University,Beijing 100069,China.Corresponding author:LI Hongjun,E-mail:**********************【Abstract 】ObjectiveHepatocellular carcinoma (HCC)causes high morbidity rate and mortality rate.Accuratediagnosis and treatment are significant to the prognosis of HCC patients.The morphology-based imaging diagnosis model can no longer meet clinical needs.People could use radiomics to mine more data information from images,and use quantitative data analysis methods to evaluate the phenotype of HCC at all levels,such as genetic inheritance,cell molecular,and tissuemorphology,so as to perform accurate diagnosis and non-invasive monitoring of HCC.Genomics reveals the pathogenesis of tumors from the molecular and genetic level.Radiogenomics is mainly related to morphological and radiomic features and genomic results.This article reviews the progress of radiogenomics of HCC.【Keywords 】Hepatocellular carcinoma;Radiomics;Genomics;RadiogenomicsIntJMedRadiol,2021,44(3):310-313作者单位:首都医科大学附属北京佑安医院放射科,北京100069通信作者:李宏军,E-mail:***********************审校者基金项目:国家自然科学基金重点项目(61936013);国家自然科学基金面上项目(81771806)DOI:10.19300/j.2021.Z18756综述腹部放射学肝细胞癌(hepatocellular carcinoma,HCC )是肝脏最常见的原发恶性肿瘤,2018年HCC 新发病例841080例,死亡病例781631例[1]。

成纤维细胞活化蛋白(FAP)的研究进展

成纤维细胞活化蛋白(FAP)的研究进展

成纤维细胞活化蛋白(FAP)的研究进展?1866?(59—464.[24]KumsawaM,NumazawaS,TaniY,eta1.ERKsignalingmedi. atestheinductionofinflammatoryeytokinesbybufalininhumanmonoeyticceUs[J].AmJPhysiolCellPhysiol,2000,278(3):C50o一508.[25]JingY,WatabeM,HashimotoS,eta1.Cellcyclearrestandpm. teinkinasemodulatingeffectofbufalinonhumanleukemiaML1cells[J].AntlcaneerRes,1994,14(3A):1193—1198.[26]LiuY,Qux,WangP.WT1downregulationduringK562cell MODERNONCOLOGY,Sep.2010.VOI.18,NO.09 differentiationandapoptosisinducedbybufalin[J].ZhonghaaXueYeXueZaZhi,2002,23(7):356—359.[27]AmanoY,ChoY,MatsunawaM,eta1.Increasednuclearexpres—sionandtransaetivafionofvitaminDreceptorbythecardiotonic steroidbufalininhumanmyeloidleukemiacells[J].JSteroidBiochemMolBiol,2009,114(3—5):144—151.[28]LeeDY,YasudaM,YamamotoT,eta1.Bufalininhibitsendo- thelialcellproliferationandangiogenesisinvitro[J].LifeSei,1997,6O(2):127—134.(编校:何蛛)成纤维细胞活化蛋白(FAP)的研究进展张红霞,郭佑民ResearchprogressinfibroblastactivationproteinzHANGHong—xia.GUOYou—minDepartmentofRadiology,BengChaoyangHospital,CapitalMedicalUniversity,Beijing100020,China.【Abstract】Fibroblastactivationprotein(FAP),asurfaceantigenespeciallyexpressedoncarcinomaass ociatedfi—broblasts(CAFs),itisallintegralmembraneserinepeptidase,amemberofthegroupofIIinteg ralserineproteases, whichhasbeenshowntohavedipeptidylpeptidaseandgelatinaseactivity.FAPhasadualfunc tionintumourpro-gression.TheproteolytieactivicyofFAPhasbeenshowntopromotecellinvasivenesstoward stheECMandalsotosupporttumourgrowthandproliferation.OverexpressionofFAPonCAFsanditsspecialend opeptidaseactivityre—presentapotentialtargetfordiagnosisandtreatmentofvariouscarcinomas,makingitfeasible tobeappliedinmolec—ularimaging,oncogenetherapyandimmunotherapyoftargetingtumorceHs.Aseriesofstudi esinvolvingFAPstruc—ture,enzymeactivities,clinicalsignificanceandsoonweresummarized.【Keywords】cancer;fibroblastactivationprotein;carcinomaassociatedfibroblasts ModernOncology2010,18(09):1866—1869【指示性摘要】成纤维细胞活化蛋白(FibroblastActivationProtein,FAP)存在于肿瘤基质成纤维细胞中,在细胞表面发挥作用,是一种膜丝氨酸肽酶,是II型丝氨酸蛋白酶家族成员之一,具有二肽肽酶及胶原酶活性,在肿瘤的生长中具有双重功能.FAP的蛋白水解酶活性可以增强肿瘤细胞对细胞外基质的侵袭力,同样也能促进肿瘤的生长和增殖.故以FAP作为靶点的分子成像以及作为肿瘤基质标志物的病理诊断,肿瘤基因治疗或免疫治疗将成为可能.近年来对FAP的研究进展进行如下综述.【关键词】肿瘤;JE纤维细胞活化蛋白;成纤维细胞【中图分类号】R730.3【文献标识码】ADOI:10.3969/j.issn.1672—4992.2010.09.76 【文章编号】1672—4992一(2010)09—1866一o4【收稿日期】【修回日期】【基金项目】【作者单位1【作者简介】【通讯作者】2010一O1—2620lO—o5—20国家自然科学基金资助项目(编号:30900364);北京市科技计划重大项目(编号:~340]010);北京市教育委员会科技计划面上项目(编号:350010920126)首都医科大学附属北京朝阳医院放射科,北京lOOO20张红霞(1985一),河南濮阳人,住院医师,硕士,主要从事肿瘤分子影像学研究.郭佑民(1955一),男,陕西西安人,主任医师,博士生导师,主要从事肿瘤分子影像学研究.E—mail:cjr.guoyoumin@vip.163.eom1研究背景FAP,曾被认为是F19细胞表面抗原,是一种可诱导的细胞表面糖蛋白,它最初是在1986年用单克隆抗体FI9在培养的成纤维细胞中发现的.1994年,F19细胞表面抗原被命名为成纤维细胞活化蛋白(FAP).1990年,一个分子量为170kDa的胶原酶在人类的恶性黑色素瘤细胞株LOX中被识别.1994年,这个170kDa的胶原酶被命名为Seprase.对FAP和Seprase的分子克隆研究发现它们是同一种细胞表面丝氨酸蛋白酶,基因定位于2q23[1I2].为了使本综述清晰,明了,本文将自始至终用FAP来表示这种蛋白酶.2FAP的结构特征和酶特性2.1结构特征现代肿瘤医学2010年09月第1鲞箍具有活性的FAP是一个170kDa的同型二聚体,包括97kDa的两个N末端糖基化的亚单位,(GenBankGI 1888316)一种Ⅱ型穿膜糖蛋白具有一个大的C末端胞外区域.FAP有5个潜在的N一糖基化位点,l3个半胱氨酸残基,3个高度保守的丝氨酸蛋白酶催化区域,一个疏水的跨膜片段和一个小的胞质尾区(6个氨基酸).另外一些研究发现了FAP的血清形式J,溶解形式抗血纤维蛋白酶(Anti—plasminCleavingEnzyme,APCE)[51,FAP的胞外晶体结构. FAP每个亚单位包括:B一螺旋结构区域(氨基酸序列54—492)和a/t3水解酶区域(氨基酸序列27—53和493—760).FAp的催化区域暴露于细胞外环境中,该区域包括起催化作用的丝氨酸($624),它与Asp702和His734组成了催化三联体.FAP保守的丝氨酸蛋白酶基序是G—w—S—Y—G_1].催化三联体定位在13,螺旋结构和B水解酶区域的交界面,它的排列顺序是亲核一酸一基底,是p水解酶区域的特征.这个催化区域是由基本平行的B片通过各个面上的单环连接,围绕着腹侧轨道呈螺旋放射状排列.具有8片"桨叶"的8螺旋结构位于催化三联体的顶端可能对蛋白底物起着"催化门"的作用』.FAP的晶体结构有5个可能的糖基化位点分别定位在天门冬氨酸49,92,227,314和679.4个位于B螺旋结构区,1个位于水解酶区J.糖基化形式使FAP同时有二肽肽酶活性和胶原酶活性,非糖基化形式则无此活性….FAP的活性由亚单位组成的二聚体形式决定,单体无活性.FAP的基因组在几种物种中发现.比如小鼠类及非洲爪蛙类.对于小鼠类的研究在组织中发现了选择剪接和3个特殊的FAP剪接变异体.一个选择性的FAP剪接体在人类的黑色素瘤细胞株LOX中发现,它编码了一个异常的缩短的变异体.剪接变体编码了一个有239个氨基酸分子量为27kDa的多肽,突变型与野生型的FAP的C末端催化区域重叠.FAP的C末端催化区域在不同物种问是高度同源的.2.2酶特性FAP属于转膜丝氨酸肽酶(serineintegralmembrane peptidases,SIMPs)小家族.FAP与二肽肽酶家族成员DPPIV (DPPIV,dipeptidylpeptidaseIV/CD26)具有52%的同源性,同属于S9b肽酶家族(脯氨酰多肽肽酶家族).FAP因此被认为是DPPIV相似基因家族的一员L9].FAP具有两种蛋白水解酶活性.首先是胶原酶活性,其次是二肽肽酶活性【】.FAP的酶活性被活性位点丝氨酸($624)介导,酶谱法分析酶底物特异性,发现FAP可以降解明胶和热的变性的I型胶原和IV型胶原但不能水解层粘连蛋白,纤维结合蛋白,纤维蛋白单体及酪蛋白….DPPIV不具有胶原酶活性,因此可用是否有胶原酶活性鉴别FAP和DPPIV…J.3FAP的组织分布FAP表达于90%以上的上皮性肿瘤的基质成纤维细胞的胞膜和胞浆中,包括结肠癌,乳腺癌,卵巢癌,膀胱癌,肺癌(原发的和转移的)D23,同时可短暂的停留于某些正常胎儿问质组织中,持续存在于上皮性肿瘤和一些肉瘤的活化基质中,也可表达于胃癌间质,一部分骨和软组织肉瘤细胞,伤口愈合的肉芽组织,特发性肺纤维化的损伤间质,慢性丙型肝炎病人的肝实质细胞,胰腺细胞,前列腺癌,甲状腺髓样癌和乳头状癌,Crohng病组织的狭窄部位,口腔鳞状细胞癌间质.1867?成纤维细胞中.FAP阳性的细胞靠近肿瘤毛细血管的内皮细胞并围绕着肿瘤结节,但在正常成人的组织,良性和癌前病变的上皮性损伤中通常不表达.4FAP的病理作用FAP的活性与许多恶性转化细胞的侵袭行为密切相关,但是它在恶性肿瘤细胞中的作用有不同的观点.4.1肿瘤抑制作用Wesley等¨朝研究显示正常人的黑色素细胞进展为恶性黑色素瘤时丧失了DPPIV的表达.DPPIV的重新表达使小鼠黑色素瘤细胞转化为高分化的正常表型并恢复了依赖外源性生长因子的表达,并发现即使是催化的非活化突变体DPPIV的表达也可导致依赖外源性生长因子的恢复;该研究小组认为内源性FAP的表达对突变体DPPIV的表达起协助诱导作用.Montagut等研究发现FAP的表达降低了小鼠恶性黑色素瘤细胞在动物体内的致肿瘤性,并且修复了接触抑制和生长因子依赖,并发现催化的突变型FAP在缺乏活化的蛋白酶活性的情况下对肿瘤起抑制作用,DPPIV的表达可诱导FAP的表达,反之,FAP并不诱导DPPIV的表达.因此,推论野生型和突变型FAP的肿瘤抑制活性很有可能是FAP的固有本能.4.2肿瘤促进作用更多的研究认为FAP有肿瘤促进作用.Goodman等FAP的人乳腺癌细胞株实验表明,该细胞株(MDA—MB一435和MDA—MB一436)正常的表达FAP,有高水平FAP表达的乳腺癌细胞较少依赖外源性的血清生长因子,并可从正常的生长调控中获得独立.从正常的生长调控中独立出来这是恶性细胞区别于正常细胞的重要特性.Huang等.'研究小组实验证明人类乳腺癌细胞株MDA—MB~231缺乏正常的FAP的表达,FAP高表达的鼠肿瘤模型肿瘤生长的更快更富有血管.还发现当细胞在体外生长时表达FAP的细胞生长率和那些不表达FAP的细胞一样.这表明FAP只有在体内乳房脂肪垫的微环境才表现显着的肿瘤促进作用.这项研究是证明FAP的血管源性功能的首个证据,可以得出结论即,FAP至少部分促进乳腺癌的血管生成,Aimes等ⅢJ 研究证明也印证了这个结论:FAPmRNA表达上调导致了上皮细胞重建或者血管形成.这些发现说明了FAP的表达有利改变乳腺癌细胞的微环境.Wang等也发现当鼠角膜中出现新生血管,角膜基质中的多种生化因子发生变化. FAP(+)的角膜细胞出现在基质中,新出现的这些细胞同时伴随着在新生血管内皮细胞的生长.再次证明了FAP的血管源性功能.小鼠的FAP转染HEK293人胚肾细胞实验显示:将同等数量转染FAP的HEK293细胞和非转染HEK293 细胞同时接种到重症免疫缺陷小鼠体内,前者肿瘤发生率比后者高2—4倍,潜伏期比后者短1O~15天,肿瘤生长率比后者提高10—40倍.用HT229肿瘤中FAP的提取物免疫兔子所产生的多克隆抗FAP抗体,可以有效抑制HT229肿瘤生长,这都说明FAP能够促进肿瘤的发生及生长n.Wang等发现过度表达FAP的人肝星形细胞LX一2细胞系,增加了细胞粘附性,转移性和侵袭性,还发现FAP的蛋白水解活性对于这些功能来说并不重要,这些研究结果进一步支持了FAP的前体纤维生成的作用,即FAP也具有重要的非酶功能.?1868?FAP和DPPIV可以形成一个复合物定位于胶原纤维成纤维细胞的表面,该复合物在细胞侵袭中有溶解明胶与明胶结合的活性,可促进细胞迁移].FAP一尿激酶型纤溶酶活化因子受体(plasminogenactivatorreceptor,uPAR)膜复合物在肿瘤侵袭中有协同作用.在模型系统中,与受体结合的uPA有活性抑制作用并限制了转移灶的形成】.因此, FAP可能是抗转移治疗的潜在靶点.在星形细胞癌中,FAP的表达是与WHO分级相关的,随着FAP表达的增加,在肿瘤组织中所有的与DPPIV相似的酶活性也增加.在结肠癌中,肿瘤的分期及体积与FAP的表达呈正相关,提示FAP的表达在肿瘤早期的发展中具有重要作用,FAP高表达的肿瘤更易扩散,因此FAP被认为是早期肿瘤的潜在治疗靶点J.在化生,非典型的食管组织和食管癌组织的FAP的表达量与食管肿瘤进展相关J. FAP在胰腺癌中高表达,肿瘤发生时达到高值.越高的FAP 表达量预示着越差的预后J.从这些研究发现FAP的活性促进了肿瘤的生长并对肿瘤的侵袭,转移起到了一定作用. FAP是肿瘤生长和转移的一个重要调节因子.4.3其他作用FAP是潜在性的判断伤口时间的有效标志物,一SMA (alpha—smoothmuscleactin)则是判断刀割伤中晚期时间的有效标志物.联合应用FAP和—SMA是潜在的可靠判断伤口时间的指标.存在于类风湿和半恶性肿瘤基质中的FAP介导了和类风湿性慢性滑膜炎中的肿瘤样组织形成.FAP和DPP~4/CD26这些丝氨酸蛋白酶在防止类风湿滑囊液纤维化从而保护关节软骨方面扮演着重要角色驯.5FAP的信号系统的破坏目前用于肿瘤免疫治疗的抗原靶位正在研究之中,该抗原靶位选择性表达于肿瘤间质成纤维细胞或毛细血管上皮细胞.通过靶向作用阻止肿瘤的基质源性及血管源性供养.FAP的缺失间接抑制肿瘤细胞的增殖,加快胶原的积累,减少肌成纤维细胞成分,降低肿瘤内血管密度.因此FAP是肿瘤靶向治疗的重要靶点.Garin—Chesa等指出与毒素结合的单克隆抗体或炎性单克隆抗体同种型显示在FAP阳性的肿瘤间质中,它的作用是诱导细胞损伤,导致肿瘤细胞坏死和炎性细胞浸润.补充添加了FAP阳性的成纤维细胞将会更新目标细胞数量并帮助纤维囊包裹和分离上皮性肿瘤细胞.将抗体定位于肿瘤问质减少了免疫逃逸的发生率.从遗传上讲,肿瘤间质中的细胞更稳定是个有希望作为肿瘤免疫治疗的靶向细胞.Loeffler等发现肿瘤问质抗原FAP能提供新的抗肿瘤疫苗靶位,尤其是联合化疗一起使用,肿瘤相关的成纤维细胞是I型胶原的重要来源,I型胶原可以降低肿瘤对化疗药的吸收并调控肿瘤对化疗药敏感性.该研究小组制作了一种口服的针对FAP靶点的DNA疫苗,在鼠类结肠癌和乳腺癌模型中,这个疫苗成功的抑制了主要肿瘤细胞的增殖和转移灶的多重耐药.而且接种了FAP疫苗鼠类的肿瘤组织显示,I型胶原在肿瘤组织中的表达被抑制, 肿瘤组织吸收的化疗药增长了70%.最重要的是接种了FAP疫苗的鼠类接受化疗治疗后生命延长了30%并显着地抑制了肿瘤的增殖,约50%的动物完全抵抗了肿瘤的侵蚀, 并且这个DNA疫苗没有阻碍创伤的愈合或损伤正常组织. MODERNONCOLOGY,Set).2010.VOI.18.N0.O9在靶向诊治方面,Lebeau『3等发现瘤内注射激活的FAP强亲和毒素,可显着地增加对人乳腺癌及前列腺癌的抑制作用,并在动物体的毒性试验证明其不良作用非常小.Adams 等发现一种小的FAP抑制剂,叫做Val—bom—Pro(PT100),通过一个大样本的大鼠肿瘤模型实验发现其可减弱和抑制肿瘤生长.Pui—Chi等口发现了一种新的FAP触发的光动力学分子探针(FAP—triggeredphotodynamicmolec. ularbeacon,FAP—PPB)由一种荧光敏感剂和一种黑洞猝灭剂3通过连接一种FAP特异性肽序列组成.FAP—PPB可被人和鼠的FAP裂解.用HEK293转染细胞(HEK—In FAP,FAP+,HEK—Vector,FAP一),经过系统的体内外实验分别证明在肿瘤细胞和小鼠的异种移植体中FAP—PPB 的FAP特异性活性.在有FAP表达的细胞可出现荧光修复,没有FAP表达的细胞不会出现这种情况.在HEK—in FAP细胞,FAP—PPB显示了FAP特异的光细胞毒性,然而在对照组HEK—Vector细胞中没有出现细胞毒性.这个实验说明了FAP—PPB是一个潜在的上皮性肿瘤的诊治的工具.6结论与展望自从1986年发现FAP,迄今在定位和表达这个蛋白酶上面做了大量的科学研究.然而FAP的生化特性和功能需要进一步研究.尽管大量的研究报告指出这个酶可能有的功能,但是FAP的生理学作用还是没有解释清楚.FAP在肿瘤细胞中通过降解细胞外物质,在侵袭和转移中扮演了重要的角色.FAP与90%的上皮细胞癌有关系,还是潜在的对疾病有预示作用的重要标志物.因此FAP可以作为肿瘤体内免疫诊治较有前途的靶分子.有效率的标准的在体内和体外都适用的FAP抑制剂的出现为FAP生理作用的研究打开了一扇门.FAP的调节功能也许是可以在不同等级上操纵的,基因的,后转录的和激素的,可是相关机制和调控方法还不知道.未来在这个领域的研究将会提供FAP的全面信息, 这些信息包括调控方式和生理功能.这样FAP作为选择性抗肿瘤诊治的靶点将成为可能.参考文献[1]MLPineim—Sanchez,LAGoldstein,JDodt,eta1.Identificationofthe170一kDamelanomamembrane—boundgelatinasefse—prase)asaserineintegralmembranepmtease[J].BiolChem, 1997,272:7595—7601.[2]SMathew,^iJSeanlan,BKMohanRaj,eta1.Thegeneforfibro? blastactivationproteinalpha(FAP),aputativecellsurfacebound sedneproteaseexpressedincancerstinmaandwoundhealing, mapstochromosomeband2q23[J3.Genomies,1995,25:335—337.【3]WTChen,TKeUy.Seprasecomplexesincenularinvasiveness [J].CancerMetastasisRev,2003,22(2—3):259—269.[4]PJCollins,GMcMahon,POBrien,eta1.Purification,identifiea- tionandcharacterisationofseprasefrombovine8erOlll[J].IntJ BiochemCellBiol,2004,36:2320—2333.[5]KNLee,KWJackson,VJChristiansen,eta1.Antiplasmin—clea- vingenzymeisasolubleformoffibroblastactivationprotein[J]. Blood,2006,107:1397—1404.[6]KAertgeerts,ILevin,LShi,eta1.Structuraland~neticanalysis ofthesubstratespecificityofhumanfibroblastactivationproteinal- pha[J].BiolChem,2005,280(20):19441—19444.医学2010年O909[7]SSun,CFAlbright,BHFish,eta1.Expression,purification,and kineticcharaeterizationoffulllengthhumanfibmblastactivation protein[J3.ProteinExprPurif,2002,24(2):274—281.『8]LAGoldstein,WTChen.Identifcationofanalternativelyspliced seDmsemRNAthatencodesanovelintracellularisoform[J].Biol Chem,2000,275:2554—2559.[9]CAAbbott,MDGorrell,JLangner,eta1.Eetopeptidases:CD13/ AminopeptidaseNandCD26/DipeptidylpeptidaseIVinmedicine andbiology[M].NewYork:KluwerAcademic/PlenumPublish—eFs,2002:171—195.[1O]JDCheng,MValianou,AACanutescu,eta1.Abrogationoffibre- blastactivationproteinenzymaticactivitya~enuatestumorgrowth [J].MolCancerTher,2005,4(3):351—360.[11]MDGorrell,VGysbers,GWMcCanghan.CD26:amultifune—tionalintegralmembraneandsecretedproteinofactivatedlympho- cytes[J].ScandJImmunol,2001,54:249—264.[12]PGarin—Chesa,IJJOld,wJRettig.Cellsurfaceglycopmteinof reactivestromalfibroblastsasapotentialantibodytargetinhuman epithelialcancers[J].ProcNatAcadSciUSA,1990,87:7235—7239.[13]uVWesley,APAlbino,STiwari,eta1.Arolefordipeptidyl peptidaseIVinsuppressingthemalignantphenotypeofmelflfflO—cytiecells[J].ExpMed,1999,190:311—322.[14]TRamirez—Montagut,NEBlachere,EVSviderskaya,eta1.FA- Pa;lpha.asurfacepeptidaseexpressedduringwoundhealing,isa tumorsuppressor[J].Oncogene,2004,23:5435—5446.[15]JDGoodman,TLRozypal,TKeHy.Seprase,amembrane—bound protease,alleviatestheselllmgrowthrequirementofhumanbreast cancercells[J].ClinExpMetastasis,2003,20:459—470.[16]YHuang,SWang,TKelly.Seprasepromotesrapidtumorgrowth andincreasedmicrovesseldensityinamousemodelofhuman breastcancer[J].CancerRes,2004,64(8):2712—2716.[17]RTAimes,AZijlstra,JDHoPper,eta1.Endothelialcellserine proteasesexpressedduringvascularmorphogenesisandangiogene—sis[J].ThrombHaemost,2003,89:561—572.[18]WangT,ShiwY,LiSX,eta1.Relationshipbetweencornealneo- vaseularizationandvariousrelevantbiologicalfactorsinsurround—ingcorneastromaofrats[J].ZhonghHaYanKeZaZhi,2009,45(2):158—163.[19]JDCheng,RLDunbrackJr,MValianou,eta1.Promotionof tumorgrowthbymurinefibroblastactivationprotein,aserine protease,inananimalmodel[J].CancerRes,2002,62(16): 4767—4772.[2O]XMWang,DMYu,ASchnapp,eta1.Theroleoffibroblastacti- vationprotein(FAP)incelladhesion,migrationandliverfibrosis [J].Hepatology,2005,42:738A一738A.[21]VV Artym,ALKindzelskii,WTChen,eta1.Molecularproximi—tyofsepraseandtheurokinasetypeplasm—inogenactivatorre—ceptoronmalignantmelanomacellmembranes:dependenceon beta1integrinsandthecyto—skeleton[J].Carcinogenesis,2002,?1869?23:1593—1601.[22]S1wasa,KOkada,WTChen,eta1.Increasedexpressionofse—prase,amembrane—typeserineprotease,isassociatedwith lymphnodemetastasisinhumaneolorectalcancer[J].Cancer Lett,2005,227:229~236.[23]StremenovaJ,Krepola,EMaresV,eta1.Expressionandenzy—maticactivityofdipeptidylpeptidase—IVinhumanastrocytic tumottrsareassociatedwitIlturnoutgrade[J].IntOncol,2007,31:785—792.[24]HenryLR,LeeH0,Lee,etal,Clinicalimplicationsoffibro—blastactivationproteininpatientswithcoloncancer【J].Clin CancerRes,2o0r7,13,1736—1741.[25]GoseiaskiMA,SuoZ,FlorenesV A,eta1.FAP—alphaanduPA showdifferentexpressionpatternsinpremalignantandmalignant esophaneallesions[J].UhrastruetPathol,2008,32(3):89-96.[26]CohenSJ,AlpanghRK,PalazzoI,eta1.Fibroblastactivationpro—teinanditsrelationshiptoclinicaloutcomeinpancreaticadeno—carcinoma[J].Pancreas,2008,37(2):154—158.[27]GaoY,PengX,JinZF,eta1.ExpressionofFAPandalpha—SMAduringtheincisedwoundhealinginmiceskin[J].FaYi XueZaZhi,2009,25(6):405—408.[28]JakobsM,HauplT,KrennV,eta1.MMP—andFAP—mediated non—-inflammation—-relateddestructionofcartilageandbonein rheumatoidarthritis[J].zRheumatol,2009,68(8):683—694. [29]Ospehc,Me~ensJC,JungelA,eta1.Inhibitionoffibroblastacti—rationproteinanddipeptidylpeptidase——4increasescartilagein?- vasionbyrheumatoidarehritissynovialfibroblasts[J].Arthritis Rheum,加10,62(5):1224—1235.[3O]JLee,MFassnaeht,SNair,eta1.Tumorimmunotherapytarge? tingfibroblastactivationprotein,aproductexpressedintumor—associatedfibroblasts[J].CancerRes,2005,65:11156~11163. [31]SantosAM,JungJ,AzlzN,eta1.TargetingFibroblastactivation proteininhibitstumorstromagenesisandgrowthinmice[J].J ClinInvest,2009,l19(12):3613—3625.[32]MLoeffler,JAKruger,AGNiethanuner,eta1.Targetingtumor associatedfibroblastsimprovescancerchemotherapybyincreasing intratumoraldruguptake[J].ClinInvest,2006,116(7):1955—1962.[33]LebeauAM,BrennenwN,AggarwalS,eta1.Targetingthecancer stromawjtllafibroblastactivationproteinactivatedpromeliain protoxin[J].MolCancerTher,2009,8(5):1378—1386.[34]AdamsS,MillerGT,JessonMI,eta1.PT一100,asmallmolecule dipeptidylpeptidaseinhibitor,haspotentantitumorsffectsand augmentsantibody—mediatedeytotoxieityviaanovelimmunemechanism[J].CancerRes,2004,64:5471—5480.[35]Pui—ChiLo,JuanChen,KlaraStefflova,eta1.Photodynamiemo. 1ecularbeacontriggeredbyfibroblastactivationproteinoncancer—associatedfibroblastsfordiagnosisandtreatmentofepithelial cancers[J].MedChem,2009,52(2):358—368.(编校:何妹)。

临床医学硕士毕业论文参考文献范例[Word文档]

临床医学硕士毕业论文参考文献范例[Word文档]

临床医学硕士毕业论文参考文献范例本文档格式为WORD,感谢你的阅读。

最新最全的学术论文期刊文献年终总结年终报告工作总结个人总结述职报告实习报告单位总结演讲稿临床医学硕士毕业论文参考文献范例一篇论文的是将论文在研究和写作中可参考或引证的主要文献资料,列于论文的末尾,以下是临床医学硕士毕业论文参考文献范例,欢迎阅读参考。

参考文献一:[1]VargasHA,Akin05ZhengJ,etal.ThevalueofMRimagingwhenthesiteofuterinecancerorig inisuncertain[J].Radiology,2011,258(3):785-792[2]HoriM,KimT,OnishiH,etalUterineTumors:Comparisonof3Dversus2DT2?weightedTur boSpin-EchoMRImagingat3.0T—InitialExperience1[J].Radiology,2011,258(1):154-163.[3]SubakLL,HricakH,PowellCB?etal.Cervicalcarcinoma:computedtomographyandm agneticresonanceimagingforpreoperativestaging[J].Obste tGynecol,1995,86(1):43-50.[4]MayrNA,YuhWT,ZhengJ,etal.Tumorsizeevaluatedbypelvicexaminatio ncomparedwith3-DMRquantitativeanalysisinthepredictionofoutcomeforcerv icalcancer[J].IntJRadiatOncolBiolPhys,1997,39(2):395-404[5]JensenRL,MumertML,GillespieDL,etal.Preoperativedynamiccontrast-enhancedMRIcorrelateswithmolecularmarkersofhypoxiaandv ascularityinspecificareasofintratumoralmicroenvironmen tandispredictiveofpatientoutcome[J].NeuroOncol,2014,16(2):280-291.[6]JansenJF,SchSderH,LeeNY,etal.Noninvasiveassessmentoftumormicroenvironmen tusingdynamiccontrast-enhancedmagneticresonanceimagingand18F-fluoromisonidazoIepositronemissiontomographyimaginginn ecknodalmetastases[J],IntJRadiatOncolBiolPhys,2010,77(5):1403-1410.[7]KimS,LoevnerLA,QuonH,etal.Predictionofresponsetochemoradiat iontherapyinsquamouscellcarcinomasoftheheadandneckusin gdynamiccontrast-enhancedMRimaging[J].AJNRAmJNeuroradiol,2010,31(2):262 -268.[8]JiaZ,GengD,XieT,etal.Quantitativeanalysisofneovascularpermeabilityingl iomabydynamiccontrast-enhancedMRimaging[J].JClinlNeurosci,2012,19(6):820-823.[9]YaoWW,ZhangH,DingB,etal.Rectalcancer:3Ddynamiccontrast-enhancedMRI;correlationwithmicrovasculardensityandclin icopathologicalfeatures[J].RadiolMed,2011,116(3):366-374.[10]OzdumanK,YildizE,DinnerA,ingintraoperativedynamiccontrast-enhancedT1-weightedMRItoidentifyresidualtumoringlioblastomasurger y[J].JNeurosurg,2014,120(1):60-66.[11]OfConnorJP,ToftsPS,MilesKA,etal.Dynamiccontrast-enhancedimagingtechniques:CTandMRI[J].BrJRadiol,2011,84(2):112-120.[12]JacksonA,JaysonGC,LiKL,etal.Reproducibilityofquant itativedynamiccontrast-enhancedMRIinnewlypresentingglioma[J].BrJRadiol,2003,76(903):153-162.[13]SevcencoS,PonholdL,JavorD,etal.Three-Tesladynamiccontrast-enhancedMRI:acriticalassessmentofitsusefordifferentiat ionofrenallesionsubtypes[J].WorldJUrol,2014,32(1):215-220.[14]RenJ5HuanY,WangH,etalDynamiccontrast-enhancedMRIofbenignprostatichyperplasiaandprostaticcar cinoma:correlationwithangiogenesis[J],ClinRadio,2008,6 3(2):153-159.[15]Shukla-DaveA,HricakH.RoleofMRIinprostatecancerdetection[J].NM RBiomed,2014,27(1):16-24.[16]deRooijM,HamoenEH,FuttererJJ,etal.AccuracyofMultiparametricMRIforProstateCancerDete ction:AMeta-Analysis[J].AJRAmJRoentgenol,2014,202(2):343-351.[17]WangXH,PengWJ5XinC,etal.[Valueofdynamiccontrast-enhancedMRIinassessmentofearlyresponsetoneoadjuvantche motherapyinbreastcancer][J].ZhonghuaZhongLiuZaZhi[Chin esejournalofoncology],2010,32(7):539-543.[18]TanSL,RahniatK,RozalliFI,etal.Differentiationbetweenbenignandmalignantbreastles ionsusingquantitativediffusion-weightedsequenceon3TMRI[J],ClinRadio,2014,69(1):63-71.[19]YoppAC,SchwartzLH,KemenyN,etal.Antiangiogenictherapyforprimarylivercance r:correlationofchangesindynamiccontrast-enhancedmagneticresonanceimagingwithtissuehypoxiamarke rsandclinicalresponse[J].AnnSurgOncol,2011,18(8):2192-2199.[20]ArmbrusterM,SourbronS,HaugA,etal.EvaluationofNeuroendocrineLiverMetastases:ACompar isonofDynamicContrast-EnhancedMagneticResonanceImaging紐dPositronEmissionTomography/ComputedTomography[J],Inve stRadiol,2014,49(1):7-14.[21]TappouniR,ElKadyRM,parisonoftheaccuracyofdiffusion-weightedimagingversusdynamiccontrastenhancementmagneti cresonanceimagingincharacterizingfocalliverlesions[J]. JComputAssistTomogr,2013,37(6):995-1001.[22]FolkmanJ.Tumorangiogenesis:therapeuticimplications [J].NEnglJMed,1971,285(21):1182-1186.[23]HawighorstH,KnapsteinPG,KnoppMV,etal.Cervicalcarcinoma:standardandpharmacokineticanaly sisoftime-intensitycurvesforassessmentoftumorangiogenesisandpati entsurvival[J].MAGMA,1999,8(1):55-62.[24]FranielT,HammB,HricakH.Dynamiccontrast-enhancedmagneticresonanceimagingandpharmacokineticmode lsinprostatecancer[J].EurRadiol,2011,21(3):616-626.[25]ToftsPS,BrixG,BuckleyDL,etal.Estimatingkineticparametersfromdynamiccontrast-enhancedT1-weightedMRIofadiffusibletracer:standardizedquantitiesa ndsymbols[J].JMagnResonImaging,1999,10(3):223-232.[26]AlonziR,PadhaniAR,AllenC.DynamiccontrastenhancedMRIinprostatec ancer[J].EurJRadiol,2007,63(3):335-350.[27]EllingsenC,EgelandTA,GulliksrudK,etal.Assessmentofhypoxiainhumancervicalcar cinomaxenograftsbydynamiccontrast-enhancedmagneticresonanceimaging[J].IntJRadiatOncolBio lPhys?2009,73(3):838-845.[28]SeeberL,HorreeN,VooijsMA,etal.Theroleofhypoxiainduciblefactor-1alphaingynecologicalcancer[J],CritRevOncolHematol,2011,78(3):173-184.[29]PurdieTQHendersonE,LeeTY.FunctionalCTimagingofangiogenesisinrabbitVX2soft -tissuetumour[J].PhysMedBiol,2001,46(12):3161-3175.[30]FidlerIJ.Angiogenicheterogeneity:regulationofneopl asticangiogenesisbytheorganmicroenvironment[J].JNatlCa ncerInst,2001,93(14):1040-1041.[31]田丽,刘立志,范卫君.鼻咽癌MRI动态增强参数与微血管密度和血管内皮生长因子表达的相关性研究[J].中山大学学报(医学科学版),2009,30(3):336-340.[32]于德新,马祥兴,魏华刚,等.肝细胞癌微血管及成熟血管对MR增强表现特征的影响[J].实用放射学杂志,2009,25(3):351-355.[33]DonaldsonSB,WestCM,DavidsonSE,etal.AcomparisonoftracerkineticmodelsforT1-weighteddynamiccontrast-enhancedMRI:Applicationincarcinomaofthecervix[J].MagnR esonMed,2010,63(3):691-700.[34]VeeravaguA,HouLC,HsuAR,etal.Thetemporalcorrelationofdynamiccontrast-enhanced,magneticresonanceimagingwithtumorangiogenesis inamurineglioblastomamodel[J].NeurolRes,2008,30(9):952-959.[35]HarrerJU,ParkerGJ,HaroonHA,parativestudyofmethodsfordeterminingv ascularpermeabilityandbloodvolumeinhumangliomas[J].JMa gnResonImaging,2004,20(5):748-757.[36]ZaharchukG.TheoreticalbasisofhemodynamicMRimagingt echniquestomeasurecerebralbloodvolume,cerebralbloodflo w,andpermeability[J].AJNRAmJNeuroradiol,2007,28(10):1850-1858,[37]McDonaldDM,BalukP.Significanceofbloodvesselleakine ssincancer[J].CancerRes,2002,62(18):5381-5385.[38]McDonaldDM,ChoykePL.Imagingofangiogenesis:frommicr oscopetoclinic[J].NatMed,2003,9(6):713-725.[39]MichelCC,CurryFE.Microvascularpermeability[J].PhysiolRev,1999,79(3):703-761.[40]YangC,StadlerWM,KarczrnarGS,parisonofquantitativeparametersincervixcancerm easuredbydynamiccontrast-enhancedMRIandCT[J].MagnResonMed,2010,63(6):1601-1609.参考文献二:[1]吴海树.齿科激光煌接理论与实践[M].大连:大连海事大学出版社,2002:49-50.[2]J.A.Atoui,D.N.B.Felipucci,V.O.Pagnano,etal.Tensilea ndflexuralstrengthofcommerciallypuretitaniumsubmittedt olaserandtungsteninertgaswelds[J].Braziliandentaljourn al,2013,24(6):630-634.[3]R.Nomoto,Y.Takayama,F.Tsuchida,etal.Non-destructivethree-dimensionalevaluationofporesatdifferentweldedjointsand theireffectsonjointstrength[J],Dentalmaterials,2010,26(12):246-252.[4]F.Caiazzo,V.Alfieri,G,Corrado,etal.InvestigationandOptimizationofLaserWeld ingofTi-6Al-4VTitaniumAlloyPlates[J].JournalofManufacturingScienceandEngineering-transactionsoftheASME,2013,135(6):452-463.[5]S.Michio,Y.Satoshi,T.Misao,etal.Influenceofirradiationcondition sonthedeformationofpuretitaniumframesinlaserwelding[J] ,DentalMaterialsJournal,2009,28(2):243-247.[6]H.Kikuchi,T.Kurotani,M.Kaketani,etal.Effectoflaseri rradiationconditionsonthelaserweldingstrengthofcobalt-chromiumandgoldalloys.[J]JournalofOralScience,2011,53(3):301-305.[7]X.J.Cao,A.S.H.Kabir,P.Wanjara,etal.GlobalandLocalMechanicalPropertiesofAut ogenouslyLaserWeldedTi-6A1-4V[J].MetallurgicalandMaterialsTransactionA-PhysicalMetallurgyandMaterialsScience,2014,45A(3):1258-1272.[8]S.Viritpon,Y.Takayuki,K.Equo,parativestudyontorsionalstrength,ductilityandfracturecharacteristicsoflaser-weldeda+PTi-6Al-7Nballoy,CPTitaniumandCo-Cralloydentalcastings[J].DentalMaterials,2008,24(6):839-845.[9]J.Liu,V.Ventzke,P.Staron,etal.EffectofPost-weldHeatTreatmentonMicrostructureandMechanicalProperti esofLaserBeamWeldedTiAl-basedAlloy[J].MetallurgicalandMaterialsTransactionA-PhysicalMetallurgyandMaterialsScience,2014,45A(l):16-28.[10]K.Hisaji,K.Tomoko,K.Masahiro,etal.Effectoflaserirradiationconditionsonthelaserweldi ngstrengthofcobalt-chromiumandgoldalloys[J].JournalofOralScience,2011,53( 3):301-305.[11]崔广,宋应亮.不同杆圈接触形态对辉接面机械性能影响的研究[J].中国美容医学,2012,21(12):2227-2229.[12]R.R.Wang,C.T.Chang.Thermalmodelingoflaserweldingfo rtitaniumdentalrestorations[J]JProsthetDent,1998,79(3):335-342.[13]J.M.C.NunezPantoja,A.P.Farina,L.G.Vaz,etal.Fatiguestrength:effectofweldingtypeandjointdesign executedinTi-6A1_4Vstructures[J].Gerodontology,2012,29(2):el005-el010.[14]解光明,王前文,夏荣.激光辉接钛及钛合金腐蚀疲劳强度的研究[J].实用口腔医学杂志,2009,25(4):463-464.[15]J.M.C.NunezPantoja,L.G.Vaz,M.A.A.Nobilo,etal.Effectsoflaserweldjointopeningsizeonfatiguestreng thofTi-6A1-4Vstructureswithseveraldiameters[J],JournalofOralRehab ilitation,2011,38(3):196-201.[16]LA.Orsi,L.B.Raimundo,O.L.Bezzon,etal.Evaluationofa nodicbehaviorofcommerciallypuretitaniumintungsteninert gasandlaserwelds[J].JournalofProsthodontics,2011,20(8):628-631.[17]卢军霞,曹风华,郭天文等.激光燥和脉冲氩辉对铁耐腐烛性的影响[J].实用口腔医学杂志,2000,17(2):105-108.[18]方洪渊.揮接结构学[M].北京:机械工业出版社,2008:109-127.[19]G.Bussu,P.E.Irving.Theroleofresidualstressandheata ffectedzonepropertiesonfatiguecrackpropagationinfricti onstirwelded2024-T351aluminiumjoints[J].InternationalJournalofFatigue,2 003,25(1):77-88.[20]宋天民.燥接残余应力的产生与消除[M].北京:中国石化出版社,2005:13-17.[21]I.Watanabe,C.Jennifer,Y.Chiu.Dimensionalchangeofla ser-weldedgoldalloyinducedbyheattreatment[J].BasicScienceR esearch,2007,16(5):365-369.[22]I.Watanabe,A.P.Beuson,k.Nguyen.Effectofheattreatme ntonjointpropertiesoflaser-weldedAg-Au-Cu-PdandCo-Cralloys[J].JProsthedont,2005,14(3):170-174,[23]I.Watanabe,J.Liu,M.Atsuta,etal.Effectsofheattreatm entsonmechanicalstrengthoflaser-weldedequi-atomicAuCu-6at%alloy[J].JDentRes,2001,80(9):1813-1817.[24]X.S.Liu,H.Y.Fang,S.D.Ji,etal.ControlofTitaniumAlloyThinPlateWeldingDistortionb yTrailingPeening[J].Mater.Sci.Technol,2003,19(1):184-186.[25]JJ.Xu,L.J.Chen,J.H.Wang.Predictionofweldingdistortioninmultipassgirth -buttweldedpipesofdifferentwallthickness[J].TheInternat ionalJournalofAdvancedManufacturingTechnology,2008,35(9-10):987-993.[26]A.S.Munsi,A.J.Waddell,C.A.Walker.Vibratorystressre lief-aninvestigationofthetorsionalstresseffectinweldedshaft s[J].JournalofstrainAnalysis,2001,36(5):453-463.[27]李占明,朱有利,王侃.超声波冲击处理对2A12招合金揮接接头组织的影响[J].金属热处理,2008,33(7):53-56.[28]R.T.Huang,W.L.Huang,R,H.Huang,etal.Effectsofmicros tructuresonthenotchtensilefracturefeatureofheat-treatedTi-6Al-6V-2Snalloy[J].MaterialsScienceandEngineering:A,2014,595:297-305.[29]T.Novoselova,S.Malinov,W.Sha.Experimentalstudyofth eeffectsofheattreatmentonmicrostructureandgrainsizeofa gammaTiAlalloy[J].Intermetallics,2003,11(5):491-499.[30]S.K.Nirmal,S.Rakesh,S.S.Vishal.CryogenicTreatmento fToolMaterials:AReview[J].MaterialsandManufacturingPro cesses,2010,25(10):1077-1100.[31]V.Firouzdor,E.Nejati,F.Khomamizadeh.Effectofdeepcryogenictreatment onwearresistanceandtoollifeofM2HSSdrill[J].JournalofMa terialsProcessingTechnology,2008,206(1-3):467-472.[32]J.W.Kim,J.A.Griggs,J.D.Regan,etal.Effectofcryogenictreatmenton nickel-titaniumendodonticinstruments[J].InternationalEndodont icJournal,2005,38(6):364-371.[33]S.Yan,Y.Zhang,S.G.Shi,etal.Effectoftwokindsofannealingmethodsonthemechanicalpropertiesofdentaltitaniumcastings[J].Journalofpractic alstomatology,2010,26(4):465-468.[34]闫澍,张玉梅,赵永庆等.热处理温度对牙科铸造纯铁拉伸性能的影响[J].实用口腔医学杂志,2008,24(1):74-77.[35]A.Ebihara,Y.Yahata,K.Miyara,etal.Heattreatmentofnickel-titaniumrotaryendodonticinstruments:effectsonbendingpr opertiesandshapingabilities[J].InternationalEndodontic Joximal,2011,44(9):843-849.[36]OA.Cuoghi,G.RKasbergen,P.H.Santos,etal.Effectofheattreatmentonst ainlesssteelorthodonticwires[J].BrazOralRes.2011,25(2):128-134.[37]S.S.D.Rocha,G.L.Adabo,L.G.Vaz,etal.Effectofthermaltreatmentontensilestrengthofcommer ciallycastpuretitaniumandTi-6AI-4Valloys[J],JMaterSciMaterMed,2005,16(8):59-66.[38]梁锐英,赵艳萍,温黎明等.激光燥接新型钴络合金的力学性能[J].中国组织工程研究与临床修复,2011,15(38):7135-7138.[39]刘亚俊,李勇,曾志新等.深冷处理提高硬质合金刀片耐磨性能的机理研究[J].工具技术,2001,35⑶:19-20.[40]D.N.Collins.Deepcryogenictreatmentoftoolsteels[J]. HeatTreatmentofMetals,1996,23(2):40-42.阅读相关文档:金融学硕士毕业论文参考文献范例管理学硕士毕业论文参考文献行政管理学毕业论文参考文献经济学硕士毕业论文参考文献范例经济学毕业论文参考文献格式管理学硕士毕业论文参考文献范例法律毕业论文参考文献格式范本经济学硕士毕业论文参考文献经济管理毕业论文参考文献经济硕士论文参考文献就业论文参考文献产业经济论文参考文献动画设计论文的参考文献范例关于动画设计专业论文的参考文献动漫设计论文参考文献三维动画论文参考文献动漫设计专业论文参考文献动画设计毕业论文参考文献动画设计专业论文参考文献推荐动画设计专业论文参考文献英语论文参考文献格式模最新最全【办公文献】【心理学】【毕业论文】【学术论文】【总结报告】【演讲致辞】【领导讲话】【心得体会】【党建材料】【常用范文】【分析报告】【应用文档】免费阅读下载*本文若侵犯了您的权益,请留言。

Angiogenesis Analyzer定量分析方法 image J

Angiogenesis Analyzer定量分析方法 image J

ImageJ插件Angiogenesis Analyzer对血管网络进行定量分析血管形成实验(Tube formation assay)是体外研究血管生成(Angiogenesis)的经典方法,其优点是可快速确定参与血管生成的基因或通路。

血管生成实验在肿瘤医学的研究与治疗中一直是实验热点,肿瘤血管生成是一个极其复杂的过程,包括血管内皮细胞基质降解、内皮细胞移行、增殖、管道化分支形成血管环和形成新的基底膜等步骤。

研究表明无论无论是原发性肿瘤还是继发性肿瘤,一旦生长直径超过1~2 mm,都会有血管生成。

这是由于肿瘤细胞自身可分泌多种生长因子,诱导血管生成。

多数恶性肿瘤的血管生成密集且生长迅速,抑制这一过程将能明显阻止肿瘤组织的发展和扩散转移。

于是体外模拟血管生成的过程对研究血管形成机制、发现促进或抑制血管生成药物十分重要。

今天咱们就来看看已经成功形成了血管的实验结果应该有哪些量化指标与分析步骤吧!我们常用的量化指标有:number of tubes; number of loops/meshes; number of branch sites/nodes; length of tubes。

文献中常用的分析指标是branch points与capillary length。

Angiogenesis下载地址:https:///ij/macros/toolsets/图片来源ImageJ网站1、点击打开需要的插件:复制内容;在image J安装目录下的macros/toolsets文件夹创建一个Angiogenesis Analyzer.txt2、重启ImageJ,然后点击ImageJ工具栏的>>按钮,找到插件位置,单击后在新工具栏中出现Angiogenesis Analyzer分析界面:3、点击扳手形状选择Settings可设置测量参数:点击Network analysis分析界面,Angiogenesis Analyzer插件可以分析小管形成明场图片(Phase Contrast)或荧光图片(Fluo):备注:在进行图像处理前可以使用ps对图片进行一个对比度的调整和锐化处理。

基于人工智能的冠状动脉易损斑块腔内影像学研究进展

基于人工智能的冠状动脉易损斑块腔内影像学研究进展

基于人工智能的冠状动脉易损斑块腔内影像学研究进展陈远兴综述韩韦钰,赵然尊审校遵义医科大学附属医院心血管内科,贵州遵义563000【摘要】斑块的不稳定导致冠状动脉的血栓性闭塞是大多数急性冠脉综合征(ACS)的原因。

尽管罪犯血管得以及时开通,但非罪犯血管的易损斑块对患者远期预后仍存在较大威胁。

因此,动态评估易损斑块的变化,对冠心病患者格外重要。

冠状动脉血管腔内成像技术,如血管内超声(IVUS)、光学相干断层扫描(OCT)、近红外光谱(NIRS)以及其多模态融合技术等,因其可视化、准确度高,可以揭示易损斑块的不同特征,常用于检测易损斑块。

而IVUS 、OCT 等图像解释需有经验的心血管临床医生逐帧判断,需要大量的时间成本,且图像的解读存在的观察者内及观察者间的差异,这推动了人工智能(AI)在冠状动脉血管腔内影像学应用的发展。

由于电子医疗系统的广泛应用、临床大数据的日益暴增,AI 已在医疗行业获得了极大的进展。

人工智能结合腔内影像学在斑块的识别、干预、预后等诸多方面广泛应用,未来将不断优化诊疗系统,提高精准医疗水平,实现对易损斑块的早期诊断及合理干预。

【关键词】动脉粥样硬化;急性冠脉综合征;腔内成像;易损斑块;人工智能【中图分类号】R541.4【文献标识码】A【文章编号】1003—6350(2023)03—0445—05Research progress of intravascular imaging of vulnerable coronary plaque based on artificial intelligence.CHEN Yuan-xing,HAN Wei-yu,ZHAO Ran-zun.Department of Cardiovascular Medicine,Affiliated Hospital of Zunyi Medical University,Zunyi 563000,Guizhou,CHINA【Abstract 】Plaque vulnerability leading to thrombotic occlusion of coronary arteries is the main cause of majori-ty of acute coronary syndrome (ACS).Despite the criminal vessels can be opened in time,the vulnerable plaques of non-criminal vessels still cause a great threat to the long-term prognosis of patients.Thus,dynamic assessment of vulner-able plaque changes is particularly important for patients with coronary heart disease.Intravascular imaging techniques in coronary arteries,such as intravascular ultrasound (IVUS),Optical Coherence Tomography (OCT),Near Infrared Spectrum Instrument (NIRS),and its multi-mode fusion technology,are often used to detect vulnerable plaques due to their high visualization and accuracy,which can reveal different characteristics of vulnerable plaques.However,IVUS,OCT and other image interpretation requires experienced cardiovascular clinicians to judge frame by frame,which re-quires a large amount of time cost,and there are intra-observer and inter-observer differences in image interpretation,which all promotes the development of AI in the application of intravascular coronary imaging.Artificial intelligence (AI)has made great progress in the medical field due to the wide application of electronic medical information system and the increasing explosion of clinical big data.Artificial intelligence combined with intravascular imaging has been widely ap- ·综述·doi:10.3969/j.issn.1003-6350.2023.03.035第一作者:陈远兴(1995—),男,住院医师,主要研究方向为冠状动脉粥样硬化性心脏病腔内影像学图像分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Imaging and Analysis of Angiogenesis for Skin Transplantation by Microangiography Alexandru Condurache and Til Aach and Stephan Grzybowski andHans-G¨unter Machensin:International Conference on Image Processing(ICIP-2005).See also B IB T E X entry below.B IB T E X:@inproceedings{CON05e,author={Alexandru Condurache and Til Aach and Stephan Grzybowski andHans-G\"unter Machens},title={Imaging and Analysis of Angiogenesis for Skin Transplantationby Microangiography},booktitle={International Conference on Image Processing(ICIP-2005)},publisher={IEEE},address={Genoa},month={September11--14},year={2005},pages={II/1250--II/1253(also on CD-ROM:ISBN078039135-7)}}Copyright(c)2005IEEE.Personal use of this material is permitted.However,permission to use this material for any other purposes must be obtained from the IEEE by sending an email to pubs-permissions@.document created on:December20,2006created fromfile:icip05coverpage.texcover page automatically created with CoverPage.sty(available at your favourite CTAN mirror)IMAGING AND ANALYSIS OF ANGIOGENESIS FOR SKIN TRANSPLANTATION BYMICROANGIOGRAPHYA.P.Condurache,T.Aach∗University of Luebeck Institute for Signal Processing Ratzeburger Allee160,D-23538Luebeck,GermanyS.Grzybowski,H.G.MachensUniversity Hospital of SH Clinic for Plastic Surgery,Burn Center Ratzeburger Allee160,D-23538Luebeck,GermanyABSTRACTThe success of skin transplantations depends on a proper revascularization of the transplanted tissue.Angiogenesis (vessel growth)in the transplanted dermal matrices can be stimulated by administering different drugs.To evaluate the effectiveness of different drug treatments in an experimen-tal setting using laboratory animals,vessels in transplant samples are visualized by so-called micro-angiograms,i.e., X-ray images after contrast agent injection.We describe a framework for the acquisition of such micro-angiograms as well as for the subsequent semi-automatic analysis of an-giogenesis.Central to our analysis is the segmentation of small fasciocutaneous vessels in the transplant sample.1.INTRODUCTIONThe success of skin transplantation operations depends cru-cially on the adequate revascularisation of the transplanted dermal matrix.To induce vessel growth or angiogenesis, pharmacological substances may be seeded into the dermal matrix[8].The purpose of the system described in this pa-per is to evaluate the effectiveness of different such sub-stances.To this end,dermal matrices were transplanted to cover two disk-shaped full-thickness skin defects(diameter: 15mm)on the backs of laboratory animals(nude mice,body weight about30g)[9].1.1.Vessel imaging by micro-angiographyFor vessel imaging after a given time interval(3to14 days),blood is withdrawn via the left carotid artery us-ing micro-surgical instruments,and slowly replaced by a contrast medium.The transplant sample is then harvested. The collected transplant sample is imaged using an X-ray mammography system(typical settings:9mAs at24kV).A micro-angiogram thus obtained shows the fasciocutaneous ∗T.Aach is now with Institute of Imaging and Computer Vision,RWTH Aachen University,D-52056Aachen,Germany.vessels,potentially down to a size of about20µm[9],and is depicted in Fig.1a.1.2.Micro-angiography analysisOnce the micro-angiograms are acquired,we seek to quan-tify the angiogenesis in the target tissue,e.g.by measures such as the percentage of area covered by the blood ves-sels in the target sample,the vessel length,or the micro-vascular index(see[9]and the references in there).To this end,the vessels need to be identified in the imaged trans-plant.Since our system’sfield of application is an exper-imental laboratory setting for drug evaluation rather than clinical routine,time-constraints are of less concern,and also a certain degree of interaction is feasible.Apart from the imaging setup described above,the central part of our system is a semiautomatic micro-vessel segmentation algo-rithm.The results are computed in several iterations starting from an over-segmentation with practically almost no false negatives.The over-segmentation is then thinned out step-wise to produce a result.Since experience shows that these results may contain some false positives and negatives,we store the processing result of each iteration.In afinal step the user may then leaf through the different stages of the algorithm,and select the vessel segments.Our vessel segmentation algorithmfirst seeks to en-hance vessels,before an iterative classification is carried out [11].Vessel enhancement is based on the following obser-vation[1]:vessels are oriented tubular structures of a cer-tain size with increased absorption relative to their immedi-ate surroundings due to the contrast medium.In[6]tubular structures are enhanced using the eigenvalues of the Hessian matrix computed at different scales.In[13]multiple orien-tated matchedfilters are used to enhance directional struc-tures.The multi-scale approach in[1]employs a Laplacian pyramid to analyze vessels in cardiac angiograms accord-ing to shape,contrast,and motion while at the same time preventing unacceptable noise boosting.Vessel segmentation can be done using:region growing[14],active contours[15],or tracking[3]as well as by other methods[10].We also distinguish between fully automatic [3,10],and semi-automatic[14,15]vessel segmentation al-gorithms where the latter typically need some user supplied seed points(points which with a high probability belong to the vessels).In our micro-angiography problem,we start by enhanc-ing vessel structures by individual methods for larger and mid-sized to small vessels respectively.The results are combined to construct a pixel feature vector space from the analyzed micro-angiogram(Section2).To segment the vessels we use an iterative unsupervised segmentation al-gorithm which improves an initial percentile based over-segmentation result.Finally,the user is allowed to access the results from each iteration step,and to select interac-tively the desired vessels segments.Thus even the small vessels which are hard to separate from the background can be correctly segmented(Section3).After segmentation, measures such as the absolute or relative vessel area can directly be computed.Since such area-based measures are more influenced by larger vessels than smaller ones,length-based measures such as the micro-vascular index mentioned above can also be calculated after an additional skeletoniza-tion procedure such as the one described in[5].2.MICRO-ANGIOGRAPHY VESSEL FILTERING The main purpose of the enhancement is to increase separa-bility of the vessel and non-vessel classes.Since in micro-angiograms the variability of the vessels,especially with re-spect to their diameter,is particularly large,we represent the classes by a three dimensional feature vector,which al-lows to capture small,mid-sized and large vessel structures. Another objective is to equalize the background,thus repre-senting it by a narrower distribution.2.1.Background equalizationSince the vessels absorb stronger than their immediate neighborhoods,background may be equalized by a morpho-logical tophat-like operator[5].This operator is defined as the difference between the original image and its closing. If thefilter window size is chosen slightly larger than the largest vessel diameter,the(dark)vessels will be suppressed after image closing,leaving only the background.Subtract-ing this result from the original yields then predominantly vessel information.The effect of this morphological op-erator on the separability is twofold.First,it successfully increases the homogeneity of the background pixels.At the same time,assuming an additive image model(which may be obtained by logarithmation)it reduces also the variance of the vessel pixels as their intensities depend not only on the own absorption but also on the absorption of their sur-rounding background to which they are superimposed.A result is shown in Fig.1b.2.2.HomomorphicfilterIn angiography,the attenuation of the contrast-agentfilled vessels adds to the attenuation of the background.Due to the exponential absorption of X radiation,this addition is turned into a multiplicative relationship between the back-ground tissue image and the contrasted vessel image.The homomorphicfilter for multiplicatively combined signals [12]appears therefore suited for vessel enhancement.Af-ter initial logarithmation,the two sub-images are additively combined.To eliminate the background and enhance the vessels we apply then a linear,shift-invariant high-passfil-ter specifically designed to increase the vessel structures. The high frequency components are obtained after subtract-ing from the original sum its low-passfiltration result.To increase the vessel contrast an amplification of the high-pass channel by a factor larger than one follows.Finally,the ex-ponential of the high-passfiltration result is computed.A result is shown in Fig.1c.By attenuating the background further,the homomorphicfilter can improve the homogene-ity of the background and increase the contrast between ves-sels and background.It is however not especially designed to improve the homogeneity of the vessel class.2.3.Hessian-based micro-vessel enhancementTo improve the homogeneity of the vessel class,we address the problem of the small to mid-size vessels by means of the eigenvalues of the Hessian matrix[6].Since vessels are dark tubular structures of limited diameter,we use for enhance-ment the largest eigenvalue of the Hessian matrix,which takes prominent values only over such structures,within an appropriate range of scale.The size of the structures to which the eigenvalue is sensitive depends on the size of the derivative kernels used as well as on the scale at which the image is analyzed.We seek to capture only the small to mid-sized vessels,since the large vessels do already exhibit suf-ficient contrast.The vessel map is obtained by seeking the largest Hessian eigenvalue over different scales and com-bining the results by the maximum rule.By targeting only smaller vessels,the variability between vessels of different sizes is reduced,as is evident from the result in Fig.1d.3.VESSEL CLASSIFICATIONWe segment the vessels by a fuzzy clustering algorithm which yields better results in comparison to other similar methods[2].It iteratively improves a clustering perfor-mance measure computed on a fuzzy set decomposition, starting from an initial partition(Section3.1).The algo-rithm may iterate either until no pixel changes its classanymore or until a certain number of iterations is reached. After the iteration stops,the user may optionally browse through the results obtained at the end of each iteration, and choose the desired vessel segments(Section3.2)as de-scribed above.Before classification each component of the pixel fea-ture vector is normalized to the interval[0,1]to avoid unde-sired bias toward a certain feature component.3.1.Fuzzy clusteringThe unsupervised classification algorithm[2]separates a feature space by iteratively improving a measure of the par-tition’s quality starting from an initial partition.The ini-tial partition is in our case an over-segmentation result com-puted by thresholding the vessel map obtained after apply-ing the morphologicalfilter described in Section2.1to the original angiogram.Empirically,the vessel covered area is always less than50%of the image area,thus we choose the 50th percentile as threshold.We ensure thus that in the ini-tial segmentation,practically all vessels are present.The fuzzy class membership coefficients are computed, using a function which measures how closely related the in-vestigated vector is to a certain class.This function is called affinity.The affinity of a feature vector x out of a feature space U={ x1, x2,..., x N}with N feature vectors,with respect toωi,which is a subset of U obtained from an ini-tial hard partition{ω1,ω2,...,ωM}with M classes,is a numerical indicator defined as:r( x,ωi)=1−1N y∈ωi hβ( x− y )(1)with hβ:[0,∞)→[0,1]and:hβ(ν)= ν2βifν≤√β1ifν>√β(2)Using the affinity function,the class belonging coef-ficient for vector x and classωi is defined as:u i( x)=p i r( x,ωi)r( x,U),with p i the prior onωi.The parameterβactually defines a certain region in the feature space within which the feature vectors are allowed to contribute to the affinity computation.In our experiments βwas chosen such that max x− y =√βfor x, y∈U so that all feature space vectors are used to compute the affinity.Alternatively if each classωi is simply represented by its mean vector alone,the fuzzy class membership coefficientsare:u i( x)=β− x−µi 2βM− M j=1 x−µj 2(3)and M i u i( x)=1.To measure the quality of a certain fuzzy partition(i.e. the amount of incertitude(fuzziness)present),the following function is used:Ψ=1N(M−1)M−1i=1M j=i+1 x∈U(u i( x)−u j( x))2(4)withΨ∈[0,1]andΨ=0indicating the highest possi-ble degree of ing this measure,the algorithm converges properly to an optimal partition only for highly separable feature spaces.If this is not exactly the case(e.g. for vessel segmentation),an additional stopping criterion is needed[4].In our experiments the algorithm was allowed to iterate for a maximum offive steps.3.2.Vessel selectionCommencing with the initial over-segmentation,each iter-ation step attempts to remove false positives while keeping true positives.Since practically the removal of all falsely detected segments as well as the preservation of true vessel segments is not guaranteed,the user may choose the desired vessel segments from each intermediary segmentation result by specifying(by mouse click)a point on the vessel.This point is then used as seed and all segmented vessel points connected to it(by an eight points neighborhood)are se-lected in thefinal segmentation.Results are shown in Fig.1f and Fig.2c.4.RESULTS AND EXPERIMENTSAs of present we have used11micro-angiograms from our data base to evaluate our algorithm both with respect to the quality of the feature extraction process and the segmenta-tion results.Before processing,to increase the computa-tions’speed,and because generally,the size of the smallest interesting vessel is larger than the minimal attainable res-olution,the analyzed images were downsampled from the original512x512pixels to256x256.As reference we have used manual segmentation results performed by thefirst au-thor.The outcome of the vesselfiltering procedure should be a separable feature space.The separability is measured by the J1criterion[7,p.446].Table1shows the results obtained for each vessel map(feat1-3),for the entire pixel feature vector space(3D-feat sp)and for the original micro-angiogram(org).Clearly,the pixel feature space yields good results.The size of the morphologicalfilter window was13pixels.For the homomorphicfilter we have used a multiplication factor of two and a Gaussian low-pass ker-nel of size seven with a standard deviation of1.5.The eigenvalues of the Hessian matrix were calculated at four scales.The segmentation performance is evaluated by the mean percentages of correct classifications(CC)and false positives(FP).In Table2we present the results obtainedTable1.Separability measured by the J1criterion.feat1feat2feat.33D-feat sp orgJ10.65100.20120.57370.80250.1506Table2.Segmentation results.CC-user FP-user CC-no user FP-no user81.0345 3.668260.3175 2.5061by the semi-automatic algorithm(-user)as well as the re-sults obtained without user intervention(-no user).In the latter case,we have used an additional separability based stopping criterion[4]and the algorithm iterated for four to six steps.Results are shown in Fig.1e and f respectively and in Fig.2.Most of the false positives,for the semi-automatic algorithm,appear in the vicinity of vessels.At a repeated visual inspection some of these were reclassified as real vessels not captured in the initial“ground truth”.Thus the values of Table2should be regarded as the lower and upper bounds for the percentages of correct classifications and that of false positives,respectively.(a)(b)(c)(d)(e)(f) Fig.1.Original micro-angiogram(a),result of morphological processing(b),homomorphicfiltration(c),analysis of the eigen-values of the Hessian matrix(d),automatic segmentation(e)and segmentation,after selection by user supplied seed points(f).5.CONCLUSIONS AND DISCUSSIONWe have presented a novel framework for imaging and analysis of micro-vessels in skin transplants in laboratory environments for drug testing.For imaging,a specific micro-angiography technique was described,followed by an analysis algorithm which provides automatically a rea-sonable,though in general not error-free,result.This resultmay thenbe edited comfortably and quickly by the exper-imenter by stepping through a low number of intermediate results.Central to the analysis part is a micro-vessel seg-mentation algorithm,the results of which will be used for vessel area and vessel length measurements in skin trans-(a)(b)(c) Fig.2.Original micro-angiogram(a),automatic segmentation(b) and user supported segmentation(c).plant micro-angiograms.Our system is now in routine use, results obtained from larger numbers of transplant samples will be reported in the near future.6.REFERENCES[1]T.Aach,C.Mayntz et al.,“Spatiotemporal multiscale ves-sel enhancement for coronary angiograms,”MI02,SPIE-4684:1010–1021,2002.[2]E.Backer and A.K.Jain,“A clustering performance measurebased on fuzzy set decomposition,”IEEE T PAMI,3(1):66–75,1981.[3]Z.Chen and S.Molloi,“Multiresolution vessel trackingin angiographic images using valley courses,”Opt.Eng., 42:1673–1682,2003.[4]A.Condurache,T.Aach et al.,“Vessel segmentation andanalysis in laboratory skin transplant micro-angiograms,”Proc.of CBMS,to appear,2005.[5]E.R.Dougherty,“Mathematical morphology in imageprocessing,”Marcel Dekker,1992.[6]A.F.Frangi,W.J.Niessen et al.,“Multiscale vessel en-hancementfiltering,”MICCAI,LNCS1496:130–137,1998.[7]K.Fukunaga,“Introduction to statistical pattern recogni-tion,”Academic Press,1990.[8]S.Grzybowski,B.Bucsky et al.,“Model for induction ofangiogenesis by synergetic effects of BFGF and VEGF165 by bioactive dermal matrices,”LAS,389(10),2004.[9]S.Grzybowski,B.Bucsky et al.,“A microangiography tech-nique to quantify fasciocutaneous blood vessels in small lab-oratory animals,”LAS,389(10),2004.[10]X.Jiang and D.Mojon,“Adaptive local thresholding byverification-based multithreshold probing with application to vessel detection in retinal images,”IEEE T PAMI, 25(1):131–137,2003.[11]C.Kerbas and F.K.H.Quek,“A review of vessel extractiontechniques and algorithms,”/review /extraction.html,2002.[12]A.V.Oppenheim R.W.Schafer et al.,“Nonlinearfilter-ing of multiplied and convolved signals,”Proc.of IEEE, 56(8):1264–1291,1968.[13]R Poli and G Valli,“An algorithm for real time vessel en-hancement and detection,”Comp.Meth.and Prog.in Bio-med.,52(1):1–22,1997.[14]D.Selle,B.Preim et al.,“Analysis of vasculature for liversurgical planning,”IEEE T MI,21(11):1344–1357,2002.[15]R.Toledo,X.Orriols et al.,“Eigensnakes for vessel segmen-tation in angiography,”Proc.of ICPR,2002.。

相关文档
最新文档