2007年全国成人高考专升本高数(二)真
2007年河南省专升本真题高数(及答案)

2007年河南省普通高等学校选拔优秀专科生进入本科阶段学习考试《高等数学》试卷题号一二三四五六总分核分人分数一. 单项选择题(每题2分,共计50分)在每小题的备选答案中选出一个正确答案,并将其代码写在题干后面的括号内.不选、错选或多选者,该题无分. 1.集合}5,4,3{的所有子集共有()A. 5B. 6C. 7D. 8 2.函数x x x f 3)1arcsin()(的定义域为()A. ]3,0[B. ]2,0[C.]3,2[ D. ]3,1[3. 当0x 时,与x不等价的无穷小量是( )A.x 2B.x sinC.1xeD.)1ln(x 4.当x是函数xx f 1arctan)(的()A.连续点B. 可去间断点C.跳跃间断点D.第二类间断点5. 设)(x f 在1x处可导,且1)1(f ,则hh f h f h)1()21(lim的值为()A.-1B. -2C. -3D.-46.若函数)(x f 在区间),(b a 内有0)(,0)(x f x f ,则在区间),(b a 内,)(x f 图形()A .单调递减且为凸的B .单调递增且为凸的C .单调递减且为凹的D .单调递增且为凹的7.曲线31x y 的拐点是()A.)1,0( B. )0,1( C. )0,0( D. )1,1(8.曲线2232)(xxx f 的水平渐近线是()A. 32yB. 32yC. 31yD. 31y9. 42tan lim xtdt x x ()A. 0B. 21C.2D. 110.若函数)(x f 是)(x g 的原函数,则下列等式正确的是()A.C x g dx x f )()(B. C x f dx x g )()(C.C x f dxx g )()( D.Cx g dxx f )()( 11.dx x)31cos(()A.C x)31sin(31B. C x)31sin(31C. C x)31sin( D. Cx)31sin(312. 设x dt tt y)3)(1(,则)0(y ()A.-3B.-1C.1D.3 13. 下列广义积分收敛的是()A.1x dxB. 1x dxC.1xx dxD.10xx dx 14. 对不定积分dx xx 22cos sin 1,下列计算结果错误是() A.C xxcot tan B.Cxxtan 1tan C. C x x tan cot D.C x2cot 15. 函数2x y 在区间]3,1[的平均值为()A.326 B.313 C. 8 D. 416. 过Oz 轴及点)4,2,3(的平面方程为()A. 023y xB. 02zyC. 032yx D.2z x 17. 双曲线014322y z x 绕z 轴旋转所成的曲面方程为()A. 143222zy xB.143222z yxC. 143)(22z y x D.14)(322z yx18.xy xy yx 93lim()A. 61 B.61 C.0 D. 极限不存在19.若yx z,则)1,(e yz ()A.e1 B. 1 C.e D. 0 20. 方程132xzyz 所确定的隐函数为),(y x f z,则x z ()A.xzyz 322B.yxzz 232C. xzyz 32 D.yxzz 2321. 设C 为抛物线2x y上从)0,0(到)1,1(的一段弧,则Cdyx xydx 22() A.-1 B.0 C.1 D.2 22.下列正项级数收敛的是()A.2131n n B. 2ln 1n n n C.22)(ln 1n n n D.21n nnn 23.幂级数1)1(31n nn x的收敛区间为()A.)1,1(B.)3,3(C.)4,2( D.)2,4(24. 微分x eyy y xcos 23特解形式应设为y()A. x Ce xcos B.)sin cos (21x C xC e xC.)sin cos (21x C xC xe xD.)sin cos (212x C xC e x x25.设函数)(x f y 是微分方程xe yy2的解,且0)(0x f ,则)(x f 在0x 处()A.取极小值B. 取极大值C.不取极值D.取最大值二、填空题(每题2分,共30分)26.设52)(xx f ,则]1)([x f f _________.27.!2limn nn____________.28.若函数02203)(4xa xx ex f x,,在0x 处连续,则a ____________.29.已知曲线22x x y 上点M 处的切线平行于直线15x y,则点M的坐标为 ________30.设12)(x e x f ,则)0()2007(f _________31.设12132t tyt x ,则1t dxdy __________ 32. 若函数bx axx f 2)(在1x处取得极值2,则a______,b _____得分评卷人33. dxx f x f )()( _________34.1021dx x _________35.向量k ji a 43的模||a ________ 36. 已知平面1:0752zyx与平面2:01334mz y x垂直,则m ______37.设22),(y xxy y x f ,则),(y x f ________38.已知I 2122),(yydx y x f dy ,交换积分次序后,则I_______39.若级数11n nu 收敛,则级数1111n nnu u 的和为 _______40.微分方程02yy y 的通解为________三、判断题(每小题2分,共10分)你认为正确的在题后括号内划“√”,反之划“×”.41.若数列n x 单调,则n x 必收敛.( )42.若函数)(x f 在区间b a,上连续,在),(b a 内可导,且)()(b f a f ,则一定不存在),(b a ,使)(f . ( )43.1sin sin limcos 1cos 1limsin sin limxx xx xxx x xxx由洛比达法则.( )44.2ln 23102ln 02dxe x. ( )45.函数),(y x f 在点),(y x P 处可微是),(y x f 在),(y x P 处连续的充分条件.( ) 四、计算题(每小题5分,共40分)46.求xxxsin 0lim .47.求函数3211xx xy 的导数dxdy .48.求不定积分dx x ex)]1ln([2.49.计算定积分dx x 02cos 22.50.设)3,sin (2y x y e f zx,且),(v u f 为可微函数,求dz.得分评卷人得分评卷人51.计算Ddxdy x 2,其中D 为圆环区域:4122yx.52.将242xx 展开为x 的幂级数,并写出收敛区间.53.求微分方程0)2(22dxx xy y dy x 的通解.五、应用题(每题7分,共计14分)54. 某工厂欲建造一个无盖的长方题污水处理池,设计该池容积为V 立方米,底面造价每平方米a 元,侧面造价每平方米b 元,问长、宽、高各为多少米时,才能使污水处理池的造价最低?55. 设平面图形D 由曲线xe y ,直线e y 及y 轴所围成.求:(1)平面图形D 的面积;(2) 平面图形D 绕y 轴旋转一周所成的旋转体的体积.六、证明题(6分)56.若)(x f 在],[b a 上连续,则存在两个常数m 与M ,对于满足b x x a21的任意两点21,x x ,证明恒有)()()()(121212x x M x f x f x x m .2007年河南省普通高等学校选拔优秀专科生进入本科阶段学习考试(答案)一1解:子集个数D n 8223。
[高考必看]2007年成人高考招生简章
![[高考必看]2007年成人高考招生简章](https://img.taocdn.com/s3/m/f5c238dfaef8941ea76e05ef.png)
沈阳 艺术设计
业 余
高升 专
2.5
3800 语文、英语、美术
建筑 大学 物业管理
业 余
高升 专
2.5—3
2400
语文、数学、英语
装饰、绘图、园林、
物业管理、房地产、 林等专业
工程造价
业 余
高升 专 2.5—3 2400
语文、数学、英语
工民建、造价、地铁 排水、园林、房地产
建筑工程 业 高升 技术 余 专 2.5—3 2400 语文、数学、英语
宁省城市建设学校继续教育中心
年4月6日
2007年成人高考招生简章 Nhomakorabea二○○七年我校继续与哈尔滨工业大学、沈阳建筑大学、
沈阳理工大学联合办学,毕业发相应高校毕业证书,国家承认
学历。具体招生事宜如下:
一、招生专业、学制及考试科目:
办
参考学
院校 名称
专业名称
学 形
层次
学制
费 (元/
考试科目
式
年)
哈尔 滨工
土木工程
函 授
专升 本
3
2000
政治、高数(1)、外 语、结构力学
业大 道路与 函 专升
学 桥梁
授本
3
2000
政治、高数(1)、外 语、结构力学
中专适合报考
工程管理
业 余
专升 本
2.5—3
2500
政治、高数(2)、外 语、工程经济学
建筑学
业 余
专升 本
2.5—3
4000
政治、高数(1)、外 语、素描色彩等
艺术设计
业 余
专升 本
2.5—3
4000
政治、外语、艺术概 论、素描色彩
2007年河南省专升本真题高数(及答案)

2007年河南省专升本真题高数(及答案)2007年河南省普通高等学校选拔优秀专科生进入本科阶段学习考试 《高等数学》试卷 题号 一 二 三 四 五 六 总分 核分人 分数一. 单项选择题(每题2分,共计50分)在每小题的备选答案中选出一个正确答案,并将其代码写在题干后 面的括号内.不选、错选或多选者,该题无分.1.集合}5,4,3{的所有子集共有 ( )A. 5B. 6C. 7D. 82.函数x x x f -+-=3)1arcsin()(的定义域为( )A. ]3,0[B. ]2,0[C. ]3,2[D. ]3,1[3. 当0→x 时,与x 不等价的无穷小量是 ( )A.x 2B.x sinC.1-x eD.)1ln(x +4.当0=x 是函数xx f 1arctan)(= 的 ( )A.连续点B. 可去间断点C.跳跃间断点D. 第二类间断点5. 设)(x f 在1=x 处可导,且1)1(='f ,则hh f h f h )1()21(lim 0+--→的值为( )A.-1B. -2C. -3D.-4 6.若函数)(x f 在区间),(b a 内有0)(,0)(<''>'x f x f ,则在区间),(b a 内,)(x f 图形 ( )A .单调递减且为凸的B .单调递增且为凸的C .单调递减且为凹的D .单调递增且为凹的7.曲线31x y +=的拐点是 ( ) A. )1,0( B. )0,1( C. )0,0( D. )1,1(8.曲线2232)(x x x f -=的水平渐近线是 ( ) A. 32=y B. 32-=y C. 31=y D. 31-=y9. =⎰→42tan limxtdt x x ( )A. 0B.21C.2D. 1 10.若函数)(x f 是)(x g 的原函数,则下列等式正确的是 ( )A.⎰+=C x g dx x f )()(B. ⎰+=C x f dx x g )()(C.⎰+='C x f dx x g )()(D. ⎰+='C x g dx x f )()(11.⎰=-dx x )31cos( ( )A.C x +--)31sin(31B. C x +-)31sin(31C. C x +--)31sin(D. C x +-)31sin(312. 设⎰--=xdt t t y 0)3)(1(,则=')0(y ( )A.-3B.-1C.1D.3 13. 下列广义积分收敛的是 ( )A.⎰+∞1x dxB. ⎰+∞1x dxC.⎰+∞1x x dxD. ⎰10xx dx 14. 对不定积分⎰dx xx 22cos sin 1,下列计算结果错误是 ( )A. C x x +-cot tanB. C xx +-tan 1tanC. C x x +-tan cotD. C x +-2cot15. 函数2x y =在区间]3,1[的平均值为( )A. 326B. 313 C. 8 D. 416. 过Oz 轴及点)4,2,3(-的平面方程为 ( ) A. 023=+y x B. 02=+z y C. 032=+y x D. 02=+z x17. 双曲线⎪⎩⎪⎨⎧==-014322y z x 绕z 轴旋转所成的曲面方程为 ( )A.143222=-+z y x B. 143222=+-z y x C.143)(22=-+z y x D. 14)(322=+-z y x 18.=+-→→xy xy y x 93lim 00 ( )A.61 B. 61- C.0 D. 极限不存在19.若y x z =,则=∂∂)1,(e yz ( )A. e1B. 1C. eD. 020. 方程 132=-xz y z 所确定的隐函数为),(y x f z =,则=∂∂xz( )A. xz y z 322-B. y xz z 232-C. xz y z 32-D. yxz z23-21. 设C 为抛物线2x y =上从)0,0(到)1,1( 的一段弧,则⎰=+Cdy x xydx 22( )A.-1B.0C.1D.222.下列正项级数收敛的是 ( )A. ∑∞=+2131n nB. ∑∞=2ln 1n n nC. ∑∞=22)(ln 1n n nD. ∑∞=21n nnn 23.幂级数∑∞=++01)1(31n n n x 的收敛区间为 ( )A.)1,1(-B.)3,3(-C. )4,2(-D.)2,4(-24. 微分x e y y y x cos 23-=+'+''特解形式应设为=*y ( ) A. x Ce x cos B. )sin cos (21x C x C e x +- C. )sin cos (21x C x C xe x +- D. )sin cos (212x C x C e x x +- 25.设函数)(x f y =是微分方程x e y y 2='+''的解,且0)(0='x f ,则)(x f 在0x 处( )A.取极小值B. 取极大值C.不取极值D. 取最大值二、填空题(每题2分,共30分)26.设52)(+=x x f ,则=-]1)([x f f _________.27.=∞→!2lim n nn ____________. 28.若函数⎪⎩⎪⎨⎧≥+<=02203)(4x ax x e x f x ,,在0=x 处连续,则=a ____________. 29.已知曲线22-+=x x y 上点M 处的切线平行于直线15-=x y ,则点M得分 评卷人的坐标为 ________30.设12)(-=x e x f ,则 =)0()2007(f _________31.设⎩⎨⎧+-=+=12132t t y t x ,则==1t dx dy__________ 32. 若函数bx ax x f +=2)(在1=x 处取得极值2,则=a ______,=b _____33. ='⎰dx x f x f )()( _________ 34.⎰=-121dx x _________35.向量k j i a ρρρρ-+=43的模=||a ρ________ 36. 已知平面1π:0752=+-+z y x 与平面2π:01334=+++mz y x 垂直,则=m ______37.设22),(y x xy y x f +=+,则=),(y x f ________ 38.已知=I ⎰⎰-21220),(y ydx y x f dy ,交换积分次序后,则=I _______39.若级数∑∞=11n n u 收敛,则级数∑∞=+⎪⎪⎭⎫ ⎝⎛-1111n n n u u 的和为 _______ 40.微分方程02=+'-''y y y 的通解为________三、判断题(每小题2分,共10分) 你认为正确的在题后括号内划“√”,反之划“×”. 41.若数列{}n x 单调,则{}n x 必收敛.( )42.若函数)(x f 在区间[]b a ,上连续,在),(b a 内可导,且)()(b f a f ≠,则一定不存在),(b a ∈ξ,使0)(=ξ'f . ( )43.1sin sin lim cos 1cos 1lim sin sin lim -=-=+-======+-∞→∞→∞→xxx x x x x x x x x 由洛比达法则. ( )44.2ln 23102ln 02≤-≤⎰-dx e x .( )45.函数),(y x f 在点),(y x P 处可微是),(y x f 在),(y x P 处连续的充分条件.( )四、计算题(每小题5分,共40分)46.求x x x sin 0lim +→.得分评卷人得分 评卷人47.求函数3211x x x y +-⋅=的导数dxdy. 48.求不定积分⎰++dx x e x )]1ln([2.49.计算定积分dx x ⎰π+02cos 22 .50.设)3,sin (2y x y e f z x =,且),(v u f 为可微函数,求dz . 51.计算⎰⎰Ddxdy x 2,其中D 为圆环区域:4122≤+≤y x .52.将242xx-展开为x 的幂级数,并写出收敛区间. 53.求微分方程0)2(22=--+dx x xy y dy x 的通解. 五、应用题(每题7分,共计14分) 54. 某工厂欲建造一个无盖的长方题污水处理池,设计该池容积为V 立方米,底面造价每平方米a 元,侧面造价每平方米b 元,问长、宽、高各为多少米时,才能使污水处理池的造价最低?55. 设平面图形D 由曲线x e y =,直线e y =及y 轴所围成.求: (1)平面图形D 的面积;(2) 平面图形D 绕y 轴旋转一周所成的旋转体的体积.六、证明题(6分)56.若)(x f '在],[b a 上连续,则存在两个常数m 与M ,对于满足b x x a ≤<≤21的任意两点21,x x ,证明恒有)()()()(121212x x M x f x f x x m -≤-≤-.2007年河南省普通高等学校选拔优秀专科生进入本科阶段学习考试(答案)一1解:子集个数D n ⇒==8223。
2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅱ.理)含答案

2007年普通高等学校招生全国统一考试试题卷(全国卷Ⅱ)理科数学(必修+选修Ⅱ)注意事项:1. 本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,总分150分,考试时间120分钟.2. 答题前,考生须将自己的姓名、准考证号、考场号、座位号填写在本试题卷指定的位置上.3. 选择题的每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.4. 非选择题必须使用0.5毫米的黑色字迹的签字笔在答题卡上书写,字体工整,笔迹清楚 5. 非选择题必须按照题号顺序在答题卡上各题目的答题区域内作答.超出答题区域或在其它题的答题区域内书写的答案无效;在草稿纸、本试题卷上答题无效. 6. 考试结束,将本试题卷和答题卡一并交回.第Ⅰ卷(选择题)本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k k n kn n P k C p p k n -=-=,,,…, 一、选择题1.sin 210=( )AB.-C .12D .12-2.函数sin y x =的一个单调增区间是( ) A .ππ⎛⎫- ⎪44⎝⎭, B .3ππ⎛⎫ ⎪44⎝⎭,C .3π⎛⎫π ⎪2⎝⎭,D .32π⎛⎫π⎪2⎝⎭,3.设复数z 满足12ii z+=,则z =( ) A .2i -+B .2i --C .2i -D .2i +4.下列四个数中最大的是( ) A .2(ln 2) B .ln(ln 2) C.D .ln 25.在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+,,则λ=( ) A .23 B .13 C .13- D .23-6.不等式2104x x ->-的解集是( ) A .(21)-,B .(2)+∞,C .(21)(2)-+∞ ,, D .(2)(1)-∞-+∞ ,, 7.已知正三棱柱111ABC A B C -的侧棱长与底面边长相等,则1AB 与侧面11ACC A 所成角的正弦值等于( ) A.4B.4C.2D.28.已知曲线23ln 4x y x =-的一条切线的斜率为12,则切点的横坐标为( ) A .3 B .2 C .1 D .129.把函数e x y =的图像按向量(23)=,a 平移,得到()y f x =的图像,则()f x =( ) A .3e2x -+ B .3e2x +- C .2e3x -+ D .2e3x +-10.从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( ) A .40种 B .60种 C .100种 D .120种11.设12F F ,分别是双曲线2222x y a b-的左、右焦点,若双曲线上存在点A ,使1290F AF ∠=且123AF AF =,则双曲线的离心率为( )ABCD12.设F 为抛物线24y x =的焦点,A B C ,,为该抛物线上三点,若FA FB FC ++=0,则FA FB FC ++=( )A .9B .6C .4D .3第Ⅱ卷(非选择题)本卷共10题,共90分二、填空题:本大题共4小题,每小题5分,共20分.13.821(12)x x x ⎛⎫+- ⎪⎝⎭的展开式中常数项为 .(用数字作答)14.在某项测量中,测量结果ξ服从正态分布2(1)(0)N σσ>,.若ξ在(01),内取值的概率为0.4,则ξ在(02),内取值的概率为 .15.一个正四棱柱的各个顶点在一个直径为2cm 的球面上.如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为 cm 2.16.已知数列的通项52n a n =-+,其前n 项和为n S ,则2lim nn S n ∞=→ .全国卷Ⅱ理科数学(必修+选修Ⅱ)二.请把填空题答案写在下面相应位置处:13. 14 15. 16.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)在ABC △中,已知内角A π=3,边BC =B x =,周长为y .(1)求函数()yf x =的解析式和定义域;(2)求y 的最大值.18.(本小题满分12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A :“取出的2件产品中至多有1件是二等品”的概率()0.96P A =.(1)求从该批产品中任取1件是二等品的概率p ;(2)若该批产品共100件,从中任意抽取2件,ξ表示取出的2件产品中二等品的件数,求ξ的分布列.19.(本小题满分12分)如图,在四棱锥S ABCD -中,底面ABCD 为正方形, 侧棱SD ⊥底面ABCD E F ,,分别为AB SC ,的中点. (1)证明EF ∥平面SAD ;(2)设2SD DC =,求二面角A EF D --的大小. 20.(本小题满分12分)在直角坐标系xOy 中,以O 为圆心的圆与直线4x =相切. (1)求圆O 的方程;(2)圆O 与x 轴相交于A B ,两点,圆内的动点P 使PA PO PB ,,成等比数列,求PA PB的取值范围.AEBCFSD21.(本小题满分12分) 设数列{}n a 的首项113(01)2342n n a a a n --∈==,,,,,,…. (1)求{}n a 的通项公式;(2)设n b a =1n n b b +<,其中n 为正整数.22.(本小题满分12分)已知函数3()f x x x =-.(1)求曲线()y f x =在点(())M t f t ,处的切线方程;(2)设0a >,如果过点()a b ,可作曲线()y f x =的三条切线,证明:()a b f a -<<.2007年普通高等学校招生全国统一考试理科数学试题(必修+选修Ⅱ)参考答案评分说明:1. 本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2. 对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度.可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3. 解答右侧所注分数,表示考生正确做到这一步应得的累加分数. 4. 只给整数分数.选择题和填空题不给中间分. 一、选择题1.D 2.C 3.C 4.D 5.A 6.C 7.A 8.A 9.C 10.B 11.B 12.B二、填空题13.42- 14.0.815.2+16.52-三、解答题17.解:(1)ABC △的内角和A B C ++=π,由00A B C π=>>3,,得20B π<<3.应用正弦定理,知sin 4sin sin sin BC AC B x x A ===3, 2sin 4sin sin BC AB C x A π⎛⎫==- ⎪3⎝⎭. 因为y AB BC AC =++,所以224sin 4sin 03y x x x ππ⎛⎫⎫=+-+<< ⎪⎪3⎝⎭⎭,(2)因为14sin cos sin 2y x x x ⎛⎫=+++ ⎪ ⎪2⎝⎭5s i n 3x x ππππ⎛⎫⎫=++<+< ⎪⎪6666⎝⎭⎭,所以,当x ππ+=62,即x π=3时,y取得最大值18.解:(1)记0A 表示事件“取出的2件产品中无二等品”,1A 表示事件“取出的2件产品中恰有1件二等品”.则01A A ,互斥,且01A A A =+,故 01()()P A P A A =+012122()()(1)C (1)1P A P A p p p p =+=-+-=- 于是20.961p =-.解得120.20.2p p ==-,(舍去).(2)ξ的可能取值为012,,. 若该批产品共100件,由(1)知其二等品有1000.220⨯=件,故2802100C 316(0)C 495P ξ===. 1180202100C C 160(1)C 495P ξ===. 2202100C 19(2)C 495P ξ===. 所以ξ的分布列为19(1)作FG DC ∥交SD 于点G ,则G 为SD 的中点.连结12AG FG CD∥,,又CD AB∥, 故FG AE AEFG∥,为平行四边形. EF AG ∥,又AG ⊂平面SAD EF ⊄,平面SAD . 所以EF ∥平面SAD .(2)不妨设2DC =,则42SD DG ADG ==,,△为等 腰直角三角形.取AG 中点H ,连结DH ,则DH AG ⊥.又AB ⊥平面SAD,所以AB DH ⊥,而AB AG A = , 所以DH ⊥面AEF .取EF 中点M ,连结MH ,则HM EF ⊥. 连结DM ,则DM EF ⊥.故DMH ∠为二面角A EF D --的平面角tan 1DH DMH HM ∠=== 所以二面角A EF D --的大小为. 解法二:(1)如图,建立空间直角坐标系xyz .设(00)(00)A a S b ,,,,,,则(0)(00)B a a C a ,,,,,, 00222a a b E a F ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,,,,02b EF a ⎛⎫=- ⎪⎝⎭,,.取SD 的中点002b G ⎛⎫ ⎪⎝⎭,,,则02b AG a ⎛⎫=- ⎪⎝⎭ ,,.EF AG EF AG AG =⊂,∥,平面SAD EF ⊄,平面SAD , 所以EF ∥平面SAD .(2)不妨设(100)A ,,, 则11(110)(010)(002)100122B C S E F ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,.EF 中点AEBCFSD H G M111111(101)0222222M MD EF MD EF MD EF ⎛⎫⎛⎫=---=-= ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,⊥ 又1002EA ⎛⎫=- ⎪⎝⎭ ,,,0EA EF EA EF =,⊥,所以向量MD 和EA 的夹角等于二面角A EF D --的平面角.cos MD EA MD EA MD EA <>==,. 所以二面角A EF D --的大小为20.解:(1)依题设,圆O 的半径r 等于原点O到直线4x =的距离,即2r ==. 得圆O 的方程为224x y +=. (2)不妨设1212(0)(0)A x B x x x <,,,,.由24x =即得(20)(20)A B -,,,.设()P x y ,,由PA PO PB ,,成等比数列,得22x y =+,即 222x y -=. (2)(2)PA PB x y x y =----- ,,22242(1).x y y =-+=-由于点P 在圆O 内,故222242.x y x y ⎧+<⎪⎨-=⎪⎩,由此得21y <.所以PA PB 的取值范围为[20)-,. 21.解:(1)由132342n n a a n --==,,,,…, 整理得 111(1)2n n a a --=--.又110a -≠,所以{1}n a -是首项为11a -,公比为12-的等比数列,得1111(1)2n n a a -⎛⎫=--- ⎪⎝⎭(2)方法一:由(1)可知302n a <<,故0n b >.那么,221n nb b +- 2211222(32)(32)3332(32)229(1).4n n n n n n n n n n a a a a a a a a aa ++=-----⎛⎫⎛⎫=-⨯-- ⎪ ⎪⎝⎭⎝⎭=-又由(1)知0n a >且1n a ≠,故2210n n b b +->,因此1n n b b n +<,为正整数.方法二:由(1)可知3012n n a a <<≠,,因为132n n a a +-=, 所以1n n b a ++==.由1n a ≠可得33(32)2n n n a a a -⎛⎫-< ⎪⎝⎭,即 223(32)2n n n n a a a a -⎛⎫-< ⎪⎝⎭两边开平方得32na a - 即 1n nb b n +<,为正整数.22.解:(1)求函数()f x 的导数;2()31x x f '=-. 曲线()y f x =在点(())M t f t ,处的切线方程为: ()()()y f t f t x t '-=-,即23(31)2y t x t =--.(2)如果有一条切线过点()a b ,,则存在t ,使 23(31)2b t a t =--.于是,若过点()a b ,可作曲线()y f x =的三条切线,则方程32230t at a b -++=有三个相异的实数根.记 32()23g t t at a b =-++,则 2()66g t t at '=- 6()t t a =-. 当t 变化时,()()g t g t ',变化情况如下表:当0a b +=时,解方程()0g t =得302at t ==,,即方程()0g t =只有两个相异的实数根;当()0b f a -=时,解方程()0g t =得2at t a =-=,,即方程()0g t =只有两个相异的实数根.综上,如果过()a b ,可作曲线()y f x =三条切线,即()0g t =有三个相异的实数根,则0()0.a b b f a +>⎧⎨-<⎩,即 ()a b f a -<<.。
成人高考成考高等数学(二)(专升本)试卷与参考答案

成人高考成考高等数学(二)(专升本)自测试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、设函数(f(x)=x3−3x+2),则(f(x))在区间[-2, 2] 上的最大值为:A、2B、4C、6D、82、已知函数(f(x)=e x lnx),则该函数的定义域是:A.((0,+∞))B.((−∞,0))C.((0,1))D.((1,+∞))3、设函数f(x)=x3−3x2+2在区间[−1,3]上的最大值为M,最小值为m。
则M−m 的值是:A. 4B. 6C. 8D. 10),则该函数的间断点是:4、设函数(f(x)=11+x2A.(x=0)B.(x=1)C.(x=−1)D.(x)无间断点5、设函数(f(x)=x3−3x+1),则该函数在区间 [-2, 2] 上的最大值为:A、4B、3C、2D、16、设函数f(x)=x3−6x2+9x+1,则该函数的极值点为:A.x=1B.x=2C.x=3D.x=47、若函数(f(x)=ln(x2+1)),则(f(x))在(x=1)处的导数(f′(1))是:)A、(12B、1C、2)D、(238、设函数(f(x)=x3−6x2+9x+1),则函数的极值点个数是:A. 0B. 1C. 2D. 39、设函数(f(x)=3x2−4x+5),则该函数的对称轴为:A.(x=1))B.(x=−13)C.(x=23D.(x=2)10、在下列函数中,连续函数为:())(x∈R)A.(f(x)=1x3)(x∈R)B.(f(x)=√xC.$( f(x) =)$D.(f(x)=|x|)(x∈R)),则(f′(0))的值为:11、已知函数(f(x)=1x2+1A. 0B. 1C. -1D. 不存在),求(f′(x))。
12、设函数(f(x)=2x+3x−1)A.(2(x−1)2B.(2x2−1)C.(2(x+1)(x−1))D.(1x−1)二、填空题(本大题有3小题,每小题7分,共21分)1、设函数(f(x)=e ax+b),其中(a,b)为常数,若(f(x))的单调递减区间为((−∞,1a)),则(a)的取值范围为______ 。
2002年-2018年成人高考专升本高等数学二考试真题及参考答案

2002年-2018年成人高考专升本高等数学二考试真题及参考答案目录2002年成人高考专升本高等数学二考试真题及参考答案 (1)2003年成人高考专升本高等数学二考试真题及参考答案 (7)2004年成人高考专升本高等数学二考试真题及参考答案 (13)2005年成人高考专升本高等数学二考试真题及参考答案 (19)2006年成人高考专升本高等数学二考试真题及参考答案 (24)2007年成人高考专升本高等数学二考试真题及参考答案 (31)2008年成人高考专升本高等数学二考试真题及参考答案 (36)2009年成人高考专升本高等数学二考试真题及参考答案 (43)2010年成人高考专升本高等数学二考试真题及参考答案 (50)2011年成人高考专升本高等数学二考试真题及参考答案 (56)2012年成人高考专升本高等数学二考试真题及参考答案 (63)2013年成人高等学校专升本招生全国统一考试 (68)2014年成人高考专升本高等数学二考试真题及参考答案 (72)2015年成人高考专升本高等数学二考试真题及参考答案 (77)2016年成人高考专升本高等数学二考试真题及参考答案 (83)2017年成人高考专升本高等数学二考试真题及参考答案 (87)2018年成人高考专升本高等数学二考试真题及参考答案 (96)2002年成人高考专升本高等数学二考试真题及参考答案一、选择题:本大题共5个小题,每小题4分,共20分,在每小题给出的四个选项中,只有一项是符合题目的要求,把所选项前的字母填在题后的括号内。
第1题参考答案:B第2题参考答案:B第3题参考答案:A第4题参考答案:D第5题参考答案:C二、填空题:本大题共10个小题,每小题4分,共40分,把答案填写在题中横线上。
第6题参考答案:2x+1参考答案:2第8题参考答案:5/4第9题参考答案:1第10题设函数y=1/(1+cosx),则y´=__________。
2004-2021年专升本高数(二)考试真题及答案

2004年成人高考专升本高等数学二考试真题及参考答案一、选择题:本大题共5个小题,每小题4分,共20分,在每小题给出的四个选项中,只有一项是符合题目的要求,把所选项前的字母填在题后的括号内。
第1题参考答案:A第2题参考答案:D第3题参考答案:D第4题第5题参考答案:C二、填空题:本大题共10个小题,每小题4分,共40分,把答案填写在题中横线上。
第6题参考答案:1第7题参考答案:0第8题参考答案:1第9题参考答案:2/x3第10题参考答案:-1第11题参考答案:0第12题参考答案:e-1第13题参考答案:1第14题参考答案:-sinx 第15题三、解答题:本大题共13个小题,共90分,解答应写出推理、演算步骤.第16题第17题第18题第19题第20题第21题第22题第23题第24第25题第26题第27题第28题2005年成人高考专升本高等数学二考试真题及参考答案一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。
第1题参考答案:D第2题第3题参考答案:C 第4题参考答案:B 第5题参考答案:D 第6题参考答案:B 第7题第8题参考答案:A第9题参考答案:D第10题参考答案:B二、填空题:本大题共10个小题,每小题4分,共40分,把答案填写在题中横线上。
第11题参考答案:2第12题参考答案:e-3第13题参考答案:0第14题参考答案:4第15题参考答案:2第16题第17题参考答案:0第18题参考答案:1/2第19题参考答案:6第20题三、解答题:共70分。
解答应写出推理、演算步骤。
第21题第22题第23题第24题第25题第26题第27题第28题2006年成人高考专升本高等数学二考试真题及参考答案一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。
第1题参考答案:D 第2题参考答案:B 第3题参考答案:D 第4题参考答案:A 第5题参考答案:C第6题参考答案:C 第7题参考答案:C 第8题参考答案:A 第9题参考答案:B 第10二、填空题:本大题共10个小题,每小题4分,共40分,把答案填写在题中横线上。
2007年全国Ⅱ高考试题(文)

2007年普通高等数学招生全国统一考试(全国Ⅱ)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 参考公式: 如果事件A 、B 互斥,那么球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么其中R 表示球的半径)()()(B P A P B A P ⋅=⋅球的体积公式 如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率:其中R 表示球的半径()(1)k k n kn n P k C P P -=- 第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.cos330=A .12B .12-C D . 2.设集合{}1,2,3,4U =,{}1,2A =,{}2,4B =,则()U C A B =A .{}2B .{}3C .{}1,2,4D .{}1,43.函数sin y x =的一个单调增区间是A .ππ⎛⎫- ⎪44⎝⎭,B .3ππ⎛⎫ ⎪44⎝⎭,C .3π⎛⎫π ⎪2⎝⎭,D .32π⎛⎫π ⎪2⎝⎭, 4.下列四个数中最大的是A .2(ln 2)B .ln(ln 2)C .D .ln 25.不等式203x x ->+的解集是A .(32)-,B .(2)+∞,C .(3)(2)-∞-+∞ ,,D .(2)(3)-∞-+∞ ,, 6.在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+,,则λ= A .23 B .13 C .13- D .23-7.已知正三棱锥的侧棱长是底面边长的2倍,则侧棱与底面所成角的余弦值等于A .6B .4C .2D .28.已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为A .1B .2C .3D .49.把函数e xy =的图像按向量(23)=,a 平移,得到()y f x =的图像,则()f x =A .3e2x -+ B .3e2x +- C .2e3x -+ D .2e3x +-10.5名同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有A .10种B .20种C .25种D .32种11.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于A .13B C .12D 12.设1F ,2F 分别是双曲线2219y x +=的左、右焦点,若点P 在双曲线上,且120PF PF ⋅= ,则12||PF PF + =AB .CD .第Ⅱ卷(非选择题共90分)注意事项:用钢笔或圆珠笔直接答在答题卡上.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.13.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 .14.已知数列的通项52n a n =-+,则其前n 项和n S = .15.一个正四棱柱的各个顶点在一个直径为2cm 的球面上.如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为 cm 2.16.821(12)1x x ⎛⎫++ ⎪⎝⎭的展开式中常数项为 .(用数字作答)三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)设等比数列{}n a 的公比1q <,前n 项和为n S .已知32a =,425S S =,求{}n a 的通项公式.18.(本小题满分12分)在ABC △中,已知内角A π=3,边BC =B x =,周长为y .(1)求函数()y f x =的解析式和定义域; (2)求y 的最大值.19.(本小题满分12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A :“取出的2件产品中至多有1件是二等品”的概率()0.96P A =.(1)求从该批产品中任取1件是二等品的概率p ;(2)若该批产品共100件,从中任意抽取2件,事件B :“取出的2件产品中至少有一件二等品”的概率()P B .20.(本小题满分12分)如图,在四棱锥S ABCD -中,底面ABCD 为正方形, 侧棱SD ⊥底面ABCD E F ,,分别为AB SC ,的中点.(1)证明EF ∥平面SAD ;(2)设2SD DC =,求二面角A EF D --的大小.21.(本小题满分12分)在直角坐标系xOy 中,以O为圆心的圆与直线4x =相切. (1)求圆O 的方程;(2)圆O 与x 轴相交于A B ,两点,圆内的动点P 使PA PO PB ,,成等比数列,求PA PB 的取值范围.22.(本小题满分12分)已知函数321()(2)13f x ax bx b x =-+-+在1x x =处取得极大值,在2x x =取得极小值,且12012x x <<<<.(1)证明0a >;(2)若2z a b =+,求z 的取值范围.AEBCFSD2007年普通高等学校招生全国统一考试文科数学试题(必修+选修Ⅰ)参考答案评分说明:1. 本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2. 对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度.可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3. 解答右侧所注分数,表示考生正确做到这一步应得的累加分数. 4. 只给整数分数.选择题和填空题不给中间分. 一、选择题 1.C 2.B 3.C 4.D 5.C 6.A 7.A 8.A 9.C 10.D 11.D 12.B 二、填空题13.12014.252n n --15.2+三、解答题17.解:由题设知11(1)01n n a q a S q-≠=-,,则2121412(1)5(1)11a q a q a q q q⎧=-⎪=⨯⎨--⎪-⎩,. ②由②得4215(1)q q -=-,22(4)(1)0q q --=,(2)(2)(1)(1)0q q q q -+-+=, 因为1q <,解得1q =-或2q =-.当1q =-时,代入①得12a =,通项公式12(1)n n a -=⨯-;当2q =-时,代入①得112a =,通项公式11(2)2n n a -=⨯-. 18.解:(1)ABC △的内角和A B C ++=π,由00A B C π=>>3,,得20B π<<3.应用正弦定理,知sin 4sin sin sin BC AC B x x A ===3,2sin 4sin sin BC AB C x A π⎛⎫==- ⎪3⎝⎭.因为y AB BC AC =++,所以224sin 4sin 03y x x x ππ⎛⎫⎫=+-+<<⎪⎪3⎝⎭⎭,(2)因为14sin sin 2y x x x ⎛⎫=+++ ⎪ ⎪⎝⎭5s i n 3x x ππππ⎛⎫⎫=++<+< ⎪⎪6666⎝⎭⎭,所以,当x ππ+=62,即x π=3时,y取得最大值 19.(1)记0A 表示事件“取出的2件产品中无二等品”, 1A 表示事件“取出的2件产品中恰有1件二等品”. 则01A A ,互斥,且01A A A =+,故01()()P A P A A =+012122()()(1)C (1)1P A P A p p p p =+=-+-=-于是20.961p =-.解得120.20.2p p ==-,(舍去).(2)记0B 表示事件“取出的2件产品中无二等品”,则0B B =.若该批产品共100件,由(1)知其中二等品有1000.220⨯=件,故28002100C 316()C 495P B ==.00316179()()1()1495495P B P B P B ==-=-= 20.解法一:(1)作FG DC ∥交SD 于点G ,则G 为SD 的中点.连结12AG FG CD∥,,又CD AB∥, 故FG AE AEFG∥,为平行四边形. EF AG ∥,又AG ⊂平面SAD EF ⊄,平面SAD . 所以EF ∥平面SAD .(2)不妨设2DC =,则42SD DG ADG ==,,△为等 腰直角三角形.取AG 中点H ,连结DH ,则DH AG ⊥.又AB ⊥平面SAD ,所以AB DH ⊥,而AB AG A = , 所以DH ⊥面AEF .取EF 中点M ,连结MH ,则HM EF ⊥. 连结DM ,则DM EF ⊥.故DMH ∠为二面角A EF D --的平面角tan 1DH DMH HM ∠=== 所以二面角A EF D --的大小为. 解法二:(1)如图,建立空间直角坐标系D xyz -.设(00)(00)A a S b ,,,,,,则(0)(00)B a a C a ,,,,,, 00222a a b E a F ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,,,,,, 02b EF a ⎛⎫=- ⎪⎝⎭ ,,.取SD 的中点002b G ⎛⎫ ⎪⎝⎭,,,则02b AG a ⎛⎫=- ⎪⎝⎭ ,,.EF AG EF AG AG =⊂,∥,平面SAD EF ⊄,平面SAD ,所以EF ∥平面SAD .(2)不妨设(100)A ,,,则11(110)(010)(002)100122B C S E F ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,.EF 中点111111(101)0222222M MD EF MD EF MD EF ⎛⎫⎛⎫=---=-= ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,⊥AEBCFSD H G M又1002EA ⎛⎫=- ⎪⎝⎭ ,,,0EA EF EA EF =,⊥,所以向量MD 和EA的夹角等于二面角A EF D --的平面角.cos 3MD EA MD EA MD EA<>==,. 所以二面角A EF D --的大小为arccos3. 21.解:(1)依题设,圆O 的半径r 等于原点O到直线4x =的距离,即2r ==.得圆O 的方程为224x y +=.(2)不妨设1212(0)(0)A x B x x x <,,,,.由24x =即得(20)(20)A B -,,,.设()P x y ,,由PA PO PB ,,成等比数列,得22x y =+,即 222x y -=. (2)(2)PA PB x y x y =-----,,22242(1).x y y =-+=-由于点P 在圆O 内,故222242.x y x y ⎧+<⎪⎨-=⎪⎩,由此得21y <.所以PA PB的取值范围为[20)-,. 22.解:求函数()f x 的导数2()22f x ax bx b '=-+-.(Ⅰ)由函数()f x 在1x x =处取得极大值,在2x x =处取得极小值,知12x x ,是()0f x '=的两个根.所以12()()()f x a x x x x '=--当1x x <时,()f x 为增函数,()0f x '>,由10x x -<,20x x -<得0a >.(Ⅱ)在题设下,12012x x <<<<等价于(0)0(1)0(2)0f f f '>⎧⎪'<⎨⎪'>⎩ 即202204420b a b b a b b ->⎧⎪-+-<⎨⎪-+->⎩.化简得203204520b a b a b ->⎧⎪-+<⎨⎪-+>⎩.此不等式组表示的区域为平面aOb 上三条直线:203204520b a b a b -=-+=-+=,,. 所围成的ABC △的内部,其三个顶点分别为:46(22)(42)77A B C ⎛⎫⎪⎝⎭,,,,,.z 在这三点的值依次为16687,,. 所以z 的取值范围为1687⎛⎫⎪⎝⎭,.ba 2 1 2 4O4677A ⎛⎫ ⎪⎝⎭, (42)C ,(22)B ,。