《1.3函数的基本性质练习》导学案 数之源

合集下载

1.3函数的基本性质教学设计教案(最终5篇)

1.3函数的基本性质教学设计教案(最终5篇)

1.3函数的基本性质教学设计教案(最终5篇)第一篇:1.3 函数的基本性质教学设计教案教学准备1. 教学目标(1)理解函数的最大(小)值及其几何意义;(2)学会运用函数图象理解和研究函数的性质;2. 教学重点/难点教学重点:函数的最大(小)值及其几何意义.教学难点:利用函数的单调性求函数的最大(小)值.3. 教学用具投影仪等. 4. 标签数学,函数教学过程一、引入课题画出下列函数的图象,并根据图象解答下列问题:1、说出y=f(x)的单调区间,以及在各单调区间上的单调性;2、指出图象的最高点或最低点,并说明它能体现函数的什么特征?(1)(3)(4)二、新课教学(一)函数最大(小)值定义2)(1.最大值一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0) = M那么,称M是函数y=f(x)的最大值(Maximum Value).思考:仿照函数最大值的定义,给出函数y=f(x)的最小值(Minimum Value)的定义.(学生活动)注意:1函数最大(小)首先应该是某一个函数值,即存在x0∈I,使得f(x0) = M; 2函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x∈I,都有f(x)≤M(f(x)≥M).2.利用函数单调性的判断函数的最大(小)值的方法1)利用二次函数的性质(配方法)求函数的最大(小)值2)利用图象求函数的最大(小)值3)利用函数单调性的判断函数的最大(小)值如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);(二)典型例题例1.(教材P30例3)利用二次函数的性质确定函数的最大(小)值.解:(略)说明:对于具有实际背景的问题,首先要仔细审清题意,适当设出变量,建立适当的函数模型,然后利用二次函数的性质或利用图象确定函数的最大(小)值.巩固练习:如图,把截面半径为625px的圆形木头锯成矩形木料,如果矩形一边长为x,面积为y试将y表示成x的函数,并画出函数的大致图象,并判断怎样锯才能使得截面面积最大?例2.(新题讲解)旅馆定价一个星级旅馆有150个标准房,经过一段时间的经营,经理得到一些定价和住房率的数据如下:欲使每天的的营业额最高,应如何定价?解:根据已知数据,可假设该客房的最高价为160元,并假设在各价位之间,房价与住房率之间存在线性关系.设为为旅馆一天的客房总收入,元时,住房率为为与房价160相比降低的房价,因此当房价,于是得=150··.由于≤1,可知0≤≤90.的最大值的问题.因此问题转化为:当0≤将≤90时,求的两边同除以一个常数0.75,得1=-2+50x+17600.由于二次函数1在x=25时取得最大值,可知y也在=25时取得最大值,此时房价定位应是160-25=135(元),相应的住房率为67.5%,最大住房总收入为13668.75(元).所以该客房定价应为135元.(当然为了便于管理,定价140元也是比较合理的)例3.(教材P37例4)求函数解:(略)注意:利用函数的单调性求函数的最大(小)值的方法与格式.巩固练习:(教材P38练习4)三、归纳小结,强化思想函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:取值→作差→变形→定号→下结论四、作业布置1.书面作业:课本P45 习题1.3(A组)第6、7、8题.2、提高作业:快艇和轮船分别从A地和C地同时开出,如下图,各沿箭头方向航行,快艇和轮船的速度分别是45 km/h和15 km/h,已知AC=150km,经过多少时间后,快艇和轮船之间的距离最短?在区间[2,6]上的最大值和最小值.课堂小结归纳小结,强化思想函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:取值→作差→变形→定号→下结论课后习题1.书面作业:课本P45 习题1.3(A组)第6、7、8题.2、提高作业:快艇和轮船分别从A地和C地同时开出,如下图,各沿箭头方向航行,快艇和轮船的速度分别是45 km/h和15 km/h,已知AC=150km,经过多少时间后,快艇和轮船之间的距离最短?板书略第二篇:1.3 函数的基本性质教学设计教案教学准备1. 教学目标(1)通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;(2)学会运用函数图象理解和研究函数的性质;(3)能够熟练应用定义判断数在某区间上的的单调性.2. 教学重点/难点教学重点:函数的单调性及其几何意义.教学难点:利用函数的单调性定义判断、证明函数的单调性.3. 教学用具投影仪等. 4. 标签数学,函数教学过程一、引入课题1.观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:1 随x的增大,y的值有什么变化?2 能否看出函数的最大、最小值?3 函数图象是否具有某种对称性?2.画出下列函数的图象,观察其变化规律: 1.f(x) = x1 从左至右图象上升还是下降______?2 在区间____________ 上,随着x的增大,f(x)的值随着 ________ .2.f(x) = -2x+11 从左至右图象上升还是下降______?2 在区间____________ 上,随着x的增大,f(x)的值随着 ________ . 3.f(x) = x21 在区间 ____________ 上,f(x)的值随着x的增大而 ________ .2 在区间____________ 上, f(x)的值随着x的增大而 ________ .二、新课教学(一)函数单调性定义 1.增函数一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1思考:仿照增函数的定义说出减函数的定义.(学生活动)注意:1函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; 2必须是对于区间D内的任意两个自变量x1,x2;当x1 如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间: 3.判断函数单调性的方法步骤利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤:1 任取x1,x2∈D,且x12 作差 f(x1)-f(x2); 3变形(通常是因式分解和配方); 4定号(即判断差f(x1)-f(x2)的正负);5下结论(即指出函数f(x)在给定的区间D上的单调性).一、新课教学(一)函数单调性定义 1.增函数一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1思考:仿照增函数的定义说出减函数的定义.(学生活动)注意:1函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; 2必须是对于区间D内的任意两个自变量x1,x2;当x1 如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间:3.判断函数单调性的方法步骤利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤:1任取x1,x2∈D,且x12作差f(x1)-f(x2); 3变形(通常是因式分解和配方); 4定号(即判断差f(x1)-f(x2)的正负);5下结论(即指出函数f(x)在给定的区间D上的单调性).(二)典型例题例1.(教材P34例1)根据函数图象说明函数的单调性.解:(略)巩固练习:课本P38练习第1、2题例2.(教材P34例2)根据函数单调性定义证明函数的单调性.解:(略)巩固练习:1课本P38练习第3题; 2证明函数在(1,+∞)上为增函数.例3.借助计算机作出函数y =-x2 +2 | x | + 3的图象并指出它的的单调区间.解:(略)思考:画出反比例函数的图象.1这个函数的定义域是什么?2它在定义域I上的单调性怎样?证明你的结论.说明:本例可利用几何画板、函数图象生成软件等作出函数图象.一、归纳小结,强化思想函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:取值→作差→变形→定号→下结论二、作业布置1.书面作业:课本P45 习题1.3(A组)第1- 5题. 2.提高作业:设f(x)是定义在R上的增函数,f(xy)=f(x)+f(y),1求f(0)、f(1)的值;2若f(3)=1,求不等式f(x)+f(x-2)>1的解集.课堂小结1、归纳小结,强化思想2、函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:取值→作差→变形→定号→下结论课后习题作业布置1.书面作业:课本P45 习题1.3(A组)第1- 5题. 2.提高作业:设f(x)是定义在R上的增函数,f(xy)=f(x)+f(y),(1)求f(0)、f(1)的值;(2)若f(3)=1,求不等式f(x)+f(x-2)>1的解集.板书略第三篇:1.3函数的基本性质教学设计1.3 函数的基本性质一、教材分析函数的单调性是学生在了解函数概念后学习的函数的第一个性质,是函数学习中第一个用数学符号语言刻画的概念,为进一步学习函数其他性质提供了方法依据。

函数的基本性质教案

函数的基本性质教案

函数的基本性质教案一、教学目标1. 让学生理解函数的概念,掌握函数的基本性质,包括单调性、奇偶性、周期性等。

2. 能够运用函数的基本性质解决实际问题,提高学生的数学应用能力。

3. 培养学生的逻辑思维能力,提高学生分析问题和解决问题的能力。

二、教学内容1. 函数的概念及定义2. 函数的单调性3. 函数的奇偶性4. 函数的周期性5. 函数的基本性质在实际问题中的应用三、教学重点与难点1. 教学重点:函数的基本性质,包括单调性、奇偶性、周期性。

2. 教学难点:函数性质的证明和应用。

四、教学方法1. 采用讲授法,系统地讲解函数的基本性质。

2. 利用实例进行分析,帮助学生理解函数性质的应用。

3. 引导学生进行自主学习,培养学生的逻辑思维能力。

4. 利用小组讨论,提高学生的合作能力。

五、教学过程1. 导入:通过生活中的实例,引导学生认识函数,激发学生的学习兴趣。

2. 讲解:讲解函数的概念,定义,并引入函数的单调性、奇偶性、周期性等基本性质。

3. 分析:分析函数性质的证明方法,并通过实例进行分析,让学生理解函数性质的应用。

4. 练习:布置练习题,让学生巩固所学内容。

5. 总结:对本节课的内容进行总结,强调函数基本性质的重要性。

6. 作业布置:布置课后作业,巩固所学知识。

7. 课后辅导:针对学生学习中遇到的问题进行辅导,提高学生的学习能力。

六、教学评价1. 评价方式:采用课堂表现、课后作业和单元测试相结合的方式进行评价。

2. 评价内容:(1) 函数概念的理解和运用;(2) 函数单调性、奇偶性、周期性的理解和证明;(3) 函数性质在实际问题中的应用能力。

七、教学资源1. 教材:《数学分析》;2. 教学课件;3. 实例素材;4. 练习题库;5. 课后辅导资料。

八、教学进度安排1. 第1周:讲解函数的概念及定义;2. 第2周:讲解函数的单调性;3. 第3周:讲解函数的奇偶性;4. 第4周:讲解函数的周期性;5. 第5周:函数性质在实际问题中的应用。

龙涤中学1.3函数的基本性质导学案

龙涤中学1.3函数的基本性质导学案

龙涤中学 数学 学科导学案2013—2014学年度第一学期高( 一 )年级 编号:主备人: 纪伟 审核人:__ ____审批人:_ __ ___使用时间:_ ______课题:1.3.1函数的单调性 班级: 学生姓名:【三维目标】知识与技能:(1)理解函数单调性的定义、明确增函数、减函数的图象特征;(2)能利用函数图象划分函数的单调区间,并能利用定义进行证明。

过程与方法:由一元一次函数、一元二次函数的图象,让学生从图象获得“上升”“下降”的整体认识;利用函数对应的表格,用自然语言描述图象特征“上升”“下降”最后运用数学符号将自然语言的描述提升到形式化的定义,从而构造函数单调性的概念。

情感态度与价值观:在形与数的结合中感知数学的内在美,在图形语言、自然语言、数学语言的转化中感知数学的严谨美。

【重点难点】重点:理解增函数、减函数的概念。

难点:单调性概念的形成与应用。

【使用说明】环节一:【问题导学】(所用时间:10分钟)1.观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:○1 随x 的增大,y 的值有什么变化? ○2 能否看出函数的最大、最小值? ○3 函数图象是否具有某种对称性? 2.画出下列函数的图象,观察其变化规律: (1)f(x) = x○1 从左至右图象上升还是下降 ______? ○2 在区间 ____________ 上,随着x 的增大,f(x)的值随着 ________(2)f(x) = -2x+1○1 从左至右图象上升还是下降 ______?○2 在区间 ____________ 上,随着x 的增大,f(x)的值随着 ________。

(3)f(x) = x 2○1 在区间 ____________ 上,f(x)的值随着x 的增大而 ________。

○2 在区间 ____________ 上,f(x)的值随着x 的增大而 ________ 。

【方法点拨】【我的疑问】环节二:【合作探究】(所用时间:15分钟)1.增函数:一般地,设函数y=f(x)的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说f(x)在区间D 上是增函数。

高中数学人教A版必修1学案:1.3.1函数的基本性质课堂导学案(含答案)

高中数学人教A版必修1学案:1.3.1函数的基本性质课堂导学案(含答案)

1.3.1 函数的基本性质课堂导学三点剖析 一、函数单调性 【例1】 证明函数y=x-x1在(0,+∞)上单调递增. 思路分析:作为证明单调性的要求,不能只作简单定性分析,还要用定义严格证明.证明:设任意x 1、x 2∈(0,+∞)且x 1<x 2,则 f(x 1)-f(x 2)=x 1-11x -(x 2-21x )=(x 1-x 2)+21x -11x =(x 1-x 2)+2121)(x x x x =(x 1-x 2)(1+211x x ).∵0<x 1<x 2, ∴x 1-x 2<0,x 1x 2>0,1+211x x >0. 因此(x 1-x 2)(1+1x 1x 2)<0, ∴f(x 1)-f(x 2)<0,即f(x 1)<f(x 2). ∴f(x)=x-x1在(0,+∞)上单调递增. 温馨提示1.函数单调性的证明不同于对它判断,应严格按单调性定义加以证明.2.利用定义证明单调性,一般要遵循:(1)取值(任取给定区间上两个自变量);(2)作差变形〔将f(x 1)-f(x 2)进行代数恒等变形,一般要出现乘积形式,且有(x 1-x 2)的因式〕;(3)判断符号(根据条件判断差式的正负);(4)得出结论.3.有时需要通过观察函数的图象,先对函数是否具有某种性质做出猜想,然后通过逻辑推理,证明这种猜想的正确性,这是研究函数性质的一种常用方法. 【例2】 f(x)是二次函数,且在x=1处取得最值,又f(2)<f(π),试判断f(-2)与f(2)的大小.思路分析:解决此题的关键是将f(-2)与f(2)置于某一单调区间内再进行比较大小.解:由于f(x)是二次函数,且在x=1处取得最值,因此x=1是二次函数的对称轴.又∵1<2<π,f(2)<f(π),可以得f(x)在[1,+∞)上单调递增,∴二次函数的图象开口方向向上,f(x)在(-∞,1)上单调递减. 由于0与2关于x=1对称,∴f(2)=f(0). ∵-2<0,∴f(-2)>f(0),即f(-2)>f(2). 温馨提示利用函数的单调性比较两函数值的大小,关键是将所比较的数值对应的自变量转化到同一单调区间上,才能进行比较. 二、函数的最值【例3】 求f(x)=x+1-x 的最小值.思路分析:该题函数f(x)由x 与1-x 相加构成,x 与1-x 具有相同的单调性,因此该题可借助单调性直接解决,同时由于x 的次数不一致,出现了相当于2倍的关系,因此该题也可先转化为二次函数再利用二次函数的单调性解决. 解法一:f(x)=x+1-x 的定义域为[1,+∞],在[1,+∞]上x 、1-x 同时单调递增,因此f(x)=x+1-x 在[1,+∞]上单调递增,最小值为f(1)=1+11-=1. 解法二:f(x)=x+1-x 的定义域为[1,+∞],令1-x =t ≥0,x=t 2+1, ∴f(x)=g(t)=t 2+1+t=t 2+t+1=(t+21)2+43(t ≥0).由于g(t)的对称轴t=-21在[0,+∞)的左侧,g(t)的开口方向向上,如右图所示.二次函数在[0,+∞)上单调递增,当t=0时,g(t)min =1,∴f(x)的最小值为1. 温馨提示1.本题的两种解法都是利用函数的单调性求最值,其中解法二是利用换元法,将原函数转化为已知二次函数在给定区间上的最值问题,该方法要特别注意正确确定中间变量的取值范围.2.利用单调性求最值,其规律为:若f(x)在[a,b ]上单调递增,则f(a)≤f(x)≤f(b),即最大值为f(b),最小值为f(a);若f(x)在[a,b ]上单调递减,则f(b)≤f(x)≤f(a),即最大值为f(a),最小值为f(b). 三、函数单调性的应用【例4】 (1)若函数f(x)=x 2+2(a-1)x+2在区间(-∞,4]上是减函数,求实数a 的取值范围; (2)y=kx 2-32x+1在[0,+∞)上单调递减,求实数k 的取值范围. 思路分析:(1)二次函数的单调区间依赖于其对称轴的位置,处理二次函数的单调性问题需对对称轴进行讨论.(2)y=kx 2-32x+1中的k 是否为零要注意讨论. 解:(1)f(x)=x 2+2(a-1)x+2,其对称轴为x=12)1(2⨯--a =1-a ,若要二次函数在(-∞,4]上单调递减,必须满足1-a ≥4,即a ≤-3.如图所示.(2)k=0时,y=-32x+1满足题意;k>0时,抛物线开口向上,在[0,+∞)上不可能单调递减;k<0时,对称轴x=k31<0在[0,+∞]上单调递减.综上,k ≤0. 温馨提示f(x)在(-∞,4]上是减函数,只说明区间(-∞,4]是函数f(x)在定义域上单调递减区间的一个子集. 各个击破 类题演练1证明二次函数f(x)=ax 2+bx+c(a<0)在区间(-∞,-ab2)上是增函数.证明:设x 1、x 2∈(-∞,-ab 2),且x 1<x,则f(x 1)-f(x 2)=ax 12+bx 1-ax 22-bx 2=(x 1-x 2)[a(x 1+x 2)+b ]. ∵x 1,x 2∈(-∞,-ab2), ∴x 1+x 2<-ab,∴a(x 1+x 2)>-b, ∴a(x 1+x 2)+b>0. ∵x 1-x 2<0,∴f(x 1)-f(x 2)<0,即f(x 1)<f(x 2). ∴y=ax 2+bx+c 在(-∞,-ab2]上单调递增. 变式提升1 若函数f(x)=x+x1定义在(0,+∞)上,试讨论函数的单调区间. 解析:设任意x 1、x 2∈(0,+∞)且x 1<x 2, 则f(x 1)-f(x 2)=x 1+11x -(x 2+21x ) =(x 1-x 2)+2112x x x x - =(x 1-x 2)(1-211x x ) =(x 1-x 2)·21211x x x x -. 由于x 1-x 2<0,x 1x 2>0,只有x 1x 2-1>0或x 1x 2-1<0时,f(x)才具有单调性,而显然0<x 1<x 2≤1时,有x 1x 2<1,x 1x 2-1<0,f(x 1)-f(x 2)>0,即f(x 1)>f(x 2).∴f(x)在(0,1)上单调递减. 当1≤x 1<x 2时,则有x 1x 2>1,从而x 1x 2-1>0,f(x 1)-f(x 2)<0,即f(x 1)<f(x 2).∴f(x)在[1,+∞]上单调递增.当0<x 1<1<x 2时,x 1x 2与1的大小关系无法确定,在(0,+∞)上不具备单调性. 综上,f(x)在(0,1)上单调递减,在[1,+∞]上单调递增. 类题演练2f(x)在(0,+∞)上单调递减,那么f(a 2-a+1)与f(21)的大小关系是_______________. 解析:∵a 2-a+1=(a-21)2+43>21, 又∵f(x)在(0,+∞)上单调递减,∴f(a 2-a+1)<f(21). 答案:f(a 2-a+1)<f(21)变式提升2如果函数f(x)=x 2+bx+c 对任意实数t 都有f (2+t )=f(2-t),比较f(1),f(2),f(4)的大小.解析:∵f(2+t)=f(2-t), ∴f(x)的对称轴为x=2.故f(x)在[2,+∞]上是增函数,且f(1)=f(3). ∴f(2)<f(3)<f(4), 即f(2)<f(1)<f(4). 类题演练3已知函数f(x)=xx x 2122++,x∈[1,+∞],求函数f(x)的最小值.解析:f(x)=x+x21+2, 设1≤x 1<x 2,f(x 2)-f(x 1)=(x 2-x 1)(1-2121x x ). 2x 1x 2>1,0<2121x x <1,得1-2121x x >0,又x 2-x 1>0,∴f(x 2)-f(x 1)>0,f(x 1)<f(x 2),∴f(x)在区间[1,+∞]上为增函数, ∴f(x)在区间[1,+∞]上的最小值为f(1)=27. 变式提升3求函数f(x)=-x 2+2ax+1在[0,2]上的最大值.解析:f(x)=-x 2+2ax+1=-(x 2-2ax+a 2)+a 2+1=-(x-a)2+a 2+1.由于f(x)的对称轴x=a 对于[0,2]有三种位置关系,如下图所示.当a<0时,f(x)在[0,2]上单调递减,则最大值为f(0)=1;当0≤a≤2时,x=a∈[0,2],则最大值在顶点处取得,为f(a)=a 2+1; 当a>2时,f(x)在[0,2]上单调递增,则最大值为f(2)=4a-3. 综上,f(x)在[0,2]上的最大值为g(a)=⎪⎩⎪⎨⎧>-≤≤+<.2,34,20,1,0,12a a a a a 类题演练4二次函数y=x 2+mx+4在(-∞,-1]上是减函数,在[-1,+∞)上是增函数,则: (1)m 的值是多少?(2)此函数的最小值是多大?解析:(1)由于y=x 2+mx+4在(-∞,-1]上是减函数,在[-1,+∞)上是增函数,∴其对称轴为x=-1,故m=2. (2)y min =3. 变式提升4已知f(x)=21++x ax 在区间(-2,+∞)上单调递增,求a 的取值范围. 解析:f(x)=21++x ax=221)2(+-++x a x a=a+221+-x a.∴y-a=221+-x a 与y ′='x k比较,知f (x )要在区间(-2,+∞)上单调递增只须1-2a<0即可.∴a>21. 温馨提示本题关键是将它化为y=m+cx n型,再根据函数y=x k 的单调性来考虑a 应满足的条件,从而求出a 的取值.。

高中数学必修一新教材第3章 函数的概念与性质导学案

高中数学必修一新教材第3章  函数的概念与性质导学案

第三章函数的概念与性质3.1函数的概念及其表示3.1.1函数的概念1.函数的概念对吗?(2)f(x)与f(a)有何区别与联系?提示:(1)这种看法不对.符号y=f(x)是“y是x的函数”的数学表示,应理解为x是自变量,它是关系所施加的对象;f是对应关系,它可以是一个或几个解析式,可以是图象、表格,也可以是文字描述;y 是自变量的函数,当x 允许取某一具体值时,相应的y 值为与该自变量值对应的函数值.y =f (x )仅仅是函数符号,不表示“y 等于f 与x 的乘积”.在研究函数时,除用符号f (x )外,还常用g (x ),F (x ),G (x )等来表示函数.(2)f (x )与f (a )的区别与联系:f (a )表示当x =a 时,函数f (x )的值,是一个常量,而f (x )是自变量x 的函数,一般情况下,它是一个变量,f (a )是f (x )的一个特殊值,如一次函数f (x )=3x +4,当x =8时,f (8)=3×8+4=28是一个常数.2.区间及有关概念 (1)一般区间的表示设a ,b ∈R ,且a <b ,规定如下:(2)“∞”是数吗?如何正确使用“∞”?提示:(1)不是任何数集都能用区间表示,如集合{0}就不能用区间表示. (2)“∞”读作“无穷大”,是一个符号,不是数.以“-∞”或“+∞”作为区间一端时,这一端必须是小括号.1.函数y =1x +1的定义域是( ) A .[-1,+∞) B .[-1,0) C .(-1,+∞) D .(-1,0) 2.若f (x )=11-x 2,则f (3)=________. 3.用区间表示下列集合:(1){x |10≤x ≤100}用区间表示为________;(2){x|x>1}用区间表示为________.函数的概念【例1】(1)下列各组函数是同一函数的是()①f(x)=-2x3与g(x)=x-2x;②f(x)=x与g(x)=x2;③f(x)=x0与g(x)=1x0;④f(x)=x2-2x-1与g(t)=t2-2t-1.A.①②B.①③C.③④D.①④(2)判断下列对应是不是从集合A到集合B的函数.①A=N,B=N*,对应法则f:对集合A中的元素取绝对值与B中元素对应;②A={-1,1,2,-2},B={1,4},对应法则f:x→y=x2,x∈A,y∈B;③A={-1,1,2,-2},B={1,2,4},对应法则f:x→y=x2,x∈A,y∈B;④A={三角形},B={x|x>0},对应法则f:对A中元素求面积与B中元素对应.1.判断对应关系是否为函数的2个条件(1)A,B必须是非空实数集.(2)A中任意一元素在B中有且只有一个元素与之对应.对应关系是“一对一”或“多对一”的是函数关系,“一对多”的不是函数关系.2.判断函数相等的方法(1)先看定义域,若定义域不同,则不相等;(2)若定义域相同,再化简函数的解析式,看对应关系是否相同.1.下列四个图象中,不是函数图象的是()A B C D2.下列各组函数中是相等函数的是()A .y =x +1与y =x 2-1x -1 B .y =x 2+1与s =t 2+1C .y =2x 与y =2x (x ≥0)D .y =(x +1)2与y =x 2 求函数值【例2】 设f (x )=2x 2+2,g (x )=1x +2, (1)求f (2),f (a +3),g (a )+g (0)(a ≠-2),g (f (2)). (2)求g (f (x )).[思路点拨] (1)直接把变量的取值代入相应函数解析式,求值即可; (2)把f (x )直接代入g (x )中便可得到g (f (x )).函数求值的方法(1)已知f (x )的表达式时,只需用a 替换表达式中的x 即得f (a )的值. (2)求f (g (a ))的值应遵循由里往外的原则.3.已知f (x )=x 3+2x +3,求f (1),f (t ),f (2a -1)和f (f (-1))的值. 求函数的定义域[探究问题]1.已知函数的解析式,求其定义域时,能否可以对其先化简再求定义域? 提示:不可以.如f (x )=x +1x 2-1.倘若先化简,则f (x )=1x -1,从而定义域与原函数不等价.2.若函数y =f (x +1)的定义域是[1,2],这里的“[1,2]”是指谁的取值范围?函数y =f (x )的定义域是什么?提示:[1,2]是自变量x 的取值范围. 函数y =f (x )的定义域是x +1的范围[2,3]. 【例3】 求下列函数的定义域:(1)f(x)=2+3x-2;(2)f(x)=(x-1)0+2x+1;(3)f(x)=3-x·x-1;(4)f(x)=(x+1)2x+1-1-x.[思路点拨]要求函数的定义域,只需分母不为0,偶次方根中被开方数大于等于0即可.(变结论)在本例求函数定义域的常用方法(1)若f(x)是分式,则应考虑使分母不为零.(2)若f(x)是偶次根式,则被开方数大于或等于零.(3)若f(x)是指数幂,则函数的定义域是使幂运算有意义的实数集合.(4)若f(x)是由几个式子构成的,则函数的定义域是几个部分定义域的交集.(5)若f(x)是实际问题的解析式,则应符合实际问题,使实际问题有意义.1.对于用关系式表示的函数.如果没有给出定义域,那么就认为函数的定义域是指使函数表达式有意义的自变量取值的集合.这也是求某函数定义域的依据.2.函数的定义主要包括定义域和定义域到值域的对应法则,因此,判定两个函数是否相同时,就看定义域和对应法则是否完全一致,完全一致的两个函数才算相同.3.函数符号y=f(x)是学习的难点,它是抽象符号之一.首先明确符号“y=f(x)”为y是x的函数,它仅仅是函数符号,不是表示“y等于f与x的乘积”.1.思考辨析(1)区间表示数集,数集一定能用区间表示.()(2)数集{x|x≥2}可用区间表示为[2,+∞].()(3)函数的定义域和对应关系确定后,函数的值域也就确定了.()(4)函数值域中每一个数在定义域中一定只有一个数与之对应.()(5)函数的定义域和值域一定是无限集合.( ) 2.下列函数中,与函数y =x 相等的是( )A .y =(x )2B .y =x 2C .y =|x |D .y =3x 3 3.将函数y =31-1-x的定义域用区间表示为________.4.已知函数f (x )=x +1x , (1)求f (x )的定义域; (2)求f (-1),f (2)的值;(3)当a ≠-1时,求f (a +1)的值.3.1.2 函数的表示法 第1课时 函数的表示法函数的表示法思考:任何一个函数都可以用解析法、列表法、图表法三种形式表示吗? 提示:不一定.并不是所有的函数都可以用解析式表示,不仅如此,图象法也不适用于所有函数,如D (x )=⎩⎨⎧0,x ∈Q ,1,x ∈∁R Q .列表法虽在理论上适用于所有函数,但对于自变量有无数个取值的情况,列表法只能表示函数的一个概况或片段.1.已知函数f (x )由下表给出,则f (3)等于( )2.二次函数的图象的顶点为(0,-1),对称轴为y 轴,则二次函数的解析式可以为( )A .y =-14x 2+1B .y =14x 2-1 C .y =4x 2-16 D .y =-4x 2+16 3.已知函数y =f (x )的图象如图所示,则其定义域是______.函数的三种表示方法【例1】 某商场新进了10台彩电,每台售价3 000元,试求售出台数x 与收款数y 之间的函数关系,分别用列表法、图象法、解析法表示出来.列表法、图象法和解析法是从三个不同的角度刻画自变量与函数值的对应关系,同一个函数可以用不同的方法表示.在用三种方法表示函数时要注意:①解析法必须注明函数的定义域;②列表法中选取的自变量要有代表性,应能反映定义域的特征;③图象法中要注意是否连线.1.(1)某学生离家去学校,一开始跑步前进,跑累了再走余下的路程.下列图中纵轴表示离校的距离,横轴表示出发后的时间,则较符合该学生走法的是( )A B C D(2)由下表给出函数y=f(x),则f(f(1))等于()图象的画法及应用【例2】作出下列函数的图象并求出其值域.(1)y=-x,x∈{0,1,-2,3};(2)y=2x,x∈[2,+∞);(3)y=x2+2x,x∈[-2,2).描点法作函数图象的三个关注点(1)画函数图象时首先关注函数的定义域,即在定义域内作图.(2)图象是实线或实点,定义域外的部分有时可用虚线来衬托整个图象.(3)要标出某些关键点,例如图象的顶点、端点、与坐标轴的交点等.要分清这些关键点是实心点还是空心圈.提醒:函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等.2.画出下列函数的图象:(1)y=x+1(x≤0);(2)y=x2-2x(x>1,或x<-1).函数解析式的求法[探究问题]已知f(x)的解析式,我们可以用代入法求f(g(x)),反之,若已知f(g(x)),如何求f(x).提示:若已知f(g(x))的解析式,我们可以用换元法或配凑法求f(x).【例3】(1)已知f(x+1)=x-2x,则f(x)=________;(2)已知函数f(x)是一次函数,若f(f(x))=4x+8,则f(x)=________;(3)已知函数f(x)对于任意的x都有f(x)-2f(-x)=1+2x,则f(x)=________.[思路点拨](1)用换元法或配凑法求解;(2)用待定系数法求解;(3)用方程组法求解.1.(变条件求函数解析式的四种常用方法(1)待定系数法:若已知f(x)的解析式的类型,设出它的一般形式,根据特殊值确定相关的系数即可.(2)换元法:设t=g(x),解出x,代入f(g(x)),求f(t)的解析式即可.(3)配凑法:对f(g(x))的解析式进行配凑变形,使它能用g(x)表示出来,再用x 代替两边所有的“g(x)”即可.(4)方程组法(或消元法):当同一个对应关系中的两个之间有互为相反数或互为倒数关系时,可构造方程组求解.提醒:应用换元法求函数解析式时,务必保证函数在换元前后的等价性.1.函数有三种常用的表示方法,可以适时的选择,以最佳的方式表示函数.2.作函数图象必须要让作出的图象反映出图象的伸展方向,与x轴、y轴有无交点,图象有无对称性,并标明特殊点.3.求函数解析式的主要方法有:代入法、待定系数法、换元法、解方程组法(消元法),注意有的函数要注明定义域.1.思考辨析(1)任何一个函数都可以用解析法表示.()(2)函数的图象一定是定义区间上一条连续不断的曲线.()2.已知函数f(x+1)=3x+2,则f(x)的解析式是()A.f(x)=3x-1B.f(x)=3x+1 C.f(x)=3x+2 D.f(x)=3x+43.已知函数f(x),g(x)分别由下表给出.4.已知函数f(x)=x2-2x(-1≤x≤2).(1)画出f(x)图象的简图;(2)根据图象写出f(x)的值域.第2课时分段函数分段函数如果函数y=f(x),x∈A,根据自变量x在A中不同的取值范围,有着不同的对应关系,则称这样的函数为分段函数.思考:分段函数是一个函数还是几个函数? 提示:分段函数是一个函数,而不是几个函数.1.下列给出的式子是分段函数的是( )①f (x )=⎩⎨⎧x 2+1,1≤x ≤5,2x ,x <1.②f (x )=⎩⎨⎧ x +1,x ∈R ,x 2,x ≥2.③f (x )=⎩⎨⎧ 2x +3,1≤x ≤5,x 2,x ≤1.④f (x )=⎩⎨⎧x 2+3,x <0,x -1,x ≥5.A .①②B .①④C .②④D .③④ 2.函数y =⎩⎨⎧x ,x ≥0,-x ,x <0的值域是________.3.函数f (x )=⎩⎨⎧x +1,x ≤1,-x +3,x >1,则f (f (4))=________.分段函数的求值问题【例1】已知函数f (x )=⎩⎨⎧x +1,x ≤-2,x 2+2x ,-2<x <2,2x -1,x ≥2.(1)求f (-5),f (-3),f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫-52的值;(2)若f (a )=3,求实数a 的值.1.分段函数求函数值的方法:(1)确定要求值的自变量属于哪一段区间.(2)代入该段的解析式求值,直到求出值为止.当出现f (f (x 0))的形式时,应从内到外依次求值.2.已知函数值求字母取值的步骤: (1)先对字母的取值范围分类讨论. (2)然后代入不同的解析式中. (3)通过解方程求出字母的值.(4)检验所求的值是否在所讨论的区间内.提醒:求某条件下自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后相应求出自变量的值,切记代入检验.1.函数f (x )=⎩⎨⎧x -3,x ≥10,f (f (x +5)),x <10,则f (7)=________.分段函数的解析式【例2】 如图所示,已知底角为45°的等腰梯形ABCD ,底边BC 长为7 cm ,腰长为2 2 cm ,当垂直于底边BC (垂足为F )的直线l 从左至右移动(与梯形ABCD 有公共点)时,直线l 把梯形分成两部分,令BF =x ,试写出左边部分的面积y 关于x 的函数解析式,并画出大致图象.[思路点拨] 可按点E 所在的位置分E 在线段AB ,E 在线段AD 及E 在线段CD 三类分别求解.1.当目标在不同区间有不同的计算表达方式时,往往需要用分段函数模型来表示两变量间的对应关系,而分段函数图象也需要分段画.2.通过本例让学生初步尝试用分段函数解决实际问题的意识,培养学生的建模素养.2.某市“招手即停”公共汽车的票价按下列规则制定: (1)5公里以内(含5公里),票价2元;(2)5公里以上,每增加5公里,票价增加1元(不足5公里按照5公里计算). 如果某条线路的总里程为20公里,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象.分段函数的图象及应用[探究问题]1.函数f (x )=|x -2|能用分段函数的形式表示吗?能否作出其图象? 提示:能.f (x )=⎩⎨⎧x -2,x ≥2,2-x ,x <2.函数f (x )的图象如图所示.2.结合探究点1,你能说一下画含有绝对值的函数图象的方法吗? 提示:含有绝对值的函数,要作出其图象,首先应根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,然后分段作出函数图象.【例3】 已知函数f (x )=1+|x |-x2(-2<x ≤2). (1)用分段函数的形式表示f (x ); (2)画出f (x )的图象; (3)写出函数f (x )的值域.[思路点拨] (1)分-2<x <0和0≤x ≤2两种情况讨论,去掉绝对值可把f (x )写成分段函数的形式;(2)利用(1)的结论可画出图象;(3)由(2)中得到的图象,找到图象最高点和最低点的纵坐标,可得值域.把本例条件改为“分段函数图象的画法作分段函数的图象时,分别作出各段的图象,在作每一段图象时,先不管定义域的限制,作出其图象,再保留定义域内的一段图象即可,作图时要特别注意接点处点的虚实,保证不重不漏.1.分段函数是一个函数,而不是几个函数.2.分段函数求值要先找准自变量所在的区间;分段函数的定义域、值域分别是各段函数的定义域、值域的并集.3.分段函数的图象分段函数有几段,它的图象就由几条曲线组成.在同一直角坐标系中,根据分段函数每段的定义区间和表达式依次画出图象,要注意确定每段图象的端点是空心点还是实心点,各段函数图象组合到一起就可得到整个分段函数的图象.1.思考辨析(1)分段函数由几个函数构成.( )(2)函数f (x )=⎩⎨⎧x +1,x ≤1,-x +3,x >1是分段函数.( )2.设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x,x >1,则f (f (3))=( )A.15 B .3 C.23 D.1393.函数y =f (x )的图象如图所示,则其解析式为________.4.已知f (x )=⎩⎨⎧x 2,-1≤x ≤1,1,x >1或x <-1.(1)画出f (x )的图象; (2)求f (x )的定义域和值域.3.2 函数的基本性质 3.2.1 单调性与最大(小)值 第1课时 函数的单调性1.增函数与减函数的定义12提示:定义中的x1,x2有以下3个特征:(1)任意性,即“任意取x1,x2”中“任意”二字绝不能去掉,证明时不能以特殊代替一般;(2)有大小,通常规定x1<x2;(3)属于同一个单调区间.2.函数的单调性与单调区间如果函数y=f(x)在区间D上单调递增或单调递减,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.思考2:函数y=1x在定义域上是减函数吗?提示:不是.y =1x 在(-∞,0)上递减,在(0,+∞)上也递减,但不能说y =1x 在(-∞,0)∪(0,+∞)上递减.1.函数y =f (x )的图象如图所示,其增区间是( ) A .[-4,4] B .[-4,-3]∪[1,4] C .[-3,1] D .[-3,4]2.下列函数中,在区间(0,+∞)上是减函数的是( ) A .y =-1x B .y =x C .y =x 2 D .y =1-x 3.函数f (x )=x 2-2x +3的单调减区间是________. 求函数的单调区间【例1】 求下列函数的单调区间,并指出该函数在其单调区间上是增函数还是减函数.(1)f (x )=-1x ;(2)f (x )=⎩⎨⎧2x +1,x ≥1,5-x ,x <1;(3)f (x )=-x 2+2|x |+3.求函数单调区间的方法(1)利用基本初等函数的单调性,如本例(1)和(2),其中分段函数的单调区间要根据函数的自变量的取值范围分段求解;(2)利用函数的图象,如本例(3).提醒:若所求出函数的单调增区间或单调减区间不唯一,函数的单调区间之间要用“,”隔开,如本例(3).1.(1)根据如图所示,写出函数在每一单调区间上函数是增函数还是减函数;(2)写出y =|x 2-2x -3|的单调区间. 函数单调性的判定与证明【例2】 证明函数f (x )=x +1x 在(0,1)上是减函数. [思路点拨] 设元0<x 1<x 2<1―→作差:f (x 1)-f (x 2) ――→变形判号:f (x 1)>f (x 2)――→结论减函数利用定义证明函数单调性的步骤(1)取值:设x 1,x 2是该区间内的任意两个值,且x 1<x 2.(2)作差变形:作差f (x 1)-f (x 2),并通过因式分解、通分、配方、有理化等手段,转化为易判断正负的式子.(3)定号:确定f (x 1)-f (x 2)的符号.(4)结论:根据f (x 1)-f (x 2)的符号及定义判断单调性.提醒:作差变形是证明单调性的关键,且变形的结果是几个因式乘积的形式.2.试用函数单调性的定义证明:f (x )=2x x -1在(1,+∞)上是减函数.函数单调性的应用[探究问题]1.若函数f (x )是其定义域上的增函数,且f (a )>f (b ),则a ,b 满足什么关系.如果函数f (x )是减函数呢?提示:若函数f (x )是其定义域上的增函数,那么当f (a )>f (b )时,a >b ;若函数f (x )是其定义域上的减函数,那么当f (a )>f (b )时,a <b .2.决定二次函数f (x )=ax 2+bx +c 单调性的因素有哪些? 提示:开口方向和对称轴的位置,即字母a 的符号及-b2a 的大小.【例3】 (1)若函数f (x )=-x 2-2(a +1)x +3在区间(-∞,3]上是增函数,则实数a 的取值范围是________.(2)已知函数y =f (x )是(-∞,+∞)上的增函数,且f (2x -3)>f (5x -6),则实数x 的取值范围为________.[思路点拨] (1)分析f (x )的对称轴与区间的关系――→数形结合建立关于a 的不等式――→ 求a 的范围(2)f (2x -3)>f (5x -6)――――――――――――――――→f (x )在(-∞,+∞)上是增函数建立关于x 的不等式――→ 求x 的范围1.(变条件函数单调性的应用(1)函数单调性定义的“双向性”:利用定义可以判断、证明函数的单调性,反过来,若已知函数的单调性可以确定函数中参数的取值范围.(2)若一个函数在区间[a ,b ]上是单调的,则此函数在这一单调区间内的任意子集上也是单调的.1.定义单调性时应强调x 1,x 2在其定义域内的任意性,其本质是把区间上无限多个函数值的大小比较转化为两个任意值的大小比较.2.证明函数的单调性(利用定义)一定要严格遵循设元、作差、变形、 定号、结论的步骤,特别在变形上,一定要注意因式分解、配方等技巧的运用,直到符号判定水到渠成才可.3. 已知函数单调性求参数的范围时,要树立两种意识:一是等价转化意识, 如f (x )在D 上递增,则f (x 1)<f (x 2)⇔x 1<x 2.二是数形结合意识,如处理一(二)次函数及反比例函数中的含参数的范围问题.1.思考辨析(1)所有的函数在其定义域上都具有单调性.( )(2)若函数y =f (x )在区间[1,3]上是减函数,则函数y =f (x )的单调递减区间是[1,3].( )(3)函数f (x )为R 上的减函数,则f (-3)>f (3).( )(4)若函数y =f (x )在定义域上有f (1)<f (2),则函数y =f (x )是增函数.( ) (5)若函数f (x )在(-∞,0)和(0,+∞)上单调递减,则f (x )在(-∞,0)∪(0,+∞)上单调递减.( )2.如图是定义在区间[-5,5]上的函数y =f (x ),则下列关于函数f (x )的说法错误的是( )A .函数在区间[-5,-3]上单调递增B .函数在区间[1,4]上单调递增C .函数在区间[-3,1]∪[4,5]上单调递减D .函数在区间[-5,5]上没有单调性 3.如果函数f (x )=x 2-2bx +2在区间[3,+∞)上是增函数,则b 的取值范围为( )A .b =3B .b ≥3C .b ≤3D .b ≠3 4.证明:函数y =x x +1在(-1,+∞)上是增函数.第2课时 函数的最大(小)值函数最大值与最小值提示:不一定,只有定义域内存在一点x0,使f(x0)=M时,M才是函数的最大值,否则不是.1.函数y=f(x)在[-2,2]上的图象如图所示,则此函数的最小值、最大值分别是()A.-1,0B.0,2 C.-1,2 D.12,22.设函数f(x)=2x-1(x<0),则f(x)()A.有最大值B.有最小值C.既有最大值又有最小值D.既无最大值又无最小值3.函数f(x)=1x,x∈[1,2],则f(x)的最大值为________,最小值为________.利用函数的图象求函数的最值(值域)【例1】 已知函数f (x )=⎩⎨⎧3-x 2,x ∈[-1,2],x -3,x ∈(2,5].(1)在直角坐标系内画出f (x )的图象;(2)根据函数的图象写出函数的单调区间和值域.利用图象求函数最值的方法 (1)画出函数y =f (x )的图象;(2)观察图象,找出图象的最高点和最低点;(3)写出最值,最高点的纵坐标是函数的最大值,最低点的纵坐标是函数的最小值.1.已知函数f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤1,1x ,x >1,求f (x )的最大值、最小值.利用函数的单调性求最值(值域)【例2】 已知函数f (x )=2x +1x +1. (1)判断函数在区间(-1,+∞)上的单调性,并用定义证明你的结论; (2)求该函数在区间[2,4]上的最大值和最小值.1.利用单调性求函数的最大(小)值的一般步骤 (1)判断函数的单调性. (2)利用单调性求出最大(小)值. 2.函数的最大(小)值与单调性的关系(1)若函数f (x )在区间[a ,b ]上是增(减)函数,则f (x )在区间[a ,b ]上的最小(大)值是f (a ),最大(小)值是f (b ).(2)若函数f (x )在区间[a ,b ]上是增(减)函数,在区间[b ,c ]上是减(增)函数,则f (x )在区间[a ,c ]上的最大(小)值是f (b ),最小(大)值是f (a )与f (c )中较小(大)的一个.提醒:(1)求最值勿忘求定义域.(2)闭区间上的最值,不判断单调性而直接将两端点值代入是最容易出现的错误,求解时一定注意.2.求函数f(x)=x+4x在[1,4]上的最值.函数最值的实际应用【例3】一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x(x∈N*)件.当x≤20时,年销售总收入为(33x-x2)万元;当x>20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y万元.(年利润=年销售总收入-年总投资)(1)求y(万元)与x(件)的函数关系式;(2)当该工厂的年产量为多少件时,所得年利润最大?最大年利润是多少?解实际应用题的四个步骤(1)审题:解读实际问题,找出已知条件、未知条件,确定自变量和因变量的条件关系.(2)建模:建立数学模型,列出函数关系式.(3)求解:分析函数性质,利用数学知识探究问题解法(一定注意自变量的取值范围).(4)回归:数学问题回归实际问题,写出答案.3.将进货单价为40元的商品按50元一个出售时,能卖出500个,已知这种商品每涨价1元,其销售量就减少10个,为得到最大利润,售价应为多少元?最大利润为多少?二次函数的最值问题[探究问题]1.二次函数f (x )=ax 2+bx +c (a >0)的对称轴与区间[m ,n ]可能存在几种位置关系,试画草图给予说明?提示:2.求二次函数f (x )=ax 2+bx +c 在[m ,n ]上的最值,应考虑哪些因素? 提示:若求二次函数f (x )在[m ,n ]上的最值,应考虑其开口方向及对称轴x =-b2a 与区间[m ,n ]的关系.【例4】 已知函数f (x )=x 2-ax +1,求f (x )在[0,1]上的最大值. [思路点拨] f (x )=x 2-ax +1――→分类讨论分析x =a 2与[0,1]的关系――→数形结合求f (x )的最大值1.在题设条件不变的情况下,求f (x )在[0,1]上的最小值.2.在本例条件不变的情况下,若a =1,求f (x )在[t ,t +1](t ∈R )上的最小值.二次函数在闭区间上的最值设f (x )=ax 2+bx +c (a >0),则二次函数f (x )在闭区间[m ,n ]上的最大值、最小值有如下的分布情况:1.函数的最大(小)值,包含两层意义:一是存在,二是在给定区间上所有函数值中最大(小)的,反映在函数图象上,函数的图象有最高点或最低点.2.求函数的最值与求函数的值域类似,常用的方法是:(1)图象法,即画出函数的图象,根据图象的最高点或最低点写出最值;(2)单调性法,一般需要先确定函数的单调性,然后根据单调性的意义求出最值;(3)对于二次函数还可以用配方法研究,同时灵活利用数形结合思想和分类讨论思想解题.3.通过函数最值的学习,渗透数形结合思想,树立以形识数的解题意识.1.思考辨析(1)任何函数都有最大(小)值.()(2)函数f(x)在[a,b]上的最值一定是f(a)(或f(b)).()(3)函数的最大值一定比最小值大.()2.函数y=x2-2x,x∈[0,3]的值域为()A.[0,3]B.[-1,0] C.[-1,+∞)D.[-1,3]3.函数y=ax+1在区间[1,3]上的最大值为4,则a=______.4.已知函数f(x)=2x-1(x∈[2,6]).(1)判断函数f(x)的单调性,并证明;(2)求函数的最大值和最小值.3.2.2 奇偶性 第1课时 奇偶性的概念函数的奇偶性提示:定义域关于原点对称.1.下列函数是偶函数的是( )A .y =xB .y =2x 2-3 C .y =1xD .y =x 2,x ∈[0,1]2.下列图象表示的函数具有奇偶性的是( )A B C D3.函数y =f (x ),x ∈[-1,a ](a >-1)是奇函数,则a 等于( ) A .-1 B .0 C .1 D .无法确定4.若f (x )为R 上的偶函数,且f (2)=3,则f (-2)=________. 函数奇偶性的判断【例1】 判断下列函数的奇偶性: (1)f (x )=x 3+x ;(2)f (x )=1-x 2+x 2-1; (3)f (x )=2x 2+2xx +1;(4)f (x )=⎩⎨⎧x -1,x <0,0,x =0,x +1,x >0.判断函数奇偶性的两种方法 (1)定义法:(2)图象法:1.下列函数中,是偶函数的有________.(填序号) ①f (x )=x 3;②f (x )=|x |+1;③f (x )=1x 2; ④f (x )=x +1x ;⑤f (x )=x 2,x ∈[-1,2]. 奇偶函数的图象问题【例2】已知奇函数f(x)的定义域为[-5,5],且在区间[0,5]上的图象如图所示.(1)画出在区间[-5,0]上的图象;(2)写出使f(x)<0的x的取值集合.(变条件)将本例中的“奇函数”改为“偶函数”,再求解上述问题.巧用奇、偶函数的图象求解问题(1)依据:奇函数⇔图象关于原点对称,偶函数⇔图象关于y轴对称.(2)求解:根据奇、偶函数图象的对称性可以解决诸如求函数值或画出奇偶函数图象的问题.2.如图是函数f(x)=1x2+1在区间[0,+∞)上的图象,请据此在该坐标系中补全函数f(x)在定义域内的图象,请说明你的作图依据.利用函数的奇偶性求值[探究问题]1.对于定义域内的任意x,若f(-x)+f(x)=0,则函数f(x)是否具有奇偶性?若f(-x)-f(x)=0呢?提示:由f(-x)+f(x)=0得f(-x)=-f(x),∴f(x)为奇函数.由f(-x)-f(x)=0得f(-x)=f(x),∴f(x)为偶函数.2.若f(x)是奇函数且在x=0处有定义,则f(0)的值可求吗?若f(x)为偶函数呢?提示:若f(x)为奇函数,则f(0)=0;若f(x)为偶函数,无法求出f(0)的值.【例3】(1)若函数f(x)=ax2+bx+3a+b是偶函数,定义域为[a-1,2a],则a=________,b=________;(2)已知f(x)=x7-ax5+bx3+cx+2,若f(-3)=-3,则f(3)=________.[思路点拨](1)f(x)是偶函数――→定义域关于原点对称求a的值――→图象关于y轴对称求b的值(2)令g(x)=x7-ax5+bx3+cx―→判断g(x)的奇偶性―→计算g(-3)―→代入求得f(3)利用奇偶性求参数的常见类型及策略(1)定义域含参数:奇、偶函数f(x)的定义域为[a,b],根据定义域关于原点对称,利用a+b=0求参数.(2)解析式含参数:根据f(-x)=-f(x)或f(-x)=f(x)列式,比较系数即可求解.3.若f(x)=(x+a)(x-4)为偶函数,则实数a=________.1.奇偶性是函数“整体”性质,只有对函数f(x)定义域内的每一个值x,都有f(-x)=-f(x)(或f(-x)=f(x)),才能说f(x)是奇函数(或偶函数).2.函数的奇偶性是其相应图象特殊对称性的反映,也体现了在关于原点对称的定义域的两个区间上函数值及其性质的相互转化,这是对称思想的应用.1.思考辨析(1)函数f(x)=x2,x∈[0,+∞)是偶函数.()(2)对于函数y=f(x),若存在x,使f(-x)=-f(x),则函数y=f(x)一定是奇函数.()(3)不存在既是奇函数,又是偶函数的函数.()(4)若函数的定义域关于原点对称,则这个函数不是奇函数就是偶函数.()2.函数f(x)=|x|+1是()A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数3.已知函数f (x )=ax 2+2x 是奇函数,则实数a =______.4.已知函数y =f (x )是定义在R 上的偶函数,且当x ≤0时,f (x )=x 2+2x .现已画出函数f (x )在y 轴左侧的图象,如图所示.(1)请补出完整函数y =f (x )的图象; (2)根据图象写出函数y =f (x )的增区间; (3)根据图象写出使f (x )<0的x 的取值集合.第2课时 奇偶性的应用用奇偶性求解析式【例1】 (1)函数f (x )是定义域为R 的奇函数,当x >0时,f (x )=-x +1,求f (x )的解析式;(2)设f (x )是偶函数,g (x )是奇函数,且f (x )+g (x )=1x -1,求函数f (x ),g (x )的解析式.[思路点拨] (1)设x <0,则-x >0――→当x >0f (x )=-x +1求f (-x )――→奇函数得x <0时f (x )的解析式――→奇函数的性质f (0)=0――→分段函数f (x )的解析式(2)f (x )+g (x )=1x -1――→用-x 代式中x得f (-x )+g (-x )=1-x -1――→奇偶性得f (x )-g (x )=-1x +1――→解方程组得f (x ),g (x )的解析式把本例(2)利用函数奇偶性求解析式的方法(1)“求谁设谁”,既在哪个区间上求解析式,x 就应在哪个区间上设. (2)要利用已知区间的解析式进行代入.(3)利用f (x )的奇偶性写出-f (x )或f (-x ),从而解出f (x ).提醒:若函数f (x )的定义域内含0且为奇函数,则必有f (0)=0,但若为偶函数,未必有f (0)=0.函数单调性和奇偶性的综合问题[探究问题]1.如果奇函数f (x )在区间(a ,b )上单调递增,那么f (x )在(-b ,-a )上的单调性如何?如果偶函数f (x )在区间(a ,b )上单调递减,那么f (x )在(-b ,-a )上的单调性如何?提示:如果奇函数f (x )在区间(a ,b )上单调递增,那么f (x )在(-b ,-a )上单调递增;如果偶函数f (x )在区间(a ,b )上单调递减,那么f (x )在(-b ,-a )上单调递增.2.你能否把上述问题所得出的结论用一句话概括出来?提示:奇函数在关于原点对称的区间上单调性相同,偶函数在关于原点对称的区间上单调性相反.3.若偶函数f (x )在(-∞,0)上单调递增,那么f (3)和f (-2)的大小关系如何?。

1.3函数的基本性质(教案)

1.3函数的基本性质(教案)

[课题]:第一章集合与函数概念 1.3 函数的基本性质主备人:高一数学备课组陈伟坚编写时间:2013年10月8日使用班级(21)(22)计划上课时间:2013-2014学年第一学期第7 周星期一至三[课标、大纲、考纲内容]:【教材与学情分析】学生在初中已学过一次函数、二次函数、反比例函数的图象与性质,通过这些基本初等函数引入函数的单调性和最值,学生还是容易接受的,但很多学生的二次函数的性质还不过关,需要加强。

学生的阅读理解能力还是较弱,教师需要引导学生对函数的单调性、奇偶性的定义理解透彻。

1、重点:理解函数的单调性、最大(小)值及其几何意义;求函数的单调区间和最值;奇偶性的定义,判定函数的奇偶性的方法;运用函数图象理解和研究函数的性质。

2、难点:运用函数图象理解函数单调性和奇偶性的定义,研究基本函数的单调性和奇偶性。

第4课时 1.3.2函数的奇偶性教学目的:(1)理解函数的奇偶性及其几何意义;(2)学会运用函数图象理解和研究函数的性质;(3)学会判断函数的奇偶性.教学重点:函数的奇偶性及其几何意义.教学难点:判断函数的奇偶性的方法与格式.教学过程:一、引入课题1.实践操作:取一张纸,在其上画出平面直角坐标系,并在第一象限任画一可作为函数图象的图形,然后按如下操作并回答相应问题:○1以y轴为折痕将纸对折,并在纸的背面(即第二象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形;问题:将第一象限和第二象限的图形看成一个整体,则这个图形可否作为某个函数y=f(x)的图象,若能请说出该图象具有什么特殊的性质?函数图象上相应的点的坐标有什么特殊的关系?答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于y轴对称;(2)若点(x,f(x))在函数图象上,则相应的点(-x,f(x))也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标一定相等.○2以y轴为折痕将纸对折,然后以x轴为折痕将纸对折,在纸的背面(即第三象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形:问题:将第一象限和第三象限的图形看成一个整体,则这个图形可否作为某个函数y=f(x)的图象,若能请说出该图象具有什么特殊的性质?函数图象上相应的点的坐标有什么特殊的关系?答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于原点对称;(2)若点(x,f(x))在函数图象上,则相应的点(-x,-f(x))也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标也一定互为相反数.2.观察思考(教材P33观察思考)二、新课教学(一)函数的奇偶性定义象上面实践操作○1中的图象关于y轴对称的函数即是偶函数,操作○2中的图象关于原点对称的函数即是奇函数.1.偶函数(even function)一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(学生活动):仿照偶函数的定义给出奇函数的定义2.奇函数(odd function)一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数.注意:○1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;○2由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).(二)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.(三)典型例题1.判断函数的奇偶性例1.(教材P35例5)应用函数奇偶性定义说明两个观察思考中的四个函数的奇偶性.(本例由学生讨论,师生共同总结具体方法步骤)解:(略)总结:利用定义判断函数奇偶性的格式步骤:○1首先确定函数的定义域,并判断其定义域是否关于原点对称;○2确定f(-x)与f(x)的关系;○3作出相应结论:若f(-x) = f(x) 或f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或f(-x)+f(x) = 0,则f(x)是奇函数.巩固练习:(教材P36练习:1)说明:函数具有奇偶性的一个必要条件是,定义域关于原点对称,所以判断函数的奇偶性应应首先判断函数的定义域是否关于原点对称,若不是即可断定函数是非奇非偶函数.2.利用函数的奇偶性补全函数的图象(教材P39习题1.3 A组:6)规律:偶函数的图象关于y轴对称;奇函数的图象关于原点对称.说明:这也可以作为判断函数奇偶性的依据.3.函数的奇偶性与单调性的关系(学生活动)举几个简单的奇函数和偶函数的例子,并画出其图象,根据图象判断奇函数和偶函数的单调性具有什么特殊的特征.例3.已知f(x)是奇函数,在(0,+∞)上是增函数,证明:f(x)在(-∞,0)上也是增函数解:(由一名学生板演,然后师生共同评析,规范格式与步骤)规律:偶函数在关于原点对称的区间上单调性相反;奇函数在关于原点对称的区间上单调性一致.三、归纳小结,强化思想本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称.单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质.四、作业布置书面作业:课本P39习题1.3(A组)第6题,五、教学反思:分段函数奇偶性的判断中,学生对f(-x) =-f(x)或f(-x) = f(x)中f(x)取哪一部分比较不明确。

高中数学人教A版必修1导学案:1.3函数的概念和性质(学生版)

高中数学人教A版必修1导学案:1.3函数的概念和性质(学生版)

讲次 1.3 课题函数的概念与性质复习目标1.掌握函数的基本性质(单调性、最大值或最小值、奇偶性;2.会应用函数的基本性质解决一些问题。

教学重点掌握函数的基本性质教学难点应用性质解决问题。

思想方法【双基再现】1. 下列几个图形中,可以表示函数关系)(xfy=的那一个图是()A B C D2. 函数)(xfy=是奇函数,图象上有一点为))(,(afa,则图象必过点()A.))(,(afa- B. ))(,(afa- C. ))(,(afa-- D. ))(1,(afa3.函数)(xf是R上的偶函数,且在),0[+∞上单调递增,则下列各式成立的是()A.)1()0()2(fff>>- B. )0()1()2(fff>->-C.)2()0()1(->>fff D.)0()2()1(fff>->4.设f(x)为奇函数, 且在(-∞, 0)内是减函数, f(-2)= 0, 则x f(x)<0的解集为()A、(-1, 0)∪(2, +∞)B、(-∞, -2)∪(0, 2 )C、(-∞, -2)∪(2, +∞)D、(-2, 0)∪(0, 2 )5.函数22(1)()(12)2(2)x xf x x xx x+≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x=,则x=6.)(xf为R上的偶函数,且当)0,(-∞∈x时,)1()(-=xxxf,则当),0(+∞∈x时=)(xf_______.yxOyxOyxOyxO●●。

高中数学 1.2.3函数的基本性质导学案 新人教A版必修1

高中数学 1.2.3函数的基本性质导学案 新人教A版必修1

河北省唐山市开滦第二中学高中数学 1.2.3函数的基本性质导学案新人教A 版必修1学习目标:掌握函数图象的平移变换、对称变换学习重点:函数图象变换的规则学习过程: 作出下列各组函数的图象,并观察规律一、平移变换1、2)(x x f = ()23-=x y ()23+=x y变换规则:_________________________,_________________________。

2、2)(x x f = 32+=x y 32-=x y变换规则:______________________________,_____________________________。

二、对称变换:1、23)(2+-=x x x f2)(3)(2+---=x x y)23(2+--=x x y变换规则:_________________________, __________________________。

2、23)(2+-=x x x f 232+-=x x y 232+-=x x y变换规则:______________________________,____________________________。

三、实践体验:求下列函数的值域1、111)(+-=x x f2、2)(-=x x f []4,1∈x3、xx f +-=12)( []3,2∈x4、2)(+-=x x f四、课后感悟1. 若f(x )的图象过(0,1)点,则f - -1(x )的图象过______点,f (x +1)的图象过______点,f --1(x +1)的图象过______点。

2.1)把函数y =(x -2)2+2的图象向左平移一个单位,再向上平移一个单位,所得图象对应的函数解析式为_____。

2)将函数y =2x 的图象向________平移_________个单位,再作关于直线y =x 对称的图象可得出函数y =log 2(x +1)的图象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《1.3函数的基本性质练习》导学案
【学习目标】其中1、2是重点和难点
1. 掌握函数的基本性质(单调性、最大值或最小值、奇偶性);
2. 能应用函数的基本性质解决一些问题;
3. 学会运用函数图象理解和研究函数的性质.
【课前导学】复习教材第27-36页,找出疑惑之处,完成知识梳理
1.如何从图象特征上得到奇函数、偶函数、增函数、减函数、最大值、最小值?
2.如何从解析式得到奇函数、偶函数、增函数、减函数、最大值、最小值的定义?
【课中导学】首先独立思考探究,然后合作交流展示(加*号的可以选做) 例1作出函数y =x 2-2|x |-3的图象,指出单调区间及单调性.
小结:利用偶函数性质,先作y 轴右边,再对称作.
变式:y =|x 2-2x -3| 的图象如何作?
反思:如何由()f x 的图象,得到(||)f x 、|()|f x 的图象?
例2已知()f x 是奇函数,在(0,)+∞是增函数,判断()f x 在(,0)-∞上的单调性,并进行证明.
反思:奇函数或偶函数的单调区间及单调性有何关系?(偶函数在关于原点对称的区间上单调性 ;奇函数在关于原点对称的区间上单调性 )
例3某产品单价是120元,可销售80万件. 市场调查后发现规律为降价x 元后可多销售2x 万件,写出销售金额y (万元)与x 的函数关系式,并求当降价多少元时,销售金额最大?最大是多少?
小结:利用函数的单调性(主要是二次函数)解决有关最大值和最大值问题
【自我评价】你完成本节导学案的情况为( ).
A. 很好
B. 较好
C. 一般
D. 较差
【基础检测】当堂达标练习,(时量:5分钟 满分:10分)计分:
1. 函数2y x bx c =++((,1))x ∈-∞是单调函数时,b 的取值范围 ( ).
A .2b ≥-
B .2b ≤-
C .2b >-
D . 2b <-
2. 下列函数中,在区间(0,2)上为增函数的是( ).
A .1y x =-+
B .y =
C .245y x x =-+
D .2
y x =
3. 已知函数y =2ax b x c
++为奇函数,则( ).
A. 0a =
B. 0b =
C. 0c =
D. 0a ≠
4. 函数y =x 的值域为 .
5. 2()4f x x x =-在[0,3]上的最大值为 ,最小值为 .
【能力提升】可供学生课外做作业
1.已知()f x 是定义在(1,1)-上的减函数,且
(2)(3)0f a f a ---<. 求实数a 的取值范围.
2.判别下列函数的奇偶性:
(1)y
(2)y =22(0)(0)x x x x x x ⎧-+>⎪⎨+≤⎪⎩
. 3.判断函数y =
21x x ++单调性,并证明.
4.已知函数()f x =(1)讨论()f x 的奇偶性,并证明;
(2)讨论()f x 的单调性,并证明.
5.求函数1()(0)f x x x x =+
>的值域.
【课后反思】学完本节课,你在知识、方法等方面有什么收获与感受?请写下来!。

相关文档
最新文档