沪科版数学九年级上册第22章 相似形 单元测试

合集下载

沪科版九年级上册数学 第22章 相似形 单元测试卷

沪科版九年级上册数学 第22章 相似形  单元测试卷

沪科新版九年级上册数学《第22章相似形》单元测试卷一.选择题1.若=,则等于()A.B.C.D.2.已知=,则的值为()A.B.C.D.3.下列四组线段中,不构成比例线段的一组是()A.1cm,2cm,3cm,6cm B.2cm,3cm,4cm,6cmC.1cm,cm,cm,cm D.1cm,2cm,3cm,4cm4.下列各组图形一定相似的是()A.两个矩形B.两个等边三角形C.各有一角是80°的两个等腰三角形D.任意两个菱形5.已知,那么下列等式中,不成立的是()A.B.C.(y≠﹣4a)D.4x=3y6.如图,在△ABC中,D,E两点分别在BC,AC上,且AD平分∠BAC,若∠ABE=∠C,BE与AD相交于点F,则图中与△ABD相似的是()A.△ABC B.△ABF C.△BFD D.△AEF7.如图,在△ABC中,D为AB上一点,若AC2=AD•AB,则()A.△ADC∽△CBD B.△BDC∽△BCA C.△ADC∽△ACB D.无法判断8.若△ABC∽△ADE,AB=9,AC=6,AD=3,则EC的长是()A.2B.3C.4D.59.如图,顶角为36°的等腰三角形,其底边与腰之比等于k,这样的三角形称为黄金三角形,已知腰AB=1,△ABC为第一个黄金三角形,△BCD为第二个黄金三角形,△CDE 为第三个黄金三角形以此类推,第2020个黄金三角形的周长()A.k2018B.k2019C.D.k2019(2+k)10.如图,点E是矩形ABCD的边CD上一点,作AF⊥BE于F,连接DF,若AB=6,DF =BC,则CE的长度为()A.2B.C.3D.二.填空题11.如果x:y=1:2,那么=.12.如图,△ABC的两条中线AD,BE交于点G,EF∥BC交AD于点F.若FG=1,则AD=.13.已知△ABC的三边分别是5,6,7,则与它相似△A′B′C′的最短边为10,则△A′B′C′的周长是.14.若x:y=5:2,则(x+y):y的值是.15.已知线段AB,点P是线段AB的黄金分割点,AP>BP,设以AP为边的正方形的面积为S1,以PB、AB为边的矩形的面积为S2,则S1S2(填<、≤、=、>或≥).16.某课外活动小组的同学在研究某种植物标本(如图所示)时,测得叶片①最大宽度是8cm,最大长度是16cm;叶片②最大宽度是7cm,最大长度是14cm;叶片③最大宽度约为6.5cm,请你用所学数学知识估算叶片③的完整叶片的最大长度,结果约为cm.17.如图,∠B=∠D,请你添加一个条件,使得△ABC∽△ADE,这个条件可以是.18.如果=,那么=.19.在1:40000的地图上,村犀路的距离是7厘米,则实际距离是千米.20.如图,在△ABC中,P为AB上的一点,补充条件,能使△APC∽△ACB,这个条件可以是.(写出一个即可)三.解答题21.已知==,且2x+3y﹣z=18,求x,y,z的值.22.已知,求m的值.23.已知,求的值.24.如图,a∥b∥c,直线m,n与直线a,b,c分别相交于点A,B,C和点D,E,F.若AB=3,BC=5,DE=4,求EF的长.25.已知==2,求和的值.26.阅读理解:如图1,点C将线段AB分成两部分,若=,则点C为线段AB的黄金分割点.某研究学习小组,由黄金分割点联想到“黄金分割线”,而给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1、S2,如果=,那么称直线l为该图形的黄金分割线.问题解决:如图2,在△ABC中,若点D是AB的黄金分割点.(1)研究小组猜想:直线CD是△ABC的黄金分割线,你认为对吗?为什么?(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?(3)研究小组探究发现:过点C作直线交AB于E,过D作DF∥CE,交AC于F,连接EF(如图3),则直线EF也是△ABC的黄金分割线.请你说明理由.27.如图1,将A4纸2次折叠,发现第一次的折痕与A4纸较长的边重合,如图2,将1张A4纸对折,使其较长的边一分为二,沿折痕剪开,可得2张A5纸.(1)A4纸较长边与较短边的比为;(2)A4纸与A5纸是否为相似图形?请说明理由.参考答案与试题解析一.选择题1.解:∵=,∴a=b,则==.故选:A.2.解:由=,得==.故选:D.3.解:A、1:2=3:6,即1cm,2cm,3cm,6cm成比例;B、2:3=4:6,即2cm,3cm,4cm,6cm成比例;C、1:=:,即1cm,cm,cm,cm成比例;D、四条线段中,任意两条的比都不相等,因而不成比例.故选:D.4.解:两个矩形对应边的比不一定相等,故不一定相似;两个等边三角形相似对应边的比相等,对应角相等,一定相似;各有一角是80°的两个等腰三角形对应角不一定相等,故不一定相似;任意两个菱形对应角不一定相等,故不一定相似;故选:B.5.解:A、∵,∴=,此选项正确,不合题意;B、∵,∴=﹣,此选项错误,符合题意;C、∵,∴=,此选项正确,不合题意;D、∵,∴4x=3y,此选项正确,不合题意;故选:B.6.解:在△ABE与△ACB中,∠ABE=∠C,∠BAE=∠CAB,∴△ABE∽△ACB,∴∠AEB=∠ABC,∵AD平分∠BAC,∴∠BAD=∠EAF,∴△ABD∽△AEF.故选:D.7.解:∵AC2=AD•AB,∴,∵∠A=∠A,且∠A为AD、AC和AB、AC的夹角,∴△ADC∽△ACB.故选:C.8.解:设EC=x,∵AC=6,∴AE=6﹣x,∵△ABC∽△ADE,∴,∴,解得:x=4,故选:C.9.解:∵AB=AC=1,∴△ABC的周长为2+k;△BCD的周长为k+k+k2=k(2+k);△CDE的周长为k2+k2+k3=k2(2+k);依此类推,第n个黄金三角形的周长为k n﹣1(2+k),∴第2020个黄金三角形的周长为k2019(2+k).故选:D.10.解:过D作DH⊥AF于点H,延长DH与AB相交于点G,∵四边形ABCD为矩形,∴AD=BC,∵DF=BC,∴DA=DF,∴AH=FH,∵AF⊥BE,∴DG∥BE,∴AG=BG=,∵矩形ABCD中,AB=DC=6,AB∥DC,∴四边形BEDG为平行四边形,∴DE=BG=3,∴CE=CD﹣DE=6﹣3=3.故选:C.二.填空题11.解:+1=+1,即=.故答案为:.12.解:∵△ABC的两条中线AD,BE交于点G,∴BD=CD,AE=CE,∵EF∥CD,∴==1,即AF=FD,∴EF为△ADC的中位线,∴EF=CD,∴EF=BD,∵EF∥BD,∴==,∴DG=2FG=2,∴FD=2+1=3,∴AD=2FG=6.故答案为6.13.解:∵△ABC∽△A′B′C′,△ABC的三边分别是5,6,7,△A′B′C′的最短边为10,∴相似比是:=,∴△A′B′C′的另外两条边是6×2=12,7×2=14,∴△A′B′C′的周长是:10+12+14=36,故答案为:36.14.解:由合比性质,得==,故答案为:.15.解:根据黄金分割的概念得:AP:AB=PB:AP,即AP2=PB•AB,则S1:S2=AP2:(PB•AB)=1,即S1=S2.故答案为:=.16.解:根据叶片①②的最大长度和宽度,可得出这种植物的叶片的最大宽度:最大长度=1:2.由此可得出完整的叶片③的最大长度应是6.5×2=13cm.故答案为:13.17.解:∵∠B=∠D,∴添加∠C=∠E或∠BAC=∠DAE或∠BAD=∠CAE或=,可证△ABC∽△ADE.故答案为:∠C=∠E或∠BAC=∠DAE或∠BAD=∠CAE或=.18.解:∵=,则x=y,∴===.故答案为:.19.解:因为实际距离=图上距离÷比例尺,则:7÷=280000(厘米)=2800(米)=2.8千米;答:这两地之间的实际距离是2.8千米.故答案为:2.8.20.解:∵∠PAC=∠CAB,∴当∠ACP=∠B时,△ACP∽△APC,故答案为:∠ACP=∠B(答案不唯一)三.解答题21.解:由==,得y=,z=2x.将y=,z=2x代入2x+3y﹣z=1中,得2x+﹣2x=18.解得x=4,y==6,z=2x=8.22.解:由可知:x+y=mz,y+z=mx,z+x=my.这几式相加可得:2(x+y+z)=m(x+y+z),当x+y+z≠0时,有m=2,当x+y+z=0时,有x+y=﹣z,y+z=﹣x,x+z=﹣y,m=﹣1.故m=2或﹣1.23.解:设===k,所以,a=3k,b=4k,c=5k,则==.24.解:∵a∥b∥c,∴,即,解得:EF=.25.解:因为==2,可得:a =2b ,c =2d , 所以=,=.26.解:(1)直线CD 是△ABC 的黄金分割线.理由如下:∵点D 是AB 的黄金分割点, ∴=, ∵=,=, ∴=,∴直线CD 是△ABC 的黄金分割线;(2)∵三角形的中线把AB 分成相等的两条线段,即AD =BD , ∴=,==1,∴三角形的中线不是该三角形的黄金分割线;(3)∵DF ∥CE ,∴S △FDE =S △FDC ,S △DEC =S △FEC ,∴S △AEF =S △ADC ,S 四边形BEFC =S △BDC , ∵=, ∴=,∴直线EF 是△ABC 的黄金分割线.27.解:(1)如图1,由折叠过程可以看到:第一次折叠,A 与D 重合,四边形ABDC 为正方形,折痕BC 为对角线,由勾股定理可得BC =AB ;第二次折叠,第一次的折痕与A 4纸较长的边重合,即BC 与较长边重合.所以,较长边=AB . ∴A 4纸较长边与较短边的比为:.故答案为:.(2)A4纸与A5纸是相似图形.理由:∵A4纸较长边与较短边的比为:,∴设A4纸较短边的长为a,则较长边为a.∵由图2可知:A5纸的长边与A4纸的短边重合,短边等于A4纸的长边的一半,∴A5纸的长边为a,短边为.∴A5纸的长边与短边的比为:=.∴A4纸较长边与较短边的比=A5纸的长边与短边的比.又∵A4纸与A5纸的四个角均为直角,∴A4纸与A5纸相似.。

最新沪科版九年级数学上册第22章相似形单元检测试卷(附答案)

最新沪科版九年级数学上册第22章相似形单元检测试卷(附答案)

,则

OP ON
∴x=5;
,∴ y=1.5 ,∴x ﹣ y=3.5 ,故 变 短了 3.5 米.故 选 D .
考点:中心投影.
10. 如图 ,已知矩形 ABCD 满足 AB :BC=1 : 2 ,把矩形 ABCD 对 折,使 CD 与 AB 重合,得折痕 EF,
把矩形 ABFE 绕 点 B 逆 时针 旋 转 90°,得到矩形 A′BF′E′连,结 E′B,交 A′F′于点M, 连结 AC ,交 EF 于 点 N, 连结 AM , MN ,若矩形 ABCD 面 积为 8 , 则 △ AMN 的面 积为 ( )
二、 填 空 题(共 10 题 ;共 30 分)
11. 如图 , 线 段 AC 、 BD 交于点 O, 请你 添加一 个条 件: ________,使△ AOB ∽△ COD .
的 【答案】 OB=OD .(答案不唯一 )
【解析】 AO=OC ,有一 对对顶 角∠ AOB 与 ∠ COD ,添加 OB=OD ,即得 结论 . 【 详 解】解: ∵ OA=OC ,∠ AOB= ∠ COD ( 对顶 角相等), OB=OD , ∴△ ABO ≌ △ CDO ( SAS ). 故答案 为 :OB=OD . ( 答案不唯一 ) 【点睛】本 题 考 查 三角形全等的判定方法,判定 两个 三角形全等的一般方法有: SSS 、 SAS 、ASA 、 AAS 、 HL .添加 时 注意: AAA 、 SSA 不能判定 两个 三角形全等,判定 两个 三角形全等 时 ,必 须 有 边 的参与 ,若有
2 / 19
A. ①②
B. ②④
C. ①②④
D. ①②③④
【答案】 C
解:如 图 ,连 接 OD.∵ AC⊥ AB,∴∠ BAC=90°,即∠ OAE=90 °.在△AOE 与 △ DOE 中,∵ OA=OD,

九年级上册数学单元测试卷-第22章 相似形-沪科版(含答案)

九年级上册数学单元测试卷-第22章 相似形-沪科版(含答案)

九年级上册数学单元测试卷-第22章相似形-沪科版(含答案)一、单选题(共15题,共计45分)1、如图,在矩形ABCD中,AB<BC,E为CD边的中点,将△ADE绕点E顺时针旋转180°,点D的对应点为C,点A的对应点为F,过点E作ME⊥AF交BC于点M,连接AM、BD交于点N,现有下列结论:①AM=AD+MC;②AM=DE+BM;③DE2=AD•CM;④点N为△ABM的外心.其中正确的个数为()A.1个B.2个C.3个D.4个2、在△ABC中,DE∥BC,AE:EC=2:3,DE=4,则BC等于()A.10B.8C.9D.63、如图,△ABC与△DEF位似,点O为位似中心.已知OA:OD=1:2,则△ABC与△DEF的面积比为()A.1:2B.1:3C.1:4D.1:54、如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4B.9:16C.4:9D.1:35、如图,在△ABC中,DE∥BC分别交AB,AC于点D,E,若,则下列说法不正确的是( )A. B. C. D.6、已知线段,求作线段x使得,则作法错误的是( )A. B. C. D.7、如图,▱ABCD中,AE∶ED=1∶2,S△AEF=6 cm2,则S△CBF等于( )A.12 cm 2B.24 cm 2C.54 cm 2D.15 cm 28、已知点P是线段AB的一个黄金分割点(AP>PB),则PB:AB的值为()A. B. C. D.9、如图1所示,若△ABC∽△DEF,则∠E的度数为()A.28°B.32°C.42°D.52°10、满足下列条件的各对三角形中相似的两个三角形有().A.∠A=60°,AB=5cm,AC=10cm;∠A′=60°,A′B′=3cm,A′C′=10cm B.∠A=45°,AB=4cm,BC=6cm;∠D=45°,DE=2cm,DF=3cm C.∠C=∠E=30°,AB=8cm,BC=4cm;DF=6cm,FE=3cm D.∠A=∠A′,且AB·A′C′=AC·A′B′11、如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,若BD=2AD,则()A. B. C. D.12、已知P是线段AB的黄金分割点,且AP>BP,那么下列比例式能成立的是( )A. B. C. D.13、如图,在菱形ABCD中,AB=6,∠DAB=60°,点E在BC边上,且CE=2,AE与BD交于点F,连接CF,则下列结论不正确的是()A.△ABF≌△CBFB.△ADF∽△EBFC.tan∠EAB=D.S△=6EAB14、《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.其中第九卷《勾股》章,主要讲述了以测量问题为中心的直角三角形三边互求的关系.其中记载:“今有邑,东西七里,南北九里,各中开门,出东门一十五里有木,问:出南门几何步而见木?”译文:“今有一座长方形小城,东西向城墙长7里,南北向城墙长9里,各城墙正中均开一城门.走出东门15里处有棵大树,问走出南门多少步恰好能望见这棵树?”(注:1里=300步)你的计算结果是:出南门几何步而见木()A.300步B.315步C.400步D.415步15、1m长的标杆直立在水平地面上,它在阳光下的影子长度为0.8m,同一时刻,某电视塔的影子长度为100m,则该电视塔的高度为()A.150mB.125mC.120mD.80m二、填空题(共10题,共计30分)16、如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=8,E、F分别为AB、AC上的点,沿直线EF将∠B折叠,使点B恰好落在BC上的D处,当△ADE恰好为直角三角形时,BE的长为________ .17、如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6cm,DE=2cm,则BC=________cm.18、在比例尺为1:8000的南京市城区地图上,太平南路的长度约为25 cm,它的实际长度约为________m.19、如图,把两个等腰直角三角板如图放置,点F为BC中点,AG=1,BG=2,则CH的长为________.20、如图,D,E分别是△ABC的边AB和AC上的动点,且DE∥BC,当DE把△ABC的面积分成1:3的两部分时,的值为________.21、如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是________.22、如图,直线y=2x+b与双曲线y= (k>0)交于点A、D,直线AD交y轴、x轴于点B、C,直线y=- +n过点A,与双曲线y= (k>0)的另一个交点为点E,连接BE、DE,若S△ABE=4,且S△ABE:S△DBE=3:4,则k的值为________.23、如图,在矩形ABCD中,AB= ,E是BC的中点,AE⊥BD于点F,则CF的长是________.24、如图,在矩形中,点A的坐标是,点C的纵坐标是4,则B点的纵坐标是________.25、如图,已知点G是△ABC的重心,AD是△ABC的一条中线,若DG=2,则AD=________.三、解答题(共5题,共计25分)26、已知a:b:c=3:2:5,求的值.27、如图,矩形ABCD中,AB=4,点E,F分别在AD,BC边上,且EF⊥BC,若矩形ABFE∽矩形DEFC,且相似比为1:2,求AD的长.28、如图,直立在点处的标杆长,站立在点处的观察者从点处看到标杆顶、旗杆顶在一条直线上.已知,,,求旗杆高.29、如图,抛物线y=﹣x2+2x+c与x轴交于A,B两点,它的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F,已知点A的坐标为(﹣1,0).(1)求该抛物线的解析式及顶点M的坐标.(2)求△EMF与△BNF的面积之比.30、已知:如图,矩形DEFG的一边DE在△ABC的边BC上,顶点G、F分别在边AB、AC 上,AH是边BC上的高,AH与GF相交于点K,已知BC=12,AH=6,EF∶GF=1∶2,求矩形DEFG的周长.参考答案一、单选题(共15题,共计45分)1、B2、A3、C4、B6、C7、C8、A9、C10、D11、B12、A13、C14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、30、。

沪科版九年级数学上册《第二十二章相似形》单元测试卷-带参考答案

沪科版九年级数学上册《第二十二章相似形》单元测试卷-带参考答案

沪科版九年级数学上册《第二十二章相似形》单元测试卷-带参考答案一、单选题1.已知三个数1,2,4,若添一个数使得四个数成比例,这个数可以是( )A .8B .8-C .3D .3-2.已知35x y =,则x x y+的值为( ) A .25 B .38C .32 D .233.已知2a =3b (a≠0,b≠0),那么下列变形中错误的是( )A .23b a = B .32a b = C .32a b= D .b :a =2:34.若x 是3和6的比例中项,则x 的值为( )A .32B .32-C .23±D .32±5.如图,在△ABC 中,DE△BC ,AD =5,AB =12,AE =3,则EC 的长是( )A .365B .215C .20D .156.已知点P 是线段MN 的黄金分割点,MP >NP ,且MP=51)cm ,则NP 等于( )A .2cmB .(35cmC .5﹣1)cmD .5+1)cm7.如图,直线 123l //l //l ,一等腰 Rt ABC 的三个顶点 A 、 B 、 C 分别在直线 1l 、 2l 和 3l上, ACB 90∠=︒ , AC 交 2l 于点 D. 若 1l 与 2l 的距离为 1 , 1l 与 3l 的距离为 4 ,则ABBD的值是( )A 2B 34C 42D 528.如图,AD△BE△CF ,直线l 1、l 2这与三条平行线分别交于点A ,B ,C 和点D ,E ,F .已知AB=1,BC=3,DE=2,则EF 的长为( )A .4B .5C .6D .89.如图,△ABC 中,AD 是中线,BC =8,△B =△DAC ,则线段AC 的长为( )A .4B .42C .6D .4 310.下列各组数中,能成比例的是( )A .3,4,5,6B .-1,-2, 2,4C .-3,1,3,0D .-1,2,-3,4二、填空题11.如图,已知AB CD EF ,若632AC CE DF ===,,,则BD 的长为 .12.如图,△ABC 是边长为a 的等边三角形,将三角板的30°角的顶点与A 重合,三角板30°角的两边与BC 交于D 、E 两点,则DE 长度的取值范围是 .13.如图,在等腰直角△ABC 中,AB=4,点D 在边AC 上一点且AD=1,点E 是AB 边上一点,连接DE ,以线段DE 为直角边作等腰直角△DEF( D 、E 、F 三点依次呈逆时针方向),当点F 恰好落在BC 边上时,则AE 的长是 .三、解答题14.已知:如图,在△ABC 中,△ACB =90°,CD △AB ,垂足为D ,AD =3,BD =6,求CD 的长.15.如图,在矩形ABCD 中,E 是BC 的中点,DF△AE ,垂足为F .(1)求证:△ABE△△DFA . (2)若AB=6,BC=4,求DF 的长.16.在△ABC 中,点D 、E 分别边AB 、AC 上的点,若AD =2,DB =7,AE =3,EC =3,求DE :BC的值.17.如图,四边形ABCD 和四边形EFGH 相似,求△α、△β 的大小和EH 的长度.四、综合题18.在矩形 ABCD 中,点 O 是对角线 AC 、 BD 的交点,直角 EPF ∠ 的顶点 P 与 O 重合, OE 、 OF 分别与 AB 、 BC 边相交于 E 、 F ,连接 EF , BC k AB =⋅ ( k 为常数).(1)发现问题:如图1,若 1k = ,猜想:OEOF= ; (2)类比探究:如图2, 1k ≠ 探究线段 OE , OF 之间的数量关系,并说明理由;(3)拓展运用:如图3,在(2)的条件下,若 FO FC = , 2k =和 6OD =,求 EF 的长.19.如图,点C 、D 在线段AB 上,△PCD 是等边三角形,且CD 2=AD •BC .(1)求证:△APD △△PBC ; (2)求△APB 的度数.20.定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.(1)如图1,在四边形 ABCD 中 80ABC ∠=︒ , 140ADC ∠=︒ 对角线 BD 平分ABC ∠ .求证: BD 是四边形 ABCD 的“相似对角线”;(2)如图2,已知 FH 是四边形 EFGH 的“相似对角线” 30EFH HFG ∠=∠=︒ .连接EG ,若 EFG ∆ 的面积为 3,求 FH 的长.21.(教材呈现)下图是华师版九年级上册数学教材第78页的部分内容.例2 如图:在ABC 中,D 、E 分别是边BC 、AB 的中点, AD 、CE 相交于点G .求证:13GE GD CE AD ==. 证明:连接ED .(1)请根据教材提示,结合图①,写出完整的证明过程.(2)(结论应用)如图②,在ABC 中,D 、F 分别是边BC 、AB 的中点,AD 、CF 相交于点G ,GE AC 交BC 于点E ,GH AB 交BC 于点H ,则EGH 与ABC 的面积的比值为 .答案解析部分1.【答案】A【解析】【解答】解:设添加的数是x根据题意得 124x =:: 即24=1x ⨯⨯ 解得:=8x 故答案为:A .【分析】如果两个数的比值与另两个数的比值相等 就说这四个数成比例 据此解答即可.2.【答案】B【解析】【解答】解:∵35x y =∴设x=3k y=5k∴33358x k x y k k ==++故答案为:B .【分析】根据35x y = 设x=3k y=5k 再将x 、y 的值代入x x y+计算即可。

沪科版九年级数学上册试题 第22章《相似形》单元测试卷(含答案详解)

沪科版九年级数学上册试题  第22章《相似形》单元测试卷(含答案详解)

第22章《相似形》单元测试卷一、单选题(本大题共10小题,每小题3分,共30分)1.两千多年前,古希腊数学家欧多克索斯发现了黄金分割,即:如图,点P 是线段AB 上一点(AP >BP ),若满足,则称点P 是AB 的黄金分割点.黄金分割在日常生活中处处可见,例如:主持人在舞台上主持节目时,站在黄金分割点上,观众看上去感觉最好.若舞台长20米,主持人从舞台一侧进入,设他至少走x 米时恰好站在舞台的黄金分割点上,则x 满足的方程是( )A .(20﹣x )2=20xB .x 2=20(20﹣x )C .x (20﹣x )=202D .以上都不对2.如图,点D ,E ,F 分别在的边上,,,,点M 是的中点,连接并延长交于点N ,则的值是( )A .B .C .D .3.将含有的三角板按如图所示放置,点在直线上,其中,分别过点,作直线的平行线,,点到直线,的距离分别为,,则的值为( )BP APAP AB=ABC V 13AD BD =DE BC ∥EF AB ∥EF BM AC ENAC32029161730︒ABC A DE 15BAD ∠=︒B C DE FG HIB DE HI 1h 2h 12h hA .1 BCD4.如图,点D 是△ABC 中AB 边上靠近A 点的四等分点,即4AD =AB ,连接CD ,F 是AC 上一点,连接BF 与CD 交于点E ,点E 恰好是CD 的中点,若S △ABC =8,则四边形ADEF 的面积是( )A .4B .C .2D .5.如图,在边长为的小正方形组成的网格中,建立平面直角坐标系,的三个顶点均在格点(网格线的交点)上.以原点为位似中心,画使它与的相似比为,则点的对应点的坐标是( )A .B .C .或D .或6.如图,已知、,与相交于点,作于点,点是的中点,于点,交于点,若,,则值为( )11-1181171ABC V O 111A B C △ABC V 2B 1B ()42,()42--,()42,()42--,()42,()42,-AB BC ⊥DC BC ⊥AC BD O OM BC ⊥M E BD EF BC ⊥G AC F 4AB =6CD =OM EF -A.B .C .D .7.如图,在平面直角坐标系中,为原点,为平面内一动点,,连接,点是线段上的一点,且满足.当线段取最大值时,点的坐标是( )A .B .C .D .8.如图,四边形是矩形,平分,,、的延长线交于点,连接,连接交于点.下列结论错误的是()A .图中共有三个等腰直角三角形B .C .D .9.如图,在平面直角坐标系中,点,点B 是线段上任意一点,在射线上取一点C ,使,在射线上取一点D ,使.所在直线的关系式为,点F 、G分别为线段的中点,则的最小值是()751253525O OA OB ==C 32BC =AC M AC :1:2CM MA =OM M36,55⎛⎫ ⎪⎝⎭612,55⎛⎫ ⎪⎝⎭ABCD CE BCD ∠AE CE ⊥EA CB F DE BD CE G DGC EBC∠=∠AB AD CG CE⋅=⋅∽CDG CEBV V ()E OE OA OB BC =BC BD BE =OA 12y x =OC DE 、FGABC .D .4.810.如图所示,正方形由四个全等的直角三角形和一个小正方形组成,且内接于正方形,连接,.已知正方形与正方形面积之比为,若,则( )A BCD .二、填空题(本大题共8小题,每小题4分,共32分)11.已知,且,则 .12.在中,M ,N 分别是BC ,AC 边上一点,连接AM ,BN 交于点P ,若,,则 .13.正方形中,E ,F 分别是,上的点,连结交对角线于点G ,若恰好平分,,则的值为 .ABCD FGHI DE BE CE>ABCD FGHI 59DE CH ∥BECE=32::3:5:7a b c =10a b c -+=a b c ++=ABC V :2:3BM CM =:1:4AN CN =:AP MP =ABCD AD DC EF BD BE AEF ∠413DG GB =DE AE14.宽与长的比等于黄金比的矩形称为黄金矩形.古希腊很多矩形建筑中宽与长的比都等于黄金比,如图,矩形ABCD 为黄金矩形,AB <AD ,以AB 为边在矩形ABCD 内部作正方形ABEF ,若AD =1,则DF = .15.如图,矩形的两条对角线相交于点O ,,垂足为E ,F 是的中点,连接交于点P,那么.16.如图,中,,,,若正方形的顶点在上,顶点、都在上,射线交边于点,则长为 .17.如图:等腰直角三角形中,E 为边上一点,.将沿着翻折得到线段,连接,若.ABCD AC BD ,OE AB ⊥OC EF OB OPPB=ABC V 90ACB ∠=︒2BC =4AC =DEFC D AB F G AC AF BC H CH ABC BC 3BE CE =AB AE AD CD AB =CD =18.如图,在矩形中,,,点在直线上,从点出发向右运动,速度为每秒,点在直线上,从点出发向右运动,速度为每秒,相交于点,则的最小值为 .三、解答题19.(8分)如图,,于点D ,M 是的中点,交于点P ,.若,求的长.ABCD 5cm AB =6cm BC =E AD A 0.5cm F BC B 2cm BE AF 、G BG CG +cm AB AC =AD BC ⊥AD CM AB DN CP ∥6cm AB =PN20.(8分)如图,四边形ABCD 中,AB=AC=AD ,AC 平分∠BAD ,点P 是AC 延长线上一点,且PD ⊥AD .(1)证明:∠BDC=∠PDC ;(2)若AC 与BD 相交于点E ,AB=1,CE :CP=2:3,求AE 的长.21.(10分)如图,在斜坡的顶部有一铁塔AB ,B 是CD 的中点,CD 是水平的,在阳光的照射下,塔影DE 留在坡面上.若铁塔底座宽CD=12m ,塔影长 m ,小明和小华的身高都是1.6m ,同一时刻小明站在点E 处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m 和1m ,求塔高AB.18DE22.(10分)如图1,在,,,D 为上一点,连接,分别过点A 、B 作于点N ,于点M .(1)求证:;(2)若点D 满足,求的长;(3)如图2,若点E 为中点,连接,求证:.图1 图2Rt ABC △90ACB ∠=︒1AC BC ==AB CD AN CD ⊥BM CD ⊥ACN CBM V V ≌21BDAD =∶∶DM AB EM 45EMN ∠=︒23.(10分)如图,在正方形中,点是对角线上一点,的延长线交于点,交的延长线于点,连接.(1)求证:;(2)求证:;(3)若的长.ABCD G BD CG AB E DA F AG CG AG =2AB BE DF =⋅GE =GC =EF24.(12分)如图,在平面直角坐标系中,点A 在轴的正半轴上,点在轴的负半轴上,点在轴的正半轴上,且,线段、的长是一元二次方程的两个根,且.(1)求点A 、点的坐标;(2)求点的坐标;(3)若直线过点A 交线段于点,且,求点坐标;(4)在平面内是否存在一点,使得以为直角顶点的与相似,若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.x B x C y 90ACB ∠=︒OB OA 213360x x -+=OB OA <B C l BC D :1:2ABD ADC S S =△△D P P APC △ABC V P答案一、单选题1.A【分析】点P 是AB 的黄金分割点,且PB <PA ,PB =x ,则PA =20−x ,则,即可求解.解:由题意知,点P 是AB 的黄金分割点,且PB <PA ,PB =x ,则PA =20−x ,∴,∴(20−x )2=20x ,故选:A .2.A【分析】过点F 作交AC 于点G,可证.同理,可得,,;由,得,于是;设,则,,,从而得.解:过点F 作交AC 于点G,∴∴.BP AP AP AB=BP AP AP AB =FG BN ∥EN GN =13AE AD EC DB ==3EC AE =13AE BF EC FC ==FG BN ∥13BF NG FC GC ==3GC NG =EN NG a ==3=GC a 5EC a =203AC a =320EN AC =FG BN ∥1EN EM GN FM==EN GN =∵,∴.∴.∵,∴.∵,∴.∴.设,则,∴∴.∴.∴.∴.故选:A3.B【分析】设交于点,由,得三角形BCM 为等腰直角三角形,再由含30度角直角三角形三边长比及等腰直角三角形的边长比,设BC 为x ,可得MA 为,再由平行线分线段成比例求解.解:设交于点,∵,,DE BC ∥13AE AD EC DB ==3EC AE =EF AB ∥13AE BF EC FC ==FG BN ∥13BF NG FC GC ==3GC NG =EN NG a ==3=GC a 5EC EN NG GC a=++=35EC AE a ==53AE a =520+533AC AE EC a a a =+==320203EN a AC a ==CE FG M 45DAC BAD CAB ∠=∠+∠=︒MA x =-CE FG M 30CAB ∠=︒15BAD ∠=︒∴,∵,∴,三角形为等腰直角三角形,在Rt △ABC 中,设长为,则,∵,∴,∴,∵,∴,故选:B .4.D【分析】过D 点作DG∥EF ,连接AE ,,GF =FC ,再计算△ADE 和△AEF 的面积即可.解:过D 点作DG ∥EF ,连接AE ,∵点E 恰好是CD 的中点,4AD =AB ,∴,GF =FC ,设AG =k ,则AF =4k ,GF =3k ,FC =3k ,∴,∵,S △ABC =8,∴,∴,∵,∴,∴=.45DAC BAD CAB ∠=∠+∠=︒//FG DE 45CMB DAC ∠=∠=︒BCM BC x CM BC x ==30CAB ∠=︒CA ==MA x =-////HI FG DE 121h MA h CM ===14AG AD AF AB ==14AG AD AF AB ==43AF FC =14ACD ABC S AD S AB ∆∆==124ACD ABC S S ∆∆==112ADE AEC ACD S S S ∆∆∆===43AEFCEF S AF S CF ∆∆==4477AEF AEC S S ∆∆==417ADE AEF ADEF S S S ∆∆=+=+四边形117故选:D .5.C【分析】直接利用位似图形的性质画出三角形顶点的对应点,再顺次连接即可画出图形,根据点的位置写出坐标即可.解:如图所示,当和在原点同侧时,∵与的相似比为2,,∴,即;如图所示,当和在原点两侧时,∵与的相似比为2,,∴,即;综上所述,或,故选C.1B ABC V 111A B C △111A B C △ABC V ()2,1B ()122,12B ⨯⨯()142B ,ABC V 111A B C △111A B C △ABC V ()2,1B ()122,12B -⨯-⨯()142B --,()142B --,()142B ,6.A【分析】证明,,,,求出,求出,,得出即可得出答案.解:、,,∴,,,∴,,∴,,∴,,∴,点是的中点,,,,∴,,∴,∴,故选:.7.DCOM CAB △∽△BOM BDC V V ∽OM CM AB BC =OM BM DC BC =125OM =132EG CD ==122FG AB ==1EF EG FG =-=AB BC ⊥ DC BC ⊥OM BC ⊥OM AB CD ∥∥COM CAB ∴V V ∽BOM BDC V V ∽OM CM AB BC =OM BM DC BC =4OM CM BC =6OM BM BC=125OM =EF BC ⊥ EG AB CD ∥∥ E BD BE DE ∴=BG CG ∴=CF AF ∴=132EG CD ==122FG AB ==1EF EG FG =-=75OM EF -=A【分析】由题意可得点在以点为圆心,为半径的上,在轴的负半轴上取点,连接,分别过、作,,垂足为、,先证,得,从而当取得最大值时,取得最大值,结合图形可知当,,三点共线,且点在线段上时,取得最大值,然后分别证,,利用相似三角形的性质即可求解.解:∵点为平面内一动点,,∴点在以点为圆心,为半径的上,在轴的负半轴上取点,连接,分别过、作,,垂足为、,∵∴∴,∵,∴,∵,∴,∴,∴当取得最大值时,取得最大值,结合图形可知当,,三点共线,且点在线段上时,取得最大值,C B 32OB x 0D ⎛⎫ ⎪ ⎪⎝⎭BD C M CF OA ⊥ME OA ⊥F E OAM DAC V V ∽23OM OA CD AD ==CD OM D B C B DC CD BDO CDF V V ∽AEM AFC V V ∽C 32BC =C B 32OB x 0D ⎛⎫ ⎪ ⎪⎝⎭BD C M CF OA ⊥ME OA ⊥F E OA OB ==AD OD OA =+=23OA AD =:1:2CM MA =23OA CM AD AC==OAM DAC ∠∠=OAM DAC V V ∽23OM OA CD AD ==CD OM D B C B DC CD∵∴,∴,∵,∴,∵轴轴,,∴,∵,∴,∴,解得同理可得,,∴,解得∴∴当线段取最大值时,点的坐标是,故选D .8.A【分析】根据矩形的性质以及角平分线的性质得,是等腰直角三角形,,是等腰直角三角形,由证明,可得,,则,是等腰直角三角形,由,可得,由三角形外角的性质可得,证明,列比例式并结合等量代换可得.OAOB ==OD =BD =152==9CD BC BD =+=23OM CD =6OM =y x ⊥CF OA ⊥90DOB DFC ∠∠==︒BDO CDF ∠∠=BDO CDF V V ∽OB BD CF CD =1529=CF =AEM AFC V V ∽23ME AM CF AC ==23=ME =OE ===OM M 45DCE BCE ∠=∠=︒CEF △45F DCE ∠=∠=︒ABF △SAS (SAS)≌EBF EDC V V FEB CED ∠=∠BE ED =90FEB CEB CEB CED ∠+∠=∠+∠=︒BED V EBF EDC △≌△FEB CED ∠=∠DGC EBC ∠=∠∽CDG CEB V V AB AD CG CE ⋅=⋅解:如图:四边形是矩形,,,,平分,,,,是等腰直角三角形,,,是等腰直角三角形,,,,,,,,是等腰直角三角形,是等腰直角三角形,故A 错误;,,,,故B 正确;,,故D正确;ABCD AB CD ∴=90ABC BCD ADC ∠=∠=∠=︒90ABF ∴∠=︒CE BCD ∠45DCE BCE ∴∠=∠=︒AE CE ⊥ 90FEC ∴∠=︒CEF ∴V EF CE ∴=45F ∠=︒ABF ∴V BF AB CD ∴==45F DCE ∠=∠=︒ (SAS)≌EBF EDC ∴V △FEB CED ∴∠=∠BE ED =90FEB CEB CEB CED ∴∠+∠=∠+∠=︒BE ED = BED ∴V DCH V 45EBD ∴∠=︒45DGC GCB CBG CBG ∠=∠+∠=︒+∠ 45EBC EBD CBG CBG ∠=∠+∠=︒+∠DGC EBC ∴∠=∠DCG ECB ∠=∠ ∽CDG CEB ∴V V,,,,,故C 正确.故选:A .9.A【分析】如图所示,连接,设射线交射线于H ,过点H 作于M ,连接,先根据三线合一定理得到,,进而证明四边形是矩形,得到,,故当点B 与点M 重合时,最小,即最小,最小值为,设,则,求出,利用相似三角形的性质求出(舍去),则的最小值为.解:如图所示,连接,设射线交射线于H ,过点H 作于M ,连接,∵,,点F 、G 分别为线段的中点,∴,,∵,∴,即,∴四边形是矩形,∴,,∴当最小时,最小,∴当点B 与点M 重合时,最小,即最小,最小值为,∵点H 在直线上,∴可设,∴,∵,CD CG CE CB∴=CD AB = BC AD =AB CG CE AD∴=AB AD CG CE ∴⋅=⋅BF BG ,ED OA HM OE ⊥BH BF OC BG DE ⊥,⊥OBF CBF DBG EBG ==∠∠,∠∠BFHG FG BH =90OHE ∠=︒BH FG HM ()2H m m ,2OM m HM m ==,OE =OMH HME △∽△m =0m =FG BF BG ,ED OA HM OE ⊥BH OB BC =BD BE =OC DE 、BF OC BG DE ⊥,⊥OBF CBF DBG EBG ==∠∠,∠∠180OBF CBF DBG EBG +++=︒∠∠∠∠90CBF DBG +=︒∠∠90FBG ∠=︒BFHG FG BH =90OHE ∠=︒BH FG BH FG HM 12y x =()2H m m ,2OM m HM m ==,()E∴∵,∴,又∵,∴,∴,∴∴(舍去),经检验,∴,故选A .10.A【分析】设,,则,根据正方形与正方形面积之比为,得到,求出,作交于点M ,作交于点P ,证明出,设,则然后利用相似三角形的性质得到,然后解方程求解即可.解:由题意可得,∴设,,则,∵,∴,OE =90MEH HOE MHO MOH +=︒=+∠∠∠∠MHO MEH =∠OMH HME =∠∠OMH HME △∽△OM HM HM ME=2m m =m =0m =m =FG CI DH a ==CH b =IH a b =+ABCD FGHI 59()22259a b a b +=+2BI CH a ==BM GH ⊥GH NE BM ⊥BM BPE ENC ∽V V CN m =IN BP a m ==+a m a a m +=BIC CHD ≌V V CI DH a ==CH b =IH a b =+90H ∠=︒22222CD CH DH a b =+=+∵正方形与正方形面积之比为,∴,即,∴整理得,∴,解得或(舍去),∴,∴,如图所示,作交于点M ,作交于点P ,由题意可得,,∵,∴四边形,是矩形,∴,,∴,∴设,则,∵,∴,∵,∴,∴,又∵,∴,ABCD FGHI 592259CD IH =()22259a b a b +=+222520a ab b -+=25220a a b b ⎛⎫-+= ⎪⎝⎭12a b =2a b=2b a =2BI CH a ==BM GH ⊥GH NE BM ⊥BM AGD DHC ≌V V ED CH ∥BINP ENHD 2PN BI a ==EN DH a ==PE PN EN a =-=CN m =IN BP a m ==+BE CE ⊥90BEP CEN ∠+∠=︒BP PN ⊥90BEP PBE ∠+∠=︒CEN PBE ∠=∠90BPE ENC ∠=∠=︒BPE ENC ∽V V∴,即,∴整理得,∴,∴解得,∴故选:A .二、填空题11.30【分析】设,,,根据得到,求得,从而得出,,,代入进行计算即可.解:,设,,,,,解得:,,,,,故答案为:30.12.【分析】过点M 作,交于点Q ,根据平行线分线段成比例可得,设,求出,即可求解.解:过点M 作,交于点Q ,BP PE BE EN CN CE ==a m a a m+=220a am m -+=210a a m m ⎛⎫-+= ⎪⎝⎭a m =BE CE =3a k =5b k =7c k =10a b c -+=35710k k k -+=2k =6a =10b =14c =::3:5:7a b c = ∴3a k =5b k =7c k =10a b c -+= 35710k k k ∴-+=2k =6a ∴=10b =14c =6101430a b c ∴++=++=5:8MQ BN ∥AC 23BM NQ CM CQ ==2,3NQ k CQ k ==54k AN =MQ BN ∥AC∵,∴,设,∴,∵,∴,则,∵,∴,故答案为:.13.或4【分析】延长交于R ,作于T ,不妨设,,,可证得是等腰三角形,可推出,进而表示出,然后解,从而求出x 的值,进而可得结果.解:如图,延长交于R ,作于T ,,不妨设,,则,设,MQ BN ∥23BM NQ CM CQ ==2,3NQ k CQ k ==5CN NQ CQ k =+=:1:4AN CN =154AN k =54k AN =MQ PN ∥55428kAP AN MP NQ k ===5:812EF BC GT DE ⊥4DG =13GB =4DE x =REB V 413EG DE DG RG BR BG ===EG DEG △EF BC GT DE ⊥ 413DG GB =∴4DG =13GB =17BD =4DE x =四边形是正方形,,,,,,恰好平分,,,,,在中,,由勾股定理得,解得,,当,当,综上所述,或4,故答案为:或4.14【分析】先根据黄金矩形求出AB ,再利用正方形的性质求出AF ,然后进行计算即可解答.解:∵矩形ABCD 为黄金矩形,AB <AD ,ABCD ∴BC AD ∥AD ==∴EBC AEB ∠=∠4AE AD DE x =-=413EG DE DG RG BR BG ===∴13BR x = BE AEF ∠∴AEB FEB ∠=∠∴EBC FEB ∠=∠∴13ER BR x ==∴4521717EG ER x ==Rt EGT V GT DT DG ===4ET DE DT x =-=-((22252417x x ⎛⎫+-= ⎪⎝⎭1x =2x =∴4DE x ==DE =AE ==∴4DE AE=DE =AE ==∴12DE AE =12DE AE =12∴∴∵四边形ABEF 是正方形,∴∴DF=AD -AF=15.【分析】根据矩形性质得到,利用三角形的三线合一得,过O 作交于点Q ,则有,,计算即可.解:∵是矩形,∴,∵F 是的中点,∴,又∵,∴,过O 作交于点Q ,∴,,∴,故答案为:.16.AB AD =AB AD ==1=13OA OB OC ==AE EB =OQ AB P EF OQF AEF V V ∽OQP BEP V V ∽ABCD OA OB OC ==OC 1122OF OC OA ==OA OB =OE AB⊥AE EB =OQ AB P EF OQF AEF V V ∽OQP BEP V V ∽13OP OQ OQ OF PB BE AE AF ====1343【分析】证明,,由相似三角形的性质得出 , ,设, 可得,, 从而可得出答案.解:∵四边形为正方形, ,∴,,∴,, ∴, , 设, ∴,, ∴, ∴, ∴.故答案为 .17.2【分析】如图,作,使,连接,,交于,过作于,可得,,可得,求解,,可得,由对折可得:,,,证明,可得,再证明,可得,有,,求解,可得,从而可得答案.解:∵等腰直角三角形,∴,如图,作,使,连接,,交于,过作于,△∽△ADG ABC AEF AHC V V ∽DG AG BC AC=EF AF CH AC =DG EF x ==24x AG =4x AG x CH +=DGFE 90ACB ∠=︒DG EF BC ∥∥DG EF =△∽△ADG ABC AEF AHC V V ∽DG AG BC AC=EF AF CH AC =DG EF x ==24xAG =4x AG x CH +=2AG x =24x x x CH +=43CH =43AH AE ⊥AH AE =DE EH CH DE K A AF BC ⊥F BAE CAH ∠=∠BC ==12AF CF BC ===()SAS BAE CAH ≌△△454590BCH ∠=︒+︒=︒BE CH ==CE EF ==AH AE ===52EH ==AB AD ==BAE DAE ∠=∠DE BE =45ADE ABE ∠=∠=︒()SAS AEC AHD V V ≌90ECH EDH ∠=∠=︒()Rt Rt HL HEC EHD V V ≌HED CHE ∠=∠CH DE ==EK HK =CK DK =EK HK ==CK DK ===HKE CKD V V ∽ABC AB =AB AC ==BC =AH AE ⊥AH AE =DE EH CH DE K A AF BC ⊥F∵等腰直角三角形,∴,,∴,∴,∴,,∴,∵,∴,,∴∴,由对折可得:,,,∵,∴,∴,∵,,∴,∴,∴,∴,∵,,∴,ABC 90BAC EAH ∠=︒=∠AB AC ==45B ACB ∠=∠=︒BAE CAH ∠=∠BC ==12AF CF BC ===()SAS BAE CAH ≌△△BE CH =45B ACH ∠=∠=︒454590BCH ∠=︒+︒=︒3BE CE =BE CH ==CE EF ==AH AE ===52EH =AB AD ==BAE DAE ∠=∠DE BE ==45ADE ABE ∠=∠=︒90BAC EAH ∠=∠=︒90BAE EAC DAE DAH ∠+∠=︒=∠+∠EAC DAH ∠=∠AE AH =AB AC AD ==()SAS AEC AHD V V ≌45ACE AHD ∠=∠=︒CE HD ==454590EDH ∠=︒+︒=︒90ECH EDH ∠=∠=︒EH EH =CE DH =()Rt Rt HL HEC EHD V V ≌∴,,∴,,由勾股定理可得:,∴,∴,∴,∴,,∴,∴,∴,故答案为:218.10【分析】过点作直线,分别交、于点,过点作直线,分别交、于点,易知四边形、、为矩形,证明,由相似三角形的性质可得;设两点运动时间为,则,,易得,;作点关于直线的对称点,由轴对称的性质可得,故当三点共线时,的值最小,即取最小值,此时,在中,由勾股定理求得的值,即可获得答案.解:如下图,过点作直线,分别交、于点,过点作直线,分别交、于点,HED CHE ∠=∠CH DE ==EK HK =CK DK =222EK CE CK =+222EK EK ⎫=-+⎪⎪⎭EK HK ==CK DK ===45DK CK EK HK ===HKE DKC ∠=∠HKE CKD V V ∽45CD CK HE HK ==4452552CD EH ==⨯=G MN BC ⊥AD BC M N 、G PQ CD ∥AB DC P Q 、ABNM PBNG GNCQ GAE GFB V V ∽AE GM BF GN =E F 、t 0.5AE t =2BF t =1cm GM =4cm GN =C PQ K CG KG =B G K 、、BG KG +BG CG +Rt BCK △BK G MN BC ⊥AD BC M N 、G PQ CD ∥AB DC P Q 、易知四边形、、为矩形,,∵四边形为矩形,∴,∴,,∴,∴,设两点运动时间为,则,,则有,即,∵,∴,,∵四边形为矩形,∴,作点关于直线的对称点,如图,则,,由轴对称的性质可得,当三点共线时,的值最小,即取最小值,此时,在中,,∴的最小值为.故答案为:10.三、解答题19.ABNM PBNG GNCQ 5cm MN AB ==ABCD AD BC ∥AB DC∥GAE GFB ∠=∠GEA GBF ∠=∠GAE GFB VV ∽AEGM BF GN=E F 、t 0.5AE t =2BF t =0.5124GM t GN t ==4GN GM =5cm MN =1cm GM =4cm GN =GNCQ 4cm QC GN ==C PQ K 4cm QK QC ==8cm KC QK QC =+=CG KG =B G K 、、BG KG +BG CG +Rt BCK △10cm BK ===BG CG +10cm解:∵,,∴,又∵,∴,∴,∵点M 是线段的中点,,∴,∴,∴,∵,∴.20.解:(1)证明:∵AB=AD ,AC 平分∠BAD ,∴AC ⊥BD ,∴∠ACD+∠BDC=90°,∵AC=AD ,∴∠ACD=∠ADC ,∴∠ADC+∠BDC=90°,∵PD ⊥AD ,∴∠ADC+∠PDC=90°,∴∠BDC=∠PDC ;(2)解:过点C 作CM ⊥PD 于点M ,AB AC =AD BC ⊥BD DC =DN CM ∥1BN BD PN DC==BN NP =AD DN CM ∥1AP AM PN MD==AP PN =13PN AB =6cm AB =()1162cm 33PN AB ==⨯=∵∠BDC=∠PDC ,∴CE=CM ,∵∠CMP=∠ADP=90°,∠P=∠P ,∴△CPM ∽△APD ,∴=,设CM=CE=x ,∵CE :CP=2:3,∴PC=x ,∵AB=AD=AC=1,∴=,解得:x=,故AE=1-=.21.解:如图,过点D 作,交AE 于点F ,过点F 作,垂足为点G.由题意得,,∴,∵,,∴,∴,答:塔高AB 为24m.CM AD PC PA32x 13x 23x 12+131323DF CD ⊥FG AB ⊥1.62DF DE =18 1.6214.4(m)DF =⨯÷=16m 2GF BD CD === 1.61AG GF =1.669.6(m)AG =⨯=14.49.624(m)AB =+=22.解:(1)证明:∵,,∴,,又∵,∴,∴∵,∴;(2)解:∵,,∴,∴,设,则,由(1)知,,∵,∴,∴,∴,∴,∴;(3)解:延长,相交于点H,AN CD ⊥BM CD ⊥90ANC ∠=︒90BMC ∠=︒90ACB ∠=︒90ACN BCM BCN CBM ∠+∠=∠+∠=︒ACN CBM∠=∠AC BC =()ACN CBM ASA V V ≌AND BMD ∠=∠ADN BDM ∠=∠AND BMD V V ∽12AN DN AD BM DM DB ===AN x =2BM x =AN CM x ==2BM CN x ==222AN CN AC +=()22221x x +=x =CM =CN =MN 2233DM MN ===ME AN∵E 为的中点,∴∵,,∴,∴,,∴,∴,又∵,∴,又∴,∴,∴.23.解:(1)证明:∵是正方形的对角线,∴,,在和中,,∴,∴;(2)证明:∵四边形是正方形,∴,,,AB AE BE=90ANM ∠=︒90BMN ∠=︒AN BM ∥HAE MBE ∠=∠AHE BME ∠=∠()AAS AHE BME V V ≌AH BM =BM CN =CN AH =CM AN=MN HN =45HMN ∠=︒45EMB ∠=︒BD ABCD 45C D B A D B ∠=∠=︒DC DA =CDG V ADG △DC DA CDG ADG DG DG =⎧⎪∠=∠⎨⎪=⎩()SAS CDG ADG ≌△△CG AG =ABCD 90CBE FDC ∠=∠=︒CB CD AB ==CB DF ∥∴,∴,∴,即,∴;(3)解:∵∴,∵四边形是正方形,∴,,,∴,∴,,∴,∴,设,则,∴,∵,∴,,∴,∴,∴,∴的长为24.(1)解:∵,∴.∴.∵点A 在轴的正半轴上,点在轴的负半轴上,BCE DFC ∠=∠BCE DFC ∽△△CB FD BE DC =AB FD BE AB=2AB BE DF =⋅GE =GC =CE CG GE =+=ABCD CD AB ∥CD AB =CB AD ∥BE CD ∥EBG CDG ∠=∠BEG DCG ∠=∠BEG DCG ∽△△BE GE DC GC ==BE =6CD x =(66AE AB BE CD BE x x =-=-==AF CB ∥FAE CBE ∠=∠AFE BCE ∠=∠AFE BCE △∽△EF AE EC BE==EF =EF 213360x x -+=(4)(9)0x x --=124,9x x ==x B x∴A 点坐标为,B 点坐标为,(2)∵A 点坐标为,B 点坐标为,∴,设点C 的坐标为,则,∵,,∴,∴,∴,∴,∴,解得,经检验,是方程的解且符合题意,∴点C 的坐标是;(3)过点D 作轴于点E ,轴于点F ,如图,则,∴,,∵,∴.∴;,∵,,∴;,()9,0()4,0-()9,0()4,0-9,4OA OB ==()0,t ()0t >OC t =90ACB ∠=︒90AOC COB ∠=∠=︒90OCB ACO OCB OBC ∠+∠=∠+∠=︒ACO OBC ∠=∠ACO CBO V V ∽OC AO OB OC=94tt =6t =6t =()0,6DE x ⊥DF y ⊥DE OC ∥DF OB∥BED BOC V V ∽CDF CBO V V ∽:1:2ABD ADC S S =△△:1:2BD DC =13DE BD OC BC ==23DF CD BO BC ==4OB =6OC =2DE =243DF =解得.∴.(4)解:存在,求解过程如下:设,由题意可得:,,当时,,即,,解得,或,即点坐标为或,当时,,即,,解得或,即点坐标为或,综上可知,满足条件的P 点为:或或或83DF =8,23D ⎛⎫- ⎪⎝⎭(,)P x y 13AB OB OA =+=BC ===AC ===AP =CP =APC ACB △∽△AP AC PC AC AB CB ==29AC AP AB===6AC CB CP AB ⨯===00x y =⎧⎨=⎩721310813x y ⎧=⎪⎪⎨⎪=⎪⎩P (0,0)72108,1313⎛⎫⎪⎝⎭APC BCA △∽△AP AC PC BC AB AC ==6AC BC AP AB ⨯===29AC CP AB===96x y =⎧⎨=⎩45133013x y ⎧=⎪⎪⎨⎪=-⎪⎩P ()9,64530,1313⎛⎫- ⎪⎝⎭(0,0)72108,1313⎛⎫ ⎪⎝⎭()9,64530,1313⎛⎫- ⎪⎝⎭。

沪科版九年级数学上册 第22章 相似形 单元测试题

沪科版九年级数学上册  第22章 相似形  单元测试题

第22章相似形单元测试题(满分120分;时间:120分钟)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!题号一二三总分得分一、选择题(本题共计9 小题,每题3 分,共计27分,)1. 已知在等腰△ABC中,顶角∠A=36∘,BD平分∠ABC交AC于点D,则下列说法中错误的是()A.△ABC∽△BDCB.点D是线段AC的黄金分割点C.AD AC =√5−12D.ADAC=122. 已知线段x,y满足(x+y):(x−y)=3:1,那么x:y等于()A.3:1B.2:3C.2:1D.3:23 如图,是小孔成像原理的示意图,根据图所标注的尺寸,这支蜡烛在暗盒中所成的像CD 的长是()A.1 6cmB.13cm C.12cm D.1 cm4 若ab =cd=12(b≠d),则下列式子不正确的是()A.a+bb =32B.a+2cb+2d=2 C.a−cb−d=12D.b=2a5 已知:如图,△ABC中,P为AB上的一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AB⋅CP=AP⋅CB;④AC⋅AC=AP⋅AB,能使△APC和△ACB相似的条件有()A.①②④B.①③④C.②③④D.①②③6. 如图,点B是线段AC的黄金分割点(AB>BC),则下列结论中正确的是()A.AC2=AB2+BC2B.BC2=AC⋅ABC.AB AC =√5−12D.BCAC=√5−127 如图,AB // CD,AE // FD,AE,FD分别交BC于点G,H,则图中共有相似三角形()A.4对B.5对C.6对D.7对8 如图,点D是△ABC的边BC上一点,∠BAD=∠C,AC=2AD,如果△ACD的面积为15,那么△ABD的面积为()A.15B.10C.7.5D.59. 如图,在△ABC中,BD:DC=3:1,G是AD的中点,BG延长线交AC于E,那么BG:GE=()A.3:1B.4:1C.6:1D.7:1二、填空题(本题共计8 小题,每题3 分,共计24分,)10. 在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为12m,那么这栋建筑物的高度为________m.11 如图,P是Rt△ABC的形内一点,过点P作直线截△ABC,使截得的三角形与△ABC相似,满足这样条件的直线最多有________.12 如图,网高为0.8米,击球点到网的水平距离为3米,小明在打网球时,要使球恰好能打过网,且落点恰好在离网4米的位置上,则球拍击球的高度ℎ为________米.13 已知a+b3b =43,则ba=________.14. 如图,将一副直角三角板(含45∘角的直角三角板ABC及含30∘角的直角三角板DCB)按图示方式叠放,斜边交点为O,则△AOB与△COD的面积之比等于________.15. 用1:50000的比例尺绘出某市的地图,某一步行街在地图上只有2.5cm,则这条步行街实际有________米.16. 如图,铁道口栏杆的短臂长为1.2m,长臂长为8m,当短臂端点下降0.6m时,长臂端点升高________m(杆的粗细忽略不计).17 如图,四边形ABCD与四边形A1B1C1D1是以O为位似中心的位似图形,满足OA1=A1A,E,F,E1,F1分别是AD,BC,A1D1,B1C1的中点,则________.三、解答题(本题共计7 小题,共计69分,)18 已知x2=y3=z4,且x+y−z=6,求x、y、z的值.19 如图所示,已知五边形ABCDE,O点是五边形ABCDE内一点,A1,B1,C1,D1,E1分别是OA,OB,OC,OD,OE上的点,且A1B1 // AB,B1C1 // BC,C1D1 // CD,D1E1 // DE,=100cm2,求五边形A1B1C1D1E1的面A1E1 // AE.若OD=2OD1,S五边形ABCDE积.20. 利用位似图形的方法以O为位似中心把如图所示的四边形放大到2倍成四边形A′B′C′D′.21. △ABC的三边长分别为5,12,13,与它相似的△DEF的最小边长为15,求△DEF的其他两条边长和周长.22 如图所示,点B、C在∠BAC的两边上,点D、E在∠BAC两边的反向延长线上,且DE // BC.若AB=5,AC=6,AD=2,求AE的长.23. 如图,已知AD // EB // FC,你能得到以下结论吗?说明理由.(1)ABBC =DEEF;(2)ABBC =BECF.24 如图1,我们知道,若点C将切断AB分成两部分,且ACAB =BCAC,则称点C为线段AB的黄金分割点.类似地,我们可以给出“黄金分割点”的定义:若直线l将一个面积为S的图形分成两部分S1,S2,且S1S =S2S1,则称直线l为该图形的黄金分割线.(1)如图2,在△ABC中,若点D为AB边上的黄金分割点(靠近B),则直线CD是△ABC的黄金分割线吗?为什么?(2)如图3,在△ABC中,D为AB的黄金分割点(靠近B),过点C任作一条直线交AB于点E,再过点D作直线DF // CE,交AC于点F,则直线EF也为△ABC的黄金分割线,请你说明理由.(3)如图4,四边形ABCD中,点E为AC的一个黄金分割点(靠近A),请你画出四边形ABCD 的一条黄金分割线,简单写出画法步骤,并说明理由.1、最困难的事就是认识自己。

九年级上册数学单元测试卷-第22章 相似形-沪科版(含答案)

九年级上册数学单元测试卷-第22章 相似形-沪科版(含答案)

九年级上册数学单元测试卷-第22章相似形-沪科版(含答案)一、单选题(共15题,共计45分)1、如图,在Rt△ABC中,CD是斜边AB上的高,则下列结论正确的是()A.BD= ADB.BC 2=AB•CDC.AD 2=BD•ABD.CD 2=AD•BD2、如图所示,E,F,G,H分别是OA,OB,OC,OD的中点,已知四边形EFGH的面积是3,则四边形ABCD的面积是()A.6B.9C.12D.183、已知的三边长分别为,9和,的一边长为5,当的另两边长是下列哪一组时,这两个三角形相似()A.4,5B.5,6C.6,7D.7,84、下列各组图形一定相似的是()A.两个矩形B.两个等边三角形C.各有一角是80°的两个等腰三角形D.任意两个菱形5、下列生活中的现象,属于相似变换的是()A.抽屉的拉开B.汽车刮雨器的运动C.坐在秋千上人的运动D.投影片的文字经投影变换到屏幕6、如图,正方形的对角线,交于点,是上的一点,连接,过点作于点,交于点,交于点,若正方形的边长为4,下列结论:①;②;③当为中点时,;④,其中正确的是()A.①②③B.①②④C.①③④D.①②③④7、如图,△ABC中,点D,E分别是AB,AC上两点,且DE∥BC,若AD=2,BD=3,BC=10,则DE的长是()A.3B.4C.5D.8、如图,在四边形ABCD中,DC∥EF∥AB,EC∥AF,四个三角形的面积分别为S1, S2,S3, S4,若S2=1,S4=4,则S1+S3等于()A.2B.2.5C.3D.3.59、两个相似三角形周长之比为9∶5,则面积比为()A.9∶5B.81∶25C.3∶D.不能确定10、下列说法正确的个数是( )①位似图形一定是相似图形;②相似图形一定是位似图形;③两个位似图形若全等,则位似中心在两个图形之间;④若五边形ABCDE与五边形A'B'C'D'E'位似,则其中△ABC与△A'B'C'也是位似的且相似比相等.A.1个B.2个C.3个D.4个11、如图,在△ABC中,D是AB的中点,DE∥BC,若△ADE的面积为3,则△ABC的面积为()A.3B.6C.9D.1212、如图,在矩形ABCD中,AB=6,BC=8,M是AD上任意一点,且ME⊥AC于E,MF⊥BD于F,则ME+MF为()A. B. C. D.不能确定13、如图,在中,点D,E分别是,的中点,与交于点O,连接.下列结论:(1);(2);(3);(4).其中正确的个数有()A.4B.3C.2D.114、如图,在矩形ABCD中,E、F分别是DC、BC边上的点,且∠AEF=90°,则下列结论正确的是().A.△ABF∽△AEFB.△ABF∽△CEFC.△CEF∽△DAED.△DAE∽△BAF15、下列判断中,错误的有()A.三边对应成比例的两个三角形相似B.两边对应成比例,且有一个角相等的两个三角形相似C.有一个锐角相等的两个直角三角形相似D.有一个角是100°的两个等腰三角形相似二、填空题(共10题,共计30分)16、如图,已知双曲线经过Rt△OAB的斜边OB的中点D,与直角边AB相交于点C.当时,________.17、如图,中,,顶点,分别在反比例函数与的图象上,则的值为________.18、如图,正方形ABCD与正方形EFGH是位似形,已知A(0,5),D(0,3),E(0,1),H(0,4),则位似中心的坐标是________19、有3个正方形如图所示放置,阴影部分的面积依次记为S1, S2,则S1:S2=________.20、如图,点A(-2,0),B(0,1),以线段AB为边在第二象限作矩形ABCD,双曲线(k<0)经过点D,连接BD,若四边形OADB的面积为6,则k的值是________.21、如图,在△ABC中,DE∥BC,DE与边AB相交于点D,与边AC相交于点E,如果AD=3,BD=4,AE=2,那么AC=________ .22、在△ABC和△DEF中,.要使△ABC∽△DEF,还需要添加一个条件,那么这个条件可以是________(只需填写一个正确的答案).23、如果两个相似三角形周长的比是2:3,那么它们面积的比是________.24、如图,在△ABC中,AD,BE是两条中线,则S△EDC:S△ABC=________.25、线段a、b的长度分别是2cm和8cm,则a、b的比例中项长为________ cm.三、解答题(共5题,共计25分)26、已知====k,求 k值.27、如图,△ABC与△ADE是位似图形,BC与DE是否平行?为什么?28、如图,△ABC是一块锐角三角形的材料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少mm.29、如图,为了估计河的宽度,在河的对岸选定一个目标点P,在近岸取点Q和S,使点P、Q、S在一条直线上,且直线与河垂直,在过点S且与直线垂直的直线a上选择适当的点T,与过点Q且与垂直的直线b的交点为R.如果,,,求的长.30、如图,在△ABC中,AC=8厘米,BC=16厘米,点P从点A出发,沿着AC边向点C以1cm/s的速度运动,点Q从点C出发,沿着CB边向点B以2cm/s的速度运动,如果P与Q 同时出发,经过几秒△PQC和△ABC相似?参考答案一、单选题(共15题,共计45分)1、D2、C3、C4、B5、D6、D7、B8、B9、B10、B11、D12、A13、A14、C15、B二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

沪科版九年级数学上册第22章相似形单元测试题

沪科版九年级数学上册第22章相似形单元测试题

第22章相似形单元测试题(满分120分:时间:120分钟)一二三总分得分93271.已知在等腰△M3C中,顶角"=36。

,3D平分"BC交4C于点D,则下列说法中错误的是()A.A ABC心BDC.AD、E_1c.—= -----AC 22.已知线段r y满足(x+y):(x-y) = 3:l,那么心y等于()3如图,是小孔成像原理的示意图,根据图所标注的尺寸,这支蜡烛在暗盒中所成的像CD 的长是()4若巴一;(bHd).则下列式子不正确的是()A兰 B.a+2C - 2 C …-土b+2d b-d 2 D.b = 2ab 25已知:如图,△M3C中,P为AB上的一点,在下列四个条件中:B •点D是线段力C的黄金分割点A.3:lB.2:3C.2:lD.3:2①乙力CP = Z3:②"PC = Z4CB ;③力3 ・ CP = AP ・ CB ; @AC •力C = MP •力3, 6.如图,点B 是线段>1C 的黄金分割点{AB > BC ).则下列结论中正确的是() • ■ ---- 1A B CK.AC 2 =AB 2 + BC2 ‘ AB VS-1c —= -----AC 2 7如图,AB //CD. AE//FD. AE. FD 分别交BC 于点G, H,则图中共有相似三角形()A.4对B.5对 C ・6对 D.7对8 如1图,点D 是△力BC 的边BC 上一点,乙BAD=^C, AC=2AD.如I 果△力CD 白勺而移{为15, 那么'ABD 的而积为()A.15B.10C.7.5D.59.如图,在△力BC 中,BDzDC = 3:1> G 是AD 的中点,EG 延长线交4C 于E,那么BG :GE =( B.BC 2 =ACc BC >/S-l D.—= -----A ・①②④B ・①③④C ・②③④D ・①②③A.3:lB.4:lC.6:lD.7:l二、填空题(本题共计8小题,每题3分,共计24分,)10.任某一时刻,测得一根髙为2m 的竹竿的影长为同时测得一栋建筑物的影长为12m,那么这栋建筑物的髙度为 _________ m ・11如图,P 是Rt A ABC 的形内一点,过点P 作直线截△力EC,使截得的三角形与'ABC 相12如图,网髙为0.8米,击球点到网的水平距离为3米,小明在打网球时,要使球恰好能打 过网,且落点恰好在离网4米的位置上,则球拍击球的髙度h 为 ________ 米.似,满足这样条件的直线最多有________①乙力CP = Z3:②"PC = Z4CB;③力3 ・ CP = AP ・ CB; @AC•力C = MP •力3,13已知—贝此=3b 3 a ---------------------24.如图,将一副直角三角板(含45。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级上册数学单元综合测试卷
(第22章相似形)
注意事项:本卷共23题,满分:150分,考试时间:120分钟.
一、精心选一选(本大题共10小题,每小题4分,满分40分)
1﹒如果x:(x+y)=3:5,那么x y
x
-
的值是()
A.1
3
B.
1
2
C.
2
3
D.
3
2
2﹒若
a
b c
+

b
a c
+

c
a b
+
=k,则直线y=kx+k一定经过()
A.第一、二象限
B.第二、三象限
C.第三、四象限
D.第一、四象限
3﹒已知线段a=2,c=6,线段b是a、c的比例中项,则线段b的值为()
A.±23
B.±4
C. 23
D.12
4﹒已知两点A(5,6)、B(7,2),先将线段AB向左平移一个单位,再以原点O为位似中心,在
第一象限内将其缩小为原来的1
2
,得到线段CD,则点A的对应点C的坐标为()
A.(2,3)
B.(3,1)
C.(2,1)
D.(3,3)
5﹒已知点C在线段AB上,且点C是线段AB的黄金分割点(AC>BC),则下列结论正确的是()
A.AB2=AC g BC
B.BC2=AC g BC
C.AC=51
-
BC D.BC=
35
-
AB
6﹒如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,
E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则DE
EF
的值为()
A.1
2
B.2
C.
2
5
D.
3
5
第6题图第7题图第8题图第9题图
7﹒如图,梯形ABCD中,AD∥BC,∠B=∠ACD=90°,若AB=2,DC=3,则△ABC与△DCA的面积比是()
A.2:3
B.2:5
C.4:9D23
8﹒如图,在△ABC中,D、E分别是BC、AC上的点,AD与BE相交于点G,若AG:GD=4:1,BD:DC=2:3,则AE:EC的值是()
A. 8
3
B.
3
2
C.
8
5
D.
4
3
9﹒如图,Rt△ABC中,∠C=90°,以点C为顶点向△ABC内做正方形DECF,使正方形的另三个顶点D,E,F分别在的边AB,BC,AC上.若BC=6,AB=10,则正方形DECF的边长为()
第10题图 A .187
B .
247
C .
43 D .53 10.如图,在△ABC 中,AB =BC ,∠ABC =90°,BM 是AC 边
中线,点D ,E 分别在边AC 和BC 上,DB =DE ,EF ⊥AC
于点F ,以下结论:①△BMD ≌△DFE ;②△NBE ∽△DBC ;
③AC =2DF ;④EF g AB =CF g BC ,其中正确结论的个数是
( )
A .1
B .2
C .3
D .4
二、细心填一填(本大题共5小题,每小题4分,满分20分)
11.如图,△ABC 中,D 为BC 上一点,∠BAD =∠C ,AB =6,BD =4,则CD 的长为_______.
第11题图 第12题图 第13题图 第14题图
12.如图,在△ABC 中,∠C =90°,将△ABC 沿直线MN 翻折后,顶点C 恰好落在边AB 上的点D 处,已知MN ∥AB ,MC =6,NC =3,则四边形MABN 的面积是___________.
13.如图,在钝角△ABC 中,AB =6cm ,AC =12cm ,动点D 从点A 出发到B 点止,动点E 从点C 出发到A 点止,点D 运动的速度为1cm /s ,点E 运动的速度为2cm /s.如果两点同时运动,那么当以点A ,D ,E 为顶点的三角形与△ABC 相似时,运动的时间是_______________.
14.如图,正方形ABCD 中,△BPC 是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F ,连接BD 、DP 、BD 与CF 相交于点H .给出下列结论:①△ABE ≌△DCF ;②FP PH =35
;③DP 2=PH g PB ;④BPD
ABCD S S ∆正方形31-.其中正确的是________.(填写正确结论的序号) 三、(本大题共2小题,每小题8分,满分16分)
15.已知实数x 、y 、z 满足430320
x y y z -=⎧⎨-=⎩,试求22x y z x y z +--+的值.
16.在边长为1的小正方形组成的网格中,△ABC 和△DEF 的顶点都在格点上,P 1,P 2,P 3,P 4,P 5是△DEF 边上的5个格点,请你按要求完成下列各小题:
(1)求证:△ABC 是直角三角形;
(2)判断△ABC 与△DEF 是否相似,并说明理由;
(3)画一个三角形,使它的三个顶点为P 1,P 2,P 3,P 4,P 5中的3个格点并且与△ABC 相似(要求:用尺规作图,保留作图痕迹,不写作法与证明).。

相关文档
最新文档