信号EDA实验一

合集下载

南京理工大学EDA设计(一)实验报告

南京理工大学EDA设计(一)实验报告

(此文档为word格式,下载后您可任意编辑修改!)目录实验一单级放大电路的设计与仿真 (2)一、实验目的 (2)二、实验要求 (2)三、实验原理图 (2)四、实验过程及结果 (3)1、电路的饱和失真和截止失真分析 (3)2、三极管特性测试 (6)3.电路基本参数测定 (9)五、数据分析 (12)六、实验感想 (12)实验二差动放大电路的设计与仿真 (13)一、实验目的 (13)二、实验要求 (13)三、实验原理图 (13)四、实验过程及结果 (14)1、电路的静态分析 (14)2.电路电压增益的测量 (20)五、数据分析 (22)六、实验感想 (23)实验三反馈放大电路的设计与仿真 (23)一、实验目的 (23)二、实验要求 (23)三、实验原理图 (23)四、实验过程及结果 (24)1.负反馈接入前后放大倍数、输入电阻、输出电阻的测定 (24)2.负反馈对电路非线性失真的影响 (27)五、实验结论 (30)六、实验感想 (30)实验四阶梯波发生器电路的设计 (30)一、实验目的 (30)二、实验要求 (30)三、电路原理框图 (31)四、实验过程与仿真结果 (31)1.方波发生器 (31)2.微分电路 (32)3.限幅电路 (33)4.积分电路 (34)5.比较器及电子开关电路 (35)五、实验思考题 (37)六、实验感想 (38)写在后面的话对此次EDA设计的感想 (38)问题与解决 (38)收获与感受 (38)期望与要求 (38)实验一单级放大电路的设计与仿真一、实验目的1.掌握放大电路静态工作点的调整和测试方法2.掌握放大电路的动态参数的测试方法3.观察静态工作点的选择对输出波形及电压放大倍数的影响二、实验要求1.设计一个分压偏置的胆管电压放大电路,要求信号源频率10kHz(峰值1—10mV),负载电阻,电压增益大于80.2.调节电路静态工作点(调节偏置电阻),观察电路出现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值。

EDA实验报告

EDA实验报告

EDA实验报告班级:姓名:目录实验一:七段数码显示译码器设计 (1)摘要 (1)实验原理 (1)实验方案及仿真 (1)引脚下载 (2)实验结果与分析 (3)附录 (3)实验二:序列检测器设计 (6)摘要 (6)实验原理 (6)实现方案及仿真 (6)引脚下载 (7)实验结果与分析 (8)实验三:数控分频器的设计 (11)摘要 (11)实验原理 (11)方案的实现与仿真 (11)引脚下载 (12)实验结果及总结 (12)附录 (12)实验四:正弦信号发生器 (14)摘要 (14)实验原理 (14)实现方案与仿真 (14)嵌入式逻辑分析及管脚下载 (16)实验结果与分析 (17)附录 (18)实验一:七段数码显示译码器设计摘要:七段译码器是一种简单的组合电路,利用QuartusII的VHDL语言十分方便的设计出七段数码显示译码器。

将其生成原理图,再与四位二进制计数器组合而成的一个用数码管显示的十六位计数器。

整个设计过程完整的学习了QuartusII的整个设计流程。

实验原理:七段数码是纯组合电路,通常的小规模专用IC,如74或4000系列的器件只能作十进制BCD码译码,然而数字系统中的数据处理和运算都是2进制的,所以输出表达都是16进制的,为了满足16进制数的译码显示,最方便的方法就是利用译码程序在FPGA\CPLD中来实现。

本实验作为7段译码器,输出信号LED7S的7位分别是g、f、e、d、c、b、a,高位在左,低位在右。

例如当LED7S 输出为“1101101”时,数码管的7个段g、f、e、d、c、b、a分别为1、1、0、1、1、1、0、1。

接有高电平段发亮,于是数码管显示“5”。

实验方案及仿真:I、七段数码显示管的设计实现利用VHDL描述语言进行FPGA上的编译实现七段数码显示译码器的设计。

运行QuartusII在G:\QuartusII\LED7S\下新建一个工程文件。

新建一个vhdl语言编译文件,编写七段数码显示管的程序见附录1-1。

EDA-实验报告

EDA-实验报告

实验一五人表决器设计一、实验目的1 加深对电路理论概念的理解3 加深计算机辅助分析及设计的概念4 了解及初步掌握对电路进行计算机辅助分析的过程二、实验要求制作一个五人表决器,共五个输入信号,一个输出信号。

若输入信号高电平数目多于低电平数目,则输出为高,否则为低。

三、实验原理根据设计要求可知,输入信号共有2^5=32种可能,然而输出为高则有15种可能。

对于本设计,只需一个模块就能完成任务,并采用列写真值表是最简单易懂的方法。

四、计算机辅助设计设A,B,C,D,E引脚为输入引脚,F为输出引脚。

则原理图如1所示图1.1 五人表决器原理图实验程序清单如下:MODULE VOTEA,B,C,D,E PIN;F PIN ISTYPE 'COM';TRUTH_TABLE([A,B,C,D,E]->[F])[0,0,1,1,1]->[1];[0,1,1,1,0]->[1];[0,1,0,1,1]->[1];[0,1,1,0,1]->[1];[1,0,1,1,1]->[1];[1,1,0,1,1]->[1];[1,1,1,0,1]->[1];[1,1,1,1,0]->[1];[1,1,1,0,0]->[1];[1,1,0,1,0]->[1];[1,1,1,1,1]->[1];[1,1,0,0,1]->[1];[1,0,0,1,1]->[1];[1,0,1,0,1]->[1];[1,0,1,1,0]->[1];END五、实验测试与仿真根据题目要求,可设输入分别为:0,0,0,0,0;1,1,1,1,1;1,0,1,0,0;0,1,0,1,1。

其测试程序如下所示:MODULE fivevoteA,B,C,D,E,F PIN;X=.X.;TEST_VECTORS([A,B,C,D,E]->[F])[0,0,0,0,0]->[X];[1,1,1,1,1]->[X];[1,0,1,0,0]->[X];[0,1,0,1,1]->[X];END测试仿真结果如图1.2所示:图1.2 五人表决器设计仿真图可知,设计基本符合题目要求。

南京理工大学EDA1实验报告(模电部分)

南京理工大学EDA1实验报告(模电部分)

南京理工大学EDA课程设计(一)实验报告专业:自动化班级:姓名:学号:指导老师:2013年10月摘要在老师的悉心指导下,通过实验学习和训练,我已经掌握基了于Multisim的电路系统设计和仿真方法。

在一周的时间内,熟悉了Multisim软件的使用,包括电路图编辑、虚拟仪器仪表的使用和掌握常见电路分析方法。

能够运用Multisim软件对模拟电路进行设计和性能分析,掌握EDA设计的基本方法和步骤。

实验一:单级放大电路的仿真及设计,设计一个分压偏置的单管电压放大电路,并进行测试与分析,主要测试最大不失真时的静态工作点以及上下限频率。

实验二:负反馈放大电路的设计与仿真,设计一个阻容耦合两级电压放大电路,给电路引入电压串联深度负反馈,,观察负反馈对电路的影响。

实验三:阶梯波发生器的设计与仿真,设计一个能产生周期性阶梯波的电路,对电路进行分段测试和调节,直至输出合适的阶梯波。

改变电路元器件参数,观察输出波形的变化,确定影响阶梯波电压范围和周期的元器件。

关键词:EDA设计及仿真multisim 放大电路反馈电路阶梯波发生器实验一:单级放大电路的仿真及设计一、实验要求1、设计一个分压偏置的单管电压放大电路,要求信号源频率5kHz(峰值10mV) ,负载电阻5.1kΩ,电压增益大于50。

2、调节电路静态工作点(调节电位计),观察电路出现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值。

3、调节电路静态工作点(调节电位计),使电路输出信号不失真,并且幅度最大。

在此状态下测试:(1)电路静态工作点值;(2)三极管的输入、输出特性曲线和 、r be 、r ce值;(3)电路的输入电阻、输出电阻和电压增益;(4)电路的频率响应曲线和f L、f H值。

二、实验步骤1、设计分压偏置的单级放大电路如图1-1所示:图1-1、单级放大电路原理图2、电路饱和失真输出电压波形图调节电位器的阻值,改变静态工作点,当电阻器的阻值为0%Rw,交流电压源为10mV时,显示饱和失真的波形图如图1-2所示:图1-2、电路饱和失真输出电压波形图饱和失真时的静态工作点:Ubeq=636。

EDA实验报告

EDA实验报告

湖北民族学院信息工程学院实验报告(电气、电子类专业用)班级: 09 姓名:周鹏学号:030940908 实验成绩:实验地点: EDA实验室课程名称:数字系统分析与设计实验类型:设计型实验题目:实验一简单的QUARTUSII实例设计,基于VHDL格雷码编码器的设计实验仪器:HH-SOC-EP3C40EDA/SOPC实验开发平台,PC机。

一、实验目的1、通过一个简单的3—8译码器的设计,掌握组合逻辑电路的设计方法。

2、初步了解QUARTUSII原理图输入设计的全过程。

3、掌握组合逻辑电路的静态测试方法。

4、了解格雷码变换的原理。

5、进一步熟悉QUARTUSII软件的使用方法和VHDL输入的全过程。

6、进一步掌握实验系统的使用。

二、实验原理、原理图及电路图3-8译码器三输入,八输出。

当输入信号按二进制方式的表示值为N时,输出端标号为N的输出端输出高电平表示有信号产生,而其它则为低电平表示无信号产生。

因为三个输入端能产生的组合状态有八种,所以输出端在每种组合中仅有一位为高电平的情况下,能表示所有的输入组合。

其真值表如表1-1所示输入输出A B C D7 D6 D5 D4 D3 D2 D1 D00 0 0 0 0 0 0 0 0 0 10 0 1 0 0 0 0 0 0 1 00 1 0 0 0 0 0 0 1 0 00 1 1 0 0 0 0 1 0 0 01 0 0 0 0 0 1 0 0 0 01 0 1 0 0 1 0 0 0 0 01 1 0 1 0 0 0 0 0 01 1 1 1 0 0 0 0 0 0 0表1-1 三-八译码器真值表译码器不需要像编码器那样用一个输出端指示输出是否有效。

但可以在输入中加入一个输出使能端,用来指示是否将当前的输入进行有效的译码,当使能端指示输入信号无效或不用对当前信号进行译码时,输出端全为高电平,表示无任何信号。

本例设计中没有考虑使能输入端,自己设计时可以考虑加入使能输入端时,程序如何设计。

EDA技术基础实验报告

EDA技术基础实验报告

《EDA技术基础》实验报告学院:信息科学技术学院专业:电子信息工程指导教师:龙翔完成日期:2013年12月目录实验一MAX-plusll 及开发系统使用 (3)实验二高速四位乘法器设计 (6)实验三秒表的设计 (9)实验四序列检测器的设计 (13)实验五数字频率计的设计 (18)六实验总结 (20)实验一一:实验名称:MAX-plusll 及开发系统使用二:实验内容1.利用MAX-plusII中的图形编辑器设计一半加器,进行编译、仿真,并将其设置成为一元件。

2.建立一个更高的原理图设计层次,利用前面生成的半加器元件设计一个全加器,进行编译、仿真,并将其设置成为一个元件。

3.再建立一个更高的原理图设计层次,利用前面生成的半加器元件设计一个全加器,进行编译、仿真。

4.选择器件“Assign”“Device”“MAX7000S”“EPM7128SLC84-6”,并根据下载板上的标识对管脚进行配置。

然后下载,进行硬件测试,检验结果是否正确。

三.实验程序1).半加器图2)全加器图3)四位全加器四:仿真图1).半加器仿真图2).全加器仿真图3).四位全加器仿真图实验二一:实验名称高速四位乘法器设计二: 实验内容1.利用MAX-plusⅡ中的图形编辑器设计1-4的二进制乘法器,进行编译、仿真,并将其设置成为一元件,命名为and14。

2.建立一个更高得原理图设计层次,利用前面生成的1-4的二进制乘法器和调用库中的74283元件设计一高速4位乘法器。

三:实验程序1.2.四:仿真图实验三一:实验名称秒表的设计二:实验内容(一)、实验步骤1、采用自顶向下的设计方法,首先将系统分块;2、设计元件,即逻辑块;3、一级一级向上进行元件例化(本实验只需例化一次即可),设计顶层文件。

(二)、实验程序设计原理实验程序如三所示,其中输入信号分别为使能信号ENA、清零信号CLR、时钟信号CLK,输出信号有秒针信号CA和分针信号CB。

EDA实验报告

EDA实验报告

姓名:郭灵芝学号:0704240115班级:通信一班07042200实验一0704240115 郭灵芝通信一班一.实验内容1.调节电路静态工作点(调节电位计),观察电路出现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值。

2.加入信号源频率5kHz(幅度1mV) ,调节电路使输出不失真,测试此时的静态工作点值。

测电路的输入电阻、输出电阻和电压增益;3.设计一个分压偏置的单管电压放大电路,要求信号源频率5kHz(幅度1mV) ,负载电阻5.1kΩ,电压增益大于50。

4.测电路的频率响应曲线和f L、f H值。

二.放大电路的原理图(1-1)放大电路的原理图R为滑动变阻器,该电路用的是三极管来实现放大,采用的是电压偏置,接法是共射极,1R的大小从而改变三极管的静态工作点,使三极管处于正常放通过它改变接入电路中的1大状态。

为了确定好的静态工作点,进行如下静态分析:上面图1-1的静态电路如下(1-2)放大电路所对应的静态电路可以用两个交流电压表分别测量输入电压和输出电压,输出电压除以输入电压即为放大倍数。

为了保证放大电路工作在放大区(可用示波器监测,保证波形不失真),将交流输入电压调为1mv,2mv,3mv 。

电压表均用交流模式。

当交流信号源取下表所示不同值时,读出电压表的读数,即i V 和0V ,并计算电压的放大倍数。

(表一)结论:当三极管工作在放大区时,其电压放大倍数近似为常数。

即输入电压随输入电压线性变化。

且放大倍数符合大于50的要求。

(表二)结论1R 调到10%到80%之间时三极管都正常放大,这可以通过C I 与B I 的比值即β来确定,在这个区间里β基本保持不变,当然1R 处于0%到10%之间的确定不了,这个还要通过实际测量的β来确定。

三.失真研究1. 电位器调到0%,交流信号保持20mv ,5 KHz ,输出信号如下(1-3)饱和失真的波形图此时负半周出现了失真,即削底,对于NPN 管说明出现了饱和失真。

《EDA技术及应用》实验指导书

《EDA技术及应用》实验指导书

实验一组合逻辑器件设计一、实验目的1、通过一个简单的3-8译码器的设计,掌握组合逻辑电路的设计方法。

2、掌握组合逻辑电路的静态测试方法。

3、初步了解QUARTUS II原理图输入设计的全过程。

二、实验主要仪器与设备1、输入:DIP拨码开关3位。

2、输出:LED灯。

3、主芯片:EP1K10TC100-3。

三、实验内容及原理三-八译码器即三输入,八输出。

输出与输入之间的对应关系如表1-1-1所示。

表1-1 三-八译码器真值表四、预习要求做实验前必须认真复习数字电路中组合逻辑电路设计的相关内容(编码器、译码器)。

五、实验步骤1、利用原理图设计输入法画图1-1-1。

2、选择芯片ACEX1K EP1K10TC100-3。

3、编译。

4、时序仿真。

5、管脚分配,并再次编译。

6、实验连线。

7、编程下载,观察实验结果。

图1-1 三-八译码器原理图六、实验连线用拨码开关的低三位代表译码器的输入(A,B,C),将之与EP1K10TC100-3的管脚相连;用LED灯来表示译码器的输出(D0~D7),将之与EP1K10TC100-3芯片的管脚相连。

拨动拨档开关,可以观察发光二极管与输入状态的对应关系同真值表中所描述的情况是一致的。

七、实验结果八、思考题在输入端加入使能端后应如何设计?附:用硬件描述语言完成译码器的设计::LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY T2 ISPORT(A: IN STD_LOGIC_VECTOR(2 DOWNTO 0);Y: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));END T2;ARCHITECTURE A OF T2 ISBEGINWITH A SELECTY <= "00000001" WHEN "000","00000010" WHEN "001","00000100" WHEN "010","00001000" WHEN "011","00010000" WHEN "100","00100000" WHEN "101","01000000" WHEN "110","10000000" WHEN OTHERS;END A;实验二组合电路设计一、实验目的1、掌握组合逻辑电路的设计方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一
信号的时域描述及MATLAB 信号的时域描述及MATLAB实现 MATLAB实现
实验目的
• 学习利用 学习利用Matlab工程软件实现信号的描述 工程软件实现信号的描述 • 观察和掌握各种常用信号的波形 • 通过实验对连续和离散信号间的关系做深一步的理解
二、原理说明

在信号与系统课程中, 在信号与系统课程中,对信号的时域分析 一个重要的内容就是对信号进行描述, 一个重要的内容就是对信号进行描述,信号的 数学描述和波形描述是实际中对信号进行分析 经常要做的工作, 经常要做的工作,对于简单的信号我们很容易 可以得到它的这两种描述方法, 可以得到它的这两种描述方法,但对于一些复 杂或未知的信号,我们就必须借助于一定的工 杂或未知的信号, 具对其进行分析。
参考程序一
参考程序二
• 方波信号的分解及合成观察 • t=0:0.1:10; • y1=sin(t);subplot(3,1,1),plot(t,y1) • y2=sin(t)+sin(3*t)/3;subplot(3,1,2),plot(t,y2) • y3=sin(t)+sin(3*t)/3+sin(5*t)/5+sin(7*t)/7+sin(9*t) /9; • subplot(3,1,3),plot(t,y3) • 输入以上程序,观察信号输出波形 输入以上程序, • 读懂程序,对信号继续进行分解合成,观察信号波形的变化 读懂程序,对信号继续进行分解合成,
五、仪器设备
• 套
六、报告要求
• 记录各输出波形,并说明所使用主要函数的功能及调用格式 记录各输出波形, • 用图形结果表明信号经变换(反折、尺度变换、平移)后的 用图形结果表明信号经变换(反折、尺度变换、平移)
时间特性有什么变化
• clear, %清屏 清屏 • t0=0;tf=5;dt=0.005;t1=1.5;t=[t0:dt:tf]; %定义信号时间范围 定义信号时间范围 • t=[t0:dt:tf];st=length(t); • n1=floor((t1-t0)/dt); %确定信号出现时刻 ; 确定信号出现时刻 • x1=zeros(1,st); %定义信号 并作出信号波形 定义信号x1并作出信号波形 定义信号 • x1(n1)=1/dt; • subplot(2,2,1),stairs(t,x1) • axis([0,5,0,2/dt]) • x2=[zeros(1,n1-100),ones(1,st-n1+100)]; %定义信号 并作出波形图 定义信号x2并作出波形图 定义信号 • subplot(2,2,3),stairs(t,x2) • axis([0,5,0,1.1]) • t2=[-5:0.005:5]; %确定信号 及x4及它们对应的时间范围 确定信号x3及 及它们对应的时间范围 确定信号 • x3=pi*sinc(t2); • x4=exp(-t2); • subplot(2,2,2),plot(t2,x3) %作图 作图 • subplot(2,2,4),plot(t2,x4)
三、预习要求
• 常用信号的波形及数学描述 • 奇异信号的定义
四、内容及步骤
• 输入给定参考程序,观察信号输出波形,写出各信号的表达式 输入给定参考程序,观察信号输出波形, • 读懂程序,改变程序中信号的时间参数,观察信号波形的变化 读懂程序,改变程序中信号的时间参数, • 自己定义几种常见信号,编写程序,画出信号波形 自己定义几种常见信号,编写程序,
相关文档
最新文档