17.1 勾股定理 (1)

合集下载

天津市宁河区八年级数学下册 17 勾股定理 17.1 勾股定

天津市宁河区八年级数学下册 17 勾股定理 17.1 勾股定

17.1 勾股定理(1)学习目标1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。

经历用面积法探索勾股定理的过程。

2. 体会数形结合的思想,渗透观察、归纳、猜想、验证的数学方法,体验从特殊到一般的逻辑推理过程。

3. 培养在实际生活中发现问题总结规律的意识和能力。

学习重点、难点1.重点:探索和验证勾股定理。

2.难点:勾股定理的证明。

一、预习内容1.复习旧知(1)在Rt△ABC中,∠C=90°,则∠A+∠B= (填度数)。

(2)在Rt△ABC中,∠C=90°,∠B=30°,AB=10,则AC= ,理由是:。

(3)在Rt△ABC中,∠C=90°,∠A=30°,BC=4,则AC= ,理由是:。

(4)在Rt△ABC中,∠C=90°,AC=3,BC=4,则△ABC面积S= 。

(5)用腰长为1的四个等腰直角三角形拼成如图所示的正方形,则正方形的面积为,正方形的边长为。

2. 课前预习阅读课本P64-P66探究之前的内容。

根据你对课文的理解,完成下列问题:(1) 在如图所示边长为1的正方形网格中有如图所示的三个正方形A ,B ,C 则A S =,B S =C S =(2) 由上可知,正方形A 和正方形B 的面积之和等于(3) 我们发现在等腰直角三角形中,斜边的平方等于(4) 若网格中每一个小方格面积为1个单位面积,那么正方形A 、B 、C 的面积分别为(5) (填=或>或<)(6) 如果设正方形A ,B ,C 的边长分别为a ,b ,c ,则由上面可知:。

用文字叙述为:二、数学概念勾股定理:三、例题讲解(1) 求出下列直角三角形中未知边的长度。

(2) 在Rt △ABC 中,∠A=90°,AB=10,BC=26。

求(1) △AB C 周长。

(2) △ABC 的面积。

四、总结反思说说你的收获;你还有什么问题?五、反馈练习在△ABC中,∠C=90°。

17.1勾股定理1

17.1勾股定理1

角形. 正方形P的面积是
B P C
R
9 个单位面积.
正方形Q的面积是
A Q
图1
9 个单位面积.
正方形R的面积是
18 个单位面积.
你是怎样得到以AB为 边的正方形R的面积 的?
观察图1(图中每个小方格代表一个单位面积)
ΔABC是 等腰直角 三 角形. 正方形P的面积是
9 个单位面积.
正方形Q的面积是
股b c 弦 a + b = c (也称作勾股定理) 2 2 2 勾+股=弦
2 2 2
C
a 勾
B
(1)使用前提是直角三角形 (2)分清直角边、斜边
B
结论变形 c
b A
a
C
c2 = a2 + b2
勾股史话
勾 股 股 弦 勾
在中国古代,人们把弯曲成直角的手臂的上半部分 称为“勾”,下半部分称为“股”。我国古代学者把直 角三角形较短的直角边称为“勾”,较长的直角边称为 “股”,斜边称为“弦”。我国是最早了解勾股定理的 国家之一。早在三千多年前,周朝数学家商高就提出, 将一根尺折成一个直角三角形,如果勾等于三,股等于 四,那么弦就等于五。即“勾三、股四、弦五”。它被 记载于我国古代著名的数学著作《周髀算经》中。

B
R
9 个单位面积.
正方形R的面积是
C
A Q
图1
18 个单位面积.
1
2
3
你是怎样得到以AB为 边的正方形R的面积 的?

把R分割成四个与 ΔABC全等的三角形
B P C Q
图1
R
S正方形 R
A
1 4 3 3 18 2
返回

(完整版)17.1勾股定理

(完整版)17.1勾股定理

17.1 勾股定理(1)一、教学目标1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理. 2.培养在实际生活中发现问题总结规律的意识和能力.3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习.二、重点、难点1.重点:勾股定理的内容及证明. 2.难点:勾股定理的证明.3.难点的突破方法:几何学的产生,源于人们对土地面积的测量需要.在古埃及,尼罗河每年要泛滥一次;洪水给两岸的田地带来了肥沃的淤积泥土,但也抹掉了田地之间的界限标志.水退了,人们要重新画出田地的界线,就必须再次丈量、计算田地的面积.几何学从一开始就与面积结下了不解之缘,面积很早就成为人们认识几何图形性质与争鸣几何定理的工具.本节课采用拼图的方法,使学生利用面积相等对勾股定理进行证明.其中的依据是图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变. 三、例题的意图分析例1(补充)通过对定理的证明,让学生确信定理的正确性;通过拼图,发散学生的思维,锻炼学生的动手实践能力;这个古老的精彩的证法,出自我国古代无名数学家之手.激发学生的民族自豪感,和爱国情怀.例2(补充)使学生明确,图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变.进一步让学生确信勾股定理的正确性. 四、课堂引入目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等.我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的.这个事实可以说明勾股定理的重大意义.尤其是在两千年前,是非常了不起的成就.让学生画一个直角边为3 cm 和4 cm 的Rt △ABC ,用刻度尺量出斜边AB 的长.以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连接得一直角三角形,勾广三,股修四,弦隅五.”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5.再画一个两直角边为5和12的Rt △ABC ,用刻度尺量斜边AB 的长.你是否发现32+42和52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2.对于任意的直角三角形也有这个性质吗?五、例习题分析例1 (补充)已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c . 求证:a 2+b 2=c 2.分析:⑴让学生准备多个三角形模型,拼摆不同的形状,利用面积相等进行证明.⑵拼成如图所示,其等量关系为:4S △+S 小正=S 大正,则 4×21ab +(b -a )2=c 2,化简可证.A B⑶发挥学生的想象能力拼出不同的图形,进行证明.⑷勾股定理的证明方法,达300余种.这个古老的精彩的证法,出自我国古代无名数学家之手.激发学生的民族自豪感,和爱国情怀.例2已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c . 求证:a 2+b 2=c 2. 分析:左右两边的正方形边长相等,则两个正方形的面积相等. 左边S=4×21ab +c 2,右边S=(a+b )2,左边和右边面积相等,即 4×21ab +c 2=(a+b )2,化简可证.六、课堂练习1.勾股定理的具体内容是: . 2.如图,直角△ABC 的主要性质是:∠C=90°,(用几何语言表示)⑴两锐角之间的关系: ; ⑵若D 为斜边中点,则斜边中线 ; ⑶若∠B=30°,则∠B 的对边和斜边: ; ⑷三边之间的关系: .3.△ABC 的三边a 、b 、c ,若满足b 2= a 2+c 2,则 =90°;若满足b 2>c 2+a 2,则∠B 是 角; 若满足b 2<c 2+a 2,则∠B是 角.4.根据如图所示,利用面积法证明勾股定理.七、课后练习1.已知在Rt △ABC 中,∠B=90°,a 、b 、c 是△ABC 的三边,则 ⑴c= .(已知a 、b ,求c ) ⑵a= .(已知b 、c ,求a ) ⑶b= .(已知a 、c ,求b )2.如下表,表中所给的每行的三个数a 、b 、c ,有a <b <c ,试根据表中已有数的规律,写出当a=19时,b ,c 的值,并把b 、c 用含a 的代数式表示出来.bbbbaa AB b E B3.在△ABC 中,∠BAC=120°,AB=AC=310cm ,一动点P 从B 向C 以每秒2cm 的速度移动,问当P 点移动多少秒时,PA 与腰垂直.4.已知:如图,在△ABC 中,AB=AC ,D 在CB 的延长线上. 求证:⑴AD 2-AB 2=BD·CD⑵若D 在CB 上,结论如何,试证明你的结论.参考答案六、课堂练习1.略.2.⑴∠A+∠B=90°;⑵CD=21AB ;⑶AC=21AB ;⑷AC 2+BC 2=AB 2. 3.∠B ,钝角,锐角;4.提示:因为S 梯形ABCD = S △ABE + S △BCE + S △EDA ,又因为S 梯形ACDG =21(a+b )2, S △BCE = S △EDA =21 ab ,S △ABE =21c 2, 21(a+b )2=2×21 ab +21c 2. 七、课后练习1.⑴c=22a b -;⑵a=22c b -;⑶b=22a c +2.⎩⎨⎧+==+1222b c c b a ;则b=212-a ,c=212+a ;当a=19时,b=180,c=181.3.5秒或10秒.4.提示:过A 作AE ⊥BC 于E .D CB17.1 勾股定理(2)一、教学目标1.会用勾股定理进行简单的计算.2.树立数形结合的思想、分类讨论思想.二、重点、难点1.重点:勾股定理的简单计算.2.难点:勾股定理的灵活运用.3.难点的突破方法:⑴数形结合,让学生每做一道题都画图形,并写出应用公式的过程或公式的推倒过程,在做题过程中熟记公式,灵活运用.⑵分类讨论,让学生画好图后标图,从不同角度考虑条件和图形,考虑问题要全面,在讨论的过程中提高学生的灵活应用能力.⑶作辅助线,勾股定理的使用范围是在直角三角形中,因此要注意直角三角形的条件,要创造直角三角形,作高是常用的创造直角三角形的辅助线做法,在做辅助线的过程中,提高学生的综合应用能力.⑷优化训练,在不同条件、不同环境中反复运用定理,使学生达到熟练使用,灵活运用的程度.三、例题的意图分析例1(补充)使学生熟悉定理的使用,刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系.让学生明确在直角三角形中,已知任意两边都可以求出第三边.并学会利用不同的条件转化为已知两边求第三边.例2(补充)让学生注意所给条件的不确定性,知道考虑问题要全面,体会分类讨论思想.例3(补充)勾股定理的使用范围是在直角三角形中,因此注意要创造直角三角形,作高是常用的创造直角三角形的辅助线做法.让学生把前面学过的知识和新知识综合运用,提高综合能力.四、课堂引入复习勾股定理的文字叙述;勾股定理的符号语言及变形.学习勾股定理重在应用.五、例习题分析例1(补充)在Rt△ABC,∠C=90°⑴已知a=b=5,求c.⑵已知a=1,c=2, 求b.⑶已知c=17,b=8, 求a.⑷已知a:b=1:2,c=5, 求a.⑸已知b=15,∠A=30°,求a,c.分析:刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系.⑴已知两直角边,求斜边直接用勾股定理.⑵⑶已知斜边和一直角边,求另一直角边,用勾股定理的便形式.⑷⑸已知一边和两边比,求未知边.通过前三题让学生明确在直角三角形中,已知任意两边都可以求出第三边.后两题让学生明确已知一边和两边关系,也可以求出未知边,学会见比设参的数学方法,体会由角转化为边的关系的转化思想.例2(补充)已知直角三角形的两边长分别为5和12,求第三边.分析:已知两边中较大边12可能是直角边,也可能是斜边,因此应分两种情况分别进形计算.让学生知道考虑问题要全面,体会分类讨论思想.例3(补充)已知:如图,等边△ABC 的边长是6cm .⑴求等边△ABC 的高.⑵求S △ABC .分析:勾股定理的使用范围是在直角三角形中,因此注意要 创造直角三角形,作高是常用的创造直角三角形的辅助线做 法.欲求高CD ,可将其置身于Rt △ADC 或Rt △BDC 中, 但只有一边已知,根据等腰三角形三线合一性质,可求AD=CD=21AB=3cm ,则此题可解. 六、课堂练习1.⑴在Rt △ABC ,∠C=90°,a=8,b=15,则c= . ⑵在Rt △ABC ,∠B=90°,a=3,b=4,则c= . ⑶在Rt △ABC ,∠C=90°,c=10,a :b=3:4,则a= ,b= .⑷一个直角三角形的三边为三个连续偶数,则它的三边长分别为 . ⑸已知直角三角形的两边长分别为3cm 和5cm ,,则第三边长为 . ⑹已知等边三角形的边长为2cm ,则它的高为 ,面积为 . 2.已知:如图,在△ABC 中,∠C=60°,AB=34,AC=4,AD 是BC 边上的高,求BC 的长.3.已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积. 七、课后练习1.在Rt △ABC ,∠C=90°,⑴如果a=7,c=25,则b= . ⑵如果∠A=30°,a=4,则b= . ⑶如果∠A=45°,a=3,则c= . ⑷如果c=10,a-b=2,则b= .⑸如果a 、b 、c 是连续整数,则a+b+c= . ⑹如果b=8,a :c=3:5,则c= .2.已知:如图,四边形ABCD 中,AD ∥BC ,AD ⊥DC , AB ⊥AC ,∠B=60°,CD=1cm ,求BC 的长.参考答案六、课堂练习 1.17;7; 6,8; 6,8,10; 4或34; 3,3;2.8; 3.48. 七、课后练习1.24; 43; 32; 6; 12; 10; 2.332.DBA ABB17.1 勾股定理(3)一、教学目标1.会用勾股定理解决简单的实际问题.2.树立数形结合的思想.二、重点、难点1.重点:勾股定理的应用.2.难点:实际问题向数学问题的转化.3.难点的突破方法:数形结合,从实际问题中抽象出几何图形,让学生画好图后标图;在实际问题向数学问题的转化过程中,注意勾股定理的使用条件,教师要向学生交代清楚,解释明白;优化训练,在不条件、不同环境中反复运用定理,使学生达到熟练使用,灵活运用的程度;让学生深入探讨,积极参与到课堂中,发挥学生的积极性和主动性.三、例题的意图分析例1(教科书例1)明确如何将实际问题转化为数学问题,注意条件的转化;学会如何利用数学知识、思想、方法解决实际问题.例2(教科书例2)使学生进一步熟练使用勾股定理,探究直角三角形三边的关系:保证一边不变,其他两边的变化.四、课堂引入勾股定理在实际的生产生活当中有着广泛的应用.勾股定理的发现和使用解决了许多生活中的问题,今天我们就来运用勾股定理解决一些问题,你可以吗?试一试.五、例习题分析例1 分析:⑴在实际问题向数学问题的转化过程中,注意勾股定理的使用条件,即门框为长方形,四个角都是直角.⑵让学生深入探讨图中有几个直角三角形?图中标字母的线段哪条最长?⑶指出薄木板在数学问题中忽略厚度,只记长度,探讨以何种方式通过?⑷转化为勾股定理的计算,采用多种方法.⑸注意给学生小结深化数学建模思想,激发数学兴趣.例2 分析:⑴在△AOB中,已知AB=3,AO=2.5,利用勾股定理计算OB.⑵在△COD中,已知CD=3,CO=2,利用勾股定理计算OD.则BD=OD-OB,通过计算可知BD≠AC.⑶进一步让学生探究AC和BD的关系,给AC不同的值,计算BD.A BC六、课堂练习 1.小明和爸爸妈妈十一登香山,他们沿着45度的坡路走了500米,看到了一棵红叶树,这棵红叶树的离地面的高度是 米.2.如图,山坡上两株树木之间的坡面距离是43米,则这两株树之间的垂直距离是 米,水平距离是 米.2题图 3题图 4题图3.如图,一根12米高的电线杆两侧各用15米的铁丝固定,两个固定点之间的距离是 .4.如图,原计划从A 地经C 地到B 地修建一条高速公路,后因技术攻关,可以打隧道由A 地到B 地直接修建,已知高速公路一公里造价为300万元,隧道总长为2公里,隧道造价为500万元,AC=80公里,BC=60公里,则改建后可省工程费用是多少? 七、课后练习 1.如图,欲测量松花江的宽度,沿江岸取B 、C 两点,在江对岸取一点A ,使AC 垂直江岸,测得BC=50米,∠B=60°,则江面的宽度为 .2.有一个边长为1米正方形的洞口,想用一个圆形盖去盖住这个洞口,则圆形盖半径至少为 米. 3.一根32厘米的绳子被折成如图所示的形状钉在P 、Q 两点,PQ=16厘米,且RP ⊥PQ ,则RQ= 厘米.4.如图,钢索斜拉大桥为等腰三角形,支柱高24米,∠B=∠C=30°,E 、F 分别为BD 、CD 中点,试求B 、C 两点之间的距离,钢索AB 和AE 的长度.(精确到1米)参考答案六、课堂练习1.2250; 2.6, 32; 3.18米; 4.11600. 七、课后练习 1.350米; 2.22; 3.20; 4.83米,48米,32米.ACB Q ABDEF17.1 勾股定理(4)一、教学目标1.会用勾股定理解决较综合的问题. 2.树立数形结合的思想. 二、重点、难点1.重点:勾股定理的综合应用. 2.难点:勾股定理的综合应用. 3.难点的突破方法:⑴数形结合,正确标图,将条件反应到图形中,充分利用图形的功能和性质.⑵分类讨论,从不同角度考虑条件和图形,考虑问题要全面,在讨论的过程中提高学生的灵活应用能力.⑶作辅助线,作高是常用的创造直角三角形的辅助线做法,在做辅助线的过程中,提高学生的综合应用能力.⑷优化训练,在不条件、不同环境中反复运用定理,使学生达到熟练使用,灵活运用的程度.三、例题的意图分析例1(补充)“双垂图”是中考重要的考点,熟练掌握“双垂图”的图形结构和图形性质,通过讨论、计算等使学生能够灵活应用.目前“双垂图”需要掌握的知识点有:3个直角三角形,三个勾股定理及推导式BC 2-BD 2=AC 2-AD 2,两对相等锐角,四对互余角,及 30°或45°特殊角的特殊性质等.例2(补充)让学生注意所求结论的开放性,根据已知条件,作适当辅助线求出三角形中的边和角.让学生掌握解一般三角形的问题常常通过作高转化为直角三角形的问题.使学生清楚作辅助线不能破坏已知角.例3(补充)让学生掌握不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差.在转化的过程中注意条件的合理运用.让学生把前面学过的知识和新知识综合运用,提高解题的综合能力.例4 让学生利用尺规作图和勾股定理画出数轴上的无理数点,进一步体会数轴上的点与实数一一对应的理论. 四、课堂引入复习勾股定理的内容.本节课探究勾股定理的综合应用. 五、例习题分析例1(补充)已知:在Rt △ABC 中,∠C=90°,CD ⊥BC 于D ,∠A=60°,CD=3,求线段AB 的长.分析:本题是“双垂图”的计算题,“双垂图”是中考重要的考点,所以要求学生对图形及性质掌握非常熟练,能够灵活应用.目前“双垂图”需要掌握的知识点有:3个直角三角形,三个勾股定理及推导式BC 2-BD 2=AC 2-AD 2,两对相等锐角,四对互余角,及30°或45°特殊角的特殊性质等.要求学生能够自己画图,并正确标图.引导学生分析:欲求AB ,可由AB=BD+CD ,分别在两个三角形中利用勾股定理和特殊角,求出BD=3和AD=1.或欲求AB ,可由22BC AC AB +=,分别在两个三角形中利用勾股定理和特殊角,求出AC=2和BC=6.C D例2(补充)已知:如图,△ABC 中,AC=4,∠B=45°,∠A=60°,根据题设可知什么?分析:由于本题中的△ABC 不是直角三角形,所以根据题设只能直接求得∠ACB=75°.在学生充分思考和讨论后,发现添置AB 边上的高这条辅助线,就可以求得AD ,CD ,BD ,AB ,BC 及S △ABC .让学生充分讨论还可以作其它辅助线吗?为什么?小结:可见解一般三角形的问题常常通过作高转化为直角三角形的问题.并指出如何作辅助线? 解略.例3(补充)已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2.求:四边形ABCD 的面积.分析:如何构造直角三角形是解本题的关键,可以连接AC ,或延长AB 、DC 交于F ,或延长AD 、BC 交于E ,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单.教学中要逐层展示给学生,让学生深入体会.解:延长AD ,BC 交于点E . ∵∠A=∠60°,∠B=90°,∴∠E=30°. ∴AE=2AB=8,CE=2CD=4.∴BE 2=AE 2-AB 2=82-42=48,BE=48=34.∵DE 2= CE 2-CD 2=42-22=12,∴DE=12=32. ∴S 四边形ABCD =S △ABE -S △CDE =21AB·BE-21CD·DE=36. 小结:不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差. 例4 在数轴上画出表示13的点.分析:利用尺规作图和勾股定理画出数轴上的无理数点,进一步体会数轴上的点与实数一一对应的理论.变式训练:在数轴上画出表示22,13--的点.六、课堂练习1.△ABC 中,AB=AC=25 cm ,高AD=20 cm ,则BC= ,S △ABC = . 2.△ABC 中,若∠A=2∠B=3∠C ,AC=32cm ,则∠A= 度,∠B= 度,∠C= 度,BC= ,S △ABC = . 3.△ABC 中,∠C=90°,AB=4,BC=32,CD ⊥AB 于D ,则AC= ,CD= ,BD= ,AD= ,S △ABC = .4.已知:如图,△ABC 中,AB=26,BC=25,AC=17, 求S △ABC . C ADBCC七、课后练习1.在Rt △ABC 中,∠C=90°,CD ⊥BC 于D ,∠A=60°,CD=3,AB= . 2.在Rt △ABC 中,∠C=90°,S △ABC =30,c=13,且a <b ,则a= ,b= . 3.已知:如图,在△ABC 中,∠B=30°,∠C=45°,AC=22,求(1)AB 的长;(2)S △ABC . 4.在数轴上画出表示-52,5 的点.参考答案六、课堂练习1.30cm ,300cm 2; 2.90,60,30,4,32; 3.2,3,3,1,32;4.作BD ⊥AC 于D ,设AD=x ,则CD=17-x ,252-x 2=262-(17-x )2,x=7,BD=24, S △ABC =21AC·BD=254. 七、课后练习 1.4; 2.5,12;3.提示:作AD ⊥BC 于D ,AD=CD=2,AB=4,BD=32,BC=2+32,S △ABC = =2+32; 4.略.C。

2023-2024学年人教版八年级数学下册17.1勾股定理 勾股定理的应用(1) 课件

2023-2024学年人教版八年级数学下册17.1勾股定理  勾股定理的应用(1) 课件

知识点❷ 勾股定理之风吹荷花模型
典例2 (教材P29习题T10·改编)如图,有一个水池,水面是一
个边长为16尺的正方形,在水池正中央有一根芦苇,它高出水
面2尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到
达池边的水面,则水池里水的深度是多少尺?
解:设水池里水的深度是x尺,
由题意,得x2+


∵BO=0.7 m,BC=0.8 m,
∴CO=1.5 m.
在Rt△DOC中,DO= - = . -. =2(m).
∴AD=AO-DO=2.4-2=0.4(m).
答:梯子的顶端沿墙下滑了0某社区要在如图所示AB所在的
直线上建一图书室,本社区有两所学校,分别在点C和点D处,
∴AB= + = + = ≈43.4.
答:两孔中心的距离约为43.4 mm.
3.如图,一棵竖直生长的竹子高为8米,一阵强风将竹子从
C处吹折,竹子的顶端A刚好触地,且与竹子底端的距离AB
是4米.求竹子折断处与根部的距离CB.
解:由题意知CB+AC=8,∠CBA=90°,
△ABC恰好为直角三角形(∠ABC=90°).通过测量,得到AC
=130 m,BC=120 m,则A,B之间的距离是多少?
解:在Rt△ABC中,根据勾股定理,
得AB2=AC2-BC2=1302-1202=2 500.
∴AB=50 m.
答:A,B之间的距离是50 m.
3.小刚欲从点A出发划船横渡一条河,由于水流的影响,
课堂检测
1.(教材P25例1·改编)如图所示的是一个长为2
m,宽为1.5 m的长方形门框,光头强有一些薄
木板要通过门框搬进屋内.在不能破坏门框,

人教版数学八年级初二下册 17.1 勾股定理(第1课时) 名师教学PPT课件

人教版数学八年级初二下册 17.1 勾股定理(第1课时) 名师教学PPT课件

探究新知 知识点 1
勾股定理的认识与证明
看学三友达
?
看 你 能 发 现 什 么 数 量 关 系
,
,
们 我 们 也 来 观 察 一 下 图 案
,
角 形 三 边 的 某 种 数 量 关 系 同
家 用 砖 铺 成 的 地 面 反 映 直 角
, ,
哥 拉 斯 去 朋 友 家 作 客 发 现 朋
相 传 两 千 五 百 年 前 一 次 毕
的?与同伴交流 交流.
图2
结论:仍然成立.
(图中每个小方格是1个单位面积)
探究新知
至此,我们在网格中验证了:直角三角形两条直角边上的正
方形面积之和等于斜边上的正方形面积,即SA+SB=SC . 问题1 去掉网格结论会改变吗?
问题2 式子SA+SB=SC能用直角三
角形的三边a、b、c来表示吗?
a2 + b2 = c2 问题3 去掉正方形结论会改变吗?
(2)
因此设a=x,c=2x,根据勾股定理建立方程得 (2x)2-x2=152,
解得
x 5 3(舍去)
提示:已知直角三角形两边关系和第三边的长求未知两边时,
要运用方程思想设未知数,根据勾股定理列方程求解.
巩固练习
求出下列直角三角形中未知边的长度:
x
6
5
8
解:(1)由勾股定理得:
x2=62+82 =36+64 =100
课堂检测
拓广探索题
已知∠ACB=90°,CD⊥AB,AC=3,BC=4.求CD的长.
解:由勾股定理可得
A
AB2=AC2+BC2=25,即 AB=5.
D
根据三角形面积公式,

人教版八年级数学下册《17.1勾股定理》课件 (共13张PPT)

人教版八年级数学下册《17.1勾股定理》课件 (共13张PPT)

这个世界上,从来没有谁比谁更优秀,只有谁比谁更努力。
很多人都去了,回来的时候每人拎着一只鸡,大家都很高兴!
人生,是一本太仓促的书,越认真越深刻;
越是优秀的人,越是努力,因为优秀从来不是与生俱来,从来不是一蹴而就。
人到中年,突然间醒悟许多,总算明白:人生,只有将世间的路一一走遍,才能到尽头;
一个土豪,每次出门都担心家中被盗,想买只狼狗栓门前护院,但又不想雇人喂狗浪费银两。
3.(1)已知直角三角形的两直角边的长分别为3和4,则第三边
的长为___5____;
(2)已知直角三角形的两边的长分别为3和4,则第三边的长为
__________.
4.求图17-1-1中直角三角形中未知的长度:b=____1_2___, c=____3_0____.
知识清单
知识点1 勾股定理 勾股定理内容:直角三角形两直角边的平方和等于斜__边__的_平__方_. 勾股定理表示方法:如果直角三角形的两直角边分别为a,b ,斜边为c,那么a_2_+__b_2_=__c_2____. 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达 哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾, 较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数 学家商高就提出了“勾三,股四,弦五”形式的勾股定理, 后来人们进一步发现并证明了直角三角形的三边关系为:两 直角边的平方和等于斜边的平方.
生活,只有将尘世况味种种尝遍,才能熬出头。
勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.
人到中年,突然间醒悟许多,总算明白:人生,只有将世间的路一一走遍,才能到尽头;
如图17-1-7,一棵大树被台风刮断,若树在离地面9 m处折断,树顶端落在离树底部12 m处,则大树折断之前的高度为

17.1勾股定理(1)教学设计2022-2023学年人教版八年级下册数学

17.1勾股定理(1)教学设计2022-2023学年人教版八年级下册数学

17.1 勾股定理(1)教学设计一、教学目标1.了解勾股定理的基本概念和原理;2.掌握勾股定理的运用方法,能够解决与勾股定理相关的问题;3.培养学生分析问题和解决问题的能力。

二、教学内容本节课的教学内容主要包括以下几个方面:1.勾股定理的概念和原理;2.三角形的直角边、斜边和斜角的关系;3.勾股定理的运用方法和例题讲解。

三、教学步骤步骤一:导入1.教师通过提问的方式引出勾股定理的概念,激发学生对于勾股定理的兴趣;2.教师通过举例子的方式,让学生感受一下勾股定理的应用场景。

步骤二:学习与讨论1.教师通过讲解勾股定理的定义和原理,引导学生理解勾股定理的内涵;2.教师通过几何图形和实际问题的分析,让学生看到勾股定理的实际应用;3.学生与教师一起探讨如何应用勾股定理解决问题,并给出解决问题的步骤。

步骤三:例题讲解1.教师选择一些典型的例题进行讲解,通过解题过程演示勾股定理的运用方法;2.教师引导学生分析题目中的信息,确定解题思路,并进行逐步解题。

步骤四:练习与巩固1.学生在教师的指导下,完成相关练习题;2.学生互相交流解题思路,激发学生的合作学习能力和解决问题的能力。

步骤五:归纳总结1.教师引导学生总结勾股定理的运用方法;2.学生以小组为单位,展示他们的解题思路和方法;3.教师进行点评和总结,强调勾股定理的重要性和实际应用。

四、教学评价1.课堂练习的完成情况,包括学生的解题过程和答案的准确性;2.学生课后作业的完成情况,包括书面作业和练习题;3.学生对于勾股定理的理解程度和应用能力的评价。

五、教学反思本节课通过理论讲解和实际问题的应用,帮助学生理解和掌握勾股定理的基本概念和运用方法。

在教学过程中,学生积极参与,课堂气氛活跃。

通过解题讲解和学生的合作学习,提高了学生的解决问题的能力。

但是在练习环节中,部分学生的思维转换还不够灵活,需要加强巩固训练。

教师在今后的教学中将重点培养学生的分析问题和解决问题的能力,多进行案例分析和实践操作,提高学生的学习兴趣和实际应用能力。

初中数学:17.1.1勾股定理(人教版八年级数学下册第十七章勾股定理)

初中数学:17.1.1勾股定理(人教版八年级数学下册第十七章勾股定理)

第17章勾股定理17.1勾股定理第1课时勾股定理1.经历探索及验证勾股定理的过程,体会数形结合的思想;(重点)2.掌握勾股定理,并运用它解决简单的计算题;(重点)3.了解利用拼图验证勾股定理的方法.(难点)一、情境导入如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说其中的奥秘吗?二、合作探究探究点一:勾股定理【类型一】直接运用勾股定理如图,在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,CD⊥AB于D,求:(1)AC的长;(2)S△ABC;(3)CD的长.解析:(1)由于在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,根据勾股定理即可求出AC的长;(2)直接利用三角形的面积公式即可求出S△ABC;(3)根据面积公式得到CD·AB=BC·AC即可求出CD.解:(1)∵在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,∴AC=AB2-BC2=12cm;(2)S△ABC=12CB·AC=12×5×12=30(cm2);(3)∵S△ABC=12AC·BC=12CD·AB,∴CD=AC·BCAB=6013cm.方法总结:解答此类问题,一般是先利用勾股定理求出第三边,然后利用两种方法表示出同一个直角三角形的面积,然后根据面积相等得出一个方程,再解这个方程即可.【类型二】分类讨论思想在勾股定理中的应用在△ABC中,AB=15,AC=13,BC边上的高AD=12,试求△ABC的周长.解析:由全等三角形的知识,可知△ABC的形状无法确定,但△ABD的形状可以确定.如图所示,△ABC存在两种不同的情况,因此需要分两种情况进行讨论:△ABC为锐角三角形和钝角三角形.△ABC的周长=28+BC,其中BC=BD+CD或BC=BD-CD.解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,如图①所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=5+9=14,∴△ABC的周长为15+13+14=42.(2)当△ABC 为钝角三角形时,如图②所示.同理,BD =9,CD =5,∴BC =9-5=4,∴△ABC 的周长为15+13+4=32.∴当△ABC 为锐角三角形时,△ABC 的周长为42;当△ABC 为钝角三角形时,△ABC 的周长为32.方法总结:解题时要考虑全面,对于存在的可能情况,可作出相应的图形,判断是否符合题意.【类型三】勾股定理的证明探索与研究:方法1:如图,对任意的符合条件的直角三角形ABC 绕其顶点A 旋转90°得直角三角形AED ,所以∠BAE =90°,且四边形ACFD 是一个正方形,它的面积和四边形ABFE 的面积相等,而四边形ABFE 的面积等于Rt △BAE 和Rt △BFE 的面积之和.根据图示写出证明勾股定理的过程;方法2:如图,该图形是由任意的符合条件的两个全等的Rt △BEA 和Rt △ACD 拼成的,你能根据图示再写出一种证明勾股定理的方法吗?解析:方法1:根据四边形ABFE 面积等于Rt △BAE 和Rt △BFE 的面积之和进行解答;方法2:根据△ABC 和Rt △ACD 的面积之和等于Rt △ABD 和△BCD 的面积之和解答.解:方法1:S 正方形ACFD =S 四边形ABFE =S △BAE +S △BFE ,即b 2=12c 2+12(b +a )(b -a ),整理得2b 2=c 2+b 2-a 2,∴a 2+b 2=c 2;方法2:此图也可以看成Rt △BEA 绕其直角顶点E 顺时针旋转90°,再向下平移得到.∵S四边形ABCD=S△ABC+S△ACD,S四边形ABCD=S△ABD+S△BCD,∴S△ABC+S△ACD=S△ABD+S△BCD,即1 2b2+12ab=12c2+12a(b-a),整理得b2+ab=c2+a(b-a),b2+ab=c2+ab-a2,∴a2+b2=c2.方法总结:证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理证明勾股定理.探究点二:勾股定理与图形的面积如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是________.解析:根据勾股定理的几何意义,可得正方形A、B的面积和为S1,正方形C、D的面积和为S2,S1+S2=S3,即S3=2+5+1+2=10.故答案为10.方法总结:能够发现正方形A、B、C、D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A、B、C、D的面积和即是最大正方形的面积.三、板书设计1.勾股定理如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.2.勾股定理的证明“赵爽弦图”、“刘徽青朱出入图”、“詹姆斯·加菲尔德拼图”、“毕达哥拉斯图”.3.勾股定理与图形的面积课堂教学中,要注意调动学生的积极性.让学生满怀激情地投入到学习中,提高课堂效率.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,设计一些拼图活动,并自制精巧的课件让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究突破本节课的难点.第2课时勾股定理的应用1.熟练运用勾股定理解决实际问题;(重点)2.掌握勾股定理的简单应用,探究最短距离问题.(难点)一、情境导入如图,在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A 处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?二、合作探究探究点一:勾股定理的实际应用【类型一】勾股定理在实际问题中的应用如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米每秒的速度收绳.问6秒后船向岸边移动了多少米(假设绳子始终是直的,结果保留根号)?解析:开始时,AC=5米,BC=13米,即可求得AB的值,6秒后根据BC,AC长度即可求得AB的值,然后解答即可.解:在Rt△ABC中,BC=13米,AC=5米,则AB=BC2-AC2=12米.6秒后,B′C=13-0.5×6=10米,则AB′=B′C2-AC2=53(米),所以船向岸边移动的距离为(12-53)米.方法总结:本题直接考查勾股定理在实际生活中的运用,可建立合理的数学模型,将已知条件转化到同一直角三角形中求解.【类型二】利用勾股定理解决方位角问题如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了1003km到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.解析:根据所走的方向可判断出△ABC是直角三角形,根据勾股定理可求出解.解:∵AD∥BE,∴∠ABE=∠DAB=60°.∵∠CBF=30°,∴∠ABC=180°-∠ABE-∠CBF=180°-60°-30°=90°.在Rt△ABC中,AB=1003km,BC=100km,∴AC=AB2+BC2=(1003)2+1002=200(km),∴A、C两点之间的距离为200km.方法总结:先确定△ABC是直角三角形,再根据各边长,用勾股定理可求出AC的长.【类型三】利用勾股定理解决立体图形最短距离问题如图,长方体的长BE=15cm,宽AB=10cm,高AD=20cm,点M在CH上,且CM=5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点M,需要爬行的最短距离是多少?解:分两种情况比较最短距离:如图①所示,蚂蚁爬行最短路线为AM,AM=102+(20+5)2=529(cm),如图②所示,蚂蚁爬行最短路线为AM,AM=202+(10+5)2=25(cm).∵529>25,∴第二种短些,此时最短距离为25cm.答:需要爬行的最短距离是25cm.方法总结:因为长方体的展开图不止一种情况,故对长方体相邻的两个面展开时,考虑要全面,不要有所遗漏.不过要留意展开时的多种情况,虽然看似很多,但由于长方体的对面是相同的,所以归纳起来只需讨论三种情况:前面和右面展开,前面和上面展开,左面和上面展开,从而比较取其最小值即可.【类型四】运用勾股定理解决折叠中的有关计算如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A的对应点为A′,且B′C=3,则AM的长是()A.1.5B.2C.2.25D.2.5解析:连接BM,MB′.设AM=x,在Rt△ABM中,AB2+AM2=BM2.在Rt△MDB′中,MD2+DB′2.∵MB=MB′,∴AB2+AM2=BM2=B′M2=MD2+DB′2,即92+x2=(9-x)2+(9-3)2,解得x=2,即AM=2.故选B.方法总结:解题的关键是设出适当的线段的长度为x,然后用含有x的式子表示其他线段,然后在直角三角形中利用勾股定理列方程解答.【类型五】勾股定理与方程思想、数形结合思想的应用如图,在树上距地面10m的D处有两只猴子,它们同时发现地面上C处有一筐水果,一只猴子从D处向上爬到树顶A处,然后利用拉在A处的滑绳AC滑到C处,另一只猴子从D处先滑到地面B,再由B跑到C,已知两猴子所经过的路程都是15m,求树高AB.解析:在Rt△ABC中,∠B=90°,则满足AB2+BC2=AC2.设AD=x m,根据两只猴子经过的路程一样可列方程组,从而求出x的值,即可计算树高.解:在Rt△ABC中,∠B=90°,设AD=x m.∵两猴子所经过的路程都是15m,则10+BC=x+AC=15.∴BC=5,AC=15-x,AB=x+10.又∵在Rt△ABC中,由勾股定理得(10+x)2+52=(15-x)2,解得x=2,即AD=2米.∴AB=AD+DB=2+10=12(米).答:树高AB为12米.方法总结:勾股定理表达式中有三个量,如果条件中只有一个己知量,通常需要巧设未知数,灵活地寻找题中的等量关系,然后利用勾股定理列方程求解.探究点二:勾股定理与数轴如图所示,数轴上点A所表示的数为a,则a的值是()A.5+1B.-5+1 C.5-1 D.5解析:先根据勾股定理求出三角形的斜边长,再根据两点间的距离公式即可求出A点的坐标.图中的直角三角形的两直角边为1和2,∴斜边长为12+22=5,∴-1到A的距离是5.那么点A所表示的数为5-1.故选C.方法总结:本题考查的是勾股定理及两点间的距离公式,解答此题时要注意,确定点A 的位置,再根据A的位置来确定a的值.三、板书设计1.勾股定理的应用方位角问题;路程最短问题;折叠问题;数形结合思想.2.勾股定理与数轴本节课充分锻炼了学生动手操作能力、分类比较能力、讨论交流能力和空间想象能力,让学生充分体验到了数学思想的魅力和知识创新的乐趣,突现教学过程中的师生互动,使学生真正成为主动学习者.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
zxxk
请大家 从面积 的角度 来观察 图形:
【】
思考:你能发现各图中三个正方形的面积之间有 何关系吗?
发现: 以等腰直角三角形两直角边为边长的小正方形的面 积的和,等于以斜边为边长的正方形的面积
P
P Q
C R C R
Q
如图,小方格的边长为1. 用了“割”的方法 用了“补”的方法 (1) 思考:你能发现各图中三个正方形的面积之间有 何关系吗?你能求出正方形R的面积吗?
5.如图,因受台风影响,一棵树在离地面4米处断 裂,树的顶部落在离树跟底部3米处,这棵树折断 前有多高?
4米
3米
1.勾股定理: 直角三角形两直角边a、b 平方和等于斜边c平方。
a2+b2 =c2
2.利用勾股定理,在直角三角形中,已知 任意两边求第三边的长。
3. 勾股定理是几何中最重要的定理之 一,它揭示了直角三角形三边之间的 数量关系.
图乙
c C
b B
SA+SB=SC SA+SB=SC
SA+SB=SC C a b c c b 图甲 B SA+SB=SC
图乙
A
a
C
3.猜想a、b、c 之间的关系?
2 a
2 +b
2 =c
即:直角三角形两直角边的平方和等于斜边的平方
命题1:如果直角三角形的两直角边长分 别为a、b,斜边长为c,那么a2+b2=c2。
b b
c
(1)
勾股定理的证明 (2)
勾股定理的证明
z/xxk
b
c
c b
a
a
勾股定理
勾股定理: 如果直角三角形的两直角 边长分别为a, b, 斜边长为c, 那么 a b c .
2 2 2
a
c
b
读一读
勾 股
勾 股 世 界
在中国古代,人们把弯曲成直角的手臂的上半部分称为“勾”, 下半部分称为“股”.我国古代学者把直角三角形较短的直角边称 为“勾”,较长的直角边称为“股”,斜边称为“弦”. 我国是最早了解勾股定理的国家之一。早在三千多年前,周朝 数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,股 等于四,那么弦就等于五,即“勾三、股四、弦五”,它被记载于 我国古代著名的数学著作《周髀算经》中。
勾 股 世 界
• 我国有记载的最早勾股定理的证明,是3世 纪我国汉代代数学家赵爽在他所著的《勾 股圆方图注》中,用四个全等的直角三角 形拼成一个中空的正方形来证明的。
赵 爽 弦 图
a
b
c
每个直角三角形的面 积叫朱实,中间的正 方形面积叫黄实,大 正方形面积叫弦实, 这个图也叫弦图。
勾 股 世 界
c
b a
你能证明这个命题是正确的命题吗?
利用拼图来验证:
1、准备四个全等的直角三角形(设直角三 角形的两条直角边分别为a,b,斜边c); 2、你能用这四个直角三角形拼成一个正 方形吗?拼一拼试试看 3、你拼的正方形中是否含有以斜边c为边 的正方形?
4、你能否就你拼出的图说明a2+b2=c2?
a b c
5 3

x
X=4
2. 一高为2.5米的木梯,架在高为2.4米的墙上 (如图),这时梯脚与墙的距离是多少? A
0.7米
B
C
3.求下列图中表示边的未知数x、y、z的值. 144 81 144 ① 169 ②
z
625
576

4.求下列直角三角形中未知边的长:
5 8 17
x
20
16
x
12
x
方股定理的验证
大正方形的面积可以表示为 也可以表示为 4•ab/2+(b- a)2 ∵ c2= 4•ab/2 +(b-a)2 =2ab+b2-2ab+a2 =a2+b2 a c2 ;
a
c b a
c
b
∴a2+b2=c2
c
a
b
b
c
勾股定理的验证
2 (a+b) 大正方形的面积可以表示为 ;
也可以表示为 c2 +4•ab/2 b a b c c a c ∵ (a+b)2 = c2 + 4•ab/2 a2+2ab+b2 = c2 +2ab ∴a2+b2=c2 a a
1
1
美丽的勾股树
图甲
A B
C
C
回答: 小方格的边长为1.
⑴正方形A、B、C的面积各为多少? ⑵正方形A、B、C的面积有什么关系?
SA+SB=SC
A
B C 图已 B
A
C
回答:
小方格的边长为1.
⑴正方形A、B、C的面积各为多少? S +S =S A B C ⑵正方形A、B、C的面积有什么关系?
图甲
c
Aa
C
A a
B b
下图是在北京召开的2002年国际数学家大 会(TCM-2002)的会标,其图案正是 “弦图”,它标志着中国古代的数学成就.
提出问题发现探索
相传2500年前,古希腊著名数学家毕达哥拉 斯从朋友家的地砖铺成的地面上发现了直角三角 形的某种特性,从而找到了答案。同学们,我们也 来观察下面的地面, 看看你能发现什么?是否也 和大数学家有同样的发现呢?
2
b c a
2
2
a
例:求出下列直角三角形中未知边的长度
x x
6
5
8 13
解:由勾股定理得: x2=62+82 x2 =36+64 x2 =100 ∵x>0 ∴ x=10
∵ x2+52=132 ∴ x2=132-52 x2 =169-25 x2 =144 ∵x>0 ∴ x=12
练一练
1. 如图,你能解决这个问题吗?
两千多年前,古希腊有个毕达哥拉斯学派,他 们首先发现了勾股定理,因此在国外人们通常称勾 股定理为毕达哥拉斯定理。为了纪念毕达哥拉斯学 派,1955年希腊曾经发行了一枚纪念邮票。
结论变形
直角三角形两直角边的平方和等于斜边的平方。
c2 = a 2 + b 2
c a b
2 2
c
b
a c b
2
相关文档
最新文档