勾股定理的证明方法

合集下载

证明勾股定理的六种方法

证明勾股定理的六种方法

证明勾股定理的六种方法嘿,朋友们!今天咱就来聊聊证明勾股定理的六种超厉害的方法!咱先说说第一种,拼图法。

这就好像搭积木一样,把一些图形巧妙地拼在一起,然后哇塞,勾股定理就出现啦!你看,通过把几个直角三角形和正方形拼来拼去,就能发现它们之间的奇妙关系,这多有意思呀!第二种呢,是面积法。

就好像我们分蛋糕一样,把图形的面积算来算去,嘿,就找到勾股定理的秘密啦!通过比较不同部分的面积,那真理就藏不住咯!还有一种叫相似三角形法。

哎呀,这就像找朋友一样,找到那些相似的三角形,然后从它们的关系里一点点挖出勾股定理。

这可需要我们有一双善于发现的眼睛呢!接着说第四种,射影定理法。

这听起来是不是有点高深莫测呀?哈哈,其实也不难理解啦!就好像是光线照下来留下的影子,从影子里能看出很多奇妙的东西哦,勾股定理就是其中之一呢!再讲讲第五种,余弦定理法。

这就像是解开一道复杂的谜题,通过余弦定理这个工具,一点点推导,最后得出勾股定理。

是不是很神奇呀?最后一种,是梯形面积法。

把图形变成梯形,然后通过计算梯形的面积,哈哈,勾股定理就蹦出来啦!这六种方法,各有各的奇妙之处,各有各的乐趣。

就好像是打开知识大门的六把钥匙,每一把都能让我们看到不一样的精彩。

证明勾股定理,不只是为了得到一个结果,更是在享受探索的过程呀!我们在这个过程中可以感受到数学的魅力,感受到思维的跳动。

想想看,我们的老祖宗们是多么聪明呀,能发现这么神奇的定理,还能想出这么多种方法来证明它。

我们作为后人,是不是也应该好好去研究、去体会呢?数学的世界就是这么奇妙,勾股定理只是其中的一小部分。

还有很多很多的奥秘等着我们去发现呢!所以呀,大家可不要小瞧了数学,它里面的乐趣可多着呢!我们要带着好奇的心,去探索,去发现,去感受数学带给我们的惊喜和快乐!这六种证明勾股定理的方法,不就是最好的例子吗?难道不是吗?。

勾股定理的所有证明方法

勾股定理的所有证明方法

勾股定理的所有证明方法勾股定理是数学中的一个重要定理,它描述了直角三角形的两条短边和长边之间的关系,是中学数学必学内容。

勾股定理有多种推导方法,本文将介绍其中几种比较经典的证明方法。

证明方法一:图形法在平面直角坐标系中,假设有一个直角三角形,三个顶点分别为A(0,0)、B(a,0)、C(0,b),其中AB为直角边,AC为短边,BC为长边。

根据勾股定理,有:AB²+AC²=BC²即a²+ b² = c²这一定理可以通过勾股定理图像证明。

证明方法二:代数法假设直角三角形ABC为直角三角形,角ACB为直角,线段AB为直角边,BC和AC分别为长边和短边。

假设长边为c,其中AC长度为a,BC长度为b。

那么由勾股定理得:c² = a² + b²移动式子的顺序,得a² = c² - b²然后得a = (c² - b²)¹/²同样的,b = (c² - a²)¹/²因此,假设c² = a² + b²,那么a = (c² - b²)¹/², b =(c² - a²)¹/²的证明结束。

证明方法三:相似性质法由于三角形ABC与其相似的三角形ABC’(BC=BC’)可以通过旋转,翻转或缩放在三角形平面内重叠,因此,我们可以确保AB/CB等于AB’/C’B’。

我们可以推出:AB/BC = C’B’/BC’这是三角形ABC和AC’B’C之间的相似性质。

而对于三角形ABC,根据勾股定理有:AB² + BC² = AC²在代入上述比例式之后有:AB² + BC² = AC²AB² + BC² =(C’B’*BC/BC’)² + (CB –C’B’)²(AB/BC)² + 1=C’B’² / BC’² + (1-C’B’/BC’)²(AB/BC)² + 1= C’B’² / BC’² + (BC’-C’B’)² / BC’²将BC’ =AB,BB’=BC,AC’=C’B’(AB/BC)² + 1 = AC’² / BB’² + (BB’ –AC’)² / BB’²(AB/BC)² + 1 = a² / c² + (c - a)² / c²(AB/BC)² + 1 = a² / c² + (a²) / c² - 2a / c + 1(AB/BC)² + 1= 2a² / c² - 2a / c + 2因此,就得到了AB/BC的值,将其代入勾股定理公式中,就可得到其证明方法。

勾股定理十种详细证明方法

勾股定理十种详细证明方法

勾股定理十种详细证明方法嘿,咱今儿个就来聊聊那大名鼎鼎的勾股定理!你可别小瞧它,这可是数学世界里超级重要的一块儿宝藏呢!要说这勾股定理啊,那就是直角三角形两条直角边的平方和等于斜边的平方。

就好像一个神奇的魔法公式,能解决好多好多问题。

那它都有哪些详细证明方法呢?咱先来说说第一种方法,拼图法。

就好像我们在玩拼图游戏一样,把几个图形巧妙地拼在一起,就能神奇地证明出勾股定理。

你说妙不妙?第二种呢,是面积法。

通过计算不同图形的面积,然后找到它们之间的关系,从而得出勾股定理。

这就好像是在一个大迷宫里找线索,最后找到了那关键的出口。

还有一种很有意思的方法,叫相似三角形法。

利用相似三角形的性质来证明勾股定理,就像是找到了打开宝藏大门的钥匙。

再说说代数法,把几何问题转化为代数问题,这可真是一种独特的思路,就如同给几何穿上了代数的外衣。

然后是割补法,把一个图形割开或者补全,从中发现勾股定理的奥秘,是不是很神奇呢?还有构造法,就像建筑师一样,巧妙地构造出一些图形来证明勾股定理。

另外,还有反证法,从反面去思考问题,来证明勾股定理的正确性,这可是很需要脑筋急转弯的哦!还有一种方法,是利用三角函数来证明,这就好像给勾股定理加上了一双翅膀,让它能飞得更高更远。

第九种方法是归纳法,通过一系列的例子归纳出勾股定理,就像是从一颗颗珍珠串成了一条美丽的项链。

最后一种呢,是利用向量来证明。

向量可是数学里的一把利剑,用它来证明勾股定理,那可真是威力无穷啊!你想想看,这十种方法,每一种都像是一把独特的钥匙,能打开勾股定理这扇神秘大门。

是不是很厉害?这勾股定理就像是数学王国里的一座坚固城堡,而这十种证明方法就是通往城堡的不同道路。

我们可以沿着这些道路,尽情地探索数学的奥秘,感受数学的魅力。

所以啊,别小看了这小小的勾股定理,它背后可有着大大的智慧呢!咱可得好好学。

勾股定理五种证明方法

勾股定理五种证明方法

勾股定理五种证明方法
1. 代数证明:假设直角三角形的两条直角边分别为a和b,斜
边为c。

根据勾股定理,我们有a^2 + b^2 = c^2。

将三条边的
长度代入该等式,进行计算验证即可证明。

2. 几何证明:通过绘制直角三角形,并利用几何原理证明。

例如,可以画一个正方形,然后在其两条相对边上各画一个相等的直角三角形,再使用平行四边形的性质可以得出a^2 + b^2
= c^2。

3. 相似三角形证明:假设两个直角三角形,已知其斜边比例为m:n,利用相似三角形的性质可以得出直角边的比例也是m:n,进而得到a^2 + b^2 = c^2。

4. 平行四边形法证明:利用平行四边形的性质,可通过画出一个具有相等对边的平行四边形来证明勾股定理。

通过平行四边形的性质可以得出a^2 + b^2 = c^2。

5. 微积分证明:利用微积分的知识可以证明勾股定理。

通过对直角三角形边长进行微分,并进行适当的运算,可以得到a^2 + b^2 = c^2。

这种证明方法比较复杂,需要较高的数学知识和
技巧。

勾股定理三种证明方法

勾股定理三种证明方法

勾股定理三种证明方法
勾股定理有很多种证明方法,其中较为常见的有以下三种:
1. 几何法证明:通过在直角三角形中进行几何构造,利用一些几何性质来推导出勾股定理。

其中一种常见的方法是利用辅助角的概念,在直角三角形中构造一条垂直于斜边的高,然后利用相似三角形的性质来推导出勾股定理。

2. 代数法证明:利用代数运算的方式来证明勾股定理。

首先,将直角三角形的两条直角边分别表示为“a”和“b”,斜边表示为“c”。

然后,利用平方运算和方程的性质,将勾股定理表示为一个等式,然后通过代数的运算推导出等式成立。

3. 数学归纳法证明:利用数学归纳法来证明勾股定理。

首先,通过对几个特殊情况(例如边长为3-4-5的直角三角形)的验证,证明当一部分情况成立时,另一部分情况也必然成立。

然后,利用归纳法的思想,将直角三角形的边长表示为整数,并逐步增加边长,推导出勾股定理对于所有整数边长的直角三角形成立。

几种简单证明勾股定理的方法

几种简单证明勾股定理的方法

几种简单证明勾股定理的方法勾股定理是一个著名的数学定理,它描述了直角三角形三条边的长度之间的关系。

下面是几种简单证明勾股定理的方法:方法一:特例验证法对于任意一个直角三角形,我们可以列出它的两条直角边的长度的平方和,以及斜边的长度的平方,验证它们是否相等。

例如,对于一个直角边分别为3和4的直角三角形,我们可以计算出它的斜边的长度为5,然后验证3²+4²=5²。

这种方法虽然简单,但是只适用于特例,不能推广到一般情况。

方法二:几何构造法将两个大小相同的直角三角形放在同一直线上,使得它们的斜边成为一条直线。

这时,我们可以证明两个三角形的面积之和等于底边长度之和的两倍。

由于两个三角形面积相等,因此可以得出底边长度之和等于斜边长度。

例如,对于两个直角边分别为a和b的直角三角形,它们的斜边长度分别为c,将它们放在同一直线上,使得它们的斜边成为一条直线。

可以证明两个三角形的面积之和等于底边长度之和的两倍,即ab/2+ab/2=c²/2。

因此,可以得出a²+b²=c²。

方法三:代数推导法通过代入特殊值的方式,可以得到勾股定理的公式。

例如,当直角三角形的两条直角边分别为3和4时,可以得出斜边的长度为5,然后代入公式3²+4²=5²得到验证。

这种方法虽然简单,但是只适用于已知直角三角形两条直角边长度的特殊情况。

方法四:平方法通过平方法证明勾股定理的思路是:将直角三角形的一条直角边平移到斜边所在的直线上方,与斜边重合。

这时,可以将直角三角形的一条直角边看作是斜边减去一条直角边的长度所得的差,因此可以得出斜边的平方等于两条直角边的平方和。

例如,对于一个直角边分别为a和b的直角三角形,可以将其一条直角边平移到斜边所在的直线上方,与斜边重合。

这时,可以将直角三角形的一条直角边看作是斜边减去一条直角边的长度所得的差,即a²+b²=c²。

十种方法证明勾股定理

十种方法证明勾股定理

十种方法证明勾股定理勾股定理是中学数学中最基本的定理之一,解决了数学中的许多问题。

它是一个既基础且实用的定理,有许多方法可以证明它,下面介绍十种方法:1.欧拉定理证明法:构造出一个直角三角形,把它的两条直角边对应的两个正方形放在直角三角形外面,另一条边对应的正方形放在直角三角形内部,再利用欧拉定理计算出三个正方形的面积,可以证明勾股定理。

2.代数证明法:利用代数的平方公式,把直角三角形的两条直角边平方相加,再把斜边平方,然后再将两者相减,得到一个等式,即可证明勾股定理。

3.数学归纳法证明:用数学归纳法证明勾股定理,证明当n为正整数时,定理成立。

4.相似三角形证明法:构造出相似的三角形,利用相似三角形的性质,可以推导出勾股定理。

5.向量证明法:用向量的几何意义证明勾股定理,首先利用向量的长度和夹角的公式计算出向量的长度和夹角,再利用向量的点积公式计算出勾股定理中的各个变量,最后推导出勾股定理。

6.割圆术证明法:利用割圆术将直角三角形对角线作为半径画圆,利用圆上弧角定理,可以得到勾股定理。

7.平面几何证明法:用平面几何证明勾股定理,利用平面几何图形的形状和大小关系,推导出勾股定理。

8.解析几何证明法:用解析几何证明勾股定理,利用平面直角坐标系,将三角形的三个点用坐标表示出来,推导出勾股定理。

9.三角函数证明法:用三角函数证明勾股定理,利用三角函数的性质,将三角形分离出直角三角形和非直角三角形,再用三角函数计算出各个变量,推导出勾股定理。

10.古希腊证明法:古希腊人对勾股定理有自己的证明方法,即利用几何图形的形状和大小,通过构造几何图形推导出勾股定理。

这些证明方法都可以证明勾股定理的正确性,它们有不同的适用范围和难度级别,可以根据自己的水平和兴趣选择合适的证明方法。

勾股定理20种证明方法

勾股定理20种证明方法

勾股定理20种证明方法1. 最常见的勾股定理证明是基于三角形面积公式的。

利用三角形的底边与高的关系,可以将直角三角形分成两个三角形,然后应用面积公式进行计算得出勾股定理。

2. 通过向直角三角形内部引入一个圆形,利用圆的性质可以得到勾股定理。

3. 将直角三角形中的一条直角边平移到非直角边上,形成一个平行四边形,再利用平行四边形对角线的关系即可得到勾股定理。

4. 利用正弦定理和余弦定理进行推导,可以得出勾股定理。

5. 通过三角形内部的相似三角形进行推导得出勾股定理。

将直角三角形分成两个相似三角形,利用相似三角形的性质进行推导得出勾股定理。

6. 通过归纳法进行证明,即证明勾股定理对于所有自然数n都成立。

7. 利用勾股定理推导其他几何定理,例如正弦定理、余弦定理等,进而证明勾股定理。

8. 利用数学归纳法,可证勾股定理对于所有正整数n都成立。

9. 利用勾股定理证明勾股三角形的存在性,也就是存在一组自然数a、b、c,使得a²+b²=c²。

这可以通过暴力算法或递推算法来实现。

10. 利用反证法证明勾股定理。

假设勾股定理不成立,即假设存在一个直角三角形,其两条直角边的平方和不等于斜边的平方。

通过假设的前提,推导出矛盾的结论,从而证明勾股定理成立。

11. 利用勾股定理证明三角形的周长和面积公式。

将直角三角形分成两个直角三角形,利用勾股定理计算出直角边的长度,然后应用周长和面积公式。

12. 利用勾股定理证明三角形的内心与垂心之间的关系。

将直角三角形分成两个相似三角形,利用勾股定理计算出内心与垂心之间的距离。

13. 利用勾股定理证明三角形的外心与垂心之间的关系。

通过三角形的外接圆,证明外心与垂心之间的距离等于直角边之间距离的一半。

14. 利用圆的性质证明勾股定理。

将三角形中的一条直角边作为直径,表示成圆上的弦长,利用圆的定理得到勾股定理。

15. 通过三角形的相似性质,证明勾股定理。

将直角三角形分成两个与之相似的三角形,利用相似三角形的性质得到勾股定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即a^2+b^2+4*(ab/2)=c^2+4*(ab/2),整理得到:a^2+b^2=c^2。

【证法2】以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于 ab/2.把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上.∵ RtΔHAE ≌ RtΔEBF,∴∠AHE = ∠BEF.∵∠AEH + ∠AHE = 90º,∴∠AEH + ∠BEF = 90º.∴∠HEF = 180º―90º= 90º.∴四边形EFGH是一个边长为c的正方形. 它的面积等于c^2.∵ RtΔGDH ≌ RtΔHAE,∴∠HGD = ∠EHA.∵∠HGD + ∠GHD = 90º,∴∠EHA + ∠GHD = 90º.又∵∠GHE = 90º,∴∠DHA = 90º+ 90º= 180º.∴ ABCD是一个边长为a + b的正方形,它的面积等于(a+b)^2.∴(a+b)^2=c^2+4*(ab/2),∴ a^2+b^2=c^2。

【证法3】以a、b 为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角三角形的面积等于ab/2. 把这四个直角三角形拼成如图所示形状.∵ RtΔDAH ≌ RtΔABE,∴∠HDA = ∠EAB.∵∠HAD + ∠HAD = 90º,∴∠EAB + ∠HAD = 90º,∴ ABCD是一个边长为c的正方形,它的面积等于c^2.∵ EF = FG =GH =HE = b―a ,∠HEF = 90º.∴ EFGH是一个边长为b―a的正方形,它的面积等于(b-a)^2.∴(b-a)^2+4*(ab/2)=c^2,∴ a^2+b^2=c^2。

【证法4】以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab/2. 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.∵ RtΔEAD ≌ RtΔCBE,∴∠ADE = ∠BEC.∵∠AED + ∠ADE = 90º,∴∠AED + ∠BEC = 90º.∴∠DEC = 180º―90º= 90º.∴ΔDEC是一个等腰直角三角形,它的面积等于c^2/2.又∵∠DAE = 90º, ∠EBC = 90º,∴ AD∥BC.∴ ABCD是一个直角梯形,它的面积等于(a+b)^2/2(a+b)^2/2=2*ab/2+c^2/2,∴ a^2+b^2=c^2【证法5】做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC 的延长线交DF于点P.∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD,∴∠EGF = ∠BED,∵∠EGF + ∠GEF = 90°,∴∠BED + ∠GEF = 90°,∴∠BEG =180º―90º= 90º.又∵ AB = BE = EG = GA = c,∴ ABEG是一个边长为c的正方形.∴∠ABC + ∠CBE = 90º.∵ RtΔABC ≌ RtΔEBD,∴∠ABC = ∠EBD.∴∠EBD + ∠CBE = 90º.即∠CBD= 90º.又∵∠BDE = 90º,∠BCP = 90º,BC = BD = a.∴ BDPC是一个边长为a的正方形.同理,HPFG是一个边长为b的正方形.设多边形GHCBE的面积为S,则a^2+b^2=S+2*ab/2c^2=S+2*ab/2∴ a^2+b^2=c^2。

【证法6】做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.过点Q作QP∥BC,交AC于点P.过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N.∵∠BCA = 90º,QP∥BC,∴∠MPC = 90º,∵ BM⊥PQ,∴∠BMP = 90º,∴ BCPM是一个矩形,即∠MBC = 90º.∵∠QBM + ∠MBA = ∠QBA = 90º,∠ABC + ∠MBA = ∠MBC = 90º,∴∠QBM = ∠ABC,又∵∠BMP = 90º,∠BCA = 90º,BQ = BA = c,∴ RtΔBMQ ≌ RtΔBCA.同理可证RtΔQNF ≌ RtΔAEF.从而将问题转化为【证法4】【证法7】做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结BF、CD. 过C作CL⊥DE,交AB于点M,交DE于点L.∵ AF = AC,AB = AD,∠FAB = ∠GAD,∴ΔFAB ≌ΔGAD,∵ΔFAB的面积等于a^2/2,ΔGAD的面积等于矩形ADLM的面积的一半,∴矩形ADLM的面积 =a^2.同理可证,矩形MLEB的面积 =b^2.∵正方形ADEB的面积= 矩形ADLM的面积 + 矩形MLEB的面积∴ a^2+b^2=c^2。

【证法8】(利用相似三角形性质证明)如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D.在ΔADC和ΔACB中,∵∠ADC = ∠ACB = 90º,∠CAD = ∠BAC,∴ΔADC ∽ΔACB.AD∶AC = AC ∶AB,即AC^2=AD*AB.同理可证,ΔCDB ∽ΔACB,从而有 BC^2=BD*AB.∴ AC^2+BC^2=(AD+BD)*AB=AB^2,即a^2+b^2=c^2。

【证法9】做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形. 过A作AF⊥AC,AF交GT于F,AF交DT于R. 过B作BP⊥AF,垂足为P. 过D作DE与CB的延长线垂直,垂足为E,DE交AF于H.∵∠BAD = 90º,∠PAC = 90º,∴∠DAH = ∠BAC.又∵∠DHA = 90º,∠BCA = 90º,AD = AB = c,∴ RtΔDHA ≌ RtΔBCA.∴ DH = BC = a,AH = AC = b.由作法可知, PBCA 是一个矩形,所以 RtΔAPB ≌ RtΔBCA. 即PB =CA = b,AP= a,从而PH = b―a.∵ RtΔDGT ≌ RtΔBCA ,RtΔDHA ≌ RtΔBCA.∴ RtΔDGT ≌ RtΔDHA .∴ DH = DG = a,∠GDT = ∠HDA .又∵∠DGT = 90º,∠DHF = 90º,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º,∴ DGFH是一个边长为a的正方形.∴ GF = FH = a . TF⊥AF,TF = GT―GF = b―a .∴ TFPB是一个直角梯形,上底TF=b―a,下底BP= b,高FP=a +(b―a).用数字表示面积的编号(如图),则以c为边长的正方形的面积为【证法10】设直角三角形两直角边的长分别为a、b(b>a),斜边的长为c. 做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使A、E、G三点在一条直线上. 用数字表示面积的编号(如图).∵∠ TBE = ∠ABH = 90º,∴∠TBH = ∠ABE.又∵∠BTH = ∠BEA = 90º,BT = BE = b,∴ RtΔHBT ≌ RtΔABE.∴ HT = AE = a.∴ GH = GT―HT = b―a.又∵∠GHF + ∠BHT = 90º,∠DBC + ∠BHT = ∠TBH + ∠BHT = 90º,∴∠GHF = ∠DBC.∵ DB = EB―ED = b―a,∠HGF = ∠BDC = 90º,∴ RtΔHGF ≌ RtΔBDC. 即 S7=S2.过Q作QM⊥AG,垂足是M. 由∠BAQ = ∠BEA = 90º,可知∠ABE= ∠QAM,而AB = AQ = c,所以RtΔABE ≌ RtΔQAM . 又RtΔHBT ≌RtΔABE. 所以RtΔHBT ≌ RtΔQAM .即 S8=S5.由RtΔABE ≌ RtΔQAM,又得QM = AE = a,∠AQM = ∠BAE.∵∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE,∴∠FQM = ∠CAR.又∵∠QMF = ∠ARC = 90º,QM = AR = a,∴ RtΔQMF ≌ RtΔARC. 即S4=S6.【证法11】(利用切割线定理证明)在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c. 如图,以B为圆心a为半径作圆,交AB及AB的延长线分别于D、E,则BD = BE = BC = a. 因为∠BCA = 90º,点C在⊙B上,所以AC是⊙B 的切线. 由切割线定理,得【证法12】(利用多列米定理证明)在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c(如图).过点A 作AD∥CB,过点B作BD∥CA,则ACBD为矩形,矩形ACBD内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有【证法13】(作直角三角形的内切圆证明)在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c. 作RtΔABC的内切圆⊙O,切点分别为D、E、F(如图),设⊙O的半径为r.∵ AE = AF,BF = BD,CD = CE,∴ AC+BC-AB=(AE+CE)+(BD+CD)-(AF-BF)= CE+CD= r + r = 2r,【证法14】(利用反证法证明)如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D.【证法15】(辛卜松证明)此主题相关图片如下:设直角三角形两直角边的长分别为a、b,斜边的长为c. 作边长是a+b的正方形ABCD. 把正方形ABCD划分成上方左图所示的几个部分,则正方形ABCD的面积为(a+b)^2=a^2+2ab+b^2;把正方形ABCD划分成上方右图所示的几个部分,则正方形ABCD的面【证法16】设直角三角形两直角边的长分别为a、b(b>a),斜边的长为c. 做两个边长分别为a、b的正方形(b>a),把它们拼成如图所示形状,使E、H、M三点在一条直线上. 用数字表示面积的编号(如图).在EH = b上截取ED = a,连结DA、DC,则 AD = c.∵ EM = EH + HM = b + a , ED = a,∴ DM = EM―ED = (b+a)―a = b.又∵∠CMD = 90º,CM = a,∠AED = 90º, AE = b,∴ RtΔAED ≌ RtΔDMC.∴∠EAD = ∠MDC,DC = AD = c.∵∠ADE + ∠ADC+ ∠MDC =180º,∠ADE + ∠MDC = ∠ADE + ∠EAD = 90º,∴∠ADC = 90º.∴作AB∥DC,CB∥DA,则ABCD是一个边长为c的正方形.∵∠BAF + ∠FAD = ∠DAE + ∠FAD = 90º,∴∠BAF=∠DAE.连结FB,在ΔABF和ΔADE中,∵ AB =AD = c,AE = AF = b,∠BAF=∠DAE,∴ΔABF ≌ΔADE.∴∠AFB = ∠AED = 90º,BF = DE = a.∴点B、F、G、H在一条直线上.在RtΔABF和RtΔBCG中,∵ AB = BC = c,BF = CG = a,∴ RtΔABF ≌ RtΔBCG.。

相关文档
最新文档