第二章 整式加减.3

合集下载

人教版数学七年级上册2 第3课时

人教版数学七年级上册2 第3课时
照整式加减的运算法则,先去括号,然后再合并同类项即可得到结 果. • 解答:(1)原式=2x2-15x2+3x -5x -2+1=-13x2-2x-1.当x=-2, y=1时,原式=-13×(-2)2-2×(-2)-1=-49. • (2)原式=6x2-3xy-6x2-2xy+2=6x2-6x2-3xy-2xy+2=-5xy+2. 当x=-2,y=1时,原式=-5×(-2)×1+2=12.
16
• 尝试应用: • (1)把(a-b)2看成一个整体,合并3(a-b)2-6(a-b)2+2(a-b)2的结果是
___-__(_a-__b_)_2 ______ . • (2)已知x2-2y=4,求3x2-6y-21的值; • 拓广探索: • (3)已知a-2b=3,2b-c=-5,c-d=10,求(a-c)+(2b-d)-(2b-c)
无论字母a取何数,整式的值恒为一个不变的数,你知道小敏所取的字 母b的值是多少吗?
14
解:(1)原式=4(a2+2b2+2ab-4)-4a2-8b2-2ab+2a+2=4a2+8b2+8ab-16 -4a2-8b2-2ab+2a+2=6ab+2a-14.
(2)由题意可知 ab=1,所以原式=6+2a-14=0,所以 a=4,b=14 . (3)原式=(6b+2)a-14 恒为一个常数,所以 6b+2=0,所以 b=-13 .
• 解:若某人乘坐了x(x>5)千米的路程,则该付5+1+3×1.5+(x- 5)×2.5=(2.5x-2)元.当x=8时,2.5x-2=18.即当他乘坐了8千米的 路程时,应付费18元.
12
• 17.任意写一个三位数,交换这个三位数的百位数字和个位数字(个位 不为0),又得到一个新数,计算这两个数的差,再写几个三位数重复 上面的过程,你发现这些差有什么规律?你能说明你发现的规律对任 意一个三位数都成立吗?

2、2整式加减(第三课时 添括号) 21-22沪科版数学七上

2、2整式加减(第三课时 添括号)  21-22沪科版数学七上

化简|b+c|-|b+a|+|a+c|.
解:|b+c|-|b+a|+|a+c|
=-(b+c)-(-b-a)+(a+c)
=-b-c+b+a+a+c
=2a.
课外练习
1、已知m-n=1,求5-n+m的值
2、已知x+2y=5,求3-x-y的值
3、若 3a2 a 2 0 则 6a2 2a =____
灵活应用去括号和添 括号法则,对式子进 行整理达到化简目的
2、求代数式的值:5a [2(b 3c) (4a c)] 其中:a b 1,b 5c 2
3、实数a,b,c在数轴上的位置如图,
解:原式=a+2b-5c =a+b+b-5c =(a+b)+(b-5c) 当a+b=-1,b-5c=2时, 原式=-1+2=1
多项式的去括号法则: (1)、如果括号外的因数是正数, 去括号后原括号内各项的符号与原
来的符号_相__同__。
多项式的添括号法则:
(1)、所添括号前面是“+”号,
括到括号里的各项符号与原来符号相___同__。
ห้องสมุดไป่ตู้
(2)、如果括号外的因数是负数,去括
号后原括号内各项的符号与原来的符
号__相___反。
(2)、所添括号前面是“-”号,
4、已知a+b=5,ab=-3,求
代数式(2a-3b-2ab)-(a-4b-ab)的值
5、

a
b
4, 则代数式
ab
( 5 a - b) a b _______ a b 2(a b)

第2章 2.2 第3课时 整式的加减

第2章  2.2  第3课时 整式的加减

A.x2-5y2+1
B.x2-3y2+1
C.5x2-3y2-1
D.5x2-3y2+1
5.单项式 2xy、6x2y2、-3xy、-5x2y2 的和为 x2y2-xy .
6.化简:116(8x-2)-12(x-1)=
3 8
.
7.计算: (1)(9x-6y)-(5x-4y); 解:原式=4x-2y; (2)3-(1-x)+(1-x-x2); 解:原式=3-x2; (3)(x2+y2)-3(x2-2y2); 解:原式=-2x2+7y2; (4)2(-4y+3)-(-5y-2). 解:原式=-3y+8.
七年级数学(上册)•人教版
第二章 整式的加减
2.2 整式的加减 第3课时 整式的加减
一般地,n 个整式相加减,如果有括号就先 去括号 ,然后再 合并同类项 .
整式的加减运算
1.化简 5(2x-3)+4(3-2x)结果为( A )
A.2x-3
B.2x+9
C.8x-3
D.18x-3
2.下列计算错误的是( C )
11.多项式(4xy-3x2-xy+y2+x2)-(3xy+2y-2x2)的值( D )
A.与 x、y 的值有关
B.与 x、y 的值无关
C.只与 x 的值有关
D.只与 y 的值有关
12.若 M=3x2-5x+2,N=3x2-5x-2,则 M 与 N 的关系是( B )
A.M=NLeabharlann B.M>NC.M<N
D.无法确定
13.三角形的第一条边长为 a+b,第二条边比第一条边长(a+2),第三条边
比第二条边短 3,这个三角形的周长为( B )
A.5a+3b
B.5a+3b+1
C.5a-3b+1

第二章整式的加减单元测试三

第二章整式的加减单元测试三

第二章 整式的加减单元测试卷三<一>、知识回顾:1、_________和_________统称整式。

2、所含_______相同,并且相同字母的_______也分别相等的项叫同类项。

所有的常数项_______(是/不是)同类项。

3、合并同类项的法则:把同类项的________相加,所得的结果作为____________,字母和字母的指数______________.4、去括号法则:(1)括号前是“+”号,把括号和前面的“+”号去掉,括号里各项都_______符号。

(2)括号前是“-”号,把括号和前面的“-”号去掉,括号里各项都______符号。

5、添括号法则:(1)所添括号前面是“+”号,括号里各项都_________符号 (2)所添括号前面是“-”号,括号里各项都_________符号 6、整式的加减的一般步骤:(1)如果有括号,那么__________;(2)如果有同类项,那么___________。

<二>、基础训练:一、选择题: 1、下列说法正确的是( ) A.0不是单项式 B.ab 是单项式 C. 2x y 的系数是0 D.32x -是整式2、下列单项式中,次数是5的是( ) A.53 B. 322x C. 23y x D. 2y x3、多项式3244327x x y m -+-的项数与次数分别是( ) A.4,9 B.4,6 C. 3,9 D. 3,104、长方形的一边长为a 3,另一边比它小b a -,则其周长为( )。

A.b a 210+B.a6 C.ba 46+ D.以上答案都不对。

5、下列各组单项式中属于同类项的是( )A.2222m n a b 和B.66xyz xy 和C.2234x y y x 和 D.ab ba -和6、多项式8x 2-3x+5与多项式3x 3+2mx 2-5x+7相加后,不含二次项,则常数m 的值是( )A. 2B. +4C. -2D.-8 7、)]([n m ---去括号得 ( )A 、n m -B 、n m --C 、n m +-D 、n m + 8、下列各题去括号所得结果正确的是( )A 、22(2)2x x y z x x y z --+=-++B 、(231)231x x y x x y --+-=+-+C 、3[5(1)]351x x x x x x ---=--+D 、22(1)(2)12x x x x ---=--- 9、将)(4)(2)(y x y x y x +-+++合并同类项得( ) A 、)(y x + B 、)(y x +- C 、y x +- D 、y x -10、如果m 是三次多项式,n 是三次多项式,那么m n +一定是( )A 、六次多项式B 、次数不高于三的整式C 、三次多项式D 、次数不低于三的整式 二、填空题11、单项式2237xyπ-的系数是_______,次数是_______。

2021年七年级数学上册第二章《整式的加减》经典题(答案解析)(3)

2021年七年级数学上册第二章《整式的加减》经典题(答案解析)(3)

1.下列代数式的书写,正确的是( )A .5nB .n5C .1500÷tD .114x 2y A 解析:A【分析】直接利用代数式书写方法分析得出答案.【详解】解:A 、5n ,书写正确,符合题意;B 、n5,书写错误,不合题意;C 、1500÷t ,应为1500t ,故书写错误,不合题意; D 、114x 2y=54x 2y ,故书写错误,不合题意; 故选:A .【点睛】此题主要考查了代数式,正确把握代数式的书写方式是解题关键.2.若2312a b x y +与653a b x y -的和是单项式,则+a b =( ) A .3-B .0C .3D .6C 解析:C【分析】 要使2312a b x y +与653a b x y -的和是单项式,则2312a b x y +与653a b x y -为同类项; 根据同类项的定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,即可得到关于a 、b 的方程组;结合上述提示,解出a 、b 的值便不难计算出a+b 的值.【详解】解:根据题意可得:26{3a b a b +=-=, 解得:3{0a b ==, 所以303a b +=+=,故选:C .【点睛】本题考查了同类项的定义,掌握同类项的定义是解题的关键.3.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是( )A .19B .20C .21D .22D 解析:D【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n 个图案中有黑色纸片=3n+1张.当n=7时,3n+1=3×7+1=22.故选D.【点睛】此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.4.下列去括号正确的是( )A .112222x y x y ⎛⎫ =⎭-⎪⎝--- B .()12122x y x y ++=+- C .()16433232x y x y --+=-++ D .()22x y z x y z +-+=-+ D 解析:D【分析】根据整式混合运算法则和去括号的法则计算各项即可.【详解】 A. 112222x y x y ⎛⎫ =⎭-⎪⎝--+,错误; B. ()12122x y x y ++=++,错误; C. ()136433222x y x y --+=-+-,错误; D. ()22x y z x y z +-+=-+,正确;故答案为:D .【点睛】本题考查了整式的混合运算,掌握整式混合运算法则和去括号的法则是解题的关键. 5.设a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式﹣x 3y 的系数和次数,则a ,b ,c ,d 四个数的和是( )A .1B .2C .3D .4D解析:D【分析】 根据题意求得a ,b ,c ,d 的值,代入求值即可.【详解】∵a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式-x 3y 的系数和次数, ∴a=0,b=1,c=-1,d=4,∴a ,b ,c ,d 四个数的和是4,故选:D .【点睛】本题考查了有理数、整式的加减以及单项式的系数和次数,,认真掌握有理数的分类是本题的关键;注意整数、0、正数之间的区别,0既不是正数也不是负数,但是整数. 6.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .66 C 解析:C【分析】 分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是8,右上是10.【详解】解:8×10−6=74,故选:C .【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.7.下列变形中,正确的是( )A .()x z y x z y --=--B .如果22x y -=-,那么x y =C .()x y z x y z -+=+-D .如果||||x y =,那么x y = B解析:B【分析】根据去括号法则、等式的基本性质以及绝对值的性质逐一判断即可.【详解】A :()x z y x z y --=-+,选项错误;B :如果22x y -=-,那么x y =,选项正确;C :()x y z x y z -+=--,选项错误;D :如果||||x y =,那么x 与y 互为相反数或二者相等,选项错误;故选:B.【点睛】本题主要考查了去括号法则、等式的基本性质与绝对值性质,熟练掌握相关概念是解题关键.8.下列同类项合并正确的是( )A .x 3+x 2=x 5B .2x ﹣3x =﹣1C .﹣a 2﹣2a 2=﹣a 2D .﹣y 3x 2+2x 2y 3=x 2y 3D 解析:D【分析】根据合并同类项系数相加字母及指数不变,可得答案.【详解】解:A 、x 3与x 2不是同类项,不能合并,故A 错误;B 、合并同类项错误,正确的是2x ﹣3x =﹣x ,故B 错误;C 、合并同类项错误,正确的是﹣a 2﹣2a 2=﹣3a 2,故C 错误;D 、系数相加字母及指数不变,故D 正确;故选:D .【点睛】本题考查了合并同类项,熟记合并同类项的法则,并根据合并同类项的法则计算是解题关键.9.已知多项式()210m xm x +--是二次三项式,m 为常数,则m 的值为( ) A .2-B .2C .2±D .3± A 解析:A【分析】根据已知二次三项式得出m-2≠0,|m|=2,从而求解即可.【详解】 解:因为多项式()210m x m x +--是二次三项式,∴m-2≠0,|m|=2,解得m=-2,故选:A.【点睛】本题考查了二次三项式的定义,掌握多项式的项和次数的定义是本题的解题关键. 10.若252A x x =-+,256B x x =--,则A 与B 的大小关系是( )A .AB >B .A B =C .A B <D .无法确定A解析:A【分析】作差进行比较即可.解:因为A -B =(x 2-5x +2)-( x 2-5x -6)=x 2-5x +2- x 2+5x +6=8>0,所以A >B .故选A .【点睛】本题考查了整式的加减和作差比较法,若A -B >0,则A >B ,若A -B <0,则A <B ,若A -B =0,则A =B .11.在3a ,x+1,-2,3b -,0.72xy ,2π,314x -中单项式的个数有( ) A .2个B .8个C .4个D .5个C 解析:C【分析】根据单项式的定义逐一判断即可.【详解】3a中,分母含未知数,是分式,不是单项式, x+1是多项式,不是单项式,-2是单项式,3b -是单项式, 0.72xy 是单项式,2π是单项式, 314x -=3144x -,是多项式, ∴单项式有-2、3b -、0.72xy 、2π,共4个, 故选C.【点睛】本题考查单项式的定义,熟练掌握定义是解题关键.12.张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a>b ).根据市场行情,他将这两种小商品都以2a b +元的价格出售.在这次买卖中,张师傅的盈亏状况为( ) A .赚了(25a+25b )元 B .亏了(20a+30b )元 C .赚了(5a-5b )元D .亏了(5a-5b )元C解析:C用(售价-甲的进价)×甲的件数+(售价-乙的进价)×乙的件数列出关系式,去括号合并得到结果,即为张师傅赚的钱数【详解】根据题意列得:20(-2-23020302222a b a b a b a a b a a b ++++-+-=⨯+⨯)() =10(b-a )+15(a-b )=10b-10a+15a-15b=5a-5b ,则这次买卖中,张师傅赚5(a-b )元.故选C .【点睛】此题考查整式加减运算的应用,去括号法则,以及合并同类项法则,熟练掌握法则是解题关键.13.某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元A .(115%)(120%)a ++B .(115%)20%a +C .(115%)(120%)a +-D .(120%)15%a + A解析:A【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1+15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1+15%)(1+20%)a 元.故选A .【点睛】此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.14.如图是按照一定规律画出的“树形图”,经观察可以发现:图A 2比图A 1多出2个“树枝”,图A 3比图A 2多出4个“树枝”,图A 4比图A 3多出8个“树枝”……照此规律,图A 6比图A 2多出“树枝”( )A .32个B .56个C .60个D .64个C解析:C【分析】根据所给图形得到后面图形比前面图形多的“树枝”的个数用底数为2的幂表示的形式,代入求值即可.∵图A 2比图A 1多出2个“树枝”,图A 3比图A 2多出4个“树枝”,图A 4比图A 3多出8个“树枝”,…,∴图形从第2个开始后一个与前一个的差依次是:2, 22,…, 12n -.∴第5个树枝为15+42=31,第6个树枝为:31+52=63,∴第(6)个图比第(2)个图多63−3=60个故答案为C【点睛】此题考查图形的变化类,解题关键在于找出其规律型.15.已知3a b -=-,2c d +=,则()()a d b c --+的值为( )A .﹣5B .1C .5D .﹣1A 解析:A【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可.【详解】解:根据题意:(a-d )-(b+c )=(a-b )-(c+d )=-3-2=-5,故选:A .【点睛】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,得出答案. 1.观察下列顺序排列的等式:9×0+1 = 1,9×1+2 = 11,9×2+3=21, 9×3+4=31, 9×4+5=41,……,猜想:第n 个等式(n 为正整数)用n 表示,可表示成_________.【分析】根据数据所显示的规律可知:第一数列都是9第2数列开始有顺序且都是所对序号的数减去1加号后的数据有顺序且与所在的序号项吻合等号右端是的规律所以第n 个等式(n 为正整数)应为【详解】根据分析:即第解析:109n -【分析】根据数据所显示的规律可知:第一数列都是9,第2数列开始有顺序且都是所对序号的数减去1,加号后的数据有顺序且与所在的序号项吻合,等号右端是()10?11n -+的规律,所以第n 个等式(n 为正整数)应为()()9110?11n n n -+=-+.【详解】根据分析:即第n 个式子是()()9110?11109n n n n -+=-+=-.故答案为:109n -.【点睛】本题主要考查了数字类规律探索题.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后直接利用规律求解. 2.在一列数a 1,a 2,a 3,a 4,…a n 中,已知a 1=2,a 2111a =-,a 3211a =-,a 4311a =-,…a n n 111a -=-,则a 2020=___.【分析】首先分别求出n=234…时的情况观察它是否具有规律再把2020代入求解即可【详解】∵a1=2∴a21;a3;a42;…发现规律:每3个数一个循环所以2020÷3=673…1则a2020=a1 解析:【分析】首先分别求出n=2、3、4…时的情况,观察它是否具有规律,再把2020代入求解即可.【详解】∵a 1=2,∴a 2111a ==--1;a 32111a 2==-;a 4311a ==-2;…, 发现规律:每3个数一个循环,所以2020÷3=673…1,则a 2020=a 1=2.故答案为:2.【点睛】本题考查了找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.而具有周期性的题目,找出周期是解题的关键.3.已知等式:222 2233+=⨯,233 3388+=⨯,244 441515+=⨯,…,2a a 1010b b+=⨯(a ,b 均为正整数),则 a b += ___.【分析】先根据已知代数式归纳出(n 为正整数)然后令n=10求得ab 最后求和即可【详解】解:由已知代数式可归纳出(n 为正整数)令n=10则b=102-1=99a=10∴a+b=10+99=109故答案 解析:109【分析】 先根据已知代数式归纳出22211+=⨯--n n n n n n (n 为正整数),然后令n=10,求得a 、b ,最后求和即可.【详解】 解:由已知代数式可归纳出22211+=⨯--n n n n n n (n 为正整数), 令n=10,则b=102-1=99,a=10∴a+b=10+99=109.故答案为109.【点睛】 本题考查数字类规律探索,根据已有等式总结出22211+=⨯--n n n n n n 是解答本题的关键.4.在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n 时,最多可有的交点数m与直线条数n 之间的关系式为:m =_____.(用含n 的代数式填空)【分析】根据题意3条直线相交最多有3个交点4条直线相交最多有6个交点5条直线相交最多有10个交点而3=1+26=1+2+310=1+2+3+4故可猜想n 条直线相交最多有1+2+3+…+(n-1)=个解析:()12n n - 【分析】根据题意,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n 条直线相交,最多有1+2+3+…+(n-1)=()12n n -个交点. 【详解】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点.而3=1+2,6=1+2+3,10=1+2+3+4,∴可猜想,n 条直线相交,最多有1+2+3+…+(n-1)=()12n n - 个交点.即()12n n m -= 故答案为:()12n n -. 【点睛】本题主要考查了相交线,图形的规律探索,此题着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.5.一组数:2,1,3,x ,7,y ,23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a b -”,例如这组数中的第三个数“3”是由“221⨯-”得到的,那么这组数中y 表示的数为______.-9【分析】根据题中给出的运算法则按照顺序求解即可【详解】解:根据题意得:故答案为-9【点睛】本题考查了有理数的运算理解题意弄清题目给出的运算法则是正确解题的关键解析:-9.【分析】根据题中给出的运算法则按照顺序求解即可.【详解】解:根据题意,得:2131x,2(1)79y .故答案为-9.【点睛】本题考查了有理数的运算,理解题意、弄清题目给出的运算法则是正确解题的关键.6.===,……=m =_____________9【分析】根据观察可知:将代入即可得出答案【详解】解:……故答案为:【点睛】主要考查了学生的分析总结归纳能力规律型的习题一般是从所给的数据和运算方法进行分析从特殊值的规律上总结出一般性的规律解析:9【分析】13n +,将210n +=代入即可得出答案. 【详解】解:==……,13n +210n +=8n ∴=19m n ∴=+=故答案为:9.【点睛】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.7.多项式||1(2)32m x m x --+是关于x 的二次三项式,则m 的值是_________.【分析】直接利用二次三项式的次数与项数的定义得出m 的值【详解】∵多项式是关于x 的二次三项式∴且∴故答案为:【点睛】本题主要考查了多项式正确利用多项式次数与系数的定义得出m 的值是解题关键解析:2-【分析】直接利用二次三项式的次数与项数的定义得出m 的值.【详解】∵多项式||1(2)32m x m x --+是关于x 的二次三项式, ∴||2m =,且()20m --≠, ∴2m =-.故答案为:2-.【点睛】本题主要考查了多项式,正确利用多项式次数与系数的定义得出m 的值是解题关键. 8.观察下面的单项式:234,2,4,8,,a a a a 根据你发现的规律,第8个式子是____.【分析】根据题意给出的规律即可求出答案【详解】由题意可知:第n 个式子为2n-1an ∴第8个式子为:27a8=128a8故答案为:128a8【点睛】本题考查单项式解题的关键是正确找出题中的规律本题属于解析:8128a【分析】根据题意给出的规律即可求出答案.【详解】由题意可知:第n 个式子为2n-1a n ,∴第8个式子为:27a 8=128a 8,故答案为:128a 8.【点睛】本题考查单项式,解题的关键是正确找出题中的规律,本题属于基础题型.9.计算7a 2b ﹣5ba 2=_____.2a2b 【分析】根据合并同类项法则化简即可【详解】故答案为:【点睛】本题考查了合并同类项解题的关键是熟练运用合并同类项的法则本题属于基础题型解析:2a 2b【分析】根据合并同类项法则化简即可.【详解】()22227a b 5ba =75a b=2a b ﹣﹣.故答案为:22a b【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型. 10.如果关于x 的多项式42142mx x +-与多项式35n x x +的次数相同,则2234n n -+-=_________.【分析】根据多项式的次数的定义先求出n 的值然后代入计算即可得到答案【详解】解:∵多项式与多项式的次数相同∴∴;故答案为:【点睛】本题考查了求代数式的值以及多项式次数的定义解题的关键是正确求出n 的值解析:24-【分析】根据多项式的次数的定义,先求出n 的值,然后代入计算,即可得到答案.【详解】解:∵多项式42142mx x +-与多项式35n x x +的次数相同, ∴4n =,∴22234243443212424n n -+-=-⨯+⨯-=-+-=-;故答案为:24-.【点睛】本题考查了求代数式的值,以及多项式次数的定义,解题的关键是正确求出n 的值. 11.关于a ,b 的多项式-7ab-5a 4b+2ab 3+9为______次_______项式.其次数最高项的系数是__________.五四-5【分析】多项式共有四项其最高次项的次数为5次系数为-5由此可以确定多项式的项数次数及次数最高项的系数【详解】∵该多项式共有四项其最高次项是为5次∴该多项式为五次四项式∵次数最高项为∴它的系数 解析:五 四 -5【分析】多项式共有四项437,5,2,9ab a b ab --,其最高次项45a b -的次数为5次,系数为-5,由此可以确定多项式的项数、次数及次数最高项的系数.【详解】∵该多项式共有四项437,5,2,9ab a b ab --,其最高次项是45a b -,为5次∴该多项式为五次四项式∵次数最高项为45a b -∴它的系数为-5故填:五,四,-5.【点睛】本题考查了多项式的项数,次数和系数的求解.多项式中含有单项式的个数即为多项式的项数,包含的单项式中未知数的次数总和的最大值即为多项式的次数.1.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x ﹣1)=x 2﹣5x +1. (1)求所挡的二次三项式;(2)若x =﹣2,求所挡的二次三项式的值.解析:(1)x 2﹣8x +4;(2)24【分析】(1)根据“已知两个加数的和与其中的一个加数,求另一个加数用减法”,列出代数式并合并即可;(2)把x=-2代入(1)的结果,计算即可.【详解】(1)x 2﹣5x +1﹣3(x ﹣1)=x 2﹣5x +1﹣3x +3=x 2﹣8x +4;∴所挡的二次三项式为x 2﹣8x +4.(2)当x =﹣2时,x 2﹣8x +4=(﹣2)2﹣8×(﹣2)+4=4+16+4=24.【点睛】本题考查了整式的加减.根据加数与和的关系,列出求挡住的二次三项式的式子是解决本题的关键.2.某学生在写作业时,不慎将一滴墨水滴在了数轴上,如下图所示,而此时他要化简并求代数式()()2222352xy x x xy x xy ⎡⎤-----+⎢⎥⎣⎦的值.结果同学告诉他:x 的值是墨迹遮盖住的最大整数,y 的值是墨迹遮盖住的最小整数.请你帮助这位同学化简并求值.解析:xy ,1-【分析】先把原式进行化简,得到最简代数式,结合x 的值是墨迹遮盖住的最大整数,y 的值是墨迹遮盖住的最小整数,得到x 、y 的值,然后代入计算,即可得到答案.【详解】解:()()2222352xy xx xy x xy ⎡⎤-----+⎢⎥⎣⎦ =22226552xy x x xy x xy ⎡⎤-+--++⎣⎦=22226552xy x x xy x xy -+-+--=xy ; ∵74-<被盖住的数2<, ∴x 的值是墨迹遮盖住的最大整数,∴1x =,∵y 的值是墨迹遮盖住的最小整数,∴1y =-,∴原式=1(1)1⨯-=-.【点睛】本题考查了整式的化简求值,以及利用数轴比较有理数的大小,解题的关键是正确求出x 、y 的值,以及掌握整式的混合运算.3.图①是一个三角形,分别连接这个三角形三边的中点得到图②;再分别连接图②中间小三角形三边的中点,得到图③.(1) 图②有 个三角形;图③有 个三角形;(2) 按上面的方法继续下去,第n 个图形中有多少个三角形(用n 的代数式表示结论).解析:(1)5,9 ;(2)43n -【分析】(1)由图形即可数得答案;(2)发现每个图形都比起前一个图形多4个,所以第n 个图形中有14(1)43n n +⨯-=-个三角形.【详解】解:(1)根据图形可得:5,9;(2)发现每个图形都比起前一个图形多 4 个,∴第n 个图形中有14(1)43n n +⨯-=-个三角形.【点睛】本题考查图形的特征,根据图形的特征找出规律,属于一般题型.4.有理数,,a b c 在数轴上的位置如图所示,化简代数式||||||||a c b b a b a ----++.解析:3a b c --+【分析】首先判断出a c -,b b a b a -+,,的正负,再去掉绝对值符号,然后合并同类项即可.【详解】由题意可知0a c -<,0b >,0b a ->,0b a +<,||||||||a c b b a b a ----++3a c b b a b a a b c =-+--+--=--+.故答案为:3a b c --+.【点睛】本题主要考查了整式的化简求值,数轴,绝对值,熟练掌握运算法则以及数轴上右边的数总比左边的数大是解答本题的关键.。

七上数学第二章整式的加减

七上数学第二章整式的加减

七上数学第二章整式的加减
一、教学目标
(一)知识与技能
通过具体实例,感受字母表示数的意义,会用代数式表示简单的数量关系,会写含有字母的式子,会求简单的代数式的值.
(二)过程与方法
通过实例,归纳、类比、抽象、概括,从而认识整式的概念,掌握单项式、多项式的概念,并会用单项式、多项式的概念判断一个式子是否是单项式或多项式. 通过具体例子的讨论,理解合并同类项的方法,会进行单项式的加减.
通过实例,理解整式的概念、单项式、多项式的概念,会进行单项式的加减. (三)情感态度和价值观
初步建立符号意识,知道符号的作用,通过实例感受数学符号的简洁美和对称美.
二、教学重难点
教学重点:用代数式表示简单的数量关系,会写含有字母的式子,会求简单的代数式的值.
教学难点:正确判断一个式子是否是单项式或多项式,能进行单项式的加减.
三、教学过程
(一)引入新课
1. 通过实例引入整式的概念、单项式、多项式的概念,体会用字母表示数的优越性.
2. 通过例题学习合并同类项的方法,让学生经历从具体到抽象的过程.
3. 通过练习加深学生对新知识的印象,巩固对新知识的掌握.
4. 通过小结和思考让学生自主发现本节课所学知识之间的联系和区别,加深对知识的理解和记忆.
5. 通过作业布置,进一步巩固所学知识并适当延伸到下节课的内容.。

七年级数学上册第二章《整式的加减》经典习题(3)

七年级数学上册第二章《整式的加减》经典习题(3)

1.在代数式a 2+1,﹣3,x 2﹣2x ,π,1x中,是整式的有( ) A .2个 B .3个C .4个D .5个C解析:C 【分析】单项式和多项式统称为整式,分母中含有字母的不是整式. 【详解】解:a 2+1和 x 2﹣2x 是多项式,-3和π是单项式,1x不是整式,∵单项式和多项式统称为整式,∴整式有4个. 故选择C. 【点睛】本题考查了整式的定义.2.下列代数式的书写,正确的是( ) A .5n B .n5C .1500÷tD .114x 2y A 解析:A 【分析】直接利用代数式书写方法分析得出答案. 【详解】解:A 、5n ,书写正确,符合题意; B 、n5,书写错误,不合题意; C 、1500÷t ,应为1500t,故书写错误,不合题意; D 、114x 2y=54x 2y ,故书写错误,不合题意;故选:A . 【点睛】此题主要考查了代数式,正确把握代数式的书写方式是解题关键. 3.有一种密码,将英文26个字母,,,,a b c z (不论大小写)依次对应1,2,3,…,26这26个序号(见表格),当明码对应的序号x 为奇数时,密码对应的序号为|25|2x -,当明码对应的序号x 为偶数时,密码对应的序号为122x+,按照此规定,将明码“love ”译成密码是( )A .loveB .rkwuC .sdriD .rewj D解析:D 【分析】明码“love”中每一个字母所代表的数字分别为12,15,22,5,再根据这四个数字的奇偶性,求得其密码. 【详解】l 对应的序号12为偶数,则密码对应的序号为1212182+=,对应r ; o 对应的序号15为奇数,则密码对应的序号为|1525|52-=,对应e ; v 对应的序号22为偶数,则密码对应的序号为2212232+=,对应w ; e 对应的序号5为奇数,则密码对应的序号为|525|102-=,对应j . 由此可得明码“love ”译成密码是rewj . 故选:D . 【点睛】本题考查了绝对值和求代数式的值.解题的关键是明确字母与数字的相互转化,每一个字母代表一个数字,一一对应关系.4.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( ) A .100(1+x ) B .100(1+x )2C .100(1+x 2)D .100(1+2x )B解析:B 【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x ),五月份的产量是100(1+x )2.故答案选B. 考点:列代数式.5.下列去括号正确的是( ) A .112222x y x y ⎛⎫ =⎭-⎪⎝--- B .()12122x y x y ++=+- C .()16433232x y x y --+=-++ D .()22x y z x y z +-+=-+ D解析:D 【分析】根据整式混合运算法则和去括号的法则计算各项即可. 【详解】 A. 112222x y x y ⎛⎫ =⎭-⎪⎝--+,错误; B. ()12122x y x y ++=++,错误; C. ()136433222x y x y --+=-+-,错误; D. ()22x y z x y z +-+=-+,正确; 故答案为:D . 【点睛】本题考查了整式的混合运算,掌握整式混合运算法则和去括号的法则是解题的关键. 6.下列式子:222,32,,4,,,22ab x yz ab ca b xy y m x π+---,其中是多项式的有( ) A .2个 B .3个 C .4个 D .5个A解析:A 【分析】几个单项式的和叫做多项式,结合各式进行判断即可. 【详解】22a b ,3,2ab,4,m -都是单项式; 2x yzx+分母含有字母,不是整式,不是多项式; 根据多项式的定义,232ab cxy y π--,是多项式,共有2个.故选:A . 【点睛】本题考查了多项式,解答本题的关键是理解多项式的定义.注意:几个单项式的和叫做多项式.7.已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2 B .3C .4D .5B解析:B 【分析】根据同类项的概念可得关于n 的一元一次方程,求解方程即可得到n 的值. 【详解】解:∵132n x y +与4313x y 是同类项, ∴n+1=4, 解得,n=3, 故选:B. 【点睛】本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.8.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .66 C解析:C 【分析】分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是8,右上是10. 【详解】 解:8×10−6=74, 故选:C . 【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数. 9.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++ B解析:B【分析】依题意可得S S S =-阴影大矩形小矩形、S S S =+阴影正方形小矩形、S S S =+阴影小矩形小矩形,分别可列式,列出可得答案. 【详解】解:依图可得,阴影部分的面积可以有三种表示方式:()()322S S x x x -=++-大矩形小矩形; ()232S S x x +=++正方形小矩形; ()36S S x x +=++小矩形小矩形.故选:B. 【点睛】本题考查多项式乘以多项式及整式的加减,关键是熟练掌握图形面积的求法,还有本题中利用割补法来求阴影部分的面积,这是一种在初中阶段求面积常用的方法,需要熟练掌握. 10.点O ,A ,B ,C 在数轴上的位置如图所示,其中O 为原点,2BC =,OA OB =,若C 点所表示的数为x ,则A 点所表示的数为( )A .2x -+B .2x --C .2x +D .-2A解析:A 【分析】由BC=2,C 点所表示的数为x ,求出B 表示的数,然后根据OA=OB ,得到点A 、B 表示的数互为相反数,则问题可解. 【详解】解:∵BC=2,C 点所表示的数为x , ∴B 点表示的数是x-2, 又∵OA=OB ,∴B 点和A 点表示的数互为相反数, ∴A 点所表示的数是-(x-2),即-x+2. 故选:A . 【点睛】此题考查用数轴上的点表示数的方法和数轴上两点间的距离以及相反数的性质,解答关键是应用数形结合思想解决问题. 11.下列各式中,去括号正确的是( ) A .2(1)21x y x y +-=+- B .2(1)22x y x y --=++ C .2(1)22x y x y --=-+ D .2(1)22x y x y --=-- C解析:C 【分析】各式去括号得到结果,即可作出判断. 【详解】解:2(1)22x y x y +-=+-,故A 错误;2(1)22x y x y --=-+,故B,D 错误,C 正确.故选:C . 【点睛】此题考查了去括号与添括号,熟练掌握去括号法则是解本题的关键. 12.若23,33M N x M x +=-=-,则N =( ) A .236x x +- B .23x x -+ C .236x x -- D .23x x - D解析:D 【分析】根据N=M+N-M 列式即可解决此题. 【详解】依题意得,N=M+N-M=222(3)(33)3333x x x x x x ---=--+=-;故选D. 【点睛】此题考查的是整式的加减,列式是关键,注意括号的运用.13.有20个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是2,这20个数的和是( ) A .2 B .﹣2C .0D .4A解析:A 【分析】根据题意可以写出这组数据的前几个数,从而发现数字的变化规律,再利用规律求解. 【详解】解:由题意可得,这列数为:0,2,2,0,﹣2,﹣2,0,2,2,…,∴这20个数每6个为一循环,且前6个数的和是:0+2+2+0+(﹣2)+(﹣2)=0, ∵20÷6=3…2,∴这20个数的和是:0×3+(0+2)=2. 故选:A . 【点睛】本题考查了数字的变化规律,正确理解题意,发现题目中数字的变化规律:每6个数重复出现是解题的关键.14.一个多项式与221a a -+的和是32a -,则这个多项式为( ) A .253a a -+ B .253a a -+-C .2513a a --D .21a a -+- B解析:B 【分析】根据加数=和-另一个加数可知这个多项式为:(3a-2)-(a 2-2a+1),根据整式的加减法法则,去括号、合并同类项即可得出答案. 【详解】∵一个多项式与221a a -+的和是32a -,∴这个多项式为:(3a-2)-(a 2-2a+1)=3a-2-a 2+2a-1=-a 2+5a-3,故选B. 【点睛】题考查了整式的加减,熟记去括号法则,熟练运用合并同类项的法则是解题关键. 15.如图是按照一定规律画出的“树形图”,经观察可以发现:图A 2比图A 1多出2个“树枝”,图A 3比图A 2多出4个“树枝”,图A 4比图A 3多出8个“树枝”……照此规律,图A 6比图A 2多出“树枝”( )A .32个B .56个C .60个D .64个C解析:C 【分析】根据所给图形得到后面图形比前面图形多的“树枝”的个数用底数为2的幂表示的形式,代入求值即可. 【详解】∵图A 2比图A 1多出2个“树枝”,图A 3比图A 2多出4个“树枝”,图A 4比图A 3多出8个“树枝”,…,∴图形从第2个开始后一个与前一个的差依次是:2, 22,…, 12n -. ∴第5个树枝为15+42=31,第6个树枝为:31+52=63, ∴第(6)个图比第(2)个图多63−3=60个 故答案为C 【点睛】此题考查图形的变化类,解题关键在于找出其规律型. 1.多项式2213383x kxy y xy --+-中,不含xy 项,则k 的值为______.【分析】根据不含xy 项即xy 项的系数为0求出k 的值【详解】解:原式∵不舍项∴故答案为【点睛】本题考查了多项式要求多项式中不含有那一项应让这一项的系数为0解析:19【分析】根据不含xy 项即xy 项的系数为0求出k 的值. 【详解】解:原式2213383x k xy y ⎛⎫=+--+⎪⎝⎭,∵不舍xy 项,∴1303k -=,19k =,故答案为19. 【点睛】本题考查了多项式,要求多项式中不含有那一项,应让这一项的系数为0. 2.在一列数a 1,a 2,a 3,a 4,…a n 中,已知a 1=2,a 2111a =-,a 3211a =-,a 4311a =-,…a n n 111a -=-,则a 2020=___.【分析】首先分别求出n=234…时的情况观察它是否具有规律再把2020代入求解即可【详解】∵a1=2∴a21;a3;a42;…发现规律:每3个数一个循环所以2020÷3=673…1则a2020=a1解析:【分析】首先分别求出n=2、3、4…时的情况,观察它是否具有规律,再把2020代入求解即可. 【详解】 ∵a 1=2,∴a 2111a ==--1;a 32111a 2==-;a 4311a ==-2;…, 发现规律:每3个数一个循环, 所以2020÷3=673…1,则a 2020=a 1=2. 故答案为:2. 【点睛】本题考查了找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.而具有周期性的题目,找出周期是解题的关键.3.一组数:2,1,3,x ,7,y ,23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a b -”,例如这组数中的第三个数“3”是由“221⨯-”得到的,那么这组数中y 表示的数为______.-9【分析】根据题中给出的运算法则按照顺序求解即可【详解】解:根据题意得:故答案为-9【点睛】本题考查了有理数的运算理解题意弄清题目给出的运算法则是正确解题的关键解析:-9. 【分析】根据题中给出的运算法则按照顺序求解即可. 【详解】解:根据题意,得:2131x ,2(1)79y .故答案为-9. 【点睛】本题考查了有理数的运算,理解题意、弄清题目给出的运算法则是正确解题的关键. 4.观察如图,发现第二个和第三个图形是怎样借助第一个图形得到的,概括其中的规律在第n 个图形中,它有n 个黑色六边形,有_______个白色六边形.【分析】发现规律下一个图形是在上一个图形的基础上加上1个黑色六边形和4个白色六边形【详解】解:第一个图形中有6个白色六边形第二个图形有6+4个白色六边形第三个图形有6+4+4个白色六边形根据发现的规 解析:42n +【分析】发现规律,下一个图形是在上一个图形的基础上加上1个黑色六边形和4个白色六边形. 【详解】解:第一个图形中有6个白色六边形, 第二个图形有6+4个白色六边形, 第三个图形有6+4+4个白色六边形, 根据发现的规律,第n 个图形中有6+4(n -1)个白色四边形. 故答案是:4n +2. 【点睛】本题考查规律的探究,解题的关键是先发现图形之间的规律,再去归纳总结出公式. 5.如果一个多项式与另一多项式223m m -+的和是多项式231m m +-,则这个多项式是_________.【分析】根据题意列出算式利用整式的加减混合运算法则计算出结果【详解】解:设这个多项式为A 则A=(3m2+m-1)-(m2-2m+3)=3m2+m-1-m2+2m-3=2m2+3m-4故答案为2m2+ 解析:2234m m +-【分析】根据题意列出算式,利用整式的加减混合运算法则计算出结果. 【详解】解:设这个多项式为A, 则A=(3m 2+m-1)-(m 2-2m+3) =3m 2+m-1-m 2+2m-3 =2m 2+3m-4, 故答案为2m 2+3m-4. 【点睛】本题考查了整式的加减运算,掌握整式的加减混合运算法则是解题的关键.6.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n 个图,需用火柴棒的根数为_______________.6n+2【解析】寻找规律:不难发现后一个图形比前一个图形多6根火柴棒即:第1个图形有8根火柴棒第2个图形有14=6×1+8根火柴棒第3个图形有20=6×2+8根火柴棒……第n 个图形有6n+2根火柴棒解析:6n+2. 【解析】寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即: 第1个图形有8根火柴棒, 第2个图形有14=6×1+8根火柴棒, 第3个图形有20=6×2+8根火柴棒, ……,第n 个图形有6n+2根火柴棒.7.某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤: 第一步,A 同学拿出二张扑克牌给B 同学; 第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为______.7【分析】本题是整式加减法的综合运用设每人有牌x 张解答时依题意列出算式求出答案【详解】设每人有牌x 张B 同学从A 同学处拿来二张扑克牌又从C 同学处拿来三张扑克牌后则B 同学有张牌A 同学有张牌那么给A 同学后解析:7 【分析】本题是整式加减法的综合运用,设每人有牌x 张,解答时依题意列出算式,求出答案. 【详解】设每人有牌x 张,B 同学从A 同学处拿来二张扑克牌,又从C 同学处拿来三张扑克牌后, 则B 同学有()x 23++张牌, A 同学有()x 2-张牌,那么给A 同学后B 同学手中剩余的扑克牌的张数为:()x 23x 2x 5x 27++--=+-+=.故答案为:7. 【点睛】本题考查列代数式以及整式的加减,解题关键根据题目中所给的数量关系,建立数学模型,根据运算提示,找出相应的等量关系.8.如图,是由一些点组成的图形,按此规律,在第n 个图形中,点的个数为_____.n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2解析:n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2n﹣1)=n2+2.故答案为:n2+2.【点睛】本题考查规律型:图形的变化类.9.观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2 019个式子为__________.(32019-2)×32019+1=(32019-1)2【分析】观察等式两边的数的特点用n表示其规律代入n=2016即可求解【详解】解:观察发现第n个等式可以表示为:(3n-2)×3n+1=(3n-解析:(32 019-2)×32019+1=(32 019-1)2【分析】观察等式两边的数的特点,用n表示其规律,代入n=2016即可求解.【详解】解:观察发现,第n个等式可以表示为:(3n-2)×3n+1=(3n-1)2,当n=2019时,(32019-2)×32019+1=(32019-1)2,故答案为:(32019-2)×32019+1=(32019-1)2.【点睛】此题主要考查数的规律探索,观察发现等式中的每一个数与序数n之间的关系是解题的关键.10.计算7a 2b ﹣5ba 2=_____.2a2b 【分析】根据合并同类项法则化简即可【详解】故答案为:【点睛】本题考查了合并同类项解题的关键是熟练运用合并同类项的法则本题属于基础题型解析:2a 2b【分析】根据合并同类项法则化简即可.【详解】()22227a b 5ba =75a b=2a b ﹣﹣.故答案为:22a b【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型. 11.某市出租车的收费标准为:3km 以内为起步价10元,3km 后每千米收费1.8元,某人乘坐出租车()km 3x x >,则应付费______元.【分析】起步价10元加上超过3千米部分的费用即可【详解】解:乘出租x 千米的付费是:10+18(x-3)即18x+46故答案是:18x+46【点睛】本题考查了列代数式正确理解收费标准是关键解析:1.8 4.6x +【分析】起步价10元加上,超过3千米部分的费用即可.【详解】解:乘出租x 千米的付费是:10+1.8(x-3)即1.8x+4.6.故答案是:1.8x+4.6.【点睛】本题考查了列代数式,正确理解收费标准是关键.1.已知2223,A x xy y B x xy()1若()2230x y ++-=,求2A B -的值()2若2A B -的值与y 的值无关,求x 的值解析:(1)-9;(2)x=-1【分析】(1)根据去括号,合并同类项,可得答案;(2)根据多项式的值与y 无关,可得y 的系数等于零,根据解方程,可得答案.【详解】(1)A-2B=(2x 2+xy+3y )-2(x 2-xy )=2x 2+xy+3y-2x 2+2xy=3xy+3y.∵(x+2)2+|y-3|=0,∴x=-2,y=3.A-2B=3×(-2)×3+3×3=-18+9=-9.(2)∵A-2B的值与y的值无关,即(3x+3)y与y的值无关,∴3x+3=0.解得x=-1.【点睛】此题考查整式的加减,解题关键在于掌握去括号,括号前是正数去括号不变号,括号前是负数去括号都变号.2.观察由“※”组成的图案和算式,解答问题(1)请猜想1+3+5+7+9+…+19=;(2)请猜想1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)= ;(3)请用上述计算103+105+107+…+2015+2017的值.解析:(1)102;(2)()22n+;(3)1015480.【分析】(1)由等式可知左边是连续奇数的和,右边是数的个数的平方,由此规律解答即可,此题中一共有10个连续奇数相加,所以结果应为102;(2)一共有(n+2)个连续奇数相加,所以结果应为n2;(3)让从1加到2005这些连续奇数的和,减去从1加到101这些连续奇数的和即可.【详解】(1)由图片知:第1个图案所代表的算式为:1=21;第2个图案所代表的算式为:1+3=4=22;第3个图案所代表的算式为:1+3+5=9=23;…依次类推:第n个图案所代表的算式为:1+3+5+…+(2n-1)=2n;1+3+5+…+19的个数为:191102+=,∴1+3+5+…+19=210;故答案为:210;(2)1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)的个数为:23122n n ++=+, ∴1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)=()22n +, 故答案为:()22n +;(3)103+105+107+…+2015+2017=(1+3+…+2015+2017)-(1+3+…+99+101)=21009-251=1015480.【点睛】本题考查了数字的变化规律的应用;判断出有几个奇数相加是解决本题的易错点;得到从1开始连续奇数的和的规律是解决本题的关键.3.列出下列代数式:(1)a 、b 两数差的平方;(2)a 、b 两数平方的差;(3)a 、b 两数的和与a 、b 两数的差的积;(4)a 的相反数与b 的平方的和.解析:(1)2()a b -;(2)22a b -;(3)()()a b a b +-;(4)2a b -+ 【分析】(1)根据题意先列出a ,b 的差,再表示差的平方,即可得出答案;(2)根据题意先表示出a ,b 平方,再列出差,即可得出答案 ;(3)根据题意先表示出a 与b 两数的和以及这两数的差,再列出它们的积,即可得出答案;(4)利用相反数以及平方的定义得出答案.【详解】(1)根据题意可得:2()a b -;(2)根据题意可得:22a b -;(3)根据题意可得:()()a b a b +-;(4)根据题意可得:2a b -+.【点睛】本题考查了列代数式,关键是能够正确运用数学语言,即代数式来表示题意.4.窗户的形状如图所示(图中长度单位:cm ),其中上部是半圆形,下部是边长相同的四个小正方形. 已知下部小正方形的边长是acm.(1)计算窗户的面积(计算结果保留π).(2)计算窗户的外框的总长(计算结果保留π).(3)安装一种普通合金材料的窗户单价是175元/平方米,当a=50cm 时,请你帮助计算这个窗户安装这种材料的费用(π≈3.14,窗户面积精确到0.1).解析:(1)2214a +a 2π;(2)6a a π+;(3)245.【分析】(1)根据图示,窗户的面积等于4个小正方形的面积加上半径是a 的半圆的面积;(2)根据图示,窗户外框的总长就是用3条长度是2acm 的边的长度加上半径是acm 的半圆的长度;(3)根据窗户的总面积,代入求值即可.【详解】 解:(1)窗户的面积为:()()222214a a 422a a a cm ππ⎛⎫⨯+=+ ⎪⎝⎭ (2)窗户的外框的总长为:()()132a 262a a a cm ππ⨯+⨯=+ (3)当a=50cm ,即:a=0.5m 时, 窗户的总面积为:()2220.540.5128m ππ⎛⎫⨯+=+ ⎪⎝⎭ 取π≈3.14,原式=1+0.3925≈1.4(m 2)安装窗户的费用为:1.4×175=245(元).【点睛】本题考查的知识点是求组合图形的面积与周长,将已知图形分解为所熟悉的简单图形是解此题的关键.。

七年级数学上册2.2整式的加减(第3课时)教学课件(新版)新人教版

七年级数学上册2.2整式的加减(第3课时)教学课件(新版)新人教版

2
3
23
其中 x 2, y 2 3
解: 1 x 2(x 1 y2 ) ( 3 x 1 y2 )
2
3
23
1 x 2x 2 y2 3 x 1 y2
2
3
23
3x y2
当 x =-2,y = 2 时,原式= (3)(2) (2)2 6 4 6 4

1 2
2


1 3

6

1 2


1 3
2


1
1 3

2 3
1、整式的运算法则:一般的,几个整式相加减, 如果 有括号 就先去括号,然后再 计算 .
2、做化简计算时,先将式子进行化简,再代入 数值进行计算比较简便.
1、计算:
(1)
解:(x 2x2 5) (4x2 3 6x)
(x 2x2 5) (4x2 3 6x) x 2x2 5 4x2 3 6x 6x2 7x 2
(2) (3a2 ab 7) 4a2 2ab 7 解: (3a2 ab 7) (4a2 2ab 7) 3a2 ab 7 4a2 2ab 7 7a2 3ab
例6 计算:
(1) (2x 3y) (5x 4 y) = 2x 3y + 5x 4y = 7x y
(2)(8a-7b)-(4a-5b)
=8a-7b 4a 5b = 4a 2b
(练一练): 1、根据“求多项式 3a-5b 和 2b-4a 的和”
可列为 (3a 5b) (2b 4a) ;化简得 a 3b ;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 整式的加减
(时间 120分钟 满分 150分)
一、选择题:(本大题共10个小题,每小题4分,共40分) 1. 1
2
-的倒数是( )A .2 B .2- C .12
D .12
- 2. 如下图,在数轴上表示到原点的距离为3个单位的点有( )
A .D 点
B .A 点
C .A 点和
D 点 D .B 点和C 点 3. 下列计算结果正确的是( )
A.257x y xy +=
B.235224a a a +=
C.22431a a -=
D.2222a b a b a b -+=- 4. 某地,今年1月1日至4日每天的最高气温与最低气温如下表:
其中温差最大的是( )
A .1月1日
B .1月2日
C .1月3日
D .1月4日 5. 关于x 的方程172
m x +=0是一元一次方程,则m 的值是( ) A .1 B .-1 C .1或-1 D .0
6. 甲车队有汽车56辆,乙车队有汽车32辆,要使两车队汽车一样多,设由甲队调出x 辆汽车给乙队,则可得方程 ( )
A.56+x =32-x
B.56-x =32+x
C.56-x =32
D.32+x =56 7. -(n m -)去括号得 ( )
A .n m - B.n m -- C.n m +- D.n m + 8. 下列方程中,解为x=-2的方程是( )
A .2x+5=1-x
B .3-2(x -1)=7-x
C .x -5=5-x
D .1-14x=34
x 9. 下列变形中,正确的是( )
A.若ac=bc ,则a=b.
B.若c
b c
a =,则a=b.C.若a =
b ,则a=b. D.若a 2=b 2,则a=b.
10. 若代数式22x +3y -7的值为8,则代数式42x +6y +10的值为( ) A.40 B. 30 C. 15 D.25
二、填空题:(本大题共10个小题,每小题3分,共30分) 11. 化简:85a a -= .
12. 单项式2345
x y -的系数是__________,次数是___________. 13.中国探月二期工程先导星“嫦娥二号”在西昌点火升空,并准确入轨.“嫦
娥二号”的飞行速度是54000千米/时,用科学记数法表示它的飞行速度为 千米/时.
14.若3x =是关于x 的方程20x a +=的解,则a = . 15. 若21x +与5x -互为相反数,则x = . 16. 若25(3)0m n -++=,则m n += .
17.定义新运算:我们定义c
a d b
=ad -bc ,例如4
2 5
3=2×5-3×4=-2.

=-5
24
3 (填最后的结果). 18. 今年11月12日~14日,CBA 季前赛的部分比赛在铜梁金龙体育馆举行,某单位有40名同志去看比赛,购甲、乙两种票共用去3700元,甲种票每张100元,乙种票本每张50元.设某单位购买了甲种票x 张,由此可列出方程: . 19. 按如下规律摆放三角形:
则第(4)堆三角形的个数为______ __;第(n )堆三角形的个数为__________. 20. 某超市对顾客实行优惠购物,规定如下:若一次购物少于200元,则不予优惠;若一次购物满200元,但不超过500元,按标价给予九折优惠;若一次
购物超过500元,其中不超过500元部分给予九折优惠,超过500元部分给予八折优惠。

小华欲购标价555元的物品,需付款 元;小明一次付款189元,则小明所购物品的实际价值可能是 元。

三、解答题(共80分)
21.计算(每小题3分,共12分) (1) (+12)+(-7)-(+15) (2) ⨯++-)6
1
43121(12
(3)124(3)63⎛⎫-÷-+⨯- ⎪⎝⎭
(4)22
28(2)-+÷-
22.化简(每小题3分,共6分)
(1) b a b a +--253 (2)22452(2)x xy x xy +--
23.解方程(每小题3分,共6分) (1)713=+x (2)01)1(2=+-x
24.解方程(每小题3分,共6分) (1)315723y y --= (2)2151
136
x x +--=
25.(8分)先化简,再求值
3223242(3)x x x x x x -+--+-,其中2=x
26.(8分)检修组乘汽车,沿公路检修线路,约定向东为正,向西为负,某天自A 地出发, 到收工时,行走记录为(单位:千米): +8、-9、+4、+7、-2、-10、+18、-3、+7、+5 回答下列问题:
(1)收工时在A 地的哪边?距A 地多少千米?(4分)
(2)若每千米耗油0.3升,问从A 地出发到收工时,共耗油多少升? (4分)
27.(8分)若23m a b 与 41n a b --是同类项,求2010()n m -的值.
28.(8分)已知a 、b 互为相反数,c 、d 互为倒数, p 是数轴到原点距离为1的数,求20092010a b
p cd cd
+-++的值.
29.(8分)一项工程,甲单独做需要10天完成,乙单独做需要15天完成. (1)甲的工作效率是 ;乙的工作效率是 . (4分) (2)两人合作4天后,剩下的部分由乙单独做,则乙还需几天完成?(4分)
30.(10分)某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍。

乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠
一盒乒乓球,乙店全部按定价的9折优惠。

该班需乒乓球拍.......5.副,乒乓球若干盒........
(不小于5盒)。

(1)当该班购买的乒乓球是10盒时,分别计算在甲、乙两店各需多少元?(4分)
(2)当该班购买乒乓球多少盒时,两种优惠办法付款一样?(3分) (3)如果你去办这件事,你选择哪家商店购买,更省钱?(3分)。

相关文档
最新文档