第二章整式的加减教案

合集下载

2024秋七年级数学上册第二章整式的加减2.2整式的加减2去括号教案(新版)新人教版

2024秋七年级数学上册第二章整式的加减2.2整式的加减2去括号教案(新版)新人教版
六、拓展与延伸
1.提供与本节课内容相关的拓展阅读材料:
《代数运算指南》:这本书详细介绍了代数的基本概念和运算方法,包括整式的加减、乘除等。通过阅读这本书,学生可以进一步加深对整式加减的理解和掌握。
《数学问题解决策略》:这本书提供了一系列的数学问题解决方法,包括代数问题的解决方法。学生可以通过阅读这本书,学习到更多的数学问题解决策略,提高解决问题的能力。
九.重点题型整理
1. 去括号
(1)如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。
例题:去括号:-(a + b)= -a - b
(2)如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
例题:去括号:-(a - b)= a - b
2. 合并同类项
(1)找出整式中的同类项,即具有相同字母和相同指数的项。
(2)解决实际问题,如计算购物找零、面积计算等。
例题:综合应用:计算购物找零:28 - 5(3 + 2) - 1 = 28 - 5*5 - 1 = 28 - 25 - 1 = 2
5. 整式加减的实际应用
(1)将整式加减应用于实际问题,如购物找零、计算面积等。
例题:实际应用:计算购物找零:32 - 5(4 + 2) = 32 - 5*6 = 32 - 30 = 2
在教学过程中,我发现学生们对去括号和合并同类项这两个重点内容的理解存在一定的困难。因此,我特别强调了这两个重点,并通过举例和比较来帮助学生理解。通过小组讨论和实践活动,学生们能够更好地将理论知识应用到实际问题中,提高了解决问题的能力。
在教学过程中,我也注意到了学生的参与度和互动情况。通过鼓励学生提问和参与小组讨论,我能够及时解答学生的疑问,帮助学生克服难点,提高学习效果。

人教版七年级数学上册第二章《整式的加减》教案

人教版七年级数学上册第二章《整式的加减》教案

人教版七年级数学上册第二章《整式的加减》教案一. 教材分析《整式的加减》是人教版七年级数学上册第二章的内容,主要包括整式的加减运算以及合并同类项的方法。

本节内容是学生学习代数初步知识的重要环节,为后续学习方程和不等式打下基础。

通过本节内容的学习,学生应该能够理解整式的加减运算法则,掌握合并同类项的方法,并能熟练进行整式的加减运算。

二. 学情分析七年级的学生已经掌握了实数的基本运算,具备了一定的逻辑思维能力。

但是,对于整式的加减运算和合并同类项的方法,学生可能还比较陌生,需要通过实例和练习来逐渐理解和掌握。

此外,学生可能对于代数式的运算规则还不够熟悉,需要教师在教学过程中进行引导和培养。

三. 教学目标1.理解整式的加减运算法则;2.掌握合并同类项的方法;3.能够熟练进行整式的加减运算;4.培养学生的逻辑思维能力和代数运算能力。

四. 教学重难点1.整式的加减运算法则;2.合并同类项的方法;3.整式的加减运算的实践应用。

五. 教学方法采用讲解法、示例法、练习法、讨论法等教学方法。

通过教师的讲解和示例,让学生理解整式的加减运算法则和合并同类项的方法,通过练习和讨论,让学生巩固所学知识,提高运算能力。

六. 教学准备教师准备教案、PPT、练习题等教学资源。

七. 教学过程1.导入(5分钟)教师通过一个实际问题引入整式的加减运算,例如:“已知两个数的和是20,差是5,求这两个数分别是多少?”让学生思考和讨论,引导学生认识到整式的加减运算的重要性。

2.呈现(15分钟)教师通过PPT展示整式的加减运算法则和合并同类项的方法,并进行讲解和示例。

例如,对于两个整式的加减运算,先将同类项合并,再进行加减运算。

同时,教师可以通过举例说明合并同类项的方法,如系数相加减,字母和字母的指数不变。

3.操练(15分钟)教师布置一些练习题,让学生独立完成。

例如,计算以下整式的和:(1)2x+ 3y - 4x + 5y;(2)4a^2 - 3a - 2a^2 + 5a。

第二章《整式的加减》单元主题教学设计

第二章《整式的加减》单元主题教学设计

第二章《整式的加减》单元主题教学设计一、单元规划【课标要求】①借助现实情景了解代数式,进一步理解用字母表示数的意义.②能分析具体问题中的简单数量关系,并用代数式表示;能根据特定的问题查阅资料,找到所需的公式.③会用具体数代入代数式进行计算.④理解整式的概念,掌握合并同类项和去括号法则;能进行简单的整式加减运算.【知识框架】【单元课时规划】课本设计自然课时共计 8课时,分别是2.1整式3课时,2.2整式的加减3课时,小结与复习2课时。

经集体备课研讨,最后确定课时规划如下:课时序号课时名称主备人1 单元主题教学设计2 2.1整式3 单项式4 多项式5 2.2合并同类项6 去括号7 整式的加减8 小结与复习二、单元教材教法分析本章的主要内容是列式表示数量关系,整式的有关概念及整式的加减运算,是在学生已学会用字母表示数以及有理数运算的基础上展开的.整式的加减运算是学习下一章“一元一次方程”的直接基础,也是以后学习整式的乘除、分式和根式运算、方程以及函数等知识的基础,同时也是学习物理、化学等学科及其他科学技术不可缺少的数学工具.本章包括两节内容,都是由章引言中的问题引出的,教科书以2006年正式通车的青藏铁路为背景,根据路程、速度和时间的关系设计了几个问题,解决这些问题要用到字母表示数、用式子表示数量关系以及对式子进行化简等,为引出单项式、合开同类项等概念和法则提供实际背景,使学生感受到学习这些概念和运算是实际的需要.三、单元教学目标:【知识与技能】1.理解单项式、多项式、整式等概念,弄清它们之间的区别与联系.2.理解同类项概念,掌握合并同类项的方法和去括号时符号的变化规律,能正确地进行同类项的合并和去括号,在准确判断、正确合并同类项的基础上,进行整式的加减运算.3.理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立.4.能够分析实际问题中的数量关系,并用含有字母的式子表示出来.【过程与方法】(1)注意与小学内容的衔接,在小学,学生已经学过用字母表示数、简单的列式表示、实际问题中的数量关系和简易方程等,这些知识是学习本章的直接基础.本章学习了整式的有关概念和整式的加减运算;教科书将这些内容的编写与列出整式、表示数量关系密切联系起来,而用整式表示数量关系是建立在用字母表示数的基础之上的.(2)加强与实际的联系,在解决实际问题时,似乎遇到的都是具体的数字,但在数字运算的背后,却隐含着式的运算,因此,教学时加强了与实际的联系,无论是概念的引出,还是运算法则的探讨,都紧密结合实际问题展开.在本章的例题和习题中,也涉及了大量的实际问题,这些实际问题选材广泛,有的选自于工农业生产,有的是与学生生活密切联系,也有反映社会进步的.背景选取的方式可以让学生充分感受所学知识与实际的联系,体会由实际问题抽象出数学问题的过程,培养学生利用数学解决实际问题的能力.(3)类比数学习式,重视数学思想方法的渗透,整式可以简明地表示实际问题中的数量关系,它比只有具体数字表示的算式更有一般性,因此可以说整式的运算是建立在数的运算基础之上的,式的运算更具有一般性,数的运算是式的运算的特殊情形.整式可以简明地表示实际问题中的数量关系,它比只有具体数字表示的算式更有一般性,因此可以说整式的运算是建立在数的运算基础之上的,式的运算更具有一般性,数的运算是式的运算的特殊情形.【情感态度与价值观】(1)重视培养学生列式表示数量关系的能力。

人教版七年级上册数学 第二章 整式的加减 教案

人教版七年级上册数学 第二章 整式的加减 教案

第二章 整式的加减2.1 整式第1课时 用字母表示数01 教学目标1.通过分析实际问题中的数量关系以及列式表示这些数量关系的活动过程,会用含有字母的式子表示数量关系. 2.通过例题学习和习题训练,会用字母表示几何图形的周长、面积和体积. 02 预习反馈阅读教材P54~56,完成下列内容.1.我们常用字母t 表示行驶的时间,在小学列方程解应用题时,用字母x 表示未知数. 2.用字母表示:(1)有理数减法法则:a -b =a +(-b); (2)有理数除法法则:a÷b =a·1b(b ≠0).3.客车每小时行v 千米,t 小时行的路程为vt 千米.4.衬衫原价每件x 元,若按6折出售,则现在的售价为每件0.6x 元. 03 名校讲坛例1 (1)苹果原价是每千克p 元,按8折优惠出售,用式子表示现价;(2)某产品前年产量是n 件,去年的产量是前年产量的m 倍,用式子表示去年的产量; (3)一个长方体包装盒的长和宽都是a cm ,高是h cm ,用式子表示它的体积; (4)用式子表示数n 的相反数.解:(1)现价是每千克0.8p 元. (2)去年的产量是mn 件.(3)由长方体的体积=长×宽×高,得这个长方体包装盒的体积是a·a·h cm 3,即a 2h cm 3. (4)数n 的相反数是-n.【点拨】 用字母表示数书写时“四注意”:(1)数和字母相乘或字母和字母相乘时,通常将乘号写作“·”或省略不写,数与数相乘时,乘号不能省略;数和字母相乘,在省略乘号时,要把数字写在字母的前面;带分数与字母相乘时,带分数要写成假分数的形式. (2)数和字母相除或字母和字母相除时,写成分数形式.(3)有单位时,若最后结果是积或商的形式,则式子后面直接写单位;若最后结果是和或差的形式,则把式子用括号括起来后再写单位名称.(4)±1乘字母时,1可以省略不写.【跟踪训练】1.今天中午气温为18 ℃,晚上下降了a ℃,则晚上气温为(18-a)℃. 2.一个两位数,十位数为m ,个位数为2,则这个两位数为10m +2. 例2 (教材P55例2补充例题)求下列图形中阴影部分即房间的建筑面积.解:房间的建筑面积等于四个长方形面积的和.根据图中标出的尺寸,可得出这所住宅的建筑面积是6x +2y +18. 【点拨】 用字母表示图形的面积的要点:把图形的面积转化为规则图形面积的和或差.【跟踪训练】3.如图,将长和宽分别是a ,b 的长方形纸片的四个角都剪去一个边长为x 的正方形.用含a ,b ,x 的代数式表示纸片剩余部分的面积为ab -4x 2.04 巩固训练1.下列式子中,符合书写格式的是(C)A .x +12克B .117×m 2n C.xy3D .s÷t2.某省参加课改实验区初中毕业学业考试的学生约有15万人,其中男生约有a 万人,则女生约有(B) A .(15+a)万人 B .(15-a)万人 C .15a 万人 D .(a -15)万人3.笔记本每本m 元,圆珠笔每支n 元,买x 本笔记本和y 支圆珠笔,共需(A) A .(mx +ny)元 B .(m +n)(x +y)元 C .(nx +my)元 D .mn(x +y)元 4.边长为x 的正方形的周长为4x .5.仓库里有一批水泥,运走5车,每车n 吨,还剩m 吨,这批水泥有(5n +m)吨. 6.用字母表示两个图形中阴影部分的面积.图1 图2解:(1)阴影部分的面积为ab -bx. (2)阴影部分的面积为R 2-14πR 2.05 课堂小结用字母表示数量关系:用一个(几个)字母表示问题中的某个(某些)量,然后用这个(这些)字母表示问题中的其他量.第2课时 单项式01 教学目标1.经历观察、思考、归纳一类式子的共性的过程,理解单项式的概念,能准确识别单项式.2.通过阅读教材,理解单项式的系数和次数的概念,能确定单项式的系数和次数. 02 预习反馈阅读教材P56~57,完成下列内容.1.由数与字母或字母与字母相乘组成的式子叫单项式.如:在式子1,a 2,a -b ,y ,15x ,1x 中,是单项式的有1,a 2,y ,15x .2.单项式中的数字因数叫单项式的系数.单项式中所有字母的指数的和叫单项式的次数. 如:(1)-a 的系数是-1,次数是1; (2)单项式-3x 2的系数是-3,次数是2; (3)2ab 3c 3的系数是23,次数是5.03 名校讲坛 知识点1 识别单项式例1 (教材补充例题)下列各式中,哪些是单项式? 25x ,-85a 3,3x 2y m ,a ,0.4x +3,a 2+b +7,x +y 2. 解:单项式有:25x ,-85a 3,a.【点拨】 识别单项式的要点:(1)单项式中不能含有加减运算,不能含有表示大小关系的符号,如=,≠,>等; (2)单项式的分母中不能含有字母.【跟踪训练1】 在式子3a ,x +1,-2,-b 3,0.72xy ,2π,3x -14中,单项式有(C)A .2个B .3个C .4个D .5个 知识点2 确定单项式的系数和次数 例2 写出下列各单项式的系数和次数:【点拨】 确定单项式的系数和次数的注意点:(1)单项式的系数:若一个单项式只含有字母因数,则它的系数是1或-1;若单项式是一个常数,则它的系数就是它本身.(2)单项式的次数是所有字母的指数的和,与系数的指数无关,如24x 2y 3的次数是5,而不是9. 【跟踪训练2】 若关于x ,y 的单项式23mx n y 2的系数是6,次数是5,则m =9,n =3.04 巩固训练1.下列代数式中,不是单项式的是(A)A .1xB .-12 C .t D .3a 2b 2.(《名校课堂》2.1第2课时习题)单项式2xy 3的次数是(D)A .1B .2C .3D .4 2.下列说法中,正确的是(D)A .0不是单项式B .-3abc 2的系数是-3C .-23x 2y 23的系数是-13 D.πab 2的次数是24.用单项式填空:(1)一辆汽车的速度是v 千米/时,行驶t 小时所走过的路程为vt 千米; (2)王洁同学买2本练习本花了n 元,那么买m 本练习本要mn2元;(3)边长为a 的正方体的表面积为6a 2,正方体的体积为a 3. 5.说出下列单项式的系数和次数: (1)a; (2)-6m 3n; (3)-35πx 2y.解:(1)a 的系数是1,次数是1. (2)-6m 3n 的系数是-6,次数是4.(3)-35πx 2y 的系数是-35π,次数是3.6.列代数式,如果是单项式,请分别指出它们的系数和次数:(1)某中学组织七年级学生春游,有m 名师生租用45座的大客车若干辆,且刚好坐满,那么租用大客车的辆数是多少?(2)一个长方体的长和宽都是a ,高是h ,它的体积是多少? 解:(1)m 45,它是单项式,系数是145,次数是1.(2)a 2h ,它是单项式,系数是1,次数是3. 05 课堂小结 1.字母表示数. 2.单项式的概念.3.单项式的系数及次数的概念.第3课时 多项式及整式01 教学目标1.经历观察、思考、归纳一类式子的共性的过程,理解多项式、整式的概念,能准确识别多项式、整式. 2.通过阅读教材,交流讨论,理解多项式的项、常数项和次数. 02 预习反馈阅读教材P57~58,完成下列内容.1.几个单项式的和叫做多项式,每个单项式叫做多项式的项,次数最高项的次数叫做多项式的次数,不含字母的项叫做多项式的常数项.如:多项式3x 2y -4xy -1由单项式3x 2y ,-4xy ,-1组成,它是三次三项式,其中二次项是-4xy ,最高次项的系数为3,常数项是-1. 2.单项式和多项式统称为整式. 03 名校讲坛知识点1 识别整式、单项式及多项式例1 (教材补充例题)下列式子中,哪些是整式?哪些是单项式?哪些是多项式? a ,ax 2+bx +c ,-5,π,x -y 2,2xx -1.解:单项式:a ,-5,π. 多项式:ax 2+bx +c ,x -y2.整式:a ,ax 2+bx +c ,-5,π,x -y2.【点拨】 (1)单项式不含加减运算,多项式必含加减运算.(2)多项式是几个单项式的和,单项式和多项式都是整式.【跟踪训练】1.把下列各式填在相应的集合里.①0.②x 2;③-x 2-2x +5;④94;⑤xy.⑥8+b7;⑦-5;⑧x +y 5.整式:{①②③④⑤⑥⑦⑧,…} 多项式:{③⑥⑧,…} 单项式:{①②④⑤⑦,…} 知识点2 确定多项式的项和次数例2 (教材补充例题)指出下列多项式的次数与项: (1)23xy -14; (2)a 2+2a 2b +ab 2-b 2; (3)2m 3n 3-3m 2n 2+53mn.解:(1)2次,23xy ,-14.(2)3次,a 2,2a 2b ,ab 2,-b 2. (3)6次,2m 3n 3,-3m 2n 2,53mn.【点拨】 确定多项式的项和次数“六注意”: (1)多项式的各项应包括它前面的符号;(2)多项式没有“系数”这一概念,但每一项均有系数,每一项的系数应包括它前面的符号; (3)次数最高项的次数就是多项式的次数; (4)一个多项式的最高次项可以不唯一;(5)区分多项式的次数与单项式的次数,不能误认为多项式的次数是各个单项式的次数之和;(6)多项式的“项”与“项数”是不同的概念,“项”是指组成多项式的单项式,包括它前面的符号,“项数”是指项的个数.例3 (教材补充例题)若多项式-72x 2y 2n +1z +34x 2y +4是八次三项式,则n =2.【思路点拨】 由题意可知,多项式的最高次项为-72x 2y 2n +1z ,所以2+2n +1+1=8.解得n =2.【跟踪训练】2.指出下列多项式的项和次数. (1)a 3-a 2b +ab 2-b 3; (2)3n 4-2n 2+1.解:(1)a 3,-a 2b ,ab 2,-b 3,3次.(2)3n 4,-2n 2,1,4次. 3.指出下列多项式是几次几项式: (1)x 3-x +1; (2)x 3-2x 2y 2+3y 2.解:(1)三次三项式.(2)四次三项式. 知识点3 多项式的应用例4 如图,用式子表示圆环的面积,当R =15 cm ,r =10 cm 时,求圆环的面积(π取3.14).解:外圆的面积减去内圆的面积就是圆环的面积,所以圆环的面积是πR 2-πr 2. 当R =15 cm ,r =10 cm 时,圆环的面积(单位:cm)是 πR 2-πr 2=3.14×152-3.14×102 =392.5.答:这个圆环的面积是392.5 cm 2. 【跟踪训练】4.a ,b 分别表示梯形的上底和下底,h 表示梯形的高,则梯形的面积S =12(a +b)h ,当a =2 cm ,b =4 cm ,h =5 cm时,S =15__cm 2. 04 巩固训练1.下列各式中,不属于整式的是(D)A .abB .x 3-2yC .-a 3 D.a b2.(《名校课堂》2.1第3课时习题)多项式3x 2-2x -1的各项分别是(D)A .3x 2,2x ,1B .3x 2,-2x ,1C .-3x 2,2x ,-1D .3x 2,-2x ,-1 3.多项式2a 2b -ab 2-ab 的项数及次数分别是(A)A .3,3B .3,2C .2,3D .2,2 4.如果x n +x 2-1是五次多项式,那么n 的值是(C)A .3B .4C .5D .65.多项式3x 4+5x 3y +8-2x 2y 4-10xy ,次数最高的项是-2x 2y 4;常数项是8;它的次数是6.6.一个关于x 的多项式,它的一次项系数是1,二次项系数和常数项都是-13,则这个多项式是-13x 2+x -13.7.如图,用式子表示图中阴影部分的面积.当x =4时,求阴影部分的面积(π取3.14).解:图中阴影部分的面积为x 2-π4x 2. 当x =4时,π取3.14,阴影部分的面积为3.44.05 课堂小结 1.多项式的概念.2.项、常数项、多项式的次数.2.2 整式的加减 第1课时 合并同类项01 教学目标1.了解同类项、合并同类项的概念,掌握合并同类项法则,能正确合并同类项. 2.能先合并同类项化简后求值. 02 预习反馈阅读教材P62~65,完成下列内容.1.把多项式中的同类项合并成一项叫做合并同类项. 如:判断下列各题中的两个项是否是同类项. (1)4与-12;(是)(2)32与a 2;(不是) (3)2x 与2x ;(不是)(4)3mn 与3mnp ;(不是) (5)2πr 与-3x ;(不是) (6)3a 2b 与3ab 2.(不是)2.合并同类项的法则:系数相加,字母和字母指数不变. 如:合并同类项:-3a +2ab -4ab +2a =-a -2ab . 03 名校讲坛 知识点1 同类项的概念例1 (教材补充例题)下列各组中的两个单项式是同类型的是(C) A .3x 2y 与2xy 2 B .a 2b 与12a 2c C.13x 4y 与12yx 4 D .a 2与b 2【点拨】 识别同类项的方法:一看字母是否相同,二看相同字母的指数是否相同,只有这两者都相同时,它们才是同类项,特别是,几个常数也是同类项.【跟踪训练1】 若2x 2y n 与-3x m y 4是同类项,则m =2,n =4. 知识点2 合并同类项例2 合并同类项:(1)4a 2+3b 2+2ab -4a 2-3b 2; (2)3x -2x 2+5+3x 2-2x -5; (3)a 3+a 2b +ab 2-a 2b -ab 2-b 3; (4)6a 2-5b 2+2ab +5b 2-6a 2. 解:(1)2ab.(2)x 2+x.(3)a 3-b 3.(4)2ab. 【点拨】 合并同类项的“三注意”: (1)合并同类项时,不要漏掉系数的符号;(2)若一个多项式中含有若干个不同的同类项,则可用交换律、结合律和分配律将同类项进行合并; (3)不是同类项的不能合并,不能合并的项在运算的每一步中都要写上,直至化简的最后结果. 【跟踪训练2】 合并同类项: (1)3x 2-2xy +y 2-x 2+2xy ; (2)2a 2b -3a 2b +12a 2b ;(3)a 3-a 2b +ab 2+a 2b -ab 2+b 3; (4)4x 2-8x +5-3x 2+6x -2.解:(1)2x 2+y 2.(2)-12a 2b.(3)a 3+b 3.(4)x 2-2x +3.知识点3 化简求值例3 求多项式5x 2+4x -6x 2-x +2x 2-3x -1的值,其中x =-3. 解:原式=x 2-1.当x =-3时,原式=8. 【点拨】 多项式化简求值的“三个步骤”:“一化、二代、三求值”,即(1)化简所给多项式,使其不再含有同类项;(2)将所给的值代入化简后的式子,若是负数,则需添加括号;(3)计算第(2)步所得的算式.【跟踪训练3】 求多项式3a +abc -13c 2-3a +13c 2的值,其中a =-16,b =2,c =-3.解:3a +abc -13c 2-3a +13c 2=(3-3)a +abc +(-13+13)c 2=abc.当a =-16,b =2,c =-3时,原式=(-16)×2×(-3)=1.知识点4 合并同类项的应用例4 (1)水库水位第一天连续下降了a h ,每小时平均下降2 cm ;第二天连续上升了a h ,每小时平均上升0.5 cm ,这两天水位总的变化情况如何?(2)某商店原有5袋大米,每袋大米为x kg.上午卖出3袋,下午又购进同样包装的大米4袋.进货后这个商店有大米多少千克?解:(1)把下降的水位变化量记为负,上升的水位变化量记为正.第一天水位的变化量是-2a cm ,第二天水位的变化量是0.5a cm.两天水位的总变化量(单位:cm)是 -2a +0.5a =(-2+0.5)a =-1.5a.这两天水位总的变化情况为下降了1.5a cm. (2)把进货的数量记为正,售出的数量记为负. 进货后这个商店共有大米(单位:kg) 5x -3x +4x =(5-3+4)x =6x.【跟踪训练4】 国家规定初中每班的标准人数为a 人,某中学七年级共有六个班,各班人数情况如下表用含a 的代数式表示该中学七年级学生总人数为(6a +5)人.04 巩固训练1.在下列单项式中,与2xy 是同类项的是(C)A .2x 2y 2B .3yC .xyD .4x 3.计算2m 2n -3m 2n 的结果为(C)A .-1B .-5m 2nC .-m 2nD .不能合并 3.下列各组中的两个单项式能合并的是(D) A .4和4x B .3x 2y 3和-y 2x 3 C .2ab 2和100ab 2c D .m 和m24.当a =-5时,多项式a 2+2a -2a 2-a +a 2-1的值为(B)A .29B .-6C .14D .24 5.已知3x 5y 2和-2x 3m y n 是同类项,则m =53,n =2.6.合并下列各式的同类项:(1)15x +4x -10x; (2)-p 2-p 2-p 2;(3)2a+6b-7a-b; (4)5x2-7xy+3x2+6xy-4x2.解:(1)原式=9x.(2)原式=-3p2.(3)原式=-5a+5b.(4)原式=4x2-xy.7.求多项式7a2b-4a2b+5ab2-4a2b+6ab2的值,其中a=-1,b=2.解:原式=-a2b+11ab2.当a=-1,b=2时,原式=-46.05课堂小结1.同类项:(1)所含字母相同;(2)相同字母的指数也相同.2.合并同类项:把多项式中的同类项合并成一项.3.合并同类项法则.第2课时去括号01教学目标1.探究去括号法则,并且利用去括号法则将整式化简.2.发现去括号时的符号变化的规律,归纳出去括号法则.02预习反馈阅读教材P65~67,完成下列内容.1.去括号时,如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.2.下列去括号过程是否正确?若不正确,请改正.(1)a-(-b+c-d)=a+b+c-d;(不正确)a+b-c+d;(2)a+(b-c-d)=a+b+c+d;(不正确)a+b-c-d;(3)-(a-b)+(c-d)=-a-b+c-d.(不正确)-a+b+c-d.03名校讲坛知识点1先去括号,再合并同类项例1去括号,再合并同类项:(1)x-(3x-2)+(2x+3);(2)(3a2+a-5)-(4-a+7a2);(3)(2m-3)+m-(3m-2);(4)3(4x-2y)-3(-y+8x).解:(1) 5.(2)-4a2+2a-9.(3)-1.(4)-12x-3y.【点拨】去括号的三种不同情况:1.+():括号前是正号时,去掉括号及正号后,括号里面各项的符号均不变.(2)-():括号前面是负号时,去掉括号及负号后,括号里面各项的符号都要改变.注意:“都”即每一项的符号都要改变.(3)-n():括号前面有因数时,根据分配律去括号,即将括号前面的数与括号里面各项系数分别相乘.注意:每项系数都包括其前面的符号.【跟踪训练1】去括号,并合并同类项:(1)-(5m+n)-7(m-3n);(2)-2(xy-3y2)-[2y2-(5xy+x2)+2xy].解:(1)-12m+20n.(2)xy+4y2+x2.知识点2利用去括号解决实际问题例2两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50 km/h,水流速度是a km/h.(1)2 h后两船相距多远?(2)2 h后甲船比乙船多航行多少千米?解:顺水航速=船速+水速=(50+a)km/h,逆水航速=船速-水速=(50-a)km/h.(1)2 h后两船相距(单位:km)2(50+a)+2(50-a)=100+2a+100-2a=200.(2)2 h后甲船比乙船多航行(单位:km)2(50+a)-2(50-a)=100+2a-100+2a=4a.【跟踪训练2】船在静水中的速度为a km/h,水速为10 km/h,船顺流航行5 h的行程比逆流航行3 h的行程多(80+2a)__km.04巩固训练1.-(x-2y+3z)去括号后的结果为(B)A.x-2y+3z B.-x+2y-3zC.x+2y-3z D.-x+2y+3z2.化简5(2x-3)+4(3-2x)的结果为(A)A.2x-3 B.2x+9 C.8x-3 D.18x-33.下列各式中,去括号正确的是(D)A.x2-(x-y+2z)=x2-x+y+2zB .x -(-2x +3y -1)=x +2x +3y +1C .3x +2(x -2y +1)=3x -2x -2y -2D .-(x -2)-2(x 2+2)=-x +2-2x 2-44.三个小队植树,第一队种x 棵,第二队种的树比第一队种的树的2倍还多8棵,第三队种的树比第二队种的树的一半少6棵,三队共种树(4x +6)棵.5.化简:(1)5a -(2a -4b); (2)2x 2+3(2x -x 2);(3)6a 2-4ab -4(2a 2+12ab); (4)-3(2x 2-xy)+4(x 2+xy -6).解:(1)原式=3a +4b.(2)原式=-x 2+6x.(3)原式=-2a 2-6ab.(4)原式=-2x 2+7xy -24.6.先化简,再求值:(4a 2-3a)-(2a 2+a -1)+(2-a 2)+4a ,其中a =-2.解:原式=a 2+3.当a =-2时,原式=(-2)2+3=7.05 课堂小结去括号法则.第3课时 整式的加减01 教学目标1.经历列式、去括号、合并同类项,代入求值等解题过程,能熟练地进行整式的加减运算.2.经历用整式的加减解决简单实际问题的过程,掌握整式加减运算的应用.02 预习反馈阅读教材P67~69,完成下列内容.1.整式加减混合运算法则:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.2.化简下列各题:(1)-3(2x -y)-2(4x +12y)+2 018; (2)-[2m -3(m -n +1)-2]-1.解:(1)-14x +2y +2 018.(2)m -3n +4.03 名校讲坛知识点1 整式的加减与化简求值例1 (教材补充例题)求多项式-x 3-2x 2+3x -1与-2x 2+3x -2的差.解:-x 3-2x 2+3x -1-(-2x 2+3x -2)=-x 3-2x 2+3x -1+2x 2-3x +2=-x 3+1.【点拨】 整式加减运算的注意点:(1)计算多项式的和与差是整个多项式参与和差运算,所以要用括号将多项式括起来,然后再去括号、合并同类项;(2)去括号时,若括号前面是“-”号,把括号和前面的“-”号去掉,括号里的各项要改变符号.例2 (教材补充例题)已知A =12x ,B =x -13y 2,C =-32x +13y 2,(x -2)2+|y -23|=0,求2A -B +C 的值. 解:2A -B +C =2·12x -(x -13y 2)-32x +13y 2=x -x +13y 2-32x +13y 2=-32x +23y 2. 因为(x -2)2+|y -23|=0, 所以x =2,y =23. 所以原式=-32×2+23×(23)2 =-3+827=-21927. 【点拨】 整式化简求值的“三个步骤”:一化:去括号,合并同类项;二代:将字母的值代入化简后的式子;三计算:按指定的运算顺序进行计算.【跟踪训练1】 在解“当x =-2,y =23时,求12x -2(x -13y 2)+(-32x +13y 2)的值”时,甲同学不小心把“y =23”写成“y =-23”,但计算结果也是正确的,这是为什么? 解:原式=12x -2x +23y 2-32x +13y 2=-3x +y 2. 因为数的平方的结果是相同的,所以代入互为相反数的结果值相等.知识点2 整式加减的应用【例3】 做大小两个长方体的纸盒,尺寸如下(单位:cm):(1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比做小纸盒多用料多少平方厘米?解:小纸盒的表面积是(2ab +2bc +2ca)cm 2,大纸盒的表面积是(6ab +8bc +6ca)cm 2.(1)做这两个纸盒共用料(单位:cm 2)(2ab+2bc+2ca)+(6ab+8bc+6ca)=2ab+2bc+2ca+6ab+8bc+6ca=8ab+10bc+8ca.(2)做大纸盒比做小纸盒多用料(单位:cm2)(6ab+8bc+6ca)-(2ab+2bc+2ca)=6ab+8bc+6ca-2ab-2bc-2ca=4ab+6bc+4ca.【点拨】解决整式加减运算应用题的“三步法”:列式→根据实际问题的题意列出算式↓计算→运用整式的加减法则进行计算↓结论→计算出最后需要的结果【跟踪训练2】某校有A,B,C三个课外活动小组,A小组有学生(x+2y)名,B小组学生人数是A小组学生人数的3倍,C小组比A小组多3名学生,问A,B,C三个课外活动小组共有多少名学生?解:B小组学生人数为3(x+2y)名,C小组学生人数为[(x+2y)+3]名.所以A,B,C三个课外活动小组人数共有(x+2y)+3(x+2y)+(x+2y)+3=5(x+2y)+3=5x+10y+3(名).答:A,B,C三个课外活动小组共有(5x+10y+3)名学生.04巩固训练1.设M=2a-3b,N=-2a-3b,则M-N等于(B)A.4a-6b B.4aC.-6b D.4a+6b2.当x=2时,(x2-x)-2(x2-x-1)的值等于(D)A.4 B.-4 C.1 D.03.减去-2x等于-3x2+2x+1的多项式是(C)A.-3x2+4x+1 B.3x2-4x-1C.-3x2+1 D.3x2-14.一个长方形的一边长是2a+3b,另一边的长是a+b,则这个长方形的周长是(B)A.12a+16b B.6a+8b C.3a+8b D.6a+4b5.一个十位数字是a,个位数字是b的两位数可表示为10a+b,交换这个两位数的十位数字和个位数字,又得一个新的两位数,新数与原数的差是9b-9a.6.计算:(1)3a+2-(-4a);(2)2(x2+3)-(5-x2);(3)(ab-3a2)-2b2-5ab-(a2-2ab);(4)2(3b2-a3b)-3(2b2-a2b-a3b)-4a2b.解:(1)原式=7a+2.(2)原式=3x2+1.(3)原式=-4a2-2b2-2ab.(4)原式=a3b-a2b. 05课堂小结通过本节课的学习,你有哪些收获?。

第二章整式的加减全章教案.

第二章整式的加减全章教案.

第二章整式的加减2.1 整式§ 2.1整式(单项式教学目标:知识与技能:1.理解单项式及单项式系数、次数的概念。

2.会准确迅速地确定一个单项式的系数和次数。

3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。

过程与方法:通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。

分层次教学,讲授、练习相结合。

情感、态度、价值观:培养学生观察、归纳、概括及运算能力教学重点:掌握单项式及单项式的系数、次数的概念, 并会准确迅速地确定一个单项式的系数和次数。

教学难点:单项式概念的建立。

教学过程:一、复习引入:1、列代数式(1若正方形的边长为 a ,则正方形的面积是 ;(2若三角形一边长为 a ,并且这边上的高为 h ,则这个三角形的面积为 ;(3若 x 表示正方形棱长,则正方形的体积是(4若 m 表示一个有理数,则它的相反数是 ;(5小明从每月的零花钱中贮存 x 元钱捐给希望工程,一年下来小明捐款元。

(让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育。

2、请学生说出所列代数式的意义。

3、请学生观察所列代数式包含哪些运算,有何共同运算特征。

由小组讨论后,经小组推荐人员回答,教师适当点拨。

(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性, 满足学生的表现欲和探究欲, 使学生学得轻松愉快, 充分体现课堂教学的开放性。

二、讲授新课:1.单项式:通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并板书归纳得出的单项式的概念,即由数与字母的乘积组成的代数式称为单项式。

然后教师补充, 单独一个数或一个字母也是单项式, 如 a , 5。

122.练习:判断下列各代数式哪些是单项式? (121 x ; (2a bc ; (3b2; (4-5a b 2; (5y; (6-xy 2; (7-5。

七年级数学上册第二章整式的加减《数学活动》

七年级数学上册第二章整式的加减《数学活动》

教学设计:2024秋季七年级数学上册第二章整式的加减《数学活动》教学目标(核心素养)1.知识与技能:通过数学活动,加深学生对整式加减运算的理解,提高解决实际问题的能力。

2.数学思维:培养学生的观察力、分析能力和逻辑推理能力,学会从实际问题中抽象出数学模型。

3.情感态度:激发学生对数学的兴趣,增强团队合作意识,体验数学学习的乐趣。

教学重点•引导学生将整式加减运算应用于解决实际问题。

•培养学生的数学建模能力和问题解决策略。

教学难点•如何将复杂的实际问题转化为整式加减的数学问题。

•在团队合作中有效沟通和协调,共同完成任务。

教学资源•多媒体课件(包含活动背景、问题设置、示例解析)•实物教具(如积木、卡片等,用于构建数学模型)•分组材料(每组一套,包括纸笔、计算器、活动指南)•教室布置(确保小组间有足够的空间进行活动和讨论)教学方法•问题驱动法:通过设计一系列实际问题,引导学生主动探索解决方案。

•合作学习法:学生分组进行活动,共同讨论、解决问题。

•实践操作法:利用实物教具或纸笔进行数学模型的构建和计算。

•反馈评价法:及时给予学生反馈,鼓励自我评价和同伴评价。

教学过程要点导入新课•情境引入:通过一个贴近学生生活的实际问题(如班级物品分配、花园面积计算等),激发学生兴趣,引出整式加减在解决实际问题中的应用。

•明确目标:介绍本次数学活动的目的、要求和预期成果。

新课教学•问题设置:给出几个与整式加减相关的实际问题,让学生分组选择或抽签决定研究的问题。

•模型构建:引导学生将实际问题转化为整式加减的数学模型,可以使用实物教具或纸笔进行构建。

•计算求解:小组合作,利用整式加减的运算法则进行计算,得出结果。

•结果验证:鼓励学生通过不同方式验证结果的正确性,如反向推理、实际测量等。

课堂小结•分享交流:各小组展示研究成果,分享解题思路和经验。

•总结归纳:教师总结整式加减在解决实际问题中的应用,强调数学建模的重要性。

•反思提升:引导学生反思活动过程中的得失,提出改进建议。

人教版数学七年级上册《 第二章 整式的加减 》教案

人教版数学七年级上册《 第二章 整式的加减 》教案

人教版数学七年级上册《第二章整式的加减》教案一. 教材分析人教版数学七年级上册《第二章整式的加减》是学生在学习了有理数、一元一次方程等知识后,进一步学习代数的基础。

这一章主要介绍整式的加减运算法则,通过学习,学生能够掌握整式的加减运算,并为后续的函数、方程等知识的学习打下基础。

本章内容贴近学生的生活实际,有利于激发学生的学习兴趣。

二. 学情分析七年级的学生已经掌握了有理数、一元一次方程等基础知识,具备了一定的逻辑思维能力。

但是,对于整式的加减运算,学生可能还存在着一定的困难,因此,在教学过程中,需要注重引导学生理解整式的加减运算法则,通过具体的例子,让学生能够熟练地进行整式的加减运算。

三. 教学目标1.知识与技能:理解整式的加减运算法则,能够进行简单的整式加减运算。

2.过程与方法:通过实例,培养学生的观察、分析、归纳能力,提高学生解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作精神,使学生感受到数学与生活的紧密联系。

四. 教学重难点1.重点:整式的加减运算法则。

2.难点:整式加减运算的灵活应用。

五. 教学方法采用问题驱动法、案例教学法、合作学习法等,引导学生主动探究,培养学生的动手操作能力和独立思考能力。

六. 教学准备1.教学素材:教材、多媒体课件、练习题。

2.教学工具:黑板、粉笔、多媒体设备。

七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,如购物时找零、制作标语等,引导学生发现这些问题都可以用整式的加减来解决,从而激发学生的学习兴趣。

2.呈现(10分钟)讲解整式的加减运算法则,通过具体的例子,让学生理解并掌握整式的加减运算。

3.操练(10分钟)让学生分组进行练习,互相讨论,教师巡回指导。

在此过程中,教师要注意发现学生的错误,并及时进行纠正。

4.巩固(10分钟)针对学生练习中出现的问题,进行讲解,让学生进一步巩固整式的加减运算。

5.拓展(10分钟)引导学生思考:如何将整式的加减运算应用到实际问题中?让学生举例说明。

第二章整式的加减全章教案

第二章整式的加减全章教案

第二章整式的加减全章教案第一篇:第二章整式的加减全章教案七年级上期数学第二章教案第二章整式教材内容本章的主要内容是单项式、多项式、整式等有关概念,合并同类项、去括号、整式的加减运算。

课本首先通过实例列式表示数量关系,介绍了单项式、多项式以及整式等有关概念,然后通过具体问题的解决,类比有理数的运算律,明确了同类项可合并的道理,明确了整式加减法的法则和去括号法则.这些内容也是对前一章内容的进一步认识。

本章在呈现形式上突出了整式加减产生的背景,使学生经历实际问题“符号化”的过程,发展符号感,为探索有关运算法则设置了归纳、类比等活动,力求学生对算理的理解和法则的掌握。

本教案处理去括号法则是直接运用乘法分配律去括号的;并对某些内容和例题作了小范围的调整和增删。

教学目标〔知识与技能〕1、理解单项式、多项式和整式及有关概念,弄清它们之间的区别和联系。

2、理解同类项的概念,能熟练的合并同类项。

3、掌握去括号法则,能准确地去括号。

4、熟练地进行整式的加减运算。

〔过程与方法〕1、通过丰富的实例,经历观察、分析、交流、概括出单项式、多项和整式等有关概念。

2、经历类比有理数的运算律,探索整式的加减运算法则。

3、发展有条理的思考及语言表达能力和用数学知识解决实际问题的能力。

〔情感、态度与价值观〕1、培养学生主动探究,合作交流的意识。

2、通过将数的运算推广到整式的运算,在整式的运算中又不断地运用数的运算,使学生感受到认识事物是一个由特殊到一般,由一般到特殊的辩证过程,培养学生初步的辩证唯物观念。

重点难点理解整式的概念,会进行整式的加减去处理运算是重点;正确区分单项式的次数与多项式的次数,括号前是负数时去括号是难点。

课时分配2.1整式………………………………… 3课时2.2整式的加减……………………………………… 3课时本章小结………………………………………… 2课时2.1 整式2.1.1单项式[教学目标]1、能用代数式表示实际问题中的数量关系;2、理解单项式、单项式的系数和次数等概念,会指出单项式的次数和系数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:2.1整式(第1课时)一、教学目标1.经历列单项式表示数量关系的过程,发展符号感.2.知道单项式及其系数、次数的意义,会准确确定一个单项式的系数和次数.二、教学重点和难点1.重点:列单项式表示数量关系,单项式及其系数、次数的意义.2.难点:列单项式表示数量关系.三、教学过程(一)基本训练,巩固旧知1.填空:幂x3的指数是,底数是;幂a2的指数是,底数是;幂n的指数是,底数是 .(二)创设情境,导入新课师:前面我们学习了第一章有理数,从今天开始,我们要学习第二章整式的加减.(板书:第二章整式的加减)同学们自然会问:什么是整式?我们将在本节课和下节课学习什么是整式.(板书:2.1整式)这节课我们首先学习整式的一种,叫单项式.(板书:(单项式))(三)尝试指导,讲授新课师:什么样的式子是单项式呢?请大家看一个例子.(师出示下面的板书)一种笔记本售价是每本2元,那么买2本所需钱是元,买5本所需钱是元,买10本所需钱是元,买100本所需钱是元,买x本所需钱是元.师:(指板书)一种笔记本售价是每本2元,那么买2本所需钱是多少元?生:4元.(师板书:4)师:(指板书)那么买5本所需钱是多少元?生:10元.(师板书:10)师:(指板书)那么买10本所需钱是多少元?买100本所需钱是多少元?生:20元,200元.(师板书:20,200)师:(指板书)一种笔记本售价是每本2元,那么买x本所需钱是多少元?生:……(多让几位同学发表看法)师:(指板书)一种笔记本售价是每本2元,那么买x本所需钱是2×x元.(边讲边板书:2×x)为了书写方便,(指乘号)通常将乘号写成“·”,(边讲边将“2×x”改为“2·x”)或者将乘号省略不写. (边讲边用彩笔将“2·x”改为“2x”)2x就表示2×x.师:(板书:2x并指2x)2x就是一个单项式.单项式当然不只2x这么一个,在现实生活中,存在大量的其它的单项式,同学们通过把下面的问题列成式子,就能找到大量的单项式.(四)试探练习,回授调节2.填空:(1)一支铅笔的售价是x元,一支圆珠笔的售价是铅笔的2.5倍,一支圆珠笔的售价是元;(2)边长为a的正方形面积为;(3)边长为a正方体的体积为;(4)一辆汽车的速度是每小时v千米,它t小时行驶的路程为千米;(5)数n的相反数是 .(生做题,师巡视指导,完成后,生报答案,如果必要,酌情讲解,并将2.5x,a2,a3,vt,-n板书出来)(五)尝试指导,讲授新课师:(指准板书)2x是单项式,2.5x,a2,a3,vt,-n这些式子也是单项式.现在请问:什么样的式子叫做单项式?生:……(多让几名学生发表看法,要肯定学生回答中合理的部分)师:这些式子有一个共同的特点,什么特点呢?它们都是数字与字母的积.(指准式子)2x是数2与字母x的积,2.5x是数2.5与字母x的积. a2是数1与字母a2的积,a3是数1与字母a3的积,vt是数1与字母v、t的积,-n是数-1与字母n的积.师:通过上面的分析,哪位同学知道:什么叫做单项式?生:……师:数字与字母的积,这样的式子叫做单项式.(板书:数字与字母的积,这样的式子叫做单项式)师:需要指出的是,单独一个数或一个字母也是单项式.(板书:单独一个数或一个字母也是单项式)譬如,单独一个数5,-12,2008等都是单项式;又譬如,单独的一个字母x也是单项式.(六)试探练习,回授调节3.判断下列式子是不是单项式:(1)4x;(2)-4x2y;(3)3a2bc;(4)7.2;(5)a;(6)2+x.(七)尝试指导,讲授新课师:(板书:-4x2y)我们都知道,-4x2y是单项式,(指准式子)它是数字-4与字母x2、y的积,换一种说法,-4是数字因数,x2、y是字母因数,我们把数字因数-4叫做这个单项式的系数.(板书:的系数是-4)师:(指已板书的单项式2x)哪位同学知道2x这个单项式的系数?生:2.(以下师让生回答已板书的其它单项式的系数)师:明确了单项式系数的概念,下面我们再来看单项式的次数的概念.(板书:次数)师:(指准-4x2y)这个单项式含有两个字母,字母x指数是2,字母y的指数是1,所有字母的指数和是3,我们把单项式-4x2y所有字母指数的和3叫做这个单项式的次数.(板书:是3)师:一个单项式的次数是几次,我们就把这个单项式叫做几次单项式.(指-4x2y)这个单项式的次数是3,就叫做三次单项式.(板书:是三次单项式)师:(指已板书的单项式2x)这个单项式的次数是几次?生:……师:(指2x)这个单项式只含有一个字母,x的指数是1,所以所有字母指数的和也是1,所以这个单项式的次数是1,这个单项式是一次单项式.(以下师让生回答已板书的其它单项式的次数)(八)试探练习,回授调节4.填空:(1)单项式2a2的系数是,次数是,是次单项式;(2)单项式-1.2h的系数是,次数是,是次单项式;(3)单项式x2y的系数是,次数是,是次单项式;(4)单项式-t2的系数是,次数是,是次单项式;(5)单项式5a4b的系数是,次数是,是次单项式;(6)单项式x的系数是,次数是,是次单项式;(7)单项式35xyz的系数是,次数是,是次单项式;(8)单项式2vt3的系数是,次数是,是次单项式.5.用单项式填空:(1)每包书有12册,n包书有册;(2)一个长方形的长是0.9,宽是a,这个长方形的面积是;(3)全校学生总数是x,其中女生占总数48%,则女生人数是,男生人数是;(4)产量由m千克增长10%,就达到千克.(九)归纳小结,布置作业师:本节课我们学习了什么?学习了本节课你有什么收获?生:……(多让几位同学概括总结)(作业:P59习题1.)课题:2.1整式(第2课时)一、教学目标1.知道多项式及其项、常数项、次数的意义,会指出多项式的各项与多项式次数.2.知道整式的意义.二、教学重点和难点1.重点:多项式及其项、常数项、次数的概念.2.难点:指出多项式的各项.三、教学过程(一)基本训练,巩固旧知1.判断正误:对的画“√”,错的画“×”.(1)5y是单项式;()(2)5y+1是单项式;()(3)13是单项式;()(4)单项式ab的系数是0;()(5)单项式2ab3的系数是2;()(6)单项式xy2次数是2;()(7)单项式4xy2是三次单项式. ()2.填空:青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段.列车在冻土地段行驶速度是每小时100千米,它2小时行驶的路程是千米,3小时行驶的路程是千米,t小时行驶的路程是千米.3.用单项式填空:(1)底边长为a,高为h的三角形面积是;(2)一辆汽车从拉萨出发,3小时后到达相距s千米的尼木县城,这辆长途汽车的平均速度是;(3)一台电视机原价a元,现按原价的9折(9折就是90%)出售,这台电视机现在的售价为元.(二)创设情境,导入新课师:上节课我们学习了整式的一种:单项式,本节课我们学习整式的另一种:多项式.(板书课题:整式(多项式))(三)尝试指导,讲授新课(师出示下面的板书)4x-56x2-2x+7师:这两个式子是单项式吗?生:不是.师:这两个式了有什么共同的特点?(稍停)它们都是几个单项式的和.它们怎么都是几个单项式的和呢?师:(指4x-5)4x-5可以转化为4x+(-5),(板书:(4x+(-5))),所以,4x -5可以看成是单项式4x与-5的和.师:(指6x2-2x+7)6x2-2x+7可以转化为6x2+(-2x)+7,(板书:(6x2+(-2x)+7))所以,6x2-2x+7可以看成是6x2,-2x,7的和.师:(指两个式子)所以这两个式子的共同特点都是几个单项式的和.师:几个单项式的和叫做多项式.所以4x-5是多项式,(板书:多项式)6x2-2x +7也是多项式. (板书:多项式)师:(指准式子)在多项式中,每个单项式叫做多项式的项.所以,多项式4x-5的项是4x,-5.(板书:的项是4x,-5)多项式6x2-2x+7的项有哪些?生:6x2,-2x,7.(师板书:的项是6x2,-2x,7)师:不含字母的项,叫做常数项.所以,(指准式子)多项式4x-5的常数项是-5.(板书:常数项是-5)多项式6x2-2x+7的常数项是什么?生:7.(板书:常数项是7)(四)试探练习,回授调节4.填空:(1)多项式x2+3x+4是单项式,,的和,它的项是,,,常数项是;(2)多项式-x2-3+x是单项式,,的和,它的项是,,,常数项是;(3)多项式m2-1是单项式,的和,它的项是,,常数项是;(4)多项式2x+3y2-3xy2是单项式,,的和,它的项是,, .(五)尝试指导,讲授新课师:(指准4x-5)这个多项式有两项,4x这一项的次数是一次,常数项的次数是0次.次数最高项的次数是一次,我们就说多项式4x-5的次数是一次.(板书:次数是1次)师:(指准6x2-2x+7)这个多项式有三项,6x2这一项的次数是二次,-2x这一项的次数是一次,常数项的次数是0次.次数最高项的次数是二次,我们就说多项式6x2-2x+7的次数是二次.(板书:次数是2次)(六)试探练习,回授调节5.填空:(1)多项式3+2x2-4x次数最高项是,次数最高项的次数是,这个多项式的次数是;(2)多项式m3-1次数最高项是,次数最高项的次数是,这个多项式的次数是;(3)多项式2x-3xy2+1次数最高项是,次数最高项的次数是,这个多项式的次数是;(4)多项式3x4-2x2y2次数最高项是,次数最高项的次数是,这个多项式的次数是 .(七)归纳小结,布置作业师:本节课我们学习了整式的另一种,叫做多项式.(指准板书)几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.多项式中,次数最高项的次数,就是这个多项式的次数.单项式和多项式统称整式.(板书:单项式和多项式统称整式)复习题2.)(作业:P75课题:2.1整式(第3课时)一、教学目标1.巩固单项式、多项式的有关概念.2.会列较简单的多项式表示数量关系,发展符号感.二、教学重点和难点1.重点:列多项式表示数量关系.2.难点:列多项式表示数量关系.三、教学过程(一)基本训练,巩固旧知1.填空:(1)单项式3x 的系数是 ,次数是 ,是 次单项式; (2)单项式πr 2的系数是 ,次数是 ,是 次单项式; (3)单项式-x 2y 的系数是 ,次数是 ,是 次单项式;(4)单项式22a b 2的系数是 ,次数是 ,是 次单项式.2.填空: (1)多项式―x 2―3x +4的项是 ,最高次项是 ,常数项是 ,次数是 ;(2)多项式3-m 2的项是 ,最高次项是 ,常数项是 ,次数是 ;(3)多项式a 3+a 2b +ab 2的项是 ,最高次项是 ,次数是 . 3.判断正误:对的画"√",错的画"×".(1)多项式3a -5的项是3a ,5; ( )(2)多项式x 3+x 2y 2的次数是3次; ( ) (3)几个多项式的和仍是多项式; ( ) (4)单项式和多项式统称整式. ( ) (二)创设情境,导入新课师:上节课,我们学习了多项式的概念,本节课我们要学习用多项式表示数量关系.请看例1.(三)尝试指导,讲授新课 例1 用多项式填空:(1)温度由t 度下降5度后是 度;(2)甲数x 的13与乙数y 的12的和可以表示为 ;(3)如图,圆环的面积为 .(四)试探练习,回授调节 4.用多项式填空:(1)温度由-3度下降t 度后是 度; (2)温度由-3度上升t 度后是 度; (3)一个数比x 的2倍小3,这个数为 ; (4)a 与b 两数平方的和为 ; (5)如图,三角尺的面积为 . 5.用整式填空:(1)体重由x 千克增加2千克后是 千克; (2)1千克大米售价1.2元,x 千克大米售价 元;(3)a ,b 分别表示长方形的长与宽,则长方形的周长为 ; (4)a ,b 分别表示梯形的上底和下底,h 表示梯形的高,则梯形的面积为 ;(5)买一个篮球需要x 元,买一个排球需要y 元,买一个足球需要z 元,买3个篮球、5个排球、2个足球共需 元.Rr(6)如图,是一所住宅的建筑平面图, 这所住宅的建筑面积是平方米.6.思考题:如图,搭1个正方形需要4根小棒,搭2个正方形需要 根小棒,搭3个正方形需要 根小棒,搭x 个正方形需要 根小棒,搭2008个正方形需要 根小棒.(教学建议:对不少学生而言,这些练习可能有一定难度.要给学生充分时间思考,要让学生安下心来做题,快者快做,慢者慢做,不要催学生,不要求所有学生完成所有练习,差生能真正独立思考完成二三小题就不错了,中下生能完成4题就很好了.老师要加强巡视指导,给各类学生以适当鼓励) (五)归纳小结,布置作业师:今天我们学习了什么?通过本节课学习,你有什么收获? 生:……(多让几位同学回答) (作业:P 59习题2.)课题:2.2整式的加减(第1课时) 一、教学目标1.经历同类项概念的形成过程,知道什么是同类项.2.经历合并同类项法则的形成过程,会合并同类项. 二、教学重点和难点1.重点:同类项的概念,合并同类项.2.难点:同类项概念的形成. 三、教学过程(一)创设情境,导入新课师:前面我们学习了整式的概念,从本节课开始,我们学习整式的加减.(板书课题:2.2整式的加减)整式的加减实质上就是合并同类项,本节课我们先来学习合并同类项.(板书:(合并同类项)) (二)尝试指导,讲授新课师:要合并同类项,我们首先要弄清什么是同类项.让我们一起来看下面的例子. 师:5个x 加上2个x 等于什么?(边讲边板书:5x +2x =) 生:7个x.(师板书:7x )师:-5ab 2加上3ab 2等于什么?(边讲边板书:-5ab 2+3ab 2=) 生:……师:根据分配律,-5ab 2+3ab 2=(-5+3)ab 2(边讲边板书:(-5+3)ab 2)等于-2ab 2.(板书:=-2ab 2)x 6米师:(指准5x+2x=7x)这个式子的左边是5x与2x两项,右边只有7x一项,这就是说,左边的两项可以合并成右边的一项.师:(指准-5ab2+3ab2=-2ab2)这个式子的左边也有两项-5ab2,3ab2,右边只有一项-2ab2,这就是说,左边的两项也可以合并成一项.师:(指式子)观察、分析这两个式子,请大家分组讨论这么一个问题:怎么样的两项可以合并成一项?(出示板书:怎么样的两项可以合并成一项?)(生分组讨论,师巡视指导)师:哪位同学知道怎么样的两项可以合并成一项?生:……(多让几位同学发表看法)师:(在-5ab2,3ab2下面划线,并指准)两项所含字母相同,-5ab2这一项所含字母是a,b,3ab2这一项所含字母也是a,b.(板书:所含字母相同)师:(指准-5ab2,3ab2)并且相同字母的指数也相同,这一项字母a的指数是1,这一项字母a的指数也是1;这一项字母b的指数是2,这一项字母b的指数也是2.(板书:并且相同的字母的指数也相同)师:(指-5ab2,3ab2)像这样所含字母相同,相同字母的指数也相同的项,叫做同类项.(板书:的项,叫做同类项)师:现在,我们再回到原来的问题:怎么样的两项可以合并成一项?生:……师:同类项可以合并成一项,而且只有同类项才可以合并成一项,不是同类项不能合并成一项.(三)试探练习,回授调节1.判断下列各组的两项是不是同类项:(1)12x与2x;(2)2x2y与-5x2y;(3)2a与a2;(4)4xy与5yx;(5)4abc与4ab;(6)7xy2与7x2y;(7)a3与53;(8)-25与12.(由于-25与12可以合并成一项-13,因此,常数项与常数项也是同类项)2.找出多项式4x2-8x+5-3x2+6x-2中的同类项:(1)4x2与是同类项;(2)-8x与是同类项;(3)5与是同类项.(四)尝试指导,讲授新课师:我们已经知道,同类项是可以合并在一起的.(指板书的课题)把几个同类项合并成一项,叫做合并同类项.师:(指板书的两个式子)从这两个式子,哪位同学知道怎么合并同类项?生:……(多让几位同学发表看法)师:系数相加,字母部分不变.(板书:系数相加,字母部分不变)例1 合并下列各式的同类项:(1)xy2-15xy2;(2)-3ab+ba-2ab.(先让生尝试,师再板演讲解,讲解时要紧扣法则)3.填空:(1)6x-4x=( )x=;(2)-7ab+6ab=( )ab=;(3)10y2+y2=( )y2=;(4)-0.5a+2a-3.5a=( )a= .4.合并下列各式的同类项:(1)-8x2-7x2=(2)13xy-xy=(3)-4a2b+4a2b=(4)14y-12y+2y=5. 判断正误:对的画"√",错的画"×".(1)3a2-2a2=1;()(2)3y-y=3;()(3)5a+2b=7ab;()(4)7ab-7ba=0;()(5)4x2y-2xy2=2x2y;()(6)3x2+2x3=5x5. ()6.思考题:如图,大圆的半径是R,小圆的面积是大圆面积的49,则阴影部分的面积为 .(五)归纳小结,布置作业师:本节课,我们学习了什么是同类项及怎么合并同类项.(指准-5ab2+3ab2这个式子)所含字母相同,并且相同字母的指数也相同的项叫做同类项.合并同类项的方法是系数相加,字母部分不变.合并同类项的这个方法是根据什么得到的?生:……(根据分配律)(作业:P65练习1.3.)课题:2.2整式的加减(第2课时)一、教学目标1.会合并多项式中的同类项.2.会先合并同类项,再求多项式的值.R二、教学重点和难点1.重点:合并多项式中的同类项.2.难点:把多项式中的同类项写在一起.三、教学过程(一)基本训练,巩固旧知1.判断下列各组中的两项是不是同类项:(1)0.2x2y与0.2xy2;(2)4abc与4ac;(3)mn与-nm;(4)-125与20.2.合并下列各式的同类项:(1)4x2-8x2=(2)-3x2y+2x2y=(3)3xy2-2xy2=(4)2x2+x2-3x2=3.判断正误:对的画“√”,错的画“×”.(1)a+b=b+a;()(2)a-b=b-a;()(3)a-b=-b+a;()(4)x2+2-x=x2+x-2;()(5)x2+2-x=x2-x+2;()(6)x2+2-x=x+2-x2;()(7)x2+2-x=-x+2+x2. ()(强调:交换多项式的项,要连同符号一起交换)(二)创设情境,导入新课师:上节课我们学习了什么是同类项及怎么合并同类项,本节课我们将学习如何合并多项式中的同类项.请看例1.(三)尝试指导,讲授新课例1 合并多项式4x2+2x+7+3x-8x2-2的同类项.解:4x2+2x+7+3x-8x2-2 第一步:划线,找出同类项;=4x2-8x22x+3x+第二步:把找出的同类项写在一起;=-4x2+5x+5 第三步:合并同类项.(第二步不宜加括号,第三步可直接算出结果,这样可能会简单些)(四)试探练习,回授调节4.合并下列各式的同类项:(1)a2-3a+8-3a2+5a-7==(2)-3x2y-2xy2+3xy2+2x2y==(3)4a2+3b2+2ab-4a2-4b2==(五)尝试指导,讲授新课例2 求多项式3a+abc-13c2-3a+13c2的值,其中,a=-16,b=2,c=-3.(先合并多项式的同类项,再代入数值,最后得到结果,解题格式要与教材相同)(六)试探练习,回授调节5.求多项式2x2-5x+x2+4x-3x2-2的值,其中x=12.(五)归纳小结,布置作业师:本节课我们学习了合并多项式的同类项,合并多项式的同类项有三步,是哪三步?生:……(作业:P69习题1.P75复习题3.)课题:2.2整式的加减(第3课时)一、教学目标1.经历去括号法则的形成过程,知道去括号法则.2.会去括号.二、教学重点和难点1.重点:去括号.2.难点:去括号法则的形成过程.三、教学过程(一)基本训练,巩固旧知1.合并下列多项式的同类项:(1)8a+2b-5a-b=(2)8x-3y+z-4x-3y+2z=2.求多项式3x2-8x+2x3-13x2+2x-2x3+3的值,其中x=-4.3.填空:分配律是a(b+c)=,利用分配律可得:6(x-3)=,-6(x-3)= .(二)创设情境,导入新课师:(板书:8a+2b-(5a-b))这个式子合并同类项的结果是什么?生:3a+b.师:这个结果是错误的!为什么呢?因为这个式子中含有括号,(用彩笔标括号)要合并含有括号的式子的同类项,先要去括号.如何去括号呢?这就是我们这节课要学习的内容.(板书课题:2.2整式的加减(去括号))(三)尝试指导,讲授新课师:如何去括号呢?先看两个去括号的例子.师:(板书:6(x-3)=)利用分配律,6(x-3)等于什么?生:6x-18.(师板书:6x-18)师:(板书:-6(x-3)=)利用分配律,-6(x-3)等于什么?生:-6x+18.(师板书:-6x+18)师:从这两个例子,我们可以看到,(指准-6(x-3)=-6x+18)去括号实际上就是运用分配律,把括号外的因数分别乘括号内的各项.(师板书:+(x-3)=-(x-3)=)师:运用分配律,我们又怎么去掉(指式子)这两个式子中的括号呢?请大家自己动笔先试一试.(生尝试,师巡视)师:(指+(x-3))这个式子不好用分配律,我们可以把+(x-3)写成1×(x-3),(边讲边板书:1×(x-3))这样就可以用分配律了,运用分配律得到的结果是什么?生:x-3.(师板书:=x-3)师:(指-(x-3))这个式子也不好用分配律,我们可以把-(x-3)写成(-1)×(x-3),(边讲边板书:(-1)×(x-3))这样就可以用分配律了,运用分配律得到的结果是什么?生:-x+3.(师板书:=-x+3)师:从上面的四个例子说明,去括号的过程实际上就是运用分配律的过程.前两个式子(指6(x-3),-6(x-3))是直接用分配律去括号,而后两个式子(指+(x-3),-(x-3))用分配律去括号比较麻烦,这就有必要寻找去括号的规律. 师:去掉中间过程,(擦掉中间过程,板书成+(x-3) =x-3,-(x-3) =-x +3)得到+(x-3) =x-3,-(x-3) =-x+3.从这两个式子,同学们发现去括号有什么规律吗?(生分组讨论,师巡视指导)师:哪位同学发现了去括号的规律?生:……(多让几位同学发表看法)师:从这两个式子,我们可以发现,(指准+(x-3) =x-3)如果括号前是“+”号,去括号后括号里的各项都不变符号;(板书上面这句话)(指准-(x-3)=-x+3)如果括号前是“-”号,去括号后括号里各项都改变符号.(板书上面的这句话)请大家把这两句话读一遍.(生读)例1 去括号:(1)a+(b+c-d);(2)a+(-b+c-d);(3)a-(b+c-d);(4)a-(-b+c-d).(四)试探练习,回授调节4.去括号:(1)a+(b-c);(2)a-(b-c);(3)a-(-b+c);(4)a+(-b+c);(5)(a+b)-c;(6)-(a+b)-c.(五)尝试指导,讲授新课例2 先去括号,再合并同类项:(1)8a+2b-(5a-b);(2)(5a-3b)-3(a2-2b).(生先尝试,师再板演讲解;(2)题除教材中的解法,也可以用分配律直接去掉括号)(六)试探练习,回授调节5.化简:(1)12(x-0.5)=(2)-5(1-15x)=(3)-5a+(3a-2)-(3a-7)=(4)13(9y-3)+2(y+1)=(七)归纳小结,布置作业师:本节课我们学习了如何去括号. (指准+(x-3) =x-3)如果括号前是“+”号,去括号后括号里各项都不变符号;(指准-(x-3)=-x+3)如果括号前是“-”号,去括号后括号里各项都改变符号;(指准-6(x-3)=-6x+18)如果括号前是其它因数,那么用分配律可以直接去掉括号.(作业:P69习题2.)课题:2.2整式的加减(第4课时)一、教学目标1.会进行整式加减运算.2.会先进行整式的加减,再求值.二、教学重点和难点1.重点:进行整式加减运算.2.难点:求值.三、教学过程(一)基本训练,巩固旧知1.判断正误:对的画“√”,错的画“×”.(1)a-(b-c+d)=a-b-c+d;()(2)a-(b+c)-d=a-b-c-d;()(3)(a+b) -(-c+d)=a+b-c-d;()(4)a+(-b+c-d)=a-b+c-d;()(5)-(a-b)+(c-d)=-a+b-c+d. ()2.去括号:(1)(a+b)+(c-d)=(2)(a+b)-(c-d)=(3)-(a+b)-(-c-d)=(4)(a-b)-(-c+d)=(5)-(a-b)+(-c-d)=(6)a-(-b+c)-d=(二)创设情境,导入新课师:前面我们学习了合并同类项、去括号,本节课我们学习整式的加减.(板书课题:2.2整式的加减)进行整式的加减运算,实际上就是做两件事,第一件事是去括号,第二件事是合并同类项.请看例1.(三)尝试指导,讲授新课例1 计算:(1)(2x-3y)+(5x+4y);(2)(8a-7b)-(4a-5b).(按去括号、合并同类项两步先让生尝试)例2 计算:(2a-3b)+[4a-(3a-b)].(先去小括号)(四)试探练习,回授调节3.计算:(1)(-x+2x2+5)+(4x2-3-6x);(2)(3a2-ab+7)-(-4a2+2ab+7);(3)(2a-3b)-[4a+(3a-b)].4.填空:整式x+y与整式x-y的和为,差为.(五)尝试指导,讲授新课例3 求12x-2(x-13y2)+(-32x+13y2)值,其中x=-2,y=23.(按教材格式板演)(六)试探练习,回授调节5.先化简,再求值:5(3a2b-ab2)-(ab2+3a2b),其中a=12,b=13.(七)归纳小结,布置作业师:本节课我们学习了整式的加减,进行整式的加减运算有两步,是哪两步?生:……(作业:P70习题3.4.)课题:2.2整式的加减(第5课时)一、教学目标1.会列式计算整式加减的文字题.2.会列较简单的整式加减式子表示实际问题中的数量关系,发展符号感.二、教学重点和难点1.重点:列较简单的整式加减式子表示数量关系.2.难点:列较简单的整式加减式子表示数量关系.三、教学过程(一)创设情境,导入新课师:前面我们学习了如何进行整式加减运算,本节课我们学习几个与整式加减有关的例题,算作是对整式加减的一种应用.(板书课题:2.2整式的加减(应用))请看例1.(二)尝试指导,讲授新课例1列式表示比x的7倍大3的数与比x的-2倍小5的数,计算这两个数的差.解:比x的7倍大3的数为7x+3,比x的-2倍小5的数为-2x-5,这两个数的差为(7x+3)-(-2x-5)=7x+3+2x+5=9x+8(每一步都让学生尝试)(三)试探练习,回授调节1.求整式8xy-x2+y2与x2-y2+8xy的差.2.列式表示比a的5倍大4的数与比a的2倍小3的数,计算这两个数的和. (四)尝试指导,讲授新课例2 一种笔记本的单价是x元,圆珠笔的单价是y元.卓玛买这种笔记本3个,买圆珠笔2支;扎西买这种笔记本4个,买圆珠笔3支.买这些笔记本和圆珠笔,卓玛和扎西一共花费多少钱?(教学建议:按教材P69解法一解比较自然,要让学生充分熟悉题意,充分尝试的基础上再讲解,熟悉题意的工夫要下足,这是需要耐心的,可以通过读题、说题、画题、列表、实物展示等方式让学生熟悉题意)(五)试探练习,回授调节3.某村土豆种植面积是a亩,白菜种植面积比土豆种植面积少8亩,青稞种植面积是白菜种植面积的10倍,问该村土豆、白菜、青稞一共种植多少亩.(六)尝试指导,讲授新课例3 两船从同一港口同时出发反向而行,甲船顺水,速度为每小时(50+a)千米,乙船逆水,速度为每小时(50-a)千米.(1)2小时后两船相距多远?(2)2小时后甲船比乙船多航行多少千米?(解题格式与板材P67例题相同)(七)试探练习,回授调节4.填空:已知某轮船顺水航行速度为每小时(a+y)千米,逆水航行速度为每小时(a-y)千米,(1)轮船顺水航行3小时,航行了千米;(2)轮船逆水航行1.5小时,航行了千米;(3)轮船顺水航行3小时,逆水航行1.5小时,一共航行了千米. (八)归纳小结,布置作业师:本节课我们学习了几个例题,例2例3都是和实际问题有关的.做这类应用题,关键是要静下心来,好好读题,好好画题——把题目的意思画出来,搞清题目的意思.做应用题还需来有信心和毅力,不要被题目吓倒!如果你真的动了脑筋,自己做出了一道题,那么再做第二道题、第三道题就有希望了.(作业:P67练习2.P70习题7.)课题:第二章整式的加减复习(第1、2课时) 一、教学目标1.知道第二章整式的加减知识结构图.2.通过基本训练,巩固第二章所学的基本内容.3.通过典型例题和综合运用,加深理解第二章所学的基本内容,发展能力. 二、教学重点和难点1.重点:知识结构图和基本训练.2.难点:典型例题和综合运用. 三、教学过程(一)归纳总结,完善认知ac整式的加减合并同类项整式多项式去括号单项式的式子列含字母表示数用字母(上面的知识结构图,要结合下面的讲解逐步板书出来)师:我们已经学完了第二章整式的加减,今天我们就来复习第二章.(板书课题:第二章整式的加减复习) 师:第二章的内容不像第一章那么多,哪位同学能用几个字来概括第二章的内容? 生:……(多让几位学生说)师:对!整式的加减.因为要学整式的加减,我们学习了合并同类项和去括号;因为要学整式的加减,我们学习了什么是整式,以及单项式和多项式.整式的加减是本章学习的终点,其它内容都是为了学习整式的加减做准备的.那么,本章的内容是从什么地方开始,又是如何一步一步走向“整式的加减”的呢? (师出示下面的题目)一本笔记本售价2元,买n 本需 元.师:本章的内容是从“用字母表示数”开始的.(板书:用字母表示数)用字母表示数是什么意思?大家看这个例子,(指板书的题目)一本笔记本售价2元,买n 本需多少元?这里买n 本中的n 就是用字母表示数,n 具体表示是什么数?可能是0,可能是1,2,3,4等等.这就是用字母表示数的意思.师:有了表示数的字母,我们就可以列出含字母的式子.(板书:列含字母的式子)譬如,在刚才的这个例子中,(指板书的题目)一本笔记本售价2元,买n 本需2n 元.(板书:2n )这里2n 就是列出的含字母的式子.师:在实际问题中,可能列出含各种各样字母的式子,其中比较简单的一种叫单项式.(板书:单项式)数字与字母的积,这样的式子叫做单项式.(指板书)2n 是一个单项式.学习单项式还需掌握单项式的系数、次数的概念.师:在学习单项式的基础上,我们又学习了多项式的概念.(板书:多项式)什么是多项式呢?几个单项式的和叫做多项式.学习多项式还需掌握多项式的项、常数项、次数的概念.师:单项式是整式,多项式也是整式,单项式和多项式统称整式.(板书:整式) 师:接着,我们又学习了合并同类项(板书:合并同类项)和去括号.(板书:去括号)合并同类项、去括号从表面上看,它们干的是两件不相同的事,但出人意外的是,它们都是依据分配律a(b +c)=ab +ac.(板书:a(b +c)=ab +ac )。

相关文档
最新文档