波色统计和费米统计
量子光学实验习题

量子光学实验习题量子光学是研究光作为粒子(光子)的性质和行为的学科。
在量子光学领域,我们探索着光子的波粒二象性、光子之间的量子纠缠、光与物质之间的相互作用等重要问题。
为了深入理解量子光学的基本概念和实验技术,下面将提出几道习题,希望读者能够思考并解答。
习题一:波粒二象性1. 解释光的波粒二象性是什么意思?2. 请列举一些证明光的波粒二象性的实验证据。
习题二:光子统计1. 什么是玻色统计和费米统计?2. 请简要阐述为什么光子服从玻色统计。
习题三:量子纠缠1. 解释量子纠缠现象是什么。
2. 描述一个量子纠缠的实验过程。
习题四:相干与干涉1. 解释相干性在光学中的重要性。
2. 描述一个干涉实验并说明产生干涉条纹的原因。
习题五:光与物质相互作用1. 解释光与物质相互作用的基本原理。
2. 举例说明光与物质相互作用的应用。
解答一:波粒二象性1. 光的波粒二象性指的是光既可以表现出波动性,如干涉和衍射现象,又可以表现出粒子性,如光子的能量量子化。
2. 证明光的波粒二象性的实验证据包括双缝干涉实验、单缝衍射实验、康普顿散射实验等。
解答二:光子统计1. 玻色统计和费米统计描述了粒子的行为概率。
玻色统计适用于由整数自旋的粒子组成的系统,如光子;费米统计适用于由半整数自旋的粒子组成的系统,如电子。
2. 光子服从玻色统计是因为光子是无质量的粒子,不受泡利不相容原理的限制,可以占据同一个量子态。
解答三:量子纠缠1. 量子纠缠指的是在量子系统中,两个或多个粒子之间的状态相互依赖,无法用单个粒子的状态来描述。
2. 量子纠缠的实验过程可以包括将两个纠缠粒子分开,然后对其中一个进行测量,测量结果会瞬间传递到另一个粒子上,使其纠缠状态发生变化。
解答四:相干与干涉1. 相干性在光学中非常重要,它决定了干涉现象的出现。
相干性表示光波振动的一致性,包括相位和幅度的一致性。
2. 干涉实验可以通过将光分为两束,经过不同路径再次交叉,观察光的叠加效果来实现。
量子力学中的粒子统计描述粒子的统计行为

量子力学中的粒子统计描述粒子的统计行为量子力学是描述微观粒子行为的理论框架,它通过统计描述的方式来揭示粒子的行为和性质。
粒子统计描述是量子力学中的一个重要概念,通过它我们可以了解粒子在微观尺度上的行为规律。
本文将介绍两种主要的粒子统计描述,即玻色-爱因斯坦统计和费米-狄拉克统计,并探讨其在实际物理系统中的应用。
一、玻色-爱因斯坦统计玻色-爱因斯坦统计适用于具有完全相同性质的粒子,这类粒子被称为玻色子。
玻色子不受泡利不相容原理的限制,可以存在于相同的量子态。
根据玻色-爱因斯坦统计,每个玻色子的量子态服从玻色-爱因斯坦分布。
玻色-爱因斯坦分布描述了玻色子在不同量子态上的分布情况。
对于一维动能为E的量子态,玻色-爱因斯坦分布的概率函数为:P(E) = (e^(E/(kT))-1)^(-1)其中,k是玻尔兹曼常数,T是系统的温度。
这个分布函数表明,当温度趋近于绝对零度时,具有更低动能的量子态更有可能被占据,从而形成玻色-爱因斯坦凝聚。
玻色-爱因斯坦凝聚是玻色子在低温下进入同一量子态的现象。
在这种凝聚态中,大量的玻色子共享同一量子态,形成波函数的宏观相干性。
这种现象在超流体和玻色-爱因斯坦凝聚气体等领域具有重要的应用,如量子计算、量子通信等。
二、费米-狄拉克统计费米-狄拉克统计适用于具有半整数自旋的粒子,这类粒子被称为费米子。
根据泡利不相容原理,同一个量子态只能容纳一个费米子,这导致费米子之间的排斥作用。
费米-狄拉克统计描述了费米子在不同量子态上的分布情况。
费米-狄拉克分布函数描述了费米子在不同能级上的分布概率。
对于一维动能为E的量子态,费米-狄拉克分布的概率函数为:P(E) = 1 / (e^(E/(kT)) + 1)该分布函数表明,当温度趋近于绝对零度时,具有更低动能的费米子更有可能被占据。
费米-狄拉克统计在凝聚态物理和核物理等领域有广泛的应用。
例如,在金属中,费米-狄拉克统计解释了导电电子的行为。
由于电子的自旋为1/2,符合费米子统计,所以金属中的电子遵循费米-狄拉克统计。
费米统计和玻色统计

1. 费米统计 量子统计给出,费米子系统在温度 T 的平衡 态下,能量为 E 的量子态上的平均粒子数:
N (E) = 1 e
( E − μ ) / kT
+1
— 费米 — 狄拉克统计
N(E) 1 0.5 0 EF
μ = μ (T) — 粒子化学势
EF = μ (0) — 费米能量 T 不太高时,μ (T) ≈ EF
±1
≈e
− ( E − μ ) / kT
=e
μ / kT
⋅e
− E / kT
= A(T )e − E / kT
— 麦克斯韦 — 玻耳兹曼统计 所以高能态时,量子统计就过渡到经典的 麦克斯韦 — 玻耳兹曼统计。
Hale Waihona Puke 2. 玻色统计 量子统计给出,玻色子系统在温度 T 的平衡 态下,能量为 E 的量子态上的平均粒子数:
N (E) = 1 e ( E − μ ) / kT − 1
— 玻色 — 爱因斯坦统计 对所有温度 T ,N(E) 应满足 0 ≤ N(E) < ∞ , 由此可引出玻色 — 爱因斯坦凝聚的概念。
设最低能级(基态)为能量零点:E0 = 0, 1 N 0 = N ( E 0 ) = − μ / kT e −1 T → 0K 时,要求 0 ≤ N0 < ∞ , 则有 μ < 0 。
原子速度分布逐渐达到BEC的三维示意图 1995年实现了超冷原子的BEC,达到了宏观数量的 原子处于同一量子态(2001 Nobel)。 BEC实现了 原子相干,可做成原子干涉仪和量子频标等。
3. 量子统计到经典统计的过渡 当 E 很高时,(E−μ) >> kT
N (E) = 1 e
热力学 统计物理:第八章 玻色统计和费米统计

y
y l
e l • ( ) • ( l )
1
[ y
l
l
ln(1 e l
)]
1
l
l
y 1 e l
l
l l
e l 1 y
Y 1 ln p 1 ln
y
V
N ln
U ln
Y 1 ln
y
dN d ( ln )
dU d ( ln )
Ydy 1 ln dy
U ln ln[ (1 e l )l ]
l
[
l
l ln(1 e l )]
l
l
e l • ( l )
1 e l
l
ll
e l 1
广义力Y是 l 的统计平均值:
y
Y
l
l
y
al
l
l l
e l 1 y
Y也可通过配分函数求得:
Y 1 ln 1 ln[ (1 e l )l ]
y
(dU Ydy dN ) d ( ln ) ln dy d ( ln )
y
(dU Ydy dN ) d ( ln ) ln dy d ( ln )
y
d ( ln ) ln • d ln • d ln dy d ( ln ) ln • d ln • d
e l 1
在实际应用中,两种分布的区别在于将和看作已知常量(开系条件
的平均分布),还是将N和U看作已知常量(孤立系统的最概然分布)。
说明: 本节推导玻色系统和费米系统热力学量的 统计表达式时,采用平均分布观点,也就
是将、和y(粒子能量含外参量y)看作 已知参量,而将热力学量表达为、和y的
函数。
回顾:
第8章 玻色统计和费米统计 《热力学统计物理》

利用
1 U ln Y ln N ln y
ln ln ln (dU Ydy dN ) d ( ) dy d ( ) y
ln ln ln ln d ( ) d ln d d d ( )
12
2 mkT 3 2 1 g( ) Ve [1 3 2 e ] (8.2. 6) 2 h 2
2V x 32 U g 3 (2mkT) x dx h 1 0 e
32
3 2 mkT 3 2 1 g ( ) VkTe [1 5 2 e ] (8.2. 7) 2 2 h 2
第八章 玻色统计与费米统计 14
(2) 费米系统
引入费米系统的配分函数
l [1 e
l l
l l
]
ln l ln(1 e l )
l
通过和玻色系统相似的运算,得到的热力学量的 统计表达式与玻色系统热力学量的统计表达式完全相 同。
第八章 玻色统计与费米统计 15
第八章 玻色统计与费米统计 23
将玻耳兹曼分布所得的结果
e
N h 32 1 ( ) V 2m kT g
2
2
作为零级近似代入上式,表示为经典极限条件的形式
3 1 1N h 32 U NkT [1 ( ) ] 2 4 2 g V 2m kT
3 1 3 U NkT[1 n ] 2 4 2g
1 (dU Ydy dN ) ds T
ln ln (dU Ydy dN ) d (ln ) ln ln dS kd (ln )
玻色统计和费米统计

第八章 玻色统计和费米统计
复习. Boltzmann 统计,玻色统计和费米统计。
玻耳兹曼系统:粒子可以分辨,每一个个体量子态能够容纳的粒 子数不受限制。 玻色系统:粒子不可分辨,每一个个体量子态能够容纳的粒子数 不受限制。 费米系统:粒子不可分辨,每一个个体量子态最多能够容纳一个 粒子。
玻耳兹曼统计是假设系统由大量全同近独立的粒子组成, 具有确 定的粒子数 N ,能量 E ,体积 V . 能级: 简并度: 离子数:
al
ωl
<< 1 ,
又叫做非
简并条件)都遵从玻耳兹曼分布。不满足上述条件的系统遵从玻 色统计分布或者费米统计分布。
玻色统计分布满足
al =
ωl
e
α + β El
−1
, 费米统计分布满足。 al
= E 确定。
=
ωl
e
α + β El
+1
系数 α 与 β 由 ∑ al = N 与
l
∑a E
l l
l
8.1 热力学量的统计表达式
U=
V π 2c3
∞
∫
0
ηω 3 dω e
ηω kT
=
π 2k 4
15c η
3 3
VT 4 。
−1
和热力学结果一致,区别在于热力学中比例系数由实验确定。而 统计物理可以直接求出比例系数。 2.由普朗克公式看出,辐射场的内能密度 U (ω , T ) 随频率 ω 的分布 有一个极大值 ω m , 用数值计算方法可以求得 出 ω m 与温度成正比,这就是维恩位移定理。
S = k (ln Ζ + βU ) =
U
平衡辐射的通量密度 J u 与内能
热学-统计物理12 第 1 2章 玻色统计和费米统计

取对数
(l al 1)! l al!(l 1)!
ln [ln(l al 1)! ln(l 1)! ln al!]
l
al 1,l 1
ln [ln(l al )! ln l! ln al!]
l
由斯特令公式,得:
k
所以
dU Ydy d N 1 d[k(ln ln ln )]
k
而对于经典热力学中的简单系统,
dU TdS pdV dN
( u 是单个粒子的化学势, PdV Ydy )
即 dU Ydy d N TdS
3
U
l
ll
l
ll
e l 1
g
2V
h3
3
(2m) 2
2d
0 e 1
引入变量 x βε ,并将上两式改写为
1
N
g
2V
h3
3
(2mkT) 2
x 2dx 0 e x 1
3
U
g
2V
h3
3
(2mkT) 2 kT
0
时,需要采取玻色统计或费米统计的方法来处理。微观粒 子全同原理决定了二者与玻耳兹曼系统不同的宏观性质。
12.1.2 玻色系统
1.系统的平均总粒子数
如果把α,β 和 y 看作由实验确定的参量,系统的平均
总量子数可由下式给出:
N
l
al
l
ωl eα βεl 1
引入巨配分函数
l [1 e ] l l
玻尔兹曼分布,玻色分布,和费米分布的关系

玻尔兹曼分布,玻色分布,和费米分布的关系
玻尔兹曼分布、玻色分布和费米分布是统计物理中描述粒子分布的三种基本分布。
玻尔兹曼分布是描述经典粒子在能量状态间的分布情况的分布函数。
根据玻尔兹曼分布,粒子在不同能级上的分布概率与能级的能量成反比。
玻色分布是描述玻色子(具有整数自旋)的分布情况的分布函数。
根据玻色分布,玻色子能够在同一能级上具有任意多个粒子,并且各个粒子之间没有排斥作用。
费米分布是描述费米子(具有半整数自旋)的分布情况的分布函数。
根据费米分布,费米子不能在同一个能级上具有多个粒子,并且各个粒子之间存在排斥作用。
三种分布函数在经典极限情况下可以相互转化。
当粒子间的相互作用很弱或忽略不计时,玻色分布和费米分布在高温极限下会趋向于玻尔兹曼分布。
而在低温极限下,玻尔兹曼分布则趋向于费米分布(保守统计中的玻尔兹曼-玻色平衡)。
综上所述,玻尔兹曼分布、玻色分布和费米分布是三种不同情况下的统计分布,它们在特定条件下可以相互转化或者趋于相似的分布模式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A为常数,著名的斯特藩-玻尔兹曼定律
b
11
物理意义: 单位体积的辐射能只与温度有关, 与温度的四次方成正比。
b
12
适用量子分布的理想气体称之为简并气体。
1.费米分布 (适用自旋为1/2的电子系统)
FFD
1 e( )/kT
1
常记为 f ,称为费米能级
b
2
费米分布的性质
别:
b
3
费米能级的具体表示:
其中:n N 表示单位体积的自由电子数 V
b
4
f
f
0
1
2
8
Tc
2 2
mk
(N 2.612V
)2/3
玻色子的质量和粒子数密度决定。
b
7
物理意义:
超导体的正常态转化到超导态可用玻色凝聚解释
b
8
光子气体
平衡系统特点: 高频光子和低频光子总在不停地转换,因而光子数 量也在不断变化,系统中光子数不守恒。
b
9
上式称之为普朗克辐射公式。
b
10
上式为著名的维恩位移定律。 该定律可以用于确定很多星体表面的温度。
第十一章 玻色统计和费米统计
单
粒 子
经典分布 玻尔兹曼分布
态
上
的
三
费米分布
种 分 布
量子分布 玻色分布
经典分布考虑了微观粒子的测不准关系和能量量
子化的影响。但是却没有考虑粒子的全同性以及
泡利不相容原理。
b
1
粒子全同性的微观解释: 微观粒子具有波动性,它们在运动时无轨道可言, 因而无法用编号的方法追踪它们的运动,它们是 不可分辨的。 或者说,粒子的互换不产生新的微观态。
kT (
f0
)2
2 / 3
b
5
玻色分布特点: 玻色子:自旋为零或整数的粒子。主要用于处理 光子气体、声子气体和低温玻色凝聚。
选取单粒子基态能量为零
1 FBE (0) e/kT 1
即: e /kT 1, 0
b
6
1.玻色凝聚
质量不为零,粒子数守恒的玻色子组成的理想气体。 当T趋于绝对零度时,几乎所有的玻色子都会凝聚 到能量、动量为零的基态。