数学华东师大版七年级下册6.2.1方程的简单变形

合集下载

华东师大版七年级下册数学课件6.2.1.2方程的简单变形

华东师大版七年级下册数学课件6.2.1.2方程的简单变形
A.x=-3 B. x=0 C.x=2 D.x=1 14.某同学在解方程 5x-1=■x+3 时,把■处的数字看错了,解得 x=-43,则该同学 把■看成了( D ) A.3 B.-1298 C.-8 D.8
灿若寒星
二、填空题(每小题 3 分,共 12 分) 15.用适当的数或式子填空,使方程的解不变:
A.①②③ B.②③④ C.①④ D.②③
移项
6.(3 分)下列变形属于移项的是( C ) A.由 5x-4=0,得-4+5x=0
B.由 2x=-1,得 x=-12
C.由 4x+3=0,得 4x=0-3
D.由54x-x=5,得14x=5
7.(3 分)方程 3x+6=2x-8 移项后正确的是( C )
A.x=-14 B. x=4 C.x=14 D.x=-4 12.下列移项变形正确的是( C ) A.由 8+2x=x-5,得 2x+x=8-5 B.由 6x-3=x+4,得 6x+x=3+4 C.由 3x-1=x+9,得 3x-x=9+1 D.由 2x-2-x=1,得 2x+x=1+2
灿若寒星
13.颖颖在解关于 x 的方程 5m-x=13 时,误将-x 看作+x,得方程的解为 x=-2, 则原方程的解为( C)
3.将方程中的某些项改变符号后,从方程的一边移到另一边 ,移这项样的变形叫做________.
4.将方程的两边都除以未知数的系数,这样将的未变知形数通的常系称数做化为 ________.
灿若寒星
方程的变形规则
1.(3 分)若 3x+5=8,则 3x=8-____5____.
2.(3 分)若-4x=14,则 x=__-__1_16___.
(1)如果 6(x-34)=2,那么 x-34=___13_____;

新华东师大版七年级数学下册《6章 一元一次方程 6.2 解一元一次方程 等式的性质与方程的简单变形》教案_1

新华东师大版七年级数学下册《6章 一元一次方程  6.2 解一元一次方程  等式的性质与方程的简单变形》教案_1

1.等式的性质与方程的简单变形第1课时由等式的性质到方程简单变形归纳导入复习导入类比导入悬念激趣同学们,你们还记得“曹冲称象”的故事吗?请同学说说这个故事.图6-2-1小时候的曹冲是多么聪明啊!随着社会的进步,科学水平的发达,我们有越来越多的方法测量物体的质量.最常见的方法是用天平测量一个物体的质量.现在认识一下天平,然后回答下列问题:问题1:天平有什么作用呢?它代表什么意义呢?问题2:要让天平平衡应该满足什么条件?问题3:如果天平在平衡的条件下,左盘放着重(3x+4)克的物体,右盘放着重4x克的物体,你知道怎样列式吗?问题4:已知方程4x=3x+4,你能求出x吗?[说明与建议] 说明:通过对天平的认识让学生感受等式可以类比天平,利用天平称物的图示可以形象直观地展现等式的性质,还可以直观地展现方程的求解过程,从而激发学生的求知欲.建议:充分发挥学生的主动性,注重训练学生的合作交流意识,通过解决问题,回顾以前知识,提醒学生注意与新知识的对比.上节课我们将几个实际问题转化成了数学模型即方程,只列出了方程,并没有求出方程的解.其实,在小学我们利用逆运算能够去求形如ax+b=c的方程的解,比如:5x+4=9.对于这样的方程:23x=13,比较复杂,怎么解呢?要想求出这些复杂的一元一次方程的解,我们必须研究等式的性质,才可以解决这个问题.[说明与建议] 说明:学生感受到自己原先具有的知识已不能够解决目前的问题,学生遇到了困难,从而激发学生的求知欲,产生了克服困难的决心和信心,更能积极投入到新课的学习情境中去.建议:可让学生去解一下这个复杂的方程,让他们亲身体会此方程的复杂,然后小组讨论,是否能够找到解决办法.——教材第6页例1、例2 例1 解下列方程: (1)x -5=7;(2)4x =3x -4. 例2 解下列方程: (1)-5x =2;(2)32x =13.【模型建立】利用等式的基本性质解方程就是通过对方程进行简单变形,使含未知数的项在一边,不含未知数的项在另一边,合并同类项后,两边同时除以未知数的系数即可.【变式变形】1.如果5a 3b 5与a 3b 6m -7是同类项,那么m 的值为( B )A .-4B .2C .-2D .42.当x =___3___时,代数式3x -7的值是2. 3.当k =__-12__时,方程5x -k =3x +8的解是-2. 4.解方程:(1)2-3x =5.[答案:x =-1] (2)-2x =6+3x.[答案:x =-65](3)-35x +2=-4.[答案:x =10] (4)-14x +1=-2x +4.[答案:x =127][命题角度1] 等式的基本性质的应用此种题型考查学生对等式的基本性质的理解,应用等式的基本性质对方程进行简单变形. 例 把方程12x =1变形为x =2,其依据是__等式的性质2__.[命题角度2] 移项的识别移项的依据是方程的变形规则1,这一变形过程不改变方程的解.注意:(1)移项的时候一定要变号;(2)移项不等于移动,在等号一边利用加法交换律移动的项不能改变符号;(3)移项不改变方程中项的数目,不要漏写任一项.例 解方程6x +1=-4,移项正确的是( D ) A .6x =4-1 B .-6x =-4-1 C .6x =1+4 D .6x =-4-1[命题角度3] 利用等式的基本性质解方程利用等式的基本性质可以把一个等式进行变形,变成ax =b 的形式,然后两边同时除以a 即可.例 [湖州中考] 方程2x -1=0的解是x =__12__.[命题角度4] 与其他知识综合此类型试题检测学生的审题能力,并能根据题意准确列出式子,利用一元一次方程的解法求出有关字母的值.例 x 为何值时,代数式2x -3与-3x +7的值互为相反数?[答案:x =4] [命题角度5] 解决实际应用题列方程解决实际问题是本章的重点及难点,此类型考题注重考查学生的综合分析能力及解决问题的能力,要求学生能够读懂题意,找准等量关系,正确列出方程并求解.图6-2-2例 [金华中考] 一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图6-2-2方式进行拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可做多少人? (2)若用餐的人数有90人,则这样的餐桌需要多少张?解:(1)4张餐桌:4×4+2=18(人);8张餐桌:4×8+2=34(人). (2)设这样的餐桌需要x 张,由题意得4x +2=90,解得x =22. 答:这样的餐桌需要22张.练习1 P5 1.回答下列问题:(1)由a =b 能不能得到a -2=b -2?为什么? (2)由m =n 能不能得到-m 3=-n3?为什么?(3)由2a =6b 能不能得到a =3b ?为什么? (4)由x 2=y3能不能得到3x =2y ?为什么?解:(1)能,根据等式的基本性质1,两边同时减去2. (2)能,根据等式的基本性质2,两边同时乘以-13.(3)能,根据等式的基本性质2,两边同时除以2. (4)能,根据等式的基本性质2,两边同时乘以6.2. 填空,使所得结果仍是等式,并说明是根据哪一条等式性质得到的: (1)如果x -2=5,那么x =5+________; (2)如果3x =10-2x ,那么3x +________=10; (3)如果2x =7,那么x =________; (4)如果x -12=3,那么x -1=________.解:(1)2,等式的基本性质1. (2)2x ,等式的基本性质1. (3)72,等式的基本性质2. (4)6,等式的基本性质2. 练习2 P71.下列方程的变形是否正确?为什么? (1)由3+x =5,得x =5+3; (2)由7x =-4,得x =-74;(3)由12y =0,得y =2;(4)由3=x -2,得x =-2-3.解:(1)错误,3由等号左边移项到等号右边没有改变符号. (2)错误,方程两边同时除以7,得x =-47.(3)错误,方程两边同时乘以2,得y =0.(4)错误,x 由等号右边移项到等号左边没有改变符号. 2.(口答)求下列方程的解: (1)x -6=6; (2)7x =6x -4; (3)-5x =60; (4)14y =12. 解:(1)x =12. (2)x =-4. (3)x =-12. (4)y =2. 练习3 P8 1.解下列方程: (1)3x +4=0; (2)7y +6=-6y ; (3)5x +2=7x +8; (4)3y -2=y +1+6y ; (5)25x -8=14-0.2x ; (6)1-12x =x +13.解:(1)移项,得3x =-4. 两边同时除以3,得x =-43.(2)移项,得7y +6y =-6. 合并同类项,得13y =-6. 两边同时除以13,得y =-613. (3)移项,得5x -7x =8-2. 合并同类项,得-2x =6. 两边同时除以(-2),得x =-3. (4)移项,得3y -y -6y =1+2. 合并同类项,得-4y =3. 两边同时除以(-4),得y =-34.(5)两边同时乘以20,得8x -160=5-4x . 移项,得8x +4x =5+160. 合并同类项,得12x =165.两边同时除以12,得x =554. (6)两边同时乘以6,得6-3x =6x +2. 移项,得-3x -6x =2-6. 合并同类项,得-9x =-4. 两边同时除以(-9),得x = 49.2.试解6.1节中问题1所列出的方程. 解:移项,得44x =328-64. 合并同类项,得44x =264. 两边同时除以44,得x = 6. 习题6.2.1 P9 1.解下列方程: (1)18=5-x ; (2)34x +2=3-14x ; (3)3x -7+4x =6x -2; (4)10y +5=11y -5-2y ; (5)x -1=5+2x ;(6)0.3x +1.2-2x =1.2-2.7x . 解:(1)移项,得x =5-18. 合并同类项,得x =-13. (2)移项,得34x +14x =3-2.合并同类项,得x =1.(3)移项,得3x +4x -6x =7-2. 合并同类项,得x =5.(4)移项,得10y -11y +2y =-5-5. 合并同类项,得y =-10. (5)移项,得x -2x =5+1. 合并同类项,得-x =6, 两边同时除以-1,得x =-6. (6)移项,得0.3x -2x +2.7x =1.2-1.2. 合并同类项,得x =0. 2.解下列方程: (1)2y +3=11-6y ; (2)2x -1=5x +7; (3)13x -1-2x =-1; (4)12x -3=5x +14. 解:(1)移项,得2y +6y =11-3. 合并同类项,得8y =8. 两边同时除以8,得y =1.(2)移项,得2x -5x =7+1. 合并同类项,得-3x =8. 两边同时除以-3,得x =-83.(3)移项,得13x -2x =-1+1.合并同类项,得-53x =0.两边同时除以-53,得x =0.(4)移项,得12x -5x =14+3.合并同类项,得-92x =134.两边同时除以-92,得x =-1318.3.已知A =3x +2,B =4-x ,解答下列问题: (1)当x 取何值时,A =B? (2)当x 取何值时,A 比B 大4?解:(1)根据题意,要求3x +2=4-x 的解. 解这个方程得x =12.所以当x =12时,A =B .(2)根据题意,要求3x +2-(4-x )=4的解. 解这个方程得x = 32.所以当x =32时,A 比B 大4.专题一 一元一次方程1. 在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )A .乘以同一个数.B .乘以同一个整式.C .加上同一个代数式.D .都加上1. 2. 某种商品若按标价的八折出售,可获利20%,若按原标价出售,可获利( ).A .25%B .40%C .50%D .66.7% 3. 下面判断中正确的是 [ ]A .方程132=-x 与方程x x x =-)32(同解B .方程132=-x 与方程x x x =-)32(没有相同的解C .方程x x x =-)32(的解都是方程132=-x 的解D .方程132=-x 的解都是方程x x x =-)32(的解专题二 探究题4. 对于数x ,符号[x ]表示不大于x 的最大整数.例如[3.14]=3,[-7.59]=-8,则满足关系式[377x +]=4的x 的整数值有( )A .6个B .5个C .4个D .3个5. 现在弟弟的年龄恰是哥哥年龄的21,而九年前弟弟的年龄是哥哥年龄的51,则哥哥现在的年龄是___________岁.6.解方程:3x-1.10.4 -4x-0.20.3 =0.16-0.7x0.06状元笔记【知识要点】1.等式的基本性质:(1)等式的两边都加上(或都减去)同一个数或同一个整式,所得结果仍是等式;(2)等式的两边都乘以(或都除以)同一个数(除数不能为0),所得结果仍是等式.2.方程的变形规则:(1)方程的两边都加上(或都减去)同一个数或同一个整式,方程的解不变;(2)方程的两边都乘以(或都除以)同一个不等于0的数,方程的解不变.3.方程的变形类型:(1)移项:依据方程的变形规则1,将方程中的某些项改变符号后,从方程的一边移到另一边的变形;(2)将未知数的系数化为1:依据方程的变形规则2,将方程的两边都除以未知数的系数的变形.4.一元一次方程:只含有一个未知数,并且未知数的最高次数是的整式方程叫做一元一次方程.5.解一元一次方程的步骤: ①去分母 ②去括号 ③移项④合并同类项⑤化未知项的系数为1⑥检验方程的解一般不需答出,但要养成检验的习惯 6.列一元一次方程解应用题的步骤:①弄清题意,设未知数:求什么?用字母表示适当的未知数;②分析条件,找等量关系:找出已给出的数量及未知数之间的等量关系;③组织方程,列方程:对等量关系中涉及的量,列出所需的表达式,根据等量关系得到方程.④解所得的方程:求解所列出的一元一次方程,并检验所求的解是否原方程的解、是否符合实际意义.⑤写出答语.【温馨提示(针对易错)】1.判断一个方程是不是一元一次方程,首先在整式方程前提下,化简后满足只含有一个未知数,并且未知数的次数是1,系数不等于0的方程,像21=x,()1222+=+x x 等都不是一元一次方程.2.解方程时要注意:①方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程不同解;②去分母时,不要漏乘没有分母的项;③解方程时一定要注意“移项”要变号.【方法技巧】解方程的基本思想就是应用等式的基本性质进行转化,将方程化为“x =常数”的形式,最后的“常数”就是方程的解. 答案1.【答案】D2.【答案】C .【解析】设商品的进价为a 元,标价为b 元, 则80%b -a =20%a ,解得b =32 a ,原标价出售的利润率为b-aa ×100%=50%3.【答案】D【解析】方程132=-x 的解是2=x;方程x x x =-)32(的解是0=x 和2=x .因此,A .B .C .的判断都是错误的,只有D 判断正确. 4. 【答案】D 5. 【答案】12【解析】设弟弟年龄是x ,则哥哥年龄是2x ,则依题意有5(x -9)=(2x -9), ∴x = 12.6. 【答案】解:原方程变形为 30x-114 -40x-23 =16-70x6去分母,得3×(30x -11)-4×(40x -2)=2×(16-70x ) 去括号,得90x -33-160x +8=32-140x 移项, 得90x -160x +140x =32+33-8 合并, 得70x =57 系数化为1,得x =5770“方程的简单变形”学习点拨学习方程变形的依据及方程的两种简单变形,是为进一步学习解一元一次方程作铺垫。

6.2.1 等式的性质与方程的简单变形(1)七年级数学下册教材配套教学课件(华东师大版)

6.2.1 等式的性质与方程的简单变形(1)七年级数学下册教材配套教学课件(华东师大版)

【点睛】此类判断等式变形是否正确的题型中,尤其注意利用等式的性质2 等式两边同除某个字母时,只有这个字母确定不为0时,等式才成立.
1.运用等式性质进行的变形,错误的是( B)
A 若a+3m=b+3m,则a=b.
B 若ab=3a,则b=3.
C 若ab=3a,则b=3或b=0.
D

a c
b c
则, a=b.
若天平两端同时放上(取下)各自的几倍,天平仍然处于 平衡 状态.
等式的性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.
如果a=b,那么ac=bc;
如果a=b(c≠0),那么
a c
b c.
c
例1.填空,并说明理由.
(1)如果m+3 = n+7,那么m= n+ 4 ;
由等式性质1知:等式两边同时减3,可得 m+3-3=n+7-3 即m=n+4
华师大版 数学 七年级 下册
理解等式的基本性质. 能利用等式性质对等式进行简单变形.
对比天平与等式,你有什么发现?
等式的左边
等式的右边
等号
把一个等式看作一个天平,把等号两边的式子看作天平两边的砝码,则 等号成立就可看作是天平保持两边平衡.
观察天平有什么特性?
天平两边同时加入相同质量的砝码 天平仍然平衡 天平两边同时拿去相同质量的砝码 天平仍然平衡
等式性质1,两边同时加上6√.
(4)如果-
1 4
x
=
-
1 2
y
那么x=2y


等式性质2,两边同时除以 1
4
例2 已知mx=my,下列结论错误的是

七年级数学方程的简单变形1

七年级数学方程的简单变形1
6.2.1方程的简单变形(1)
七年级数学(下)
方程的变形规则1
方程的两边都加上或减去同一个 整式,方程的解不变。
在运用这一规则进行变形时,只有在方程的 两边都加上或减去同一个整式时,才能保证 方程的解不变,否则,就会破坏原来的相等 关系。例如:若在方程7-3x=4左边加上3, 右边加上5,那么新方程7-3x+3=4+5的解就 不是原方程的解了。
2 解 : 两边都乘以 , 得 3
2 3 1 2 ( x) 3 2 3 3 1 2 x 3 3 2 即 x . 9
书上P6练习 1. 1 由3 x 5, 得x 5 3;
7 2由7 x 4, 得x ; 4 1 3由 y 0, 得y 2; 2
解方程 : 2 x 6
2x 6
(两边都除以2)
(如何变形?)
2x 6 2 2
将未知数的 系数化为1
x 3.
例2
解下列方程:
(1) 5 x 2,
解 : (1)由 5x 2,
两边都除以-5, 得
5x 2 5 5
2 x 5

3 1 ( 2) x . 2 3
2x 1 3 2 x 2 x 1.
( 移项 )
2x 2 ( 将x的系数化为1 2 2
)
作业:课本P7-P8页第1题
1.(1)18 5 x,
3 1 (2) x 2 3 x, 4 4
( x 13)
(3)3x 7 4 x 6 x 2,
1 1 (3)2 y y 3 2 2 1 1 解 : 2y y 3 2 2
1 1 2 y y 3 2 2

华师大版七年级数学下册课件 6-2-1 第2课时 方程的简单变形

华师大版七年级数学下册课件 6-2-1 第2课时 方程的简单变形

右边= 2×(-5)-7 = -17, 左边 = 右边
所以 x = -5 是原方程的解.
提示:以上解一元一次方程的检验过程可以省略.
方程的变形规则2
方程的两边都乘以或除以同一个不为零的数, 方程的解不变。
例 2 解下列方程:
3 x 1.
23
解:方程两边都除以
3 2
(
或都乘
2 3
),得
x 1 3 12 32 33
即x 2.
9
总结 利用移项解方程的步骤:
(1)移项;
(2)合并同类项;
(3)化未知数的系数为 1.
例 3 解下列方程:
18x 2x 7
解:8x 2x 7 (移项)
6x 7
6x 7 66
(将未知数的系数化为1)
x 7. 6
(2)6 8 2x
解: 6 8 2x
8 2x 6 2x 6 8 2x 2
2x 2 22
x 1.
(3)2y 1 1 y 3 22
解:2y 1 1 y 3 22
2y 1 y 3 1
2
2
3 y 5
2
2
23 y 52 32 23
y 5. 3
三 随堂练习
1.(1)由等式 x-10 = 15 的两边都 加10 ,得到等
式x = 5,这是根据 等式基本性质 1 ;
移项要点:
2
(1)移项的根据是等式的基本性质 1. (2)移项要变号,没有移动的项不改变符号. (3)通常把含有未知数的项移到方程的左边,把常
数项(不含未知数的项)移到方程的右边.
例1 解下列方程:
x-5=7
解:
x-5=7
两边都加上5,得 即

七年级数学方程的简单变形1

七年级数学方程的简单变形1

2x 1 3 2 x 2 x 1.
( 移项 )
2x 2 ( 将x的系数化为1 2 2
)
作业:课本P7-P8页第1题
1.(1)18 5 x,
3 1 (2) x 2 3 x, 4 4
( x 13)
(3)3x 7 4 x 6 x 2,
2 解 : 两边都乘以 , 得 3
2 3 1 2 ( x) 3 2 3 3 1 2 x 3 3 2 即 x . 9
书上P6练习 1. 1 由3 x 5, 得x 5 3;
7 2由7 x 4, 得x ; 4 1 3由 y 0, 得y 2; 2
解 : 8x 2 x 7
8 x 2 x 7 6 x 7
6x 7 6 6
7 x . 6
(移项)
(将未知数的系数化为1)
(2)6 8 2 x 解 : 6 8 2x
8 2x 6 2x 6 8 2 x 2
2x 2 2 2
x 1.
解方程 : 2 x 6
2x 6
(两边都除以2)
(如何变形?)
2x 6 2 2
将未知数的 系数化为1
x 3.
例2
解下列方程:
(1) 5 x 2,
解 : (1)由 5x 2,
两边都除以-5, 得
5x 2 5 5
2 x 5

3 1 ( 2) x . 2 3

x 12 .
解下列方程:
(2)4 x 3x 4
解 : (2)由4 x 3x 4,
移项, 得
4 x 3x 4,

x 4.

华师大版七年级下6.2.1 方程的简单变形优秀教学设计

华师大版七年级下6.2.1 方程的简单变形优秀教学设计

华师大版七年级下6.2.1 方程的简单变形【教学内容】本小节的内容在教材第4-7页。

主要内容为:通过对方程变形的分析,探索求解简单方程的规律,学会通过变形求解简单方程。

【教学目标】了解方程的基本变形:移项和化简未知数的系数为1.了解未知数的基本变形在解方程中的作用。

知识与能力1.了解方程可以进行的基本变形,知道通过变形可以求出方程的解。

2.了解移项的定义,注意移项要变号。

3.了解未知数系数化为1的方法。

4.知道方程的解的形式是“x=a”,学会通过变形求解简单方程。

过程与方法本节课从学生熟悉的近视现象入手并提出问题,围绕以怎样的调查方式进行调查,如何较合理地确定调查对象,调查中应注意哪些问题等组织讨论,在最后解决问题时,学习抽样、样本、总体等统计概念,通过课堂练习对本班视力不良同学的调查统计,提出有关保护视力的一些合理性建议.本教学设计虽没有要求实地调查,但从调查对象的确定、调查问卷的设计、调查数据的整理与分析上处处以学生讨论为主,力求体现课堂教学主体的合作性、互补性,意图通过本节教学,使学生能了解抽样调查的大致过程,初步了解样本、总体等统计概念,用样本反映、考察总体的基本统计思想.情感、态度、价值观通过本节的教学,应该达到使学生体会数学的价值的目的。

【重点难点】重点:1、方程的简单变形;2,简单变形的简单应用。

难点:1、移项和简单变形的关系。

2、移项要变号,为什么要变号。

3、简单变形和方程的解的关系。

【教学突破】:实质上,本节就是“通过简单变形来求解方程”,所以本节的直接目标是学生能自己会对方程进行简单变形并求解。

教学中教师要注意强调“移项要变号—未知数的系数要化1—得出方程的解”这一解决问题的步骤。

【教学过程】第一课时教学流程设计教师指导学生活动1、课堂教学试验1、观察试验,分析结果2、讲解移项知识2、学习3、讲解未知数系数化1 3、学习4、布置练习4、练习五、本课小结初步按照分步骤学习通过方程的基本变形来求解简单方程,主要是按照“移项-把未知数的系数化为1”的思路来走,所得结果就是方程的解。

华师大版七年级数学下册第六章6.2.1方程的简单变形

华师大版七年级数学下册第六章6.2.1方程的简单变形

我们的收获……
结合本堂课内容,请用下列句式造句。 我学会了…… 我明白了…… 我认为…… 我会用…… 我想……
祝同学们学习进步 再见
结束语:本节课我们就学习到这里,如果还有不明白的地方,请在网校论坛 留言,或者加入教研qq群:32184126 交流。同学们,下节课我们再见!
方程
把原求解的书写格式改成:
简缩格式:
x – 2 = 10
两边同时加上 2 , +2 即 x = 12 + 2
x – 2 = 10 x = 10 + 2
有什么规律可循? 有什么规律可循?
‫ ڿ‬解题后的思考
为什么?
x – 2 + 2 = 10 + 2
x = 10 + 2
能否写成:
想一想

x – 2 = 10 x


① ②
= 10+ 2
由方程① 到方程 ② , 这个变形相当于 把 ①中的 “– 2”这一项 从左边移到了右边的过程中, 有些什么变化? 改变了符号. 把原方程中的– 2 改变符号后,从方程的一边移到另 一边,这种变形 叫 移项 。
移项法则
将方程中的某些项改变符号后,从方程的一 边移到另一边的变形叫做移项. 移项的法则: 1、把方程的某一项从方程的一边 移到另一边; 2、移项后要改变符号。
华师大版本七年级数学下册
第六章一元一次方程
6.2.1 方程的简单变形
讲授者 : 敬一
学习目标
1.理解方程简单变形的依据与方法。 2.通过实例感受方程变形的合理性。 3.会用方程变形解简单的一元一次方程。
重点、难点
重点:理解方程简单变形的依据与方法。 难点:如何用方程变形解简单的一元一次方程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.2解一元一次方程
1.方程的简单变形
教学目的
通过天平实验,让学生在观察、思考的基础上归纳出方程的两种变形,并能利用它们将简单的方程变形以求出未知数的值。

重点、难点
1.重点:方程的两种变形。

2.难点:由具体实例抽象出方程的两种变形。

教学过程
一、引入
上一节课我们学习了列方程解简单的应用题,列出的方程有的我们不会解,我们知道解方程就是把方程变形成x=a形式,本节课,我们将学习如何将方程变形。

二、新授
让我们先做个实验,拿出预先准备好的天平和若干砝码。

测量一些物体的质量时,我们将它放在天干的左盘内,在右盘内放上砝码,当天平处于平衡状态时,显然两边的质量相等。

如果我们在两盘内同时加入相同质量的砝码,这时天平仍然平衡,天平两边盘内同时拿去相同质量的砝码,天平仍然平衡。

如果把天平看成一个方程,课本第4页上的图,你能从天平上砝码的变化联想到方程的变形吗?
让同学们观察图6.2.1的左边的天平;天平的左盘内有一个大砝码和2个小砝码,右盘上有5个小砝码,天平平衡,表示左右两盘的质量相等。

如果我们用x表示大砝码的质量,1表示小砝码的质量,那么可用方程x+2=5表示天平两盘内物体的质量关系。

问:图6.2.1右边的天平内的砝码是怎样由左边天平变化而来的?它所表示的方程如何由方程x+2=5变形得到的?
学生回答后,教师归纳:方程两边都减去同一个数,方程的解不变。

问:若把方程两边都加上同一个数,方程的解有没有变?如果把方程两边都加上(或减去)同一个整式呢?
让同学们看图6.2.2。

左天平两盘内的砝码的质量关系可用方程表示为3x=2x+2,右边的天平内的砝码是怎样由左边天平变化而来的?
把天平两边都拿去2个大砝码,相当于把方程3x=2x+2两边都减去2x,得到的方程的解变化了吗?如果把方程两边都加上2x呢?
由图6.2.1和6.2.2可归结为;
方程两边都加上或都减去同一个数或同一个整式,方程的解不变。

让学生观察(3),由学生自己得出方程的第二个变形。

即方程两边都乘以或除以同一个不为零的数,方程的解不变:
通过对方程进行适当的变形.可以求得方程的解。

例1.解下列方程
(1)x-5=7 (2)4x=3x-4
解:(1) 两边都加上5,得x =7+5 即 x =12
(2) 两边都减去3x ,得x =3x -4-3x 即 x =-4
请同学们分别将x =7+5与原方程x -5=7;x =3x -4-3与原方程4x =3x -4比较,你发现了这些方程的变形。

有什么共同特点? 这就是说把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。

注意:“移项’’是指将方程的某一项从等号的左边移到右边或从右边移到左边,移项时要先变号后移项。

例2.解下列方程
(1)-5x =2 (2) 23x =3
1 这里的变形通常称为“将未知数的系数化为1”。

以上两个例题都是对方程进行适当的变形,得到x =a 的形式。

练习:
课本第6页练习1、2、3。

练习中的第3题,即第2页中的方程①先让学生讨论、交流。

鼓励学生采用不同的方法,要他们说出每一步变形的根据,由他们自己得出采用哪种方法简便,体会方程的不同解法中所经历的转化思想,让学生自己体验成功的感觉。

三、巩固练习
教科书第7页,练习
四、小结
本节课我们通过天平实验,得出方程的两种变形:
1.把方程两边都加上或减去同一个数或整式方程的解不变。

2.把方程两边都乘以或除以(不等零)的同一个数,方程的解不变。

第①种变形又叫移项,移项别忘了要先变号,注意移项与在方程的一边交换两项的位置有本质的区别。

五、作业
教科书第7—8页习题6.2.1第1、2、3。

相关文档
最新文档