1-1工程数学行列式与矩阵

合集下载

工程数学教案1-1排列及其逆序数、行列式的定义与性质

工程数学教案1-1排列及其逆序数、行列式的定义与性质

教案头教学详案一、回顾导入(20分钟)——在中学里,通过代入消元法和加减消元法求解二元、三元一产供销线性方程组。

例如方程组⎩⎨⎧=+=+22221211212111b x a x a b x a x a 中,未知量1x 、2x 的系数可以用以下的记号来表示:22211211a a a a ,从而引入新课。

二、主要教学过程(60分钟,其中学生练习20分钟)一、二阶与三阶行列式1. 二阶行列式定义 由四个数排成二行二列(横排称行、竖排称列)的数表)1(,22211211a a a a表达式21122211a a a a -称为数表(1)所确定的二阶行列式,并记作)2(,22211211a a a a即2112221122211211a a a a a a a a D -==计算方法 对角线法则2112221122211211a a a a a a a D -==。

2. 三阶行列式定义 由九个数排成三行三列的数表)3(,333231232221121211a a a a a a a a a表达式(4)称为由(3)所确定的三阶行列式,并记作)3(.333231232221121211a a a a a a a a a即计算方法 1)对角线法则2)沙路法二、全排列及其逆序数定义 把n 个不同的元素排成一列,叫做这n 个元素的全排列(也简称为排列)。

定义 对n 个不同的元素,先规定各元素之间有一个标准次序,于是在这n 个元素的任一全排列中,当某两个元素的先后次序与标准次序不同时,就说有一个逆序。

定义 一个排列中的所有逆序的总数叫做这个排列的逆序数。

定义 若一个排列中的所有元素按标准次序排列,则称之为标准排列(自然排列)。

定义 逆序数为奇数的排列叫做奇排列,逆序数为偶数的排列叫做偶排列。

三、 n 阶行列式的定义定义 由2n 个数组成的n 阶行列式等于所有取自不同行不同列的n 个元素的乘积的代数和∑-nnp p p t a a a 2121)1(。

矩阵与行列式解析矩阵与行列式的性质与运算规律

矩阵与行列式解析矩阵与行列式的性质与运算规律

矩阵与行列式解析矩阵与行列式的性质与运算规律矩阵和行列式是线性代数中重要的概念和工具。

它们在数学、物理、工程等领域都有广泛的应用。

本文将详细解析矩阵与行列式的性质和运算规律。

一、矩阵的性质与运算规律1. 矩阵的定义矩阵是一个按照长方阵列排列的数。

它由m行n列元素组成,记作A=(a_ij),其中1≤i≤m,1≤j≤n。

矩阵的行数和列数分别称为矩阵的阶数或维数。

2. 矩阵的运算规律2.1 矩阵的加法和减法设A=(a_ij)和B=(b_ij)是两个同阶矩阵,则它们的和C=A+B的定义为C=(c_ij),其中c_ij=a_ij+b_ij。

矩阵的减法定义类似。

2.2 矩阵的数乘设A=(a_ij)是一个矩阵,k是一个数,则kA的定义为kA=(ka_ij),其中ka_ij=ka_ij。

2.3 矩阵的乘法设A=(a_ij)是一个m行n列的矩阵,B=(b_ij)是一个n行p列的矩阵,则它们的乘积C=AB的定义为C=(c_ij),其中c_ij=a_i1b_1j+...+a_inb_nj。

3. 矩阵的性质3.1 矩阵的转置设A=(a_ij)是一个m行n列的矩阵,A的转置记作A^T,定义为A^T=(a_ji)是一个n行m列的矩阵。

3.2 矩阵的逆设A是一个n阶方阵,若存在一个n阶方阵B,使得AB=BA=I,其中I为单位矩阵,则称矩阵A可逆,B为A的逆矩阵。

若A不可逆,则称为奇异矩阵。

3.3 矩阵的行列式矩阵A的行列式记作|A|,行列式是一个标量,它由矩阵元素按一定规则计算而得。

行列式的性质包括行列式的加法性、数乘性、转置性等。

二、行列式的性质与运算规律1. 行列式的定义行列式是一个方阵的特征值之一。

设A=(a_ij)是一个n阶方阵,行列式的定义为|A|=a_11a_22...a_nn-a_11a_23...a_n(n-1)-...-a_1n-1a_2n...a_n。

2. 行列式的运算规律2.1 行列式的数乘若k是数,A是n阶方阵,则kA的行列式等于k的n次方乘以A 的行列式,即|kA|=k^n|A|。

高等数学中的矩阵与行列式

高等数学中的矩阵与行列式

高等数学中的矩阵与行列式矩阵与行列式是高等数学中的两个重要概念,也是线性代数的基础部分。

通过对这两个概念的深入学习和理解,不仅可以帮助我们更好地理解和掌握线性代数的知识,还可以在实际应用中起到重要的作用。

一、矩阵矩阵是线性代数中的基本概念,通常用方括号表示。

矩阵是一个由数(也可以是变量或者函数)排成的矩形阵列,形式如下:$\begin{matrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\a_{m1} & a_{m2} & \cdots & a_{mn} \end{matrix}$其中 $m$ 表示矩阵的行数,$n$ 表示矩阵的列数,$a_{ij}$ 表示矩阵中第 $i$ 行第 $j$ 列的元素。

矩阵可以进行加法、数乘、乘法等运算。

两个相同大小的矩阵可以进行加法和减法运算,两个矩阵可以进行乘法运算,但是矩阵的大小必须满足一定的条件,即第一个矩阵的列数等于第二个矩阵的行数。

二、行列式行列式是矩阵的一种特殊形式,它是由矩阵中的元素按照特定的方式组合成的一个标量。

行列式可以看作是一个矩阵的体积或者面积,它表示的是矩阵所围成的平行六面体或平面的大小。

行列式的求解需要使用到一系列的性质和方法,包括代数余子式、余子式、代数余子式按行(列)展开式等。

在实际应用中,行列式常用于解决线性方程组、计算矩阵的逆矩阵、求解特征值和特征向量等问题。

三、矩阵与行列式的应用矩阵和行列式在实际应用中有着广泛的应用,特别是在计算机科学、统计学、物理学、工程学、经济学等领域。

在计算机科学中,矩阵和行列式常用于图形计算、数字信号处理等方面。

比如,图像处理过程中常常需要对图像进行矩阵变换,如旋转、平移、缩放等操作。

第一章 矩阵与行列式

第一章   矩阵与行列式

第一章 矩阵与行列式第一节 矩阵及其运算一、矩阵的概念人们在从事经济活动、科学研究、社会调查时, 会获得许多重要的数据资料, 将这些数据排成一个矩形的数表111212122212n nm m mn a a a a a a a a a L L M M M L以便于进行储存、运算和分析, 这种矩形的数表就是矩阵.定义1 由m n ⨯个数()1,2,,;1,2,,ij a i m j n ==L L 排成m 行n 列的矩形 数表111212122212n n m m mn a a a a a a a a a ⎛⎫⎪ ⎪⎪⎪⎝⎭L L M M M L称为m 行n 列矩阵, 简称为m n ⨯矩阵, 其中ij a 称为矩阵的位于第i 行、第j 列的元素. 通常, 我们用大写字母,,A B L 表示矩阵. 例如, 记111212122212.n n m m mn a a a a a a A a a a ⎛⎫ ⎪ ⎪= ⎪⎪⎝⎭L L M M M L其中小括号“()” 也可用方括号“[]”代替. 有时, 矩阵也简记为()ij m nA a ⨯=或()ij A a =. 特别地, 当m n =时, 称A 为n 阶矩阵或n 阶方阵, 其中一阶方阵()a 是一个数, 括号可略去.元素全为实数的矩阵称为实矩阵, 元素全为复数的矩阵称为复矩阵. 本书主要在实数范围内讨论问题.对于由n 个未知量、m 个方程组成的线性方程组:11112211211222221122,,.n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩L L L L L L L L L L L L L (1.1.1) 称矩阵A 11121121222212n n m m mn m a a a b a a a b a a a b ⎛⎫⎪⎪= ⎪⎪⎝⎭LL M M M M L(1.1.2)为线性方程组(1.1.1)的增广矩阵;称矩阵A =111212122212n n m m mn a a a a a a a a a ⎛⎫⎪⎪⎪⎪⎝⎭L L M M M L(1.1.3) 为线性方程组(1.1.1)的系数矩阵;矩阵12m b bB b ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭M (1.1.4)称为线性方程组(1.1.1)的常数项矩阵.显然, 线性方程组(1.1.1)由矩阵(1.1.2)完全地确定.下面介绍一些特殊的矩阵.(1) 零矩阵 元素都是零的矩阵称为零矩阵, 记为O . (2) 列矩阵、行矩阵 在矩阵A 中, 如果1n =, 则11211m a a A a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭M , 称这种只有一列的矩阵为列矩阵;同样, 如果1m =, 则()11121n A a a a =L ,称这种只有一行的矩阵为行矩阵.我们也将列矩阵和行矩阵分别称为列向量和行向量. 列向量和行向量统称为向量. 向量的元素称为分量, 有n 个分量的向量称为n 维向量. 矩阵与 向量有密切的联系, 矩阵()ij m nA a ⨯=可以看成由n 个m 维列向量12,1,2,,j j mj a a j n a ⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭L M 组成, 也可以看成由m 个n 维行向量()12,1,2,,i i in a a a i m =LL 组成.(3) 负矩阵 如果矩阵()ij m nA a ⨯=, 则()ij m nA a ⨯-=-称为矩阵A 的负矩阵.(4) 行阶梯形矩阵 如果矩阵每一行的第一个非零元素所在的列中, 其下方元素全为零, 则称此矩阵为行阶梯形矩阵. 例如矩阵10234023450056700018A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭, 12102032210003100000B --⎛⎫ ⎪- ⎪= ⎪- ⎪⎝⎭均为行阶梯形矩阵, 而矩阵10232023450056700418C ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭ 则不是行阶梯形矩阵.(5) 行最简形矩阵 如果行阶梯形矩阵中, 非零行的第一个非零元素均为1, 且其所在列的其余元素均为0, 则称此矩阵为行最简形矩阵. 例如, 矩阵1060301205000110000⎛⎫⎪⎪⎪- ⎪⎝⎭是行最简形矩阵.(6) 上(下)三角矩阵 n 阶方阵的左上角到右下角元素的连线称为主对角线, 左下角到右上角元素的连线称为次(副)对角线. 如果方阵的主对角线下(上)方元素全为0, 则称此矩阵为上(下)三角矩阵. 矩阵11121222000n n nn a a a a a a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭L L M M M L 为上三角矩阵, 矩阵11212212000n n nn a a a a a a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭LL M M M L 为下三角矩阵.(7) 对角矩阵 如果方阵中除主对角线上的元素外, 其余元素全为0, 则称此矩阵为对角矩阵. 例如, 矩阵12000000n λλλ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭L L M M M L 为对角矩阵.(8) 单位矩阵 在对角矩阵中, 如果()11,2,,i i n λ≡=L , 即为 100010001⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭L L M M M L, 则称此矩阵为单位矩阵. 单位矩阵一般用E 或I 表示.定义2 如果两个矩阵()ij A a =, ()ij B b =的行数相同、列数也相同, 则称矩阵A 与B 为同型矩阵.定义3 如果两个同型矩阵m n A ⨯, m n B ⨯的对应元素均相等, 即 ()1,2,,;1,2,,ij ij a b i m j n ===L L , 则称矩阵A 与B 相等, 记作A B =.二、矩阵的运算 1. 矩阵的加法定义4 由两个同型矩阵()m n ij m nA a ⨯⨯=, ()m n ij m nB b ⨯⨯=对应元素的和,即ij ij a b +()1,2,,;1,2,,i m j n ==L L 组成的m n ⨯矩阵称为矩阵A 与B 的和,记作A B +, 即111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b A B a b a b a b +++⎛⎫ ⎪+++ ⎪+= ⎪ ⎪+++⎝⎭L L M M M L . 由此定义及负矩阵的概念, 我们定义矩阵A 与B 的差为()A B A B -=+-.注 只有同型矩阵才能相加(减). 2. 数与矩阵相乘(简称数乘)定义5 数k 乘矩阵A 的每一个元素所得到的矩阵称为数k 与矩阵A 的积, 记作kA , 即111212122212.n n m m mn ka ka ka ka ka ka kA ka ka ka ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭L L M M M L 矩阵的加法和数乘统称为矩阵的线性运算, 其满足如下性质:(1) A B B A +=+; (2) ()()A B C A B C ++=++; (3) ()()A A λμλμ=;(4) ()A A A λμλμ+=+; (5) ()A B A B λλλ+=+; (6) A O A +=; (7) 1A A =;(8) ()A A O +-=.上面的λ, μ都是任意常数.例1 设112034A -⎛⎫= ⎪⎝⎭, 403123B -⎛⎫= ⎪--⎝⎭, 求A B +和23A B -.解14102(3)5110(1)3(2)43117A B +-++---⎛⎫⎛⎫+== ⎪ ⎪+-+-+-⎝⎭⎝⎭;224120923068369A B --⎛⎫⎛⎫-=- ⎪ ⎪--⎝⎭⎝⎭102133121--⎛⎫= ⎪-⎝⎭.3. 矩阵与矩阵相乘(矩阵的乘法)n 个变量12,,,n x x x L 与m 个变量12,,,m y y y L 之间的关系式11111221221122221122,,.n n n nm m m mn n y a x a x a x y a x a x a x y a x a x a x =+++⎧⎪=+++⎪⎨⎪⎪=+++⎩L L L L L L L L L L L L (1.1.5) 表示一个从变量12,,,n x x x L 到变量12,,,m y y y L 的线性变换.设有两个线性变换11111221332211222233,.z a y a y a y z a y a y a y =++⎧⎨=++⎩ (1.1.6)和111112222112223311322,,.y b x b x y b x b x y b x b x =+⎧⎪=+⎨⎪=+⎩ (1.1.7) 若要求出从12,x x 到12,z z 的线性变换, 可将(1.1.7)代入(1.1.6), 得 111111221133111112122213322221112221233112112222223322()(),()().z a b a b a b x a b a b a b x z a b a b a b x a b a b a b x =+++++⎧⎨=+++++⎩ (1.1.8) 线性变换(1.1.8)可看作是先作线性变换(1.1.7)、再作线性变换(1.1.6)的结果, 我们称线性变换(1.1.8)为线性变换(1.1.6)与(1.1.7)的乘积, 相应地, 我们将线性变换(1.1.8)所对应的矩阵定义为(1.1.6)与(1.1.7)所对应的矩阵的乘积,即 111211121321222122233132bb a a a b b a a a b b ⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭111112211331111212221332211122212331211222222332.a b a b a b a b a b a b a b a b a b a b a b a b ++++⎛⎫= ⎪++++⎝⎭一般地, 我们有:定义6 设有矩阵()ij m sA a ⨯=和()ij s nB b ⨯=, 规定矩阵A 与B 的乘积是一个m n ⨯矩阵()ij m nC c ⨯=, 记为C AB =. 其中11221,1,2,,;1,2,,.ij i j i j is sjsik kj k C a b a b a b a b i m j n ==+++===∑L L L注 只有当前一个矩阵的列数等于后一个矩阵的行数时, 两个矩阵才能相乘, 且乘积矩阵C 中的元素ij C 就是A 的第i 行与B 的第j 列的对应元素乘积的和.例2 设201131012A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭, 100221B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求AB .解AB 201101310201221-⎛⎫⎛⎫ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭2100(1)22002(1)11130121032110110(2)20012(2)1⨯+⨯+-⨯⨯+⨯+-⨯⎛⎫ ⎪=-⨯+⨯+⨯-⨯+⨯+⨯ ⎪ ⎪⨯+⨯+-⨯⨯+⨯+-⨯⎝⎭ 0117.40-⎛⎫ ⎪= ⎪ ⎪-⎝⎭例3 求矩阵1111A -⎛⎫= ⎪-⎝⎭与1111B --⎛⎫= ⎪⎝⎭的乘积AB 及BA .解111122;111122AB ---⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭111100.111100BA ---⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭由以上例题可以看出矩阵乘法与数的乘法有两点显著不同:(1) 矩阵乘法不满足交换律:AB 与BA 未必同时有意义(如例2, BA 没有意义);即使都有意义也未必相等(如例3). 因此为明确起见, 称AB 为A 左乘B , 或B 右乘A . 只有在一些特殊情况下才有AB BA =, 这时称A 与B 是乘法可交换的. 容易验证数量矩阵aE 与任何同阶方阵A 乘法可交换, 即()().aE A A aE aA ==(2) 矩阵乘法不满足消去律:由AB O =不能得出A O =或B O =(如例3), 即,A O B O ≠≠但AB 有可能为O .有了矩阵相等和乘法的定义, 我们可以把线性方程组(1.1.1)写成矩阵形式:AX B =, 其中A =111212122212n n m m mn a a a a a a a a a ⎛⎫⎪⎪ ⎪⎪⎝⎭L L M M M L, 1122,.n m x b x b X B x b ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭M M若B O =, 则称(1.1.1)为齐次线性方程组;若B O ≠, 则称(1.1.1)为非齐次线性方程组. 也可以把线性变换(1.1.5)写成矩阵形式:Y AX =, 其中12,m y y Y y ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭MA 与X 同上所设.可以证明矩阵的乘法有下列性质: (1) ()()AB C A BC =;(2) ()A B C AB AC +=+;()B C A BA CA +=+; (3) ()()()AB A B A B λλλ==, λ为任意常数; (4) ()().m m n m n m n n aE A aA A aE ⨯⨯⨯==定义7 设A 为n 阶方阵, k 为正整数, 称k 个A 的连乘积为方阵A 的k次幂, 记作k A , 即.k kA AA A =L 14243当,k l 都为正整数时, 由矩阵乘法的性质, 得(1) k l k l A A A +=;(2) ()lk kl A A =.注 由于矩阵乘法不满足交换律, 所以, 一般地()kk k AB A B ≠. 例4 设1101A ⎛⎫= ⎪⎝⎭, 求nA (n 为正整数).解1101A ⎛⎫= ⎪⎝⎭;2111112010101A ⎛⎫⎛⎫⎛⎫==⎪⎪ ⎪⎝⎭⎝⎭⎝⎭; 3121113010101A ⎛⎫⎛⎫⎛⎫==⎪⎪ ⎪⎝⎭⎝⎭⎝⎭; 一般地, 有101n n A ⎛⎫= ⎪⎝⎭.其正确性可由数学归纳法证得, 证明略.4. 矩阵的转置定义8 把m n ⨯矩阵A 的行与列互换得到的一个n m ⨯矩阵, 称为A 的转置矩阵, 记作T A . 例如, 矩阵120311A ⎛⎫= ⎪-⎝⎭的转置矩阵为1321.01T A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭矩阵的转置也是一种运算, 满足下述运算规律:(1) ()TT A A = ;(2) ()TT T A B A B +=+ ;(3) ()TT A A λλ=, λ为一个数;(4) ()TT T AB B A = .例5 已知201132A -⎛⎫= ⎪⎝⎭, 171423201B -⎛⎫⎪= ⎪ ⎪⎝⎭,求().T AB解法1 因为1712010143423132171310201AB -⎛⎫--⎛⎫⎛⎫ ⎪== ⎪ ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭,所以()0171413310TAB ⎛⎫ ⎪= ⎪ ⎪-⎝⎭. 解法214221017()72003141313112310T T T AB B A ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪=== ⎪⎪ ⎪ ⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭.定义9 设A 为n 阶方阵, 如果满足T A A =, 即 ,,1,2,,.ij ji a a i j n ==L则称A 为对称矩阵. 对称矩阵的特点是:关于主对角线对称的对应元素相等.定义10 设A 为n 阶方阵, 如果满足T A A =-, 即ij ji a a =-, ,1,2,,.i j n =L则称A 为反对称矩阵. 反对称矩阵的特点是:主对角线上的元素全为0, 其余关于主对角线对称的对应元素则互为相反数.习题1-11. 设111210111A ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭, 120124051B -⎛⎫ ⎪=-- ⎪ ⎪⎝⎭, 求23AB A -及T A B .2. 已知两个线性变换113212331232,232,45.x y y x y y y x y y y =+⎧⎪=-++⎨⎪=++⎩ 和 1122133233,2,.y z z y z z y z z =-+⎧⎪=+⎨⎪=-+⎩ 求从1z , 2z , 3z 到1x , 2x , 3x 的线性变换. 3. 计算下列乘积:(1) 401123520-⎛⎫ ⎪- ⎪ ⎪⎝⎭421⎛⎫⎪⎪ ⎪-⎝⎭;(2) ()123321⎛⎫ ⎪ ⎪ ⎪⎝⎭; (3) 321⎛⎫ ⎪⎪ ⎪⎝⎭()123;(4) 121232101110324-⎛⎫⎛⎫⎪⎪-- ⎪⎪ ⎪⎪⎝⎭⎝⎭.4. 设A =1203-⎛⎫ ⎪⎝⎭, B =2032⎛⎫⎪-⎝⎭, 问(1) AB BA =吗?(2) ()2A B +=2A +2AB +2B 吗? (3) ()A B +()A B -=2A 2B -吗? 5. 举反例说明下列命题是错误的: (1) 若2A O =, 则A O =; (2) 若2A A =, 则A O =或A E =; (3) 若AX AY =, 且A O ≠, 则X Y =.6. 设A =1111⎛⎫ ⎪-⎝⎭, 1111B ⎛⎫= ⎪⎝⎭, 求2()AB , 22A B .第二节 矩阵的初等变换与初等矩阵一、初等变换的概念中学里, 已经学过用加减消元法解二、三元线性方程组.例1 解三元线性方程组1231231232344,23,226 2.x x x x x x x x x --+=⎧⎪+-=-⎨⎪+-=-⎩ (1.2.1) 解 为叙述方便, 方程组的第i 个方程记为(1,2,3)i r i =. i j r r ↔表示对调第i 、第j 个方程, (0)i kr k ≠表示用k 乘第i 个方程的两边, i j r kr +表示第j 个方程的两边乘以k 然后加到第i 个方程上.方程组(1.2.1)12312r r r ↔⨯−−−→12312312323,2344,3 1.x x x x x x x x x +-=-⎧⎪--+=⎨⎪+-=-⎩ (1.2.2)21311232232323,22,2 2.r r r r x x x x x x x +-+-=-⎧⎪−−−→+=-⎨⎪--=⎩ (1.2.3)321232323,22,00.r r x x x x x ++-=-⎧⎪−−−→+=-⎨⎪=⎩(1.2.4)方程组(1.2.4)呈阶梯状(其增广矩阵为行阶梯形矩阵), 称为阶梯形方程组. 方程组(1.2.4)有3个未知量但有效方程只有2个, 因此有1个未知量可以任意取值, 称为自由未知量. 我们不妨取3x 为自由未知量. 先由方程组(1.2.4)中的2r 得:2322x x =--, 再代入(1.2.4)中的1r 得:1351x x =+.方程组(1.2.4)与方程组(1.2.1)是同解的, 由于3x 取值的任意性, 因此方程组(1.2.1)有无穷多组解, 其一般形式(通解)是13233351,22,.x x x x x x =+⎧⎪=--⎨⎪=⎩ 若令3x c =, 即得123x X x x ⎛⎫ ⎪= ⎪ ⎪⎝⎭=5122c c c +⎛⎫ ⎪-- ⎪ ⎪⎝⎭=521c ⎛⎫ ⎪- ⎪ ⎪⎝⎭+120⎛⎫⎪- ⎪ ⎪⎝⎭,其中c 为任意常数.解方程组(1.2.1)的过程中施行了3种变换:(1) 换位变换 即互换两个方程的位置;(2) 倍乘变换 即用一个非零常数乘某一方程;(3) 倍加变换 即把一个方程乘以常数后加到另一个方程上去. 这三种变换统称为线性方程组的初等变换.首先, 我们用换位、倍乘和倍加变换得到的新方程组可以用同类型变换变回原方程组(例如方程组(1.2.2)1232r r r ↔⨯−−−→方程组(1.2.1)), 因此线性方程组 的初等变换是同解变换;其次, 可以证明:任何线性方程组都可以用初等变换化为阶梯形方程组, 而阶梯形方程组很容易判定是否有解, 且有解时容易通过自下而上的“回代”得到解.由于线性方程组AX B =和其增广矩阵A 相互唯一地确定, A 的每一行 对应AX B =中的一个方程, 因此线性方程组的初等变换就对应着其增广矩阵的相应行变换.定义1 对矩阵施行的下列3种变换统称为矩阵的初等行变换: (1) 换位变换 对调矩阵的第i 行和第j 行, 记为i j r r ↔; (2) 倍乘变换 用常数0k ≠乘第i 行, 记为i kr ;(3) 倍加变换 把第j 行的k 倍加到第i 行上去, 记为i j r kr +.把上述定义中的“行”换成“列”(所有记号只要把""r 换成""c )即为矩阵的初等列变换. 矩阵的初等行变换和初等列变换统称为矩阵的初等变换.回顾例1, 方程组(1.2.1)的初等变换(消元)过程可以用增广矩阵的初等行变换表示如下:234412132262A --⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭12312r r r ↔⨯−−−→121323441131--⎛⎫ ⎪-- ⎪ ⎪--⎝⎭=A 121312r r r r +-−−−→121301220122--⎛⎫ ⎪- ⎪ ⎪--⎝⎭=A 232r r +−−−→121301220000--⎛⎫⎪- ⎪ ⎪⎝⎭=A 3 122r r -−−−→105101220000-⎛⎫⎪- ⎪ ⎪⎝⎭=A 4,A 3是行阶梯形矩阵, A 4是行最简形矩阵, A 4对应的方程组为132351,22,00.x x x x -=⎧⎪+=-⎨⎪=⎩取3x 为自由未知量, 并令3x c =, 即得1235122x c X x c x c +⎛⎫⎛⎫ ⎪ ⎪==--=⎪ ⎪ ⎪⎪⎝⎭⎝⎭521c ⎛⎫ ⎪- ⎪ ⎪⎝⎭+120⎛⎫⎪- ⎪ ⎪⎝⎭, 其中c 为任意常数.利用初等行变换, 把一个矩阵化为行阶梯形矩阵和行最简形矩阵, 是一种很重要的运算. 行阶梯形矩阵不是唯一的, 但其非零行的行数是唯一确定 的(第五节将给出证明). 在解线性方程组AX B =时, 将增广矩阵A 化为行阶梯形矩阵, 就可以看出原方程组中是否有矛盾方程, 从而判断AX B =是否有解;在有解时, 进一步地将A 化为行最简形矩阵, 即可写出方程组AX B =的解.例2 将矩阵A =212341352012⎛⎫ ⎪ ⎪ ⎪⎝⎭化为行阶梯形矩阵和行最简形矩阵.解A =212341352012⎛⎫ ⎪⎪ ⎪⎝⎭21312212301110111r r r r --⎛⎫⎪−−−→--- ⎪ ⎪---⎝⎭32212301110000r r -⎛⎫ ⎪−−−→--- ⎪ ⎪⎝⎭(行阶梯形矩阵)1212(1)r r ⨯⨯-−−−→13112201110000⎛⎫ ⎪ ⎪⎪ ⎪ ⎪⎝⎭12121101201110000r r -⎛⎫ ⎪ ⎪−−−→ ⎪ ⎪ ⎪⎝⎭. (行最简形矩阵)例3 求解方程组123423412341234231,41,234,23 6.x x x x x x x x x x x x x x x +++=⎧⎪+-=⎪⎨++-=⎪⎪+--=-⎩解11231011411231423116A ⎛⎫ ⎪-⎪= ⎪- ⎪---⎝⎭31412111231011410114301578r r r r A --⎛⎫ ⎪-⎪−−−→= ⎪- ⎪---⎝⎭3242211231011410000200639r r r r A --⎛⎫ ⎪-⎪−−−→= ⎪ ⎪---⎝⎭34311231011410063900002r r A ↔⎛⎫ ⎪-⎪−−−→= ⎪--- ⎪⎝⎭,矩阵3A 是行阶梯形矩阵, 其对应的方程组为123423434231,41,639,0 2.x x x x x x x x x +++=⎧⎪+-=⎪⎨--=-⎪⎪=⎩ 第四个方程为02=, 这是不可能的, 故原方程组无解.例4 求解方程组1234123412341234231,234,324,23 6.x x x x x x x x x x x x x x x x +++=⎧⎪++-=-⎪⎨---=-⎪⎪+--=-⎩ 解11231123143112423116A ⎛⎫ ⎪-- ⎪= ⎪---- ⎪---⎝⎭ 213141321112310114504711701578r r r r r r A ---⎛⎫ ⎪--⎪−−−→= ⎪---- ⎪---⎝⎭ 3242421123101145003272700633r r r r A +-⎛⎫⎪--⎪−−−→= ⎪---⎪---⎝⎭4323112310114500327270005151r r A -⎛⎫ ⎪-- ⎪−−−→= ⎪--- ⎪⎝⎭1331451()411231011450019900011r r A ⨯-⨯⎛⎫⎪--⎪−−−→= ⎪⎪⎝⎭34241494351120201101001000011r r r r r r A -+--⎛⎫⎪-⎪−−−→= ⎪⎪⎝⎭231312261000101001001000011r r r r r r A ----⎛⎫⎪-⎪−−−→= ⎪⎪⎝⎭,3A 是行阶梯形矩阵, 6A 是行最简形矩阵, 6A 对应的方程组为12341,1,0,1.x x x x =-⎧⎪=-⎪⎨=⎪⎪=⎩故原方程组有唯一解, 即12341101x x x x -⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 二、初等矩阵定义2 将单位矩阵作一次初等变换所得的矩阵称为初等矩阵. 对应于三类初等行、列变换, 有下列三种类型的初等矩阵:(1) 初等换位矩阵 对调单位矩阵的第i , j 两行或第i , j 两列而得到的矩阵, 即为11011(,)11011E i j ⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪ ⎪= ⎪⎪ ⎪ ⎪ ⎪⎪⎪ ⎪⎝⎭O L M O M L O i j ←←第行第行 (2) 初等倍乘矩阵 用常数0k ≠乘单位矩阵的第i 行或第i 列而得到的矩阵, 即为11(())11E i k k i ⎛⎫ ⎪⎪ ⎪ ⎪=← ⎪ ⎪ ⎪⎪⎪⎝⎭O O 第行(3) 初等倍加矩阵 把单位矩阵的第j 行的k 倍加到第i 行上而得到的矩阵, 即为11(,())11k i E i j k j ⎛⎫ ⎪ ⎪ ⎪← ⎪= ⎪⎪← ⎪⎪⎪⎝⎭O L O M O 第行第行 (,())E i j k 也可看作是把单位矩阵的第i 列的k 倍加到第j 列上而得到的矩阵.下面我们用一个初等矩阵左乘或右乘一个矩阵. 例如111211112121222313233132321222100001010n n n n n n a a a a a a a a a a a a a a a a a a ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭L L L L L L ; 111213111312212223212322123132100001010m m m m m m a a a a a a a a a a a a a a a aa a ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭M M M M M M .由此可见, 用三阶初等换位矩阵(2,3)E 左乘矩阵3n A ⨯, 相当于对矩阵3n A ⨯作一次相应的初等换位行变换(即对调矩阵3n A ⨯的第2,3两行);用三阶初等换位矩阵(2,3)E 右乘矩阵3m A ⨯, 相当于对矩阵3m A ⨯作一次相应的初等换位列变换(即对调矩阵3m A ⨯的第2,3两列).用初等倍乘矩阵或初等倍加矩阵左乘或右乘一个矩阵, 可得类似的结论.一般地, 有如下定理.定理 设A 是一个m n ⨯矩阵, 对A 施行一次初等行变换, 相当于在A 的左边乘一个相应的m 阶初等矩阵;对A 施行一次初等列变换, 相当于在A 的右边乘一个相应的n 阶初等矩阵.由定理可知, 对于同阶初等矩阵, 有(1) (,)(,);E i j E i j E ⋅= (1.2.5) (2) 1(());E i E i k E k ⎛⎫⎛⎫⋅= ⎪ ⎪⎝⎭⎝⎭(1.2.6)(3) (,())(,()).E i j k E i j k E -⋅= (1.2.7)习题1-21. 把下列矩阵化为行阶梯形矩阵及行最简形矩阵:(1) 121131114302-⎛⎫ ⎪---- ⎪ ⎪⎝⎭;(2) 1111532114012211543314⎛⎫⎪⎪⎪⎪⎝⎭.2. 求解下面的方程组(1) 12341234123412343520,2350,7430,415790.x x x x x x x x x x x x x x x x -+-=⎧⎪+-+=⎪⎨-+-+=⎪⎪+-+=⎩(2) 123423412341234231,41,234,236,x x x x x x x x x x x x x x x +++=⎧⎪+-=⎪⎨++-=⎪⎪+--=-⎩(3) 123451234512345321,335432,2244 3.x x x x x x x x x x x x x x x +++-=⎧⎪+++-=⎨⎪+++-=⎩第三节 行 列 式一、n 阶行列式的定义 对于二元线性方程组11112212112222,.a x a x b a x a x b +=⎧⎨+=⎩ (1.3.1) 用消元法可得:当112212210a a a a -≠ 时, 存在唯一的解122212*********,b a b a x a a a a -=-211121*********b a b ax a a a a -=-.如果我们将方程组(1.3.1)的系数矩阵11122122a a A a a ⎛⎫= ⎪⎝⎭所对应的二阶行列式定义为1112112212211222a a D A a a a a a a ===-, (1.3.2) 并记1D =112222b a b a , 2D =111212ab a b , 则方程组(1.3.2)的解可写成如下形式11D x D =, 22Dx D=. (1.3.3)同样, 可以用行列式表示三元线性方程组111122133121122223323113223333,,.a x a x a xb a x a x a x b a x a x a x b ++=⎧⎪++=⎨⎪++=⎩ (1.3.4) 的解. 为此定义111213212223112233122331132132313233132231122133112332a a a D a a a a a a a a a a a a a a a a a a a a a a a a ==++--- (1.3.5)为系数矩阵所对应的三阶行列式, 用()1,2,3j D j =分别记用方程组(1.3.4)右端的常数列替换D 中的第j 列所得的三阶行列式, 则当0D ≠时, 方程组(1.3.4)的解可写为11D x D =, 22Dx D =, 33D x D=. (1.3.6)式(1.3.3)和式(1.3.6)分别用二、三阶行列式来表示方程组(1.3.1)、(1.3.4)的解. 这些公式形式简单, 便于记忆, 明显地表示出线性方程组的解与方程组的系数和常数项的关系. 这就启发我们考虑:如果含有n 个未知量、n 个方程的线性方程组有唯一解, 能否给出类似的求解公式?回答是肯定的 . 为此, 必须推广二、三阶行列式.二阶及三阶行列式的定义, 即公式(1.3.2)及(1.3.5), 可以用“对角线法则”来记忆(见下图):11122122a a a a 111213111221222321223132333132a a a a a a a a a a a a a a a (-) (+) (-) (-) (-) (+) (+) (+)二阶行列式等于主对角线元素的乘积减去副对角线元素的乘积.三阶行列式等于主对角线及与其平行的两条线上各 3 个元素的乘积之和, 减去副对角线及与其平行的两条线上各3 个元素乘积之和.例1 求行列式的值:12(1)34-, 102(2)211313---. 解 (1)1214(2)31034-=⨯--⨯=; (2) 1022113(4)0(6)012313--=-+-+----=--.例2 求解方程211123049x x =. 解 方程左端的三阶行列式2223418129256,D x x x x x x =++---=-+由2560x x -+=, 解得2x =或3x =.分析三阶行列式的定义, 我们发现第一, 式(1.3.5)的右端有3!项, 除去带有的正、负号外, 每项都是这个行列式中的每一行和每一列中任取1个且仅取1个元素的积. 如果把元素的第1个下标, 即行标(表示元素所在的行)按照123顺序排列, 则它的任意 一项可写成123123j j j a a a , 这里123,,j j j 是1, 2, 3 的一个排列(由1, 2, 3这三个数按某种次序所排成的一个有序数组), 元素的第2个下标, 即列标k j 表示 该元素所在的列.第二, 这6项中带有正号的那些项, 列标123,,j j j 形成3个排列: 123, 231, 312;带有负号的那些项的列标也形成3个排列:321, 213, 132.我们感兴趣的是, 这2组排列的区别是什么?为了回答这个问题, 我们给出下面几个定义.定义1 由1,2,,n L 这n 个数按某种次序所排成的一个有序数组12n j j j L 称为一个n 元全排列.显然, n 元全排列的个数为n !定义2 对于n 个不同元素, 若事先规定各元素之间有一个标准次序(例如n 个不同的自然数, 可规定由小到大为标准次序), 于是在这n 个元素的任一排列中, 当某两个元素的先后次序与标准次序不同时, 就说有1个逆序.定义3 一个排列中所有逆序的总数称为这个排列的逆序数, 用τ表示. 定义4 逆序数为奇数的排列称为奇排列, 递序数为偶数的排列称为偶排列.标准排列12n L 的逆序数(12)0n τ=L , 为偶排列. 可以证明:当2n ≥时,n 元全排列中奇 、偶排列各占一半, 即各有!2n 个.例3 求排列32514的逆序数, 并指明奇偶性. 解 在排列32514中, 3排在首位, 没有逆序;2的前面比2大的数有一个(3), 故有1个逆序; 5是最大数, 没有逆序;1的前面比1 大的数有三个(3, 2, 5), 故有3个逆序;4的前面比4大的数有一个(5), 故有1个逆序, 于是这个排列的逆序数为(32514)1315τ=++=. 从而排列32514是奇排列.现在回过来考察三阶行列式展开式中各项正负号的取法, 因为(123)0τ=, (231)2τ=, (312)2τ=, (321)3τ=, (213)1τ=, (132)1τ=,由此可见:任一项带正号或负号完全由它的行标为标准次序时, 列标形成的 排列123j j j 的奇偶性来决定, 即当列标形成的排列为偶排列时, 该项取正 号;列标形成的排列为奇排列时, 该项取负号. 因此, 我们有1231231112133!()212223123313233(1)j j j j j j a a a a a a a a a a a a τ=-∑, (1.3.7) 其中3!∑表示对1,2,3的所有排列求和, 共有3!6=项.二阶行列式也可以表示成和式12122!1112()122122(1)j j j j a a a a a a τ=-∑.定义5 设()ij n n A a ⨯=是一个n 阶方阵(2)n ≥, 称121211121!21222()1212(1)n n nn nj j j j j nj n n nna a a a a a a a a a a a τ=-∑L L L L M M M L (1.3.8)为n 阶行列式, 也可称为方阵A 的行列式, 记为A 或det A . 规定一阶行列式a a =(注意不要与绝对值混淆).下面是n 阶行列式的等价定义:121211121!21222()1212(1)n n nn ni i i i i i n n n nna a a a a a a a a a a a τ=-∑L L L L M M M L , (1.3.9)上式右端各项的n 个因子是按列标组成标准次序的.由行列式的定义知, 若行列式的某行(列)的元素都是零, 则此行列式为零.例4 证明对角行列式(对角线以外的元素均为0)(1)1212n nλλλλλλ=L O; (2)1(1)2212(1)n n n nλλλλλλ-=-L N.证明 (1) 由行列式的定义即得.(2) 若记,1i i n i a λ+-=则由行列式的定义可得1122,11nn nn a a a λλλ-=NN12,1112(1)(1)n n n n a a a ττλλλ-=-=-L L , 其中τ为排列(1)21n n -L 的逆序数, 故(1)12(1)2n n n τ-=+++-=L . 例5 证明行列式112122112212000nn n n nna a a D a a a a a a ==L L L M M M L. 证明 由于当j i >时, 0ij a =, 故D 中可能不为0的元素i i p a , 其下标应有i p i ≤, 即121,2,,n p p p n ≤≤≤L .在所有排列12n p p p L 中, 能满足上述关系的排列只有一个排列12n L , 其逆序数0τ=, 所以D 中可能不为0的项只有一项1122(1)nn a a a τ-L , 即1122nn D a a a =L . 对角线以下(上)的元素都为零的行列式称为上(下)三角行列式, 它们的值与对角行列式一样, 都等于主对角线上元素的乘积.二、行列式的性质 记111212122212n n n n nn a a a a a a A a a a =L L M M M L, 112111222212n n T n n nna a a a a a A a a a =L LM M M L, 行列式T A 称为行列式A 的转置行列式.性质1 行列式与它的转置行列式相等. 例如3421=--3241-=-5.由性质1可知, 行列式对行成立的性质, 对列也成立, 反之亦然. 以下叙述行列式性质时, 只对行叙述.性质2 互换行列式的两行, 行列式变号. 例如3421=--5, 2134--=5-.推论 若行列式有两行元素完全相同, 则此行列式为零.性质3 行列式中某一行的所有元素乘同一数k 等于用k 乘原行列式(第i 行乘以k , 记作:i r k ⨯).推论1 行列式中某一行的所有元素的公因子可提到行列式记号外. 由此推论及矩阵的运算, 设A 为n 阶方阵, λ为数, 则n A A λλ=. 例如, 若A 是三阶方阵且2A =, 则322216A =⋅=.推论2 行列式中如果有两行的元素对应成比例, 则此行列式为零. 性质4 若行列式的某一行元素都是两数之和, 例如11121112212n i i i i in inn n nna a a D a a a a a a a a a '''=+++L M M ML MM M L,则行列式D 等于下面的两个行列式之和:111211212n i i in n n nn a a a D a a a a a a =L M M M L M M M L 111211212ni i in n n nna a a a a a a a a '''+L M M M LM M M L. 注 行列式的加法与矩阵的加法不同.性质5 把行列式的某一行的各元素乘以同一个数, 然后加到另一行对应的元素上去, 行列式不变.以上性质不难由行列式的定义证得, 以性质4为例, 证明如下. 性质4的证明 由(1.3.8)式, 得 1212!()12(1)()n i i n n j j j j j ij ij nj D a a a a a τ'=-+∑L L L 1212!()12(1)n i n n j j j j j ij nj a a a a τ=-∑LL L1212!()12(1)n i n n j j j j j ijnj a a a a τ'+-∑L L L 111211212n i i in n n nn a a a a a a a a a =LM MM LM M M L111211212ni i in n n nna a a a a a a a a '''+L M M M L M M M L. 例6 计算行列式121024*********3D -=---. 解D21314123r r r r r r -++ 1210003202110213-- 23r r ↔ 1210021100320213--- 42r r - 1210021100320022---4323r r + 12100211003210003--10123203=-⨯⨯⨯=-.例7 计算行列式3111131111311111D =. 解 这个行列式的特点是各列4个数之和都是6. 将第2, 3, 4行同时加到第一行, 提出公因子6, 然后各行减去第一行, 得D121314r r r r r r +++ 6666131111311111 116r ⨯ 11111311611311111213141r r r rr r --- 1111020064800200002=. 例8 设2113A -⎛⎫= ⎪⎝⎭, 3452B -⎛⎫= ⎪⎝⎭, 求,A ,B AB .解 217,13A -== 342652B -==. 因为21341101352182AB ---⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,所以110182182AB -==.我们注意到:AB A B =. 一般地, 有下列结论:定理1 若A , B 为同阶方阵, 则AB A B =, 从而.AB BA =三、行列式按行(列)展开在三阶行列式的定义式(1.3.5)中, 如果把含111213,,a a a 的项分别合并, 并提出公因子, 则有1112132223212223113233313233a a a aa a a a a a a a a a = 2123123133aa a a a - 2122133132aa a a a +. (1.3.10) 据此, 一个三阶行列式的计算可转化为三个二阶行列式的计算. 自然有一个问题:一个n 阶行列式的计算能否转化为n 个1n -阶行列式的计算, 从而达到降阶的目的?下面讨论这个问题.定义6 在n 阶行列式A 中划去第i 行和第j 列后所剩下的2(1)n -个元素按原来的相对位置所构成的1n -阶行列式称为ij a 在A 中的余子式, 记为ij M , 而称(1)i j ij ij A M +=-为ij a 在A 中的代数余子式, 这里1,i j n ≤≤.例9 在行列式123456789A =中, 求23M , 33M , 23A , 33A . 解 2312678M ==-, 232323(1)6A M +=-=, 3312345M ==-, 333333(1)3A M +=-=-. 利用代数余子式, 式(1.3.10)可以写成111112121313A a A a A a A =++,将上式推广到一般情况, 有下面的结论:定理2 n 阶行列式(2n ≥)等于它的任一行(列)各元素与其代数余子式乘积之和, 即1122i i i i in in A a A a A a A =+++L 1nij ij j a A ==∑, 1,2,,i n =L . (1.3.11)或1122j j j j nj nj A a A a A a A =+++L 1nij ij i a A ==∑, 1,2,,j n =L . (1.3.12)推论 行列式的任一行(列)的元素与另一行(列)的元素的代数余子式乘积之和等于零. 即11220i j i j in jn a A a A a A +++=L , (1.3.13) 11220i j i j ni nj a A a A a A +++=L , (1.3.14)其中i j ≠.定理1按行(列)展开计算行列式的方法称为降阶法. 计算行列式时, 将行列式按行(列)展开与行列式的性质结合起来用, 常常能够达到事半功倍的效果.例10 计算行列式 (即本节例6)1210241210213423D -=---.解 利用行列式的性质, 将行列式的某行(列)除某个元素外的其余元素化为0, 再按该行(列)展开.D21312c cc c-+1000203212113213---1r 按展开110321(1)211213+⨯--32r r -032211022-1c 按展开21322(1)22+⨯--21020=-⨯=-.例11 证明123213132222123111()()()x x x x x x x x x x x x =---. 证明123222123111x x x x x x 2131c c c c --121312222212131100x x x x x x x x x x ---- 213111212131311(1)()()()()x x x x x x x x x x x x +--=⨯--+-+2131213111()()x x x x x x x x =--++213132()()()x x x x x x =---.上例中的行列式称为三阶范得蒙德行列式. 类似可证n 阶范得蒙德行列式1222212111112111()n n n i j j i nn n n n x x x x x x D x x x x x ≤<≤---==-∏L L L M M M L . 四、克拉默法则下面介绍利用行列式求含有n 个未知量、n 个方程的线性方程组解的公式. 设方程组为11112211211222221122,,.n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩L L L L L L L L L L L L L (1.3.15) 由各方程中的未知量的系数构成的行列式111212122212n nn n nna a a a a a D a a a =L L M M M L(1.3.16) 称为方程组(1.3.15)的系数行列式, 用常数项12,,,n b b b L 替换D 中第j 列的相应元素得行列式记为j D , 即111,111,11212,122,121,1,1j j n j j nj n n j n n j nna ab a a a a b a a D a a b a a -+-+-+=L L L L M M M M M LL. 定理3 (克拉默法则)如果n 元线性方程组(1.3.15)的系数行列式0D ≠, 则方程组有唯一解,1,2,,j j D x j n D ==L .。

第一章 行列式与矩阵

第一章  行列式与矩阵

《工程数学》教案第一章行列式与矩阵一、教学目标与基本要求:1.掌握n阶行列式的定义和行列式的性质。

2.掌握n阶行列式按行或列展开定理。

3.利用行列式的性质和展开定理计算n阶行列式。

4.掌握矩阵的定义及矩阵的加减、数乘及矩阵的乘法。

5.掌握矩阵转置、对称及反对称矩阵、矩阵的行列式。

6.了解分块矩阵的定义及其运算规律。

7.掌握逆阵的定义及求法。

8.了解初等变换和初等矩阵的概念,会利用初等变换求矩阵的逆矩阵。

二、教学内容及学时分配:1、教学内容1.1 行列式1.2 矩阵1.3 矩阵的运算1.4 几类特殊的矩阵1.5 矩阵的初等变换1.6 逆矩阵2、学时分配:22学时三、本章教学内容的重点和难点:1、本章重点:(1)、n阶行列式的概念和性质。

(2)、利用行列式的性质和按行(列)展开定理计算行列式。

(3)、矩阵的概念及其运算。

(4)、矩阵的初等变换与矩阵的标准型。

(5)、矩阵秩的概念及其求法。

(6)、逆矩阵的概念及其求法。

(7)、矩阵方程的求解。

2、本章难点:1.n阶行列式的计算方法的掌握。

2.逆矩阵的性质及相关问题的证明。

四、本章教学内容的深化和拓宽1.n阶行列式的计算方法。

2.方阵的高次幂运算五、教学过程中应注意的问题1、行列式中某一项的正负号的确定。

2、代数余子式的重要性质的应用。

3、一般情况下AB BA,即矩阵乘法不满足交换律。

4、特殊矩阵的性质与初等方程的作用。

5、分块矩阵的运算性质须满足相应的分块原则。

六、本章的习题和思考题1、习题:1(1)(2)(3)(4)(5)(7)(8),2,3(1)(2),4,5(1)(3)(4),6,7,8,9(1),(3),(5),(7),10,11,12,17,18,19,20(1),(3),(5),(7),21,22,23,24,272、思考题:1(6),3(3),5(2),9(2),(4),(6),(8),13,14,25,26,28,29。

习题课一:1、讲评第一章的作业。

工程数学 线性代数 第一章

工程数学 线性代数 第一章

阶矩阵或 阶方阵, 当m=n 时,称A 为n 阶矩阵或n 阶方阵,即
a11 a12 L a1 n a 21 a22 L a2 n A= M M M an1 an 2 L ann 从左上角到右下角的对角线称为主对角线 为主对角线; 从左上角到右下角的对角线称为主对角线
Company Logo
上三角矩阵 (2) 特殊矩阵 下三角矩阵 对角矩阵 数量矩阵 单位矩阵
零矩阵 所有元素全为零的矩阵 各个元素取相反数得到的矩阵 负矩阵
a11 a12 L a1n L a11 a 0 L a 0 0 a a1122 0 L 2n0 0 L a22 M M 21 M 0a1 22 0 L 0 0 M Ma 0 L L 0 M 0 L ann 0 M M a an10 n2 aLL 0 0 1 annM 0 0 0 LL ann
3阶零 方阵
0 0 0 0 0 0 0 0 0 0 ≠ 0 0 0 0 0 0 0 0 0 0 0
3 × 4阶
零矩阵
Company Logo
2. 单位矩阵
主对角线的元素都是1 而其他元素全为零的 主对角线的元素都是1,而其他元素全为零的n 阶方阵称为n阶单位矩阵 记为E或 , 阶单位矩阵, 阶方阵称为 阶单位矩阵,记为 或I,有时为了 明确其阶数,也把它记为E 明确其阶数,也把它记为 n或In .
M M 0 0
M M M M 0 L a 0 L 1
Company Logo
第二节 消元法与矩阵的初等变换
一、线性方程组与矩阵 二、消元法与矩阵的初等行变换 三、矩阵的初等变换 四、小结 思考题

矩阵和行列式知识要点

矩阵和行列式知识要点

矩阵和行列式知识要点一、矩阵(Matrix)1.定义矩阵是按照一定规则排列的数(或变量)的矩形阵列。

一般用大写字母表示,如A、B,其元素用小写字母表示并用下标表示元素的位置。

2.类型根据矩阵的元素可以分为实矩阵(元素为实数)、复矩阵(元素为复数)、数值矩阵(元素为纯数值而不是变量)等。

3.运算(1)矩阵的加法:对应元素相加。

(2)矩阵的数乘:矩阵的每个元素乘以相同的数。

(3)矩阵的乘法:矩阵A的列数等于矩阵B的行数时,A乘以B的结果是一个新的矩阵C,C的第i行第j列的元素是A的第i行与B的第j列元素的乘积之和。

4.逆矩阵如果一个方阵A存在逆矩阵A-1,使得A与A-1相乘等于单位矩阵I,即A·A-1=I,那么称A为可逆矩阵或非奇异矩阵,A-1为A的逆矩阵。

5.矩阵的转置将一个矩阵的行变为同序数的列,列变为同序数的行,得到的新矩阵称为原矩阵的转置矩阵。

二、行列式(Determinant)1.定义行列式是一个表示线性变换对坐标的拉伸或者压缩程度的标量值。

一般用竖线“,,”或者方括号“[]”表示。

2.性质(1)行列式的值等于其转置矩阵的值。

(2)行列式对换两行(列)变号。

(3)行列式中如果有两行(列)相同,则行列式的值为0。

(4)行列式其中一行(列)的元素都是两数之和,行列式的值可以分开计算。

3.行列式的计算方法(1)拉普拉斯展开法:取行(列)进行展开,将问题逐步转化为计算较小规模的子行列式。

(2)数学归纳法:将行列式的展开按照第一行(列)来进行,用递归的方法逐步减小行列式的规模。

4.逆矩阵与行列式的关系若矩阵A可逆,则A的逆矩阵A-1的值等于A的行列式的倒数,即A-1=1/,A。

三、矩阵和行列式的应用1.线性方程组2.线性变换矩阵可以表示线性变换,通过矩阵与向量的乘法,可以实现向量的旋转、缩放等操作。

3.特征值和特征向量矩阵的特征值和特征向量是矩阵在线性变换下的固有性质,通过计算矩阵的特征值和特征向量,可以得到矩阵的重要信息,如对称矩阵的主对角线元素就是其特征值。

工程数学线性代数第六版第一章

工程数学线性代数第六版第一章

法3: (i1 , i2 ,, in )
数 i 前面比 i 大的数的个数
n
n
数 in1 前面比 in1 大的数的个数
数 i 前面比 i 大的数的个数
2
2
例1: 求排列 3,2,5,1,4 的逆序数。
解:(法1) m1 3, m2 1, m3 0, m4 1, m5 0
(32514) 3 1 1 5
(法2) 前 后
(32514) 2 1 2 0 0 5
(法3) 后 前
(32514) 1 3 0 1 0 5
例2: 求排列 4,5,3,1,6,2 的逆序数。 9
考虑,在 1,2,3 的全排列中
有 3 个偶排列: 有 3 个奇排列:
123,231,312 132,213,321
“代数”这一个词在我国出现较晚,在清代时才传入中国, 当时被人们译成“阿尔热巴拉”,直到1859年,清代著名的数 学家、翻译家李善兰才将它翻译成为“代数学”,一直沿用至 今。
线性代数是讨论矩阵理论、与矩阵结合的有限维向量空间及其线性变换理论的 一门学科。
主要理论成熟于十九世纪,而第一块基石(二、三元线性方程组的解法) 则早在两千年前出现(见于我国古代数学名著《九章算术》)。
一般说来,在n个数码的全排列中,奇偶排列各占一半
定义3: 把一个排列中的任意两个数交换位置,其余数码 不动,叫做对该排列作一次对换,简称对换。
将相邻的两个数对换,称为相邻对换。
定理1: 对换改变排列的奇偶性。 证明思路: 先证相邻变换,再证一般对换。
定理2: n 2 时,n个数的所有排列中,奇偶排列各占 一半,各为 n! 个。 2
a a a 其任一项可写成: 1 j1 2 j2 3 j3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a11ቤተ መጻሕፍቲ ባይዱa21 a31
(-) (-)
a12 a22 a32
(-)
a13 a11 a23 a21 a33 a31
(+)
a12 a22 a32
(1.3)
(+) (+)
例4 计算三阶行列式 1 2 3 1)1 -1 4 , 5 1 2
1 0 2 2) 3 -1 2 4 -1 4
1 5 1 0
2 1 2
3 2
定义2 定义 代数和a11a22 a33 + a12 a23a31 + a13 a21a32 − a13 a22 a31
−a11a23a32 − a12 a21a33叫三阶行列式, 三阶行列式,记作
a11 D3 = a21 a31 a12 a22 a32 a13 a23 a33 a11a22 a33 + a12 a23 a31 + a13a21a32 −a13 a22 a31 − a11a23 a32 − a12 a21a33 (1.2)
λ
2
λ
1
3
问 : (1) 当λ为何值时 D = 0; (2) 当λ为何值时 D ≠ 0; 解: D =
λ2 λ
3 1
= λ − 3λ
2
若λ 2 − 3λ = 0 得 λ = 0 或 λ = 3 因此(1) 当λ = 0或λ =3时 D = 0; (2) 当λ ≠ 0且λ ≠ 3时 D ≠ 0;
例3 用二阶行列式解二元线性方程组 2 x1 + 3 x2 = 1 2 x1 − 5 x2 = 1 因系数行列式不为零,所以方程组的解为 1 3 1 −5 −8 1 = = 2 3 − 16 2 2 −5 2 2 2 2 1 1 0 = =0 3 − 16 −5
特别地,对角行列式 角行列式(当i ≠ j时,aij =0,即主对角线 两旁的元素全为0)
a11 a22 O ann = a11a22 ⋅L ⋅ ann
一般地,按照行列式的递推( 一般地,按照行列式的递推(归)定义来计算n阶行列式, 定义来计算n阶行列式, 通常是很繁琐的.因此我们有必要来研究行列式的性质, 通常是很繁琐的.因此我们有必要来研究行列式的性质,利用 这一些性质可使行列式的计算简化. 这一些性质可使行列式的计算简化.
例5 以下行列式称为下三角行列式(当i<j时, aij = 0,即主对角线上方的元素全为0),按定义计 算其值: a11 a21 D n = a31 M an1 0 a22 a32 M an 2 0 0 L L 0 0
i =1
a33 L 0 M M an 3 L ann
解:
a11
0 a22 a32 M an 2
a12 a22
(+) (2.1)式中横写的叫行,竖写的叫列,其中的数称为行列式的元素 如
则上述方程组的解可表示为 b1 a12 b2 a22 x1 = , a11 a12 a21 a22
a12 为二阶行列式的第一行第二列的元素.
a11 b1 a21 b2 x2 = a11 a12 a21 a22
5 −1 = 5 × 3 − 3 × (−1) = 13 例1 3 2 例2 设 D=
ai −1, j +1 L ai −1,n ai +1, j +1 L ai +1,n M an , j +1 L M ann
定义5 定义5
称 Aij = ( −1)
i+ j
M ij为元素aij 的代数余子式
由上述定义5,(1.5)式可以表达为 式可以表达为 由上述定义 n Dn = a11 A11 + a12 A12 + a13 A13 + L + a1n A1n = ∑ a1i A1i (1.7)
−2
证明思想 : 仍然是从定义出发证,祥略。 仍然是从定义出发证,祥略。 如果行列式有两行( 完全相同, 推论 如果行列式有两行(列)完全相同,则此 行列式为零. 行列式为零.
为什么?? 为什么??
性质2 可表示为
a11 M a i1 M a j1 M a n1 a12 M ai 2 M a j2 M an 2
a22 a32
(1.4)
我们来分析一下(1.4)式:首先(1.4)式右端的 我们来分析一下(1.4)式 首先(1.4)式右端的 三项是D 三项是D3中第一行的三个元素 a1 j ( j = 1, 2,3) 分别 乘一个二阶行列式, 乘一个二阶行列式,而使乘的二阶行列式是划去该 元素所在的行与所在的列所组成;其次, 元素所在的行与所在的列所组成;其次,每一项之 ,1和 的行标和列标. 前都要乘以 (−1)1+ j,1和j正好是 a1 j 的行标和列标. 按照这一规律, 按照这一规律,我们可以用三阶行列式定义 出四阶行列式.以此类推,我们可以给出n 出四阶行列式.以此类推,我们可以给出n阶行列 式的定义. 式的定义.
解: x = 1 x2 =
类似地, 在三元线性方程组 a11 x1 + a12 x2 + a13 x3 = b1 a21 x1 + a22 x2 + a23 x3 = b2 a x + a x + a x = b 31 1 32 2 33 3 3 的求解中引出三阶行列式.
与二阶行列式相似,它可以由一个很简单的规则来说明 这 与二阶行列式相似 它可以由一个很简单的规则来说明,这 它可以由一个很简单的规则来说明 就是三阶行列式的对角线法则,即如下所示 即如下所示,实对角线上三个元 就是三阶行列式的对角线法则 即如下所示 实对角线上三个元 素之乘积前冠以正号,虚对角线上三个元素之乘积前冠以负号 虚对角线上三个元素之乘积前冠以负号, 素之乘积前冠以正号 虚对角线上三个元素之乘积前冠以负号 再把这些乘积加起来,就得到 就得到(1.2)式. 再把这些乘积加起来 就得到 式
L O L O L O L
a1 n M
a11 M
a12 M a j2 M ai 2 M an 2
L O L O L O L
a1 n M a jn M a in M a nn
a in a j1 M =− M a jn M a nn a i1 M a n1
展开法则) 性质 3(展开法则 展开法则
n
行列式等于它的任意一行(列 中所 行列式等于它的任意一行 列)中所
性质 1
行列式与它的转置行列式相等
行列式中的行与列具有同等的地位; 意义 : 行列式中的行与列具有同等的地位;
性质 2
例如 ..例如
将行列式的两行(列 对调 对调,行列式变号 将行列式的两行 列)对调 行列式变号
2 −1 0 3 1 2 1 −1 −1 2 1 −1 1 = 2
=2
0 −1 3 −1
上述三阶行列式的值,也可以表示为 上述三阶行列式的值 也可以表示为 a11 a12 a13 a22 a23 1+1 D3 = a21 a22 a23 = (−1) a11 a32 a33 a31 a32 a33
+ (−1)
1+ 2
a12
a21 a31
a23 a33
+ (−1) a13
1+ 3
a21 a31
有元素与它们对应的代数余子式乘积之和.即 有元素与它们对应的代数余子式乘积之和 即
§1.1 行列式及其性质
在数学发展史上,行列式是通过解线性方程组的求解 而引出的,以二元线性方程组
a11 x1 + a12 x2 = b1 , a21 x1 + a22 x2 = b2
的求解为例,为了消去未知数x2 ,两式分别乘以
a22 , a12再相减得 (a11a22 − a21a12 ) x1 = b1a22 − b2 a12 同样, 消去x1得 (a11a22 − a21a12 ) x2 = b2 a11 − b1a21 于是,当 a11a22 − a21a12 ≠ 0时, 解得 b1a22 − b2 a12 x1 = a a − a a 11 22 21 12 x = a11b1 − a21b2 2 a11a22 − a21a12 上述结果不容易记住,也不便推广到n元线性方程组
三阶行列式有3行 列 个元素,其右端的算式由 个项组成,其 其右端的算式由3!个项组成 三阶行列式有 行3列,32个元素 其右端的算式由 个项组成 其 中每一项都是位于不同行不同列的三个元素的乘积,所有乘积 中每一项都是位于不同行不同列的三个元素的乘积 所有乘积
3! 项前所带的符号为正负号各半.(即各为 项) 项前所带的符号为正负号各半 即各为 2
行列式的性质

Dn =
a11 a21 M an1
a12 L a1n a22 L a2 n M O M an 2 L ann
,
DT n =
a11 a12 M a1n
a21 L an1 a22 L an 2 M O M a2 n L ann
我们称DT n为行列式D n的转置行列式, 显然DT n是行列式Dn的行 与列互换之后所得的行列式.
定义3 定义3
由n 2个数aij (i, j = 1, 2,L , n)组成的n阶行列式 a11 a21 Dn = M an1 a12 a22 M an 2 a13 L a1n a23 L a2 n M M an 3 L ann
是一算式.当n=1时,定义D1 = a11 = a11 ;当n ≥ 2时, 定义 a22 Dn = (−1)1+1 a11 M an 2 a23 L a2 n a21 M M + (−1)1+ 2 a12 M an 3 L ann an1 a22 L a2,n −1 M M an 2 L an ,n −1 a23 L a2 n M M an 3 L ann (1.5)
相关文档
最新文档