矩阵与行列式知识梳理
矩阵与行列式解析矩阵与行列式的性质与运算规律

矩阵与行列式解析矩阵与行列式的性质与运算规律矩阵和行列式是线性代数中重要的概念和工具。
它们在数学、物理、工程等领域都有广泛的应用。
本文将详细解析矩阵与行列式的性质和运算规律。
一、矩阵的性质与运算规律1. 矩阵的定义矩阵是一个按照长方阵列排列的数。
它由m行n列元素组成,记作A=(a_ij),其中1≤i≤m,1≤j≤n。
矩阵的行数和列数分别称为矩阵的阶数或维数。
2. 矩阵的运算规律2.1 矩阵的加法和减法设A=(a_ij)和B=(b_ij)是两个同阶矩阵,则它们的和C=A+B的定义为C=(c_ij),其中c_ij=a_ij+b_ij。
矩阵的减法定义类似。
2.2 矩阵的数乘设A=(a_ij)是一个矩阵,k是一个数,则kA的定义为kA=(ka_ij),其中ka_ij=ka_ij。
2.3 矩阵的乘法设A=(a_ij)是一个m行n列的矩阵,B=(b_ij)是一个n行p列的矩阵,则它们的乘积C=AB的定义为C=(c_ij),其中c_ij=a_i1b_1j+...+a_inb_nj。
3. 矩阵的性质3.1 矩阵的转置设A=(a_ij)是一个m行n列的矩阵,A的转置记作A^T,定义为A^T=(a_ji)是一个n行m列的矩阵。
3.2 矩阵的逆设A是一个n阶方阵,若存在一个n阶方阵B,使得AB=BA=I,其中I为单位矩阵,则称矩阵A可逆,B为A的逆矩阵。
若A不可逆,则称为奇异矩阵。
3.3 矩阵的行列式矩阵A的行列式记作|A|,行列式是一个标量,它由矩阵元素按一定规则计算而得。
行列式的性质包括行列式的加法性、数乘性、转置性等。
二、行列式的性质与运算规律1. 行列式的定义行列式是一个方阵的特征值之一。
设A=(a_ij)是一个n阶方阵,行列式的定义为|A|=a_11a_22...a_nn-a_11a_23...a_n(n-1)-...-a_1n-1a_2n...a_n。
2. 行列式的运算规律2.1 行列式的数乘若k是数,A是n阶方阵,则kA的行列式等于k的n次方乘以A 的行列式,即|kA|=k^n|A|。
行列式矩阵知识点

一、行列式
1.行列式的定义
用n2个元素a ij组成的记号称为n阶行列式。
(1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和;
(2)展开式共有n!项,其中符号正负各半;
2.行列式的计算
一阶|α|=α行列式,二、三阶行列式有对角线法则;
N阶(n =3)行列式的计算:降阶法
定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。
方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。
特殊情况
上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;
(2)行列式值为0的几种情况:
行列式某行(列)元素全为0;
行列式某行(列)的对应元素相同;
行列式某行(列)的元素对应成比例;
奇数阶的反对称行列式。
总复习-1矩阵与行列式

I 矩阵、行列式一、矩阵的概念及其初等变换 矩阵概念矩阵与行列式的区别:矩阵(数表)行列式(数)记号:1111n m n m a a a a ⎛⎫⎪⎪ ⎪⎝⎭m n A ⨯ ()ij m n a ⨯1111n m nn a a a a n Aij na 化简:1111m n m n a a a a ⎛⎫⎪⎪ ⎪→⎝⎭1111nm nn a a a a =矩阵的初等变换理论定义:(看书) 结论一对任一m n ⨯矩阵A ,设()R A r =,有1,11,1000000000110r n r r rn m n c c c c A A ++⨯⎛⎫⎪ ⎪ ⎪−−−→ ⎪⎪ ⎪ ⎪ ⎪⎝⎭行变(的行最简形矩阵)应用1 高斯消元法解线性方程组增广矩阵A −−−→行变行最简形矩阵(可直接写出解)应用2 列摆行变法判定向量组的线性相关性及求最大无关组、秩和线性表示式1,1111,12100(,,,)(,,,)0000000011,,r n r r r n r n r n c c c c J J εαααε+++⎛⎫⎪⎪ ⎪−−−→=⎪ ⎪⎪⎪⎪⎝⎭行变设则12,,,n ααα 与11,,,,,r r n J J εε+ 有相同的线性相关性。
应用3 行初等变换法求逆矩阵A -1、A -1B1(,)(,)A E E A -−−−→行变1(,)(,)A B E A B -−−−→行变结论二对任一m n ⨯矩阵A ,设()R A r =,有000r m n E A A ⨯⎛⎫−−−−→ ⎪⎝⎭列行变和变(的相抵标准形)应用1 初等变换法求矩阵的秩(可作列变)应用2 标准形思路:,,000rEA P Q P Q ⎛⎫= ⎪⎝⎭其中是可逆矩阵. 结论三 初等变换与初等矩阵的转化关系:箭号等号关系(“左行右列”)二、矩阵的运算加法、数乘、乘法、转置 关于矩阵乘法,注意:(1) 矩阵乘法与数的乘法不同之处不满足交换律AB BA ≠222()2A B A AB B +≠++ 22()()A B A B A B -≠+- ()k k k AB A B ≠注意:,A B 设均为方阵,则错误!未找到引用源。
矩阵与行列式知识点

矩阵与行列式知识点矩阵和行列式是线性代数中的重要概念,广泛应用于数学、物理、工程等领域。
本文将介绍矩阵和行列式的基本定义与性质,以及它们在实际问题中的应用。
一、矩阵的定义与性质矩阵是由一些数按照矩形排列而成的表格。
我们用$m\timesn$表示一个矩阵,其中$m$代表矩阵的行数,$n$代表矩阵的列数。
一个矩阵的元素通常用小写字母(如$a_{ij}$)表示,其中$i$表示元素所在的行数,$j$表示元素所在的列数。
矩阵的转置是指行和列互换,转置后的矩阵用$A^T$表示。
矩阵可以进行一些基本的运算,如矩阵的加法和数乘。
对于两个相同维数的矩阵$A$和$B$,它们的加法定义为$A+B$,即将对应位置的元素相加得到新的矩阵。
对于一个矩阵$A$和一个标量$c$,它们的数乘定义为$cA$,即将矩阵$A$中的每个元素都乘以$c$得到新的矩阵。
矩阵的乘法是指两个矩阵相乘得到一个新的矩阵。
对于一个$m\times n$的矩阵$A$和一个$n\times p$的矩阵$B$,它们的乘积$AB$是一个$m\times p$的矩阵。
矩阵相乘的条件是第一个矩阵的列数等于第二个矩阵的行数。
二、行列式的定义与性质行列式是一个与方阵相关的标量值。
对于一个$n\times n$的方阵$A$,我们用$|A|$表示它的行列式。
行列式的计算主要依靠代数余子式和代数余子式矩阵。
对于方阵$A$的元素$a_{ij}$,它的代数余子式$M_{ij}$是去掉$a_{ij}$所在的行和列后的余下元素的行列式,即由$n-1$阶子方阵组成。
代数余子式矩阵$A^*$是由方阵$A$的每个元素的代数余子式按照一定的规则排布而成的矩阵。
行列式的计算方法有很多,包括拉普拉斯展开法、行列式按行展开法等。
其中,拉普拉斯展开法是最常用的方法,即选择方阵的任意一行或一列展开,并用代数余子式乘以对应元素后进行求和。
行列式具有很多重要的性质,如行列式的性质对换、行列式的性质正交等。
矩阵和行列式复习知识点汇总

矩阵和行列式复习知识点汇总一、矩阵的定义和运算:1.矩阵是一个按照矩形排列的数字集合。
一个m×n的矩阵有m行和n列。
2. 矩阵的元素通常用小写字母表示,如a_ij表示矩阵A的第i行第j列的元素。
3.矩阵的加法:若A和B是同型矩阵,则它们的和A+B也是同型矩阵,且相加的结果为对应位置的元素之和。
4.矩阵的数乘:若A是一个矩阵,k是一个标量,则kA是一个矩阵,且每个元素都乘以k。
5. 矩阵的乘法:若A是一个m×n的矩阵,B是一个n×p的矩阵,则AB是一个m×p的矩阵,其中C_ij等于A的第i行与B的第j列对应元素的乘积之和。
二、矩阵的特殊类型:1.零矩阵:所有元素都为0的矩阵。
2.对角矩阵:主对角线上元素以外的其他元素均为0的矩阵。
3.单位矩阵:主对角线上元素都为1,其他元素为0的对角矩阵。
4.转置矩阵:将矩阵A的行和列互换得到的矩阵,记作A^T。
5.逆矩阵:对于一个n阶方阵A,如果存在一个矩阵B使得AB=BA=I (其中I为单位矩阵),则称B为A的逆矩阵,记作A^(-1)。
只有非奇异矩阵才有逆矩阵。
三、行列式的定义和性质:1. 行列式是一个与方阵相关的标量值。
一个n阶方阵A的行列式通常用det(A)或,A,表示。
2. 二阶方阵A的行列式可表示为:det(A) = a11 * a22 - a12 *a213.计算三阶及以上行列式时,可利用代数余子式和拉普拉斯展开公式。
4.行列式的性质:a) 若A的其中一行(列)的元素全为0,则det(A) = 0。
b) 若A的两行(列)互换,则det(A)的符号会变化。
c) 若A的其中一行(列)的元素都乘以常数k,则det(kA) = k^n * det(A)。
d) 若A的两行(列)相等,则det(A) = 0。
e)若A的其中一行(列)的元素都乘以常数k,再加到另一行(列)上,对应行列式的值不变。
四、矩阵的行列式和逆矩阵:1. 对于一个n阶方阵A,若其行列式不为0(即det(A) ≠ 0),则A是一个非奇异矩阵,有逆矩阵A^(-1)。
矩阵和行列式知识要点

矩阵和行列式知识要点一、矩阵(Matrix)1.定义矩阵是按照一定规则排列的数(或变量)的矩形阵列。
一般用大写字母表示,如A、B,其元素用小写字母表示并用下标表示元素的位置。
2.类型根据矩阵的元素可以分为实矩阵(元素为实数)、复矩阵(元素为复数)、数值矩阵(元素为纯数值而不是变量)等。
3.运算(1)矩阵的加法:对应元素相加。
(2)矩阵的数乘:矩阵的每个元素乘以相同的数。
(3)矩阵的乘法:矩阵A的列数等于矩阵B的行数时,A乘以B的结果是一个新的矩阵C,C的第i行第j列的元素是A的第i行与B的第j列元素的乘积之和。
4.逆矩阵如果一个方阵A存在逆矩阵A-1,使得A与A-1相乘等于单位矩阵I,即A·A-1=I,那么称A为可逆矩阵或非奇异矩阵,A-1为A的逆矩阵。
5.矩阵的转置将一个矩阵的行变为同序数的列,列变为同序数的行,得到的新矩阵称为原矩阵的转置矩阵。
二、行列式(Determinant)1.定义行列式是一个表示线性变换对坐标的拉伸或者压缩程度的标量值。
一般用竖线“,,”或者方括号“[]”表示。
2.性质(1)行列式的值等于其转置矩阵的值。
(2)行列式对换两行(列)变号。
(3)行列式中如果有两行(列)相同,则行列式的值为0。
(4)行列式其中一行(列)的元素都是两数之和,行列式的值可以分开计算。
3.行列式的计算方法(1)拉普拉斯展开法:取行(列)进行展开,将问题逐步转化为计算较小规模的子行列式。
(2)数学归纳法:将行列式的展开按照第一行(列)来进行,用递归的方法逐步减小行列式的规模。
4.逆矩阵与行列式的关系若矩阵A可逆,则A的逆矩阵A-1的值等于A的行列式的倒数,即A-1=1/,A。
三、矩阵和行列式的应用1.线性方程组2.线性变换矩阵可以表示线性变换,通过矩阵与向量的乘法,可以实现向量的旋转、缩放等操作。
3.特征值和特征向量矩阵的特征值和特征向量是矩阵在线性变换下的固有性质,通过计算矩阵的特征值和特征向量,可以得到矩阵的重要信息,如对称矩阵的主对角线元素就是其特征值。
矩阵与行列式

矩阵与行列式矩阵与行列式是线性代数中的重要概念,广泛应用于数学、物理、经济等多个领域。
本文将介绍矩阵和行列式的定义、性质以及它们之间的关系。
一、矩阵的定义与性质1.1 矩阵的定义矩阵是一个二维的数组,由 m 行 n 列元素组成。
通常我们用大写字母表示矩阵,如 A = [a_ij]。
其中,a_ij 表示矩阵 A 的第 i 行第 j 列的元素。
1.2 矩阵的运算矩阵可以进行加法、减法和数乘等运算。
设 A 和 B 是同型矩阵,即具有相同的行数和列数,则有以下运算规则:- 矩阵加法:A + B = [a_ij] + [b_ij] = [a_ij + b_ij]- 矩阵减法:A - B = [a_ij] - [b_ij] = [a_ij - b_ij]- 数乘:kA = k[a_ij] = [ka_ij],其中 k 是标量。
1.3 矩阵的乘法矩阵的乘法是矩阵运算中的重要部分。
设 A 是 m × n 的矩阵,B 是n × p 的矩阵,则它们的乘积 C = AB 是一个 m × p 的矩阵,且满足以下定义:- C 的第 i 行第 j 列元素 c_ij 可通过将 A 的第 i 行与 B 的第 j 列对应位置的元素进行乘法运算,并求和得到。
二、行列式的定义与性质2.1 行列式的定义行列式是一个多项式,用于表示一个方阵的性质。
一个 n × n 的方阵 A 的行列式记作 |A| 或 det(A)。
对于 2 × 2 的方阵 A = [[a, b], [c, d]],其行列式为 |A| = ad - bc。
对于n > 2 的方阵,行列式的计算可以使用代数余子式或按行(列)展开法进行。
2.2 行列式的性质- 行列式是一个线性运算:对于任意一个 n × n 的方阵 A,如果将某一行(列)的元素按比例加(减)到另一行(列),则行列式的值也会按相同比例变换。
- 互换行(列)会改变行列式的符号:如果交换方阵 A 的两行(列),行列式的值会变为原值的相反数。
线性代数矩阵行列式向量知识点总结

线性代数第一章:行列式1.排列:任意两数字先大后小为一个逆序;一组无序数组逆序个数为奇数就是奇排列;反之为偶排列。
且一个数组任意两个数字调换,则奇偶调换。
排列决定行列式某一项的正负,若行标按标准次序,则列标的逆序数是奇数此项为负。
n n np p p p p p r a a a D ....)1(21)2121...(-∑=,每一项是n 个元素的乘积,每个元素取自不同的行不同的列。
行列式展开共有n!项,一半正,一半负。
注意:λλλλnD ....21=为矩阵的特征值2.nnnnnna a a a a a a a a ...... (221122211211)= 11,212)1(11,22111211..)1(................n n n n n n n na a a a a a a a a ----=3.行列式的性质:(1)行列式与其转置行列式值相等;(所以行的性质也是列的性质)(2)交换两行对应元素,行列式值变号。
(3)任意两行对应元素相等,成比例行列式值为0。
(4)例:nx yx nc ya dm bx dc b a nm c yx a dm c bx a nd m c yb x a +++=+++++=++++(5)把某行的k 倍加到另一行对应元素,行列式值不变。
4.余子式ij M :去掉第i 行第j 列剩下的元素构成行列式的值。
代数余子式ij j i ij M A +-=)1(5.定理,行列式某行的代数余子式×另一行的对应元素值为0。
6.范德蒙德行列式)....)...()()()...()((.........................1. (1112242311312113121)12232221321x x x x x x x x x x x x x x x x x x x x x x x x n n n nn n n nn ------==---- 例:240)32)(12)(13)(12)(13)(11(842149112311111184212793111111111=--+-+-----=----=----7.,00,0()0)in n i n n D A X b x D DA X D R n D n ⨯⨯==≠=≠==<。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩阵与行列式知识梳理
一、矩阵的概念
1 将mn 个实数),,2,1;,,2,1(n j m i a ij ==排成m 行n 列的矩形数表(通常用圆括号把数表括起来):
⎪⎪
⎪
⎪
⎪
⎭
⎫
⎝⎛=mn m m n n a a a a a a a a a A 2
1
22221
11211称为一个m 行n 列的矩阵,简称n m ⨯矩阵,用______表示.
简记为_____.数ij a 称为矩阵的元素.
几种特殊类型的矩阵:行矩阵、列矩阵、方阵、单位矩阵、零矩阵. 2 对于关于y x ,的线性方程组⎩⎨
⎧=+=+222111c y b x a c y b x a ,则矩阵⎪⎪⎭
⎫
⎝⎛2211
b a
b a 称为该线性方程组的系数矩阵. 矩阵⎪⎪⎭
⎫
⎝⎛22
2
111
c b a c b a 称为该线性方程组的增广矩阵. 3 矩阵的三种变换:
(1) (2) (3)
4 矩阵变换的目的是将线性方程组的系数矩阵变成单位矩阵,其增广矩阵的最后一列就是方程组的解.
二、二阶行列式 1 定义:我们用记号
2
2
11b a b a 表示算式1221b a b a -,即
12212
2
11b a b a b a b a -=,记号
2
2
11b a b a 叫做行列式,因为它只有两行两列,所以把它叫做二阶行列式. 1221b a b a -叫做行列式
2
2
11b a b a 的展开式,其计算结果叫做
2
2
11b a b a 的值.1a 、2a 、1b 、2b 都叫做行列式
2
2
11b a b a 的元素.
2 对角线法则:二阶行列式的展开式是主对角线上的两个数的乘积减去副对角线上的两个数的乘积.
3作为判别式的二阶行列式:关于x 、y 的二元一次方程组⎩⎨⎧=+=+222
1
11c y b x a c y b x a ①其中1a 、2a 、
1b 、2b 不全为零,行列式2
2
11b a b a D =
叫做方程组①的系数行列式. 设2
2
11b c b c D x =
,
2
2
11c a c a D y =
.
则当0≠D 时,方程组①有唯一解. 当0=D 且0==y x D D 时,方程组①有无穷多解. 当0=D ,x D 、y D 中至少有一个不为零时,方程组①无解. 三、三阶行列式
1 三阶行列式的定义:把九个数排成三行三列的方阵,用记号3
3
3
222
1
11
c b a c b a c b a ①表示算式 231312123213132321c b a c b a c b a c b a c b a c b a ---++②.我们把记号①叫做三阶行列式,把
记号②叫做三阶行列式①的展开式,212121,,,,,c c b b a a 都叫做三阶行列式①的元素. 2 三阶行列式的展开方法:按对角线展开、按某一行(或一列)展开.
3行列式3
3
3
222
1
11
c b a c b a c b a 中某元素x 位于第i 行第j 列,其代数余子式等于它的余子式乘上j i +-)1(.
4 【结论】三阶行列式等于它的任意一行(或一列)的所有元素与它们各自对应的代数余子式的乘积的和.
如:1111113
3
3
222
1
11
C c B b A a c b a c b a c b a ++=.其中3
3
22
1c b c b
A =,3
3
221c a c a B -
=,
3
3
221b a b a C -
=
【结论】三阶行列式的某一行(或一列)的各元素与另一行(或一列)对应元素的代数余子式的乘积的和等于零.
5关于z y x ,,的三元一次方程组⎪⎩⎪
⎨⎧=++=++=++3333
22221
111d z c y b x a d z c y b x a d z c y b x a 的系数行列式为3
3
3222
111c b a c b a c b a D =,
当0≠D 时,方程组有唯一解. 当0=D 时,方程组无解或无穷多解.
注意:三元一次方程组,当0=D 时,情况复杂,方程组的解不同于二元一次方程组!。