3.4 确定圆的条件
4 确定圆的条件

确定圆的条件教学目标:了解不在同一直线上的三个点确定一个圆,掌握过不在同一直线上的三个点作圆的方法,了解三角形的外接圆、三角形的外心,圆的内接三角形的概念.教学重点:1.定理:不在同一直线上的三个点确定一个圆.2.通过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心为三角形的外心,这个三角形叫圆的内接三角形.只要三角形确定,那么它的外心和外接圆半径也随之确定了.教学难点:分析作圆的方法,实质是设法找圆心.过已知点作圆的问题。
知识点:1.过已知点作圆(1)经过一点的圆(以这个点以外任意一点为圆心,以这一点与已知点的距离为半径就可以作出,这样的圆有无数个)(2)经过两点的圆(以连接这两点的垂直平分线上任意一点为圆心,以这一点和已知两点中任意一点的距离为半径就可以作出,这样的圆也有无数个)(3)经过三点的圆①经过在同一直线上三点不能作圆.②过不在同一直线上三个点可以作且只可以作一个圆.作法是:连接任意两点并作中垂线,再连接另外两点并作中垂线,以这两条中垂线的交点为圆心,以这一点和已知三点中任意一点的距离为半径作圆,这样的圆只有一个.2.三角形的外接圆(1)定理:不在同一直线上的三个点确定一个圆(2)三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆.任意一个三角形都有外接圆,而且只有一个外接圆.这个三角形叫做圆的内接三角形.3.三角形的“四心”在三角形中:三边垂直平分线的交点叫外心;三角平分线的交点叫内心;三边中线的交点叫重心;三边上高的交点叫垂心4.经过四点的圆(1)四点中任意三点都不在同一条直线上,用三条线段将这4个点连接起来,分别作这三条线段的垂直平分线,如果这三条垂直平分线交于一点,则有经过4点的圆,否则没有.(2)要判定4点是否共圆,只要看能否找到一点到这4点的距离相等.例题:1·下面四个命题中真命题的个数是()①经过三点一定可以做圆;②任意一个三角形一定有一个外接圆,而且只有一个外接圆;③任意一个圆一定有一个内接三角形,而且只有一个内接三角形;④三角形的外心到三角形三个顶点的距离相等.A.4个B.3个C.2个D.1个2·在△ABC中,BC=24cm,外心O到BC的距离为6cm,求△ABC的外接圆半径.3·如图,点A、B、C表示三个村庄,现要建一座深水井泵站,向三个村庄分别送水,为使三条输水管线长度相同,水泵站应建在何处?请画出图,并说明理由.4·已知Rt△ABC的两直角边为a和b,且a,b是方程x2-3x+1=0的两根,求Rt△ABC的外接圆面积.5·阅读下面材料:对于平面图形A,如果存在一个圆,使图形A上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A被这个圆所覆盖.如图3-4-5中的三角形被一个圆所覆盖,图3-4-6中的四边形被两个圆所覆盖.回答下列问题:(1)边长为1cm的正方形被一个半径为r的圆所覆盖,r的最小值是 cm.(2)边长为1cm的等边三角形被一个半径为r的圆所覆盖,r的最小值是 cm.(3)边长为2cm,1cm的矩形被两个半径都为r的图所覆盖,r的最小值是 cm,这两个圆的圆心距是 cm.练习题:1.下列说法正确的是()A.过一点A的圆的圆心可以是平面上任意点B.过两点A、B的圆的圆心在一条直线上C.过三点A、B、C的圆的圆心有且只有一点D.过四点A、B、C、D的圆不存在2.已知a、b、c是△ABC三边长,外接圆的圆心在△ABC一条边上的是()A.a=15,b=12,c=1 B.a=5,b=12,c=12C.a=5,b=12,c=13 D.a=5,b=12,c=143.一个三角形的外心在其内部,则这个三角形是()A.任意三角形B.直角三角形C.锐角三角形D.钝角三角形4. Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,则它的外心与顶点C的距离为()A.5cm B.6cm C.7cm D.8cm5.等边三角形的外接圆的半径等于边长的( )倍.A .B .C .D .6.已知圆内一点到圆周上的点的最大距离是7,最小距离是5,则该圆的半径是( )A .2B .6C .12D .77.三角形的外心具有的性质是( )A .到三边距离相等B .到三个顶点距离相等C .外心在三角形外D .外心在三角形内8.对于三角形的外心,下列说法错误的是( )A .它到三角形三个顶点的距离相等B .它与三角形三个顶点的连线平分三内角C .它到任一顶点的距离等于这三角形的外接圆半径D .以它为圆心,到三角形一顶点的距离为半径作圆,必通过另外两个顶点9.下列说法错误的是( )A .过直线上两点和直线外一点,可以确定一个圆B .任意一个圆都有无数个内接三角形C .任意一个三角形都有无数个外接圆D .同一圆的内接三角形的外心都在同一个点上10.在一个圆中任意引两条直径,顺次连接它们的四个端点组成一个四边形,则这个四边形一定是( )A .菱形B .等腰梯形C .矩形D .正方形11.若AB=4cm ,则过点A 、B 且半径为3cm 的圆有 个.12.直角三角形三个顶点都在以 为圆心,以 为半径的圆上,直角三角形的外心是 .13.若Rt △ABC 的斜边是AB ,它的外接圆面积是121πcm 2,则AB= .14.△ABC 的三边3,2,,设其三条高的交点为H ,外心为O ,则OH= . 23333211315.在△ABC中,∠C=90°,AB=6,则其外心与垂心的距离为.16.外心不在三角形的外部,这三角形的形状是.17.锐角△ABC中,当∠A逐渐增大时,其外心向边移动,∠A=90°,外心位置是.18.△ABC的外心是它的两条中线交点,则△ABC的形状为.19.如图是一块破碎的圆形木盖,试确定它的圆心.20.求边长是6cm的等边三角形的外接圆的半径.21.已知线段a、b、c.求作:(1)△ABC,使BC=a,AC=b,AB=c;(2)⊙O使它经过点B、C,且圆心O在AB上.(作⊙O不要求写作法,但要保留作图痕迹)22.已知点P到圆周上的点的最小距离为5cm,最大距离为15cm,求该圆半径.23.在学完本节后,老师在黑板上留下这样一道题:“⊙O的半径为1 cm,△ABC为⊙O的外接三角形,且BC A等于多少度?”小丽给出的答案是45°.大家讨论一下,她的答案正确吗?若正确,写出解答过程,若不正确,说明理由.。
圆确定的条件

确定圆的条件教案(蔡飞)教学内容与过程:一、创设问题情境,引入新课1、问题:车间工人要将一个破损的圆形文物复原,你有办法吗?2、引入新课:(1)这个问题就是本节课的学习的一个知识点,相信同学们通过本节课的学习一定能解决这个问题。
(2)出示课题:3.4确定圆的条件二、探索新知类比确定直线的条件我们知道经过一点可以作无数条直线;经过两点只能作一条直线.想一想,经过一点可以作几个圆?经过两点,三点,…,呢?1.作圆,使它过已知点A.你能作出几个这样的圆?(提问)2.作圆,使它过已知点A,B.你能作出几个这样的圆?(提问)作法:(1)连结AB,作线段AB的垂直平分线MN;(2)在直线MN上任取一点O,以O为圆心,以OA为半径作圆,即为所求。
证明:因为O为圆心,OA为半径,所以A在圆上。
又因为O在线段的AB的垂直平分线上,而垂直平分线上的所有点到线段两端点的距离相等,故OB=OA,所以B在圆上。
所以,圆O是经过两点A、B的圆。
师:现在,请同学回答以下两个问题:(1)你是怎样想到上述作法的?(作圆的问题实质上就是圆心和半径的问题,确定了圆心和半径,圆就随之确定。
在教学中,解决过已知点作圆的问题,应紧紧抓住对圆心和半径的探讨,已知圆心和半径就可以作一个圆,这是从圆的定义引出的基本思路,因此作圆的问题就是如何根据已知条件去找圆心和半径的问题.由于作圆要经过已知点,如果圆心的位置确定了,圆的半径也就随之确定,因此作圆的问题又变成了找圆心的问题,是否可以作圆以及能作多少个圆,都取决于能否确定圆心的位置和圆心的个数.)(2)经过两个已知点A、B的圆有多少个?其圆心的分布有什么特点?与线段AB有什么关系?为什么?(在学生回答后,教师把上述两个问题的结果作一个小结。
)师:“经过两已知点A、B的圆心在线段AB的垂直平分线上”(板书)由于经过已知点A、B的圆,圆心可以取线段AB的垂直平分线上的任意点,圆心不确定,而半径也不确定,所以,“经过两个已知点A、B的圆有无穷多个,圆的大小是不确定的”(板书)。
九年级数学确定圆的条件

确定圆的条件课件

圆是关于其圆心对称的图形,无论从哪个方向旋转,其形状都不会改变。
详细描述
总结词
圆的切线与半径在切点处垂直。
详细描述
圆的切线与半径在切点相交,并且两者在切点处垂直。这是几何学中关于圆的重要性质。
圆的面积和周长都有特定的计算公式。
圆的面积A和半径r之间的关系是A=πr²,而圆的周长C和半径r之间的关系是C=2πr。这些公式是几何学中关于圆的基本性质。
THANKS
感谢观看
圆形导线的电阻和电感也与圆的几何特性有关,这在电子设备和电路设计中具有重要意义。
在电磁学中,圆常被用作电流和磁场的理想化模型。
在光学中,圆是透镜和反射镜的基本形状之一。
圆形镜片可以聚焦光线,形成清晰的图像,这在摄影、显微镜和望远镜等光学仪器中非常重要。
圆形光束还可以通过衍射和干涉等光学现象产生美丽的干涉图案和衍射模式。
证明过程
设三个不共线的点分别为A、B、C,则线段AB和线段AC的中垂线会相交于一点,即圆心O。由于AB=AC,所以AO=BO=CO,从而确定了一个唯一的圆。
总结词
圆心与半径确定一个圆
总结词:相切、相交、内含
03
圆的方程
圆的标准方程是$(x-a)^2+(y-b)^2=r^2$,其中$(a,b)$是圆心坐标,$r$是半径。
详细描述
06
圆的物理意义
圆在力学中常被用作理想化的模型,例如在研究滚动运动、弹性碰撞和刚体动力学时。
圆在分析力矩和转动惯量时也具有重要意义,因为这些量与物体的形状和大小密切相关。
在分析弹性碰撞时,圆可以用来描述两个物体接触点的运动轨迹,帮助理解能量和动量的传递。
圆形的电流可以产生圆形的磁场,这在分析线圈和电磁感应现象时非常有用。
确定圆的条件

3.5 确定圆的条件目标导航1、通过经历不在同一直线上的三个点确定一个圆的探索,了解不在同一直线上的三个点确定一个圆,掌握过不在同一直线上的三个点作圆的方法,了解三角形的外接圆、三角形的外心,圆的内接三角形的概念,进一步体会解决数学问题的策略.2、定理:不在同一直线上的三个点确定一个圆.定理中“不在同一直线”这个条件不可忽略,“确定”一词应理解为“有且只有” .3、通过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心为三角形的外心,这个三角形叫圆的内接三角形.只要三角形确定,那么它的外心和外接圆半径也随之确定了.4.分析作圆的方法,实质是设法找圆心.过已知点作圆的问题,就是对圆心和半径的探讨. 基础过关1.锐角三角形的外心在_______.如果一个三角形的外心在它的一边的中点上, 则该三角形是______.如果一个三角形的外心在它的外部,则该三角形是_____. 2.边长为6cm 的等边三角形的外接圆半径是________.3.△ABC 的三边为2,3O ,三条高的交点为H ,则OH 的长为_____. 4.三角形的外心是______的圆心,它是_______的交点,它到_______的距离相等. 5.已知⊙O 的直径为2,则⊙O 的内接正三角形的边长为_______.6.如图,MN 所在的直线垂直平分线段AB ,利用这样的工具,最少使用________ 次就可以找到圆形工件的圆心.7.下列条件,可以画出圆的是( ) A .已知圆心 B .已知半径 C .已知不在同一直线上的三点 D .已知直径 8.三角形的外心是( )A .三条中线的交点B .三条边的中垂线的交点C .三条高的交点D .三条角平分线的交点 9.下列命题不正确的是( ) A .三点确定一个圆 B .三角形的外接圆有且只有一个C .经过一点有无数个圆D .经过两点有无数个圆10.一个三角形的外心在它的内部,则这个三角形一定是( )A .等腰三角形B .直角三角形C .锐角三角形D .等边三角形 11.等腰直角三角形的外接圆半径等于( )A .腰长 B倍 C倍 D .腰上的高12.平面上不共线的四点,可以确定圆的个数为( )A .1个或3个B .3个或4个C .1个或3个或4个D .1个或2个或3个或4个 13.如图,已知:线段AB 和一点C (点C 不在直线AB 上),求作:⊙O ,使它经过A 、B 、C 三点.(要求:尺规作图,不写法,保留作图痕迹)BA14.如图,A 、B 、C 三点表示三个工厂,要建立一个供水站, 使它到这三个工厂的距离相等,求作供水站的位置(不写作法,尺规作图,保留作图痕迹).A6题图能力提升15.如图,已知△ABC 的一个外角∠CAM =120°,AD 是∠CAM 的平分线,且AD 与△ABC 的外接圆交于F ,连接FB 、FC ,且FC 与AB 交于E .(1)判断△FBC 的形状,并说明理由.(2)请给出一个能反映AB 、AC 和F A 的数量关系的一个等式,并说明你给出的等式成立.DEFCMBA16.要将如图所示的破圆轮残片复制完成,怎样确定这个圆轮残片的圆心和半径?(写出找圆心和半径的步骤).BA17.已知:AB 是⊙O 中长为4的弦,P 是⊙O 上一动点,cos ∠APB =13, 问是否存在以A 、P 、B 为顶点的面积最大的三角形?若不存在,试说明理由;若存在,求出这个三角形的面积.聚沙成塔如图,在钝角△ABC 中,AD ⊥BC ,垂足为D 点,且AD 与DC 的长度为x 2-7x +12=0的两个根(AD <DC ),⊙O 为△ABC 的外接圆,如果BD 的长为6,求△ABC 的外接圆⊙O 的面积.ODCBA。
确定圆的条件导学案

3.4确定圆的条件
课堂练习:
1.过一点可以作 条直线;
2.过不同的两点可以作 条直线;
3.过一点可以作 个圆;
4.过不同的两点可以作 个圆,这些圆的圆心所在的位置有什么特征?
5.下面有不在同一条直线上的三点A ,B ,C ,同时过这三点能作多少个圆?试着用尺规作图作一下。
结论:
6.分别作出下面三类三角形的外接圆,并说出它们的外心的位置有什么特点。
7.一个Rt △ABC,两条直角边分别为3,4则,它外接圆的半径为
8.请用尺规作图的方法找出下图的圆心。
晚间训练:
1.如图,点A 、B 、C 表示三个村庄,现要建一座深水井泵站,向三个村庄分别送水,为使三条输水管线长度相同,水泵站应建在何处?请画出图,并说明理由.
2..下图是一个圆形物体的碎片,请用尺规作图的方法找出其圆心,并把这个圆复原。
3.已知线段AB =2cm ,以1.5cm 的长为半径作圆,使得它经过点A 和点B ,这样的圆能作出几个?并把它们画出来。
4.如图, AB 是⊙O 的直径,弦CD ⊥AB 于点M, AM = 2,BM = 8,求CD 的长度。
5、如图是一个装有水的水管的截面,已知水管的直径是100cm ,装有水的液面宽度为AB=60cm ,则水管中水的最大深度为多少?
6、如图AB 是⊙O 的直径,弦CD 垂直AB 于P ,若AP =5cm ,CD=12cm ,求半径的长。
7、
8、如图,在⊙O 中,弦AC 与BD 交于E , ①求证:△ABE ∽△CDE,
② 若AB AE ED ===684,,,求CD 的长。
初二数学知识点归纳:确定圆的条件

初二数学知识点归纳:确定圆的条件初二数学知识点归纳:确定圆的条件学习重点:1.定理:不在同一直线上的三个点确定一个圆.定理中“不在同一直线”这个条件不可忽略,“确定”一词应理解为“有且只有” .2.通过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心为三角形的外心,这个三角形叫圆的内接三角形.只要三角形确定,那么它的外心和外接圆半径也随之确定了.学习难点:分析作圆的方法,实质是设法找圆心.过已知点作圆的问题,就是对圆心和半径的探讨.学习方法:教师指导学生自主探索交流法.学习过程:一、举例:【例1】下面四个命题中真命题的个数是()①经过三点一定可以做圆;②任意一个三角形一定有一个外接圆,而且只有一个外接圆;③任意一个圆一定有一个内接三角形,而且只有一个内接三角形;④三角形的外心到三角形三个顶点的距离相等.A.4个B.3个C.2个D.1个【例2】在△ABC中,BC=24cm,外心O到BC的距离为6cm,求△ABC的外接圆半径.【例3】如图,点A、B、C表示三个村庄,现要建一座深水井泵站,向三个村庄分别送水,为使三条输水管线长度相同,水泵站应建在何处?请画出图,并说明理由.【例4】阅读下面材料:对于平面图形A,如果存在一个圆,使图形A上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A被这个圆所覆盖.如图3-4-5中的三角形被一个圆所覆盖,图3-4-6中的四边形被两个圆所覆盖.回答下列问题:(1)边长为1cm的正方形被一个半径为r的圆所覆盖,r的最小值是 cm.(2)边长为1cm的等边三角形被一个半径为r的圆所覆盖,r的最小值是 cm.(3)边长为2cm,1cm的矩形被两个半径都为r的图所覆盖,r的最小值是 cm,这两个圆的圆心距是 cm.【例5】已知Rt△ABC的两直角边为a和b,且a,b是方程x2-3x+1=0的两根,求Rt△ABC的外接圆面积.【例6】如图,有一个圆形铁片,用圆规和直尺将它分成面积相等的两部分.二、随堂练习一、填空题1.经过平面上一点可以画个圆;经过平面上两点A、B可以作个圆,这些圆的圆心在.2.经过平面上不在同一直线上的三点可以作个圆. 3.锐角三角形的外心在;直角三角形的外心在;钝角三角形的外心在.二、选择题4.下列说法正确的是()A.三点确定一个圆B.三角形有且只有一个外接圆C.四边形都有一个外接圆D.圆有且只有一个内接三角形5.下列命题中的假命题是()A.三角形的外心到三角形各顶点的距离相等B.三角形的外心到三角形三边的距离相等C.三角形的外心一定在三角形一边的中垂线上D.三角形任意两边的中垂线的交点,是这个三角形的外心6.下列图形一定有外接圆的是()A.三角形B.平行四边形C.梯形D.菱形三、课后练习1.下列说法正确的是()A.过一点A的圆的圆心可以是平面上任意点B.过两点A、B的圆的圆心在一条直线上C.过三点A、B、C的圆的圆心有且只有一点D.过四点A、B、C、D的圆不存在2.已知a、b、c是△ABC三边长,外接圆的圆心在△ABC一条边上的是()A.a=15,b=12,c=1B.a=5,b=12,c=12C.a=5,b=12,c=13D.a=5,b=12,.一个三角形的外心在其内部,则这个三角形是()A.任意三角形B.直角三角形C.锐角三角形D.钝角三角形4.在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,则它的外心与顶点C的距离为()A.5cmB.6cmC.7cmD..等边三角形的外接圆的半径等于边长的()倍.A. B. C. D.6.已知圆内一点到圆周上的点的最大距离是7,最小距离是5,则该圆的半径是()A.2B.6C.12D.77.三角形的外心具有的性质是()A.到三边距离相等B.到三个顶点距离相等C.外心在三角形外D.外心在三角形内8.对于三角形的外心,下列说法错误的是()A.它到三角形三个顶点的距离相等B.它与三角形三个顶点的连线平分三内角C.它到任一顶点的距离等于这三角形的外接圆半径 D.以它为圆心,它到三角形一顶点的距离为半径作圆,必通过另外两个顶点9.下列说法错误的是()A.过直线上两点和直线外一点,可以确定一个圆 B.任意一个圆都有无数个内接三角形C.任意一个三角形都有无数个外接圆D.同一圆的内接三角形的外心都在同一个点上10.在一个圆中任意引两条直径,顺次连接它们的四个端点组成一个四边形,则这个四边形一定是() A.菱形B.等腰梯形C.矩形D.正方形11.若AB=4cm,则过点A、B且半径为3cm的圆有个.12.直角三角形三个顶点都在以为圆心,以为半径的圆上,直角三角形的外心是.13.若Rt△ABC的斜边是AB,它的外接圆面积是121πcm2,则AB= .14.△ABC的三边3,2,,设其三条高的交点为H,外心为O,则OH= .15.在△ABC中,∠C=90°,AB=6,则其外心与垂心的距离为.16.外心不在三角形的外部,这三角形的形状是.17.锐角△ABC中,当∠A逐渐增大时,其外心向边移动,∠A=90°,外心位置是.18.△ABC的外心是它的两条中线交点,则△ABC的形状为.19.如图是一块破碎的圆形木盖,试确定它的圆心. 20.求边长是6cm的等边三角形的外接圆的半径.21.已知线段a、b、c.求作:(1)△ABC,使BC=a,AC=b,AB=c;(2)⊙O使它经过点B、C,且圆心O在AB 上.(作⊙O不要求写作法,但要保留作图痕迹)22.已知点P在圆周上的点的最小距离为5cm,最大距离为15cm,求该圆的半径.23.如图,有一个圆形的盖水桶的铁片,部分边沿由于水生锈残缺了一些,很不美观.为了废物利用,将铁片剪去一些使其成为圆形的,应找到圆心,并找到合理的半径,在铁片上画出圆,沿圆剪下即可,问应怎样找到圆心半径?。
3.5确定圆的条件(教案)

在今天的教学过程中,我发现学生们对确定圆的条件的理解存在一些困难。在导入新课环节,当我问到大家在日常生活中是否遇到过需要确定圆的情况时,大部分同学能够联想到一些实际例子,但只有少数同学能够准确描述如何确定圆心和半径。这让我意识到,我们需要在课堂上加强基础知识的教学。
在新课讲授环节,我尝试通过理论介绍和案例分析来帮助学生理解确定圆的条件。从学生的反馈来看,这种方法还是有效的。然而,我也注意到,对于圆的方程推导这个难点,部分同学仍然感到困惑。在今后的教学中,我需要更加注重逐步引导,让学生能够循序渐进地掌握这个知识点。
1.培养学生的空间观念:通过学习确定圆的条件,使学生能够直观想象出圆在平面直角坐标系中的位置,提高对几何图形的认识和理解。
2.提升学生的逻辑推理能力:在教学过程中,引导学生运用逻辑推理方法,从圆的定义出发,推导出确定圆的条件,培养学生严密的逻辑思维。
3.增强学生的数学应用意识:通过解决实际例题,让学生将所学知识应用于实际问题中,培养学生在现实生活中发现数学问题、运用数学知识解决问题的能力。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“确定圆的条件在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-难点解释:学生需要能够从实际问题中抽象出数学信息,并建立相应的数学模型。
-举例:提供实际问题背景,指导学生如何提取关键信息,建立数学关系式。
(3)逻辑推理能力的培养。
-难点解释:在推导圆的方程过程中,需要学生运用逻辑推理,理解每一步的推导依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4课时
§3.4 确定圆的条件
知识目标:经历不在同一条直线上的三个点确定一个圆的探索过程;了解不在同一条直线上的三
个点确定一个圆,以及过不在同一条直线上的三个点作圆的方法,了解三角形的外接圆、三角形的外心等概念
能力目标:进一步体会解决数学问题的策略
德育目标:提高分类、归纳的数学能力
教学重点和难点
重点:了解不在同一条直线上的三个点确定一个圆
难点:过不在同一条直线上的三个点作圆
教学过程设计
一、 从学生原有的认知结构提出问题
在初一的时候,我们研究过,确定一条直线。
经过一点可以作无数条直线,经过两点只能作一条直线。
那么经过一点能作几个圆?经过两点、三点,能确定几个圆呢?
二、 师生共同研究形成概念
1、 平分一条弧
2、 确定圆的条件
☆ 做一做 书本P 109 做一做
由易到难让学生经历作圆的过程,从中探索确定圆的条件。
作图前,要引导学生通过思考明确这样的基本思想:作圆的问题实质上就是圆心和半径的问题,确定了圆心和半径,圆就随之确定。
不在同一条直线上的三个点不能确定一个圆
要向学生明确为什么在同一条直线上的三个点不能确定一个圆。
要写作法
3、讲解例题
例1分别作出锐角三角形、直角三角形、钝角三角形的外接圆。
分析:要让学生动手操作。
4、外接圆与外心
三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆;
外接圆的圆心是三角形三边垂直平分线的交点,叫做三角形的外心。
锐角三角形:外心在圆内
直角三角形:外心在斜边的中点
钝角三角形:外心在圆外
三、随堂练习
1、书本P 114 1
2、《练习册》P 53
四、小结
确定圆的条件。
五、作业
作一个钝角三角形的外接圆。
六、教学后记
七、。