锐角三角函数知识点

合集下载

锐角三角函数知识点总结

锐角三角函数知识点总结

锐角三角函数知识点总结与复习1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c2、如以下图,在Rt △ABC 中,∠C 为直角, 那么∠A 的锐角三角函数为(∠A 可换成∠B):3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。

A90B 90∠-︒=∠︒=∠+∠得B A 4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。

5、0°、30°、45°、60°、90°特殊角的三角函数值(重要) 对边邻边Cαsin0 21 22 23 1 αcos1 23 2221 0 αtan 0 33 1 3 不存在 αcot不存在3133 06、正弦、余弦的增减性:当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。

7、正切、余切的增减性:当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。

1、解直角三角形的定义:边和角〔两个,其中必有一边〕→所有未知的边和角。

依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。

(注意:尽量防止使用中间数据和除法)2、应用举例:(1)仰角:视线在水平线上方的角; (2)俯角:视线在水平线下方的角。

(3)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。

用字母i 表示,即h i l=。

坡度一般写成1:m 的形式,如1:5i =等。

把坡面与水平面的夹角记作α(叫做坡角),那么tan h i lα==。

3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。

:i h l=hl α如图3,OA、OB、OC、OD的方向角分别是:45°、135°、225°。

4、指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角。

第24讲 锐角三角函数

第24讲 锐角三角函数

考点三
三角函数之间的关系
1.同角三角函数之间的关系
sin2α+cos2α=
1
;tan
α=csions
α α.
2.互余两角的三角函数之间的关系
若∠A+∠B=90°,则 sin A=cos B,
sin B=cos A,
tan A·tan B=1.
3.锐角三角函数的增减性 当 α 为锐角时,0<sin α<1,0<cos α<1,且 sin α,tan α 的值都随 α 的增大而 增大 ;cos α 的值随 α 的增大而 减小 . 温馨提示: 这些关系式都是恒等式,正反均可运用,同时还 要注意它们的变形公式.
Rt△ABD 中,cos A=AD=2 2=2 5.故选 D.
【答案】D
AB 10 5
3.把△ABC 三边的长度都扩大到原来的 3 倍,则
锐角 A 的正弦值( A )
A.不变
B.缩小为原来的13
C.扩大到原来的 3 倍 D.不能确定
4.在锐角三角形 ABC 中,若sin A- 23+(1-
tan B)2=0,则∠C 的度数是( C )
= 5
5+1.故选 C. 4
【答案】C
5.(2016·福州)如图,以 O 为圆心,半径为 1 的弧 交坐标轴于 A,B 两点,P 是 AB 上一点(不与 A,B 重合),连接 OP,设∠POB=α,则点 P 的坐标是( )
A.(sin α,sin α) B.(cos α,cos α) C.(cos α,sin α) D.(sin α,cos α)
考点三
三 角函数的增减性
例 3 如图,若锐角
△ABC 内接于⊙O,点 D 在
⊙O 外(与点 C 在 AB 同侧),

锐角三角函数讲义

锐角三角函数讲义

锐角三角函数讲义【知识点拨】知识点一:锐角三角函数的概念:锐角三角函数包括正弦函数,余弦函数,和正切函数,如图,在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b ,c . ∠A 的正弦=A asin A=c∠的对边,即斜边;∠A 的余弦=A b cos A=c∠的邻边,即斜边,∠A 的正切=A a tan=A b∠的对边,即∠的邻边注意:我们说锐角三角函数都是在直角三角形中讨论的!若没有直角,要想方设法构造直角。

课堂练习:1. 把Rt △ABC 各边的长度都扩大3倍得Rt △A 'B 'C ',那么锐角A.A '的余弦值的关系为( ).A.cosA =cosA 'B.cosA =3cosA 'C.3cosA =cosA 'D.不能确定 2. 已知中,AC =4,BC =3,AB =5,则( )A .B .C .D .3. 三角形在正方形网格纸中的位置如图1所示,则sin α的值是( )A.34 B.43 C.35 D.45α图14.在△ABC中,∠C=90°,tan A=,则sin B=()A. B. C. D.5.在Rt△ABC中,∠C=90°,a=2,b=3,则cos A=,sin B=,tan B=,6.⑴如图1-1-7①、②锐角的正弦值和余弦值都随着锐角的确定而确定,变化而变化,试探索随着锐角度数的增大,它的正弦值和余弦值变化的规律;⑵根据你探索到的规律,试比较18○、34○、50○、61○、88○这些锐角的正弦值的大小和余弦值的大小.知识点二:特殊角三角函数值的计算知识点三:运用三角函数的关系化简或求值 1.互为余角的三角函数关系.sin (90○-A )=cosA , cos (90○-A )=sin A tan (900-A )=ctan A ; ctan (900-A )=tan A2.同角的三角函数关系. ①平方关系:sin 2A+cos 2A=l ② 商数关系:sin cos tan ,cot cos sin A AA A A A==sin cos a a += ③倒数关系: tgα·ctgα=1.课堂练习:1. 如α∠是等腰直角三角形的一个锐角,那么cos α的值等于( )A.12D.12. 45cos 45sin +的值等于( ) A. 1B. 2C. 3D.213+ 3. 下列计算错误的是( )A .sin 60sin 30sin 30︒-︒=︒B .22sin 45cos 451︒+︒=C .sin 60cos 60cos 60︒︒=︒D .cos30cos30sin 30︒︒=︒4. 已知a 为锐角,sina=cos500则a 等于( )A 20°B 30°C 40°D 50°5. 若tan(a+10°)=3,则锐角a 的度数是 ( ) A 、20° B 、30° C 、35° D 、50°6. (兰州市)如果sin 2α+sin 230°=1那么锐角α的度数是( )A.15° B.30° C.45° D.60° 7. 已知α为锐角,且sin α-cos α=12 ,则sin α·cos α=___________8. cos 2α+sin 242○ =1,则锐角α=______.9. tan30°sin60°+cos 230°-sin 245°tan45°10. 22sin30cos60tan 60tan30cos 45+-⋅+︒.11. 22sin 45cos30tan 45+-知识点四:锐角三角函数的增减性三角函数的单调性1. 正弦和正切是增函数,三角函数值随角的增大而增大,随角的减小而减小.2. 余弦是减函数,三角函数值随角的增大而减小,随角的减小而增大。

知识卡片-锐角三角函数的定义

知识卡片-锐角三角函数的定义

锐角三角函数的定义能量储备锐角α的正弦、余弦、正切统称为锐角α的三角函数.通关宝典★ 基础方法点方法点1:无论直角三角形如何放置,其顶点字母如何标记,正弦总是该锐角的对边比斜边,余弦总是该锐角的邻边比斜边,正切总是该锐角的对边比邻边。

例:如图24­3­2所示,在Rt △OPQ 中,∠O =90°,OP =6,OQ =2,求∠P 和∠Q 的三个三角函数值.解:根据勾股定理,得PQ =OP 2+OQ 2=10,故sin P =OQ PQ =210=105,cos P =OP PQ =610=155, tan P =OQ OP =26=63;sin Q =OP PQ =610=155,cos Q =OQ PQ =210=105,tan Q =OP OQ =62. 方法点2:运用锐角三角函数的定义求三角函数值的实质就是求直角三角形的两边之比,因此求值的关键是求出直角三角形的三边长.一般是缺什么条件就先求什么条件,通常会用到勾股定理.另外,最后的结果应进行化简.例1:如图24­3­3所示,将∠AOB 放置在5×5的正方形网格中,则tan ∠AOB 的值是( ) A.23 B.32 C.21313 D.31313解析:如图24­3­4所示,设小正方形的边长为1,在Rt △AOC 中,∠ACO =90°,AC =3,OC =2,∴ tan ∠AOB =AC OC =32. 答案:B例2:如图24­3­5所示,将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 上的F 处,如果AB BC=23,那么tan ∠DCF 的值是________.解析:∵ 四边形ABCD 是矩形,∴ AB =CD ,∠D =90°. ∵ 将矩形ABCD沿CE 折叠,点B 恰好落在边AD 上的F 处,∴ CF =BC .∵ AB BC =23,∴ CD CF=23.设CD =2x ,CF =3x ,∴ DF =CF 2-CD 2=5x ,∴ tan ∠DCF =DF CD =5x 2x =52. 答案:52★★易混易误点易混易误点: 求角的三角函数值时因忽视三角函数是放在直角三角形中定义的而导致错误 例:如图24­3­25所示,在△ABC 中,AB =AC =5,BC =6,求tan B .常见错解:tan B =AC BC =56.正确解法:如图24­3­25所示,过点A 作AD ⊥BC 于点D ,∵AB =AC ,∴BD =12BC =12×6=3.在Rt △ABD 中,AD =AB 2-BD 2=52-32=4,∴tan B =AD BD =43.蓄势待发考前攻略求锐角的三角函数值,有时求网格图中某个角的三角函数值,以选择题、填空题的形式呈现,难度不大;有时与三角形、特殊四边形等知识相结合,各种题型都有,难度较大. 完胜关卡。

锐角三角函数(公式、定理、结论图表) --中考数学知识必备

锐角三角函数(公式、定理、结论图表) --中考数学知识必备

锐角三角函数(公式、定理、结论图表)--中考数学知识必备考点一、锐角三角函数的概念如图所示,在Rt△ABC 中,∠C=90°,∠A 所对的边BC 记为a,叫做∠A 的对边,也叫做∠B 的邻边,∠B 所对的边AC 记为b,叫做∠B 的对边,也是∠A 的邻边,直角C 所对的边AB记为c,叫做斜边.锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA,即sin A aA c ∠==的对边斜边;锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA,即cos A bA c∠==的邻边斜边;BCa c锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA a AA b∠==∠的对边的邻边.同理sinB bBc∠==的对边斜边;cosB aBc∠==的邻边斜边;tanB bBB a∠==∠的对边的邻边.要点诠释:(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化.(2)sinA,cosA,tanA分别是一个完整的数学符号,是一个整体,不能写成,,,不能理解成sin与∠A,cos与∠A,tan与∠A的乘积.书写时习惯上省略∠A的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan∠AEF”,不能写成“tanAEF”;另外,、、常写成、、.(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在.(4)由锐角三角函数的定义知:当角度在0°<∠A<90°之间变化时,,,tanA>0.典例1:(2022•扬州)在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边,若b2=ac,则sin A的值为..【分析】根据勾股定理和锐角三角函数的定义解答即可.【解答】解:在△ABC中,∠C=90°,∴c2=a2+b2,∵b2=ac,∴c2=a2+ac,等式两边同时除以ac得:=+1,令=x,则有=x+1,∴x2+x﹣1=0,解得:x1=,x2=(舍去),当x=时,x≠0,∴x=是原分式方程的解,∴sin A==.故答案为:.【点评】本题主要考查了锐角三角函数,熟练掌握勾股定理和锐角三角函数的定义是解答本题的关键.考点二、特殊角的三角函数值利用三角函数的定义,可求出0°、30°、45°、60°、90°角的各三角函数值,归纳如下:要点诠释:(1)通过该表可以方便地知道0°、30°、45°、60°、90°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)仔细研究表中数值的规律会发现:sin0︒、、、、sin90︒的值依次为0、、、、1,而cos0︒、、、、cos90︒的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:当角度在0°<∠A<90°之间变化时,①正弦、正切值随锐角度数的增大(或减小)而增大(或减小)②余弦值随锐角度数的增大(或减小)而减小(或增大).典例2:(2022•天津)tan45°的值等于()A.2B.1C.D.【分析】根据特殊角的三角函数值,进行计算即可解答.【解答】解:tan45°的值等于1,故选:B.【点评】本题考查了特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键.考点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;(2)平方关系:;(3)倒数关系:或;(4)商数关系:.要点诠释:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.考点四、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知的值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.考点五、解直角三角形的常见类型及解法已知条件解法步骤Rt△ABC两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a)由求∠A,∠B=90°-∠A,一边一角一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,,锐角、对边(如∠A,a)∠B=90°-∠A,,斜边、锐角(如c,∠A)∠B=90°-∠A,,要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.典例3:(2022•丹东)如图,AB是⊙O的直径,点E在⊙O上,连接AE和BE,BC平分∠ABE交⊙O于点C,过点C作CD⊥BE,交BE的延长线于点D,连接CE.(1)请判断直线CD与⊙O的位置关系,并说明理由;(2)若sin∠ECD=,CE=5,求⊙O的半径.【分析】(1)结论:CD是⊙O的切线,证明OC⊥CD即可;(2)设OA=OC=r,设AE交OC于点J.证明四边形CDEJ是矩形,推出CD=EJ=4,CJ=DE=3,再利用勾股定理构建方程求解.【解答】解:(1)结论:CD是⊙O的切线.理由:连接OC.∵OC=OB,∴∠OCB=∠OBC,∵BC平分∠ABD,∴∠OBC=∠CBE,∴∠OCB=∠CBE,∴OC∥BD,∵CD⊥BD,∴CD⊥OC,∵OC是半径,∴CD是⊙O的切线;(2)设OA=OC=r,设AE交OC于点J.∵AB是直径,∴∠AEB=90°,∵OC⊥DC,CD⊥DB,∴∠D=∠DCJ=∠DEJ=90°,∴四边形CDEJ是矩形,∴∠CJE=90°,CD=EJ,CJ=DE,∴OC⊥AE,∴AJ=EJ,∵sin∠ECD==,CE=5,∴DE=3,CD=4,∴AJ=EJ=CD=4,CJ=DE=3,在Rt△AJO中,r2=(r﹣3)2+42,∴r=,∴⊙O的半径为.【点评】本题考查解直角三角形,切线的判定,垂径定理,矩形的判定和性质,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型考点六、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.例如:3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.典例4:(2022•黑龙江)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,山高为()米A.600﹣250B.600﹣250C.350+350D.500【分析】设EF=5x米,根据坡度的概念用x表示出BF,根据勾股定理求出x,根据正切的定义列出方程,解方程得到答案.【解答】解:设EF=5x米,∵斜坡BE的坡度为5:12,∴BF=12x米,由勾股定理得:(5x)2+(12x)2=(1300)2,解得:x=100,则EF=500米,BF=1200米,由题意可知,四边形DCFE为矩形,∴DC=EF=500米,DE=CF,在Rt△ADE中,tan∠AED=,则DE==AD,在Rt△ACB中,tan∠ABC=,∴=,解得:AD=600﹣750,∴山高AC=AD+DC=600﹣750+500=(600﹣250)米,故选:B.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度是坡面的铅直高典例5:(2022•湖北)如图,有甲乙两座建筑物,从甲建筑物A点处测得乙建筑物D点的俯角α为45°,C 点的俯角β为58°,BC为两座建筑物的水平距离.已知乙建筑物的高度CD为6m,则甲建筑物的高度AB为16m.(sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,结果保留整数).【分析】过点D作DE⊥AB于点E,则BE=CD=6m,∠ADE=45°,∠ACB=58°,在Rt△ADE中,∠ADE=45°,设AE=xm,则DE=xm,BC=xm,AB=AE+BE=(6+x)m,在Rt△ABC中,tan∠ACB =tan58°=≈1.60,解得x=10,进而可得出答案.【解答】解:过点D作DE⊥AB于点E,如图.则BE=CD=6m,∠ADE=45°,∠ACB=58°,在Rt△ADE中,∠ADE=45°,设AE=xm,则DE=xm,∴BC=xm,AB=AE+BE=(6+x)m,在Rt△ABC中,tan∠ACB=tan58°=≈1.60,解得x=10,∴AB=16m.故答案为:16.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解答本题的关键典例6:(2022•资阳)小明学了《解直角三角形》内容后,对一条东西走向的隧道AB进行实地测量.如图所示,他在地面上点C处测得隧道一端点A在他的北偏东15°方向上,他沿西北方向前进100米后到达点D,此时测得点A在他的东北方向上,端点B在他的北偏西60°方向上,(点A、B、C、D在同一平面内)(1)求点D与点A的距离;(2)求隧道AB的长度.(结果保留根号)【分析】(1)根据方位角图,易知∠ACD=60°,∠ADC=90°,解Rt△ADC即可求解;(2)过点D作DE⊥AB于点E.分别解Rt△ADE,Rt△BDE求出AE和BE,即可求出隧道AB的长.【解答】解;(1)由题意可知:∠ACD=15°+45°=60°,∠ADC=180°﹣45°﹣45°=90°,在Rt△ADC中,∴(米),答:点D与点A的距离为300米.(2)过点D作DE⊥AB于点E,∵AB是东西走向,∴∠ADE=45°,∠BDE=60°,在Rt△ADE中,∴(米),在Rt△BDE中,∴(米),∴(米),答:隧道AB的长为米.【点评】本题考查了解直角三角形的应用﹣方向角问题,掌握方向角的概念,掌握特殊角的三角函数值是解题的关键.考点七、解直角三角形相关的知识如图所示,在Rt△ABC 中,∠C=90°,(1)三边之间的关系:222a b c +=;(2)两锐角之间的关系:∠A+∠B=90°;(3)边与角之间的关系:sin cos a A B c ==,cos cos a A B c ==,cos sin b A B c ==,1tan tan a A b B==.(4)如图,若直角三角形ABC 中,CD⊥AB 于点D,设CD=h,AD=q,DB=p,则由△CBD∽△ABC,得a 2=pc;由△CAD∽△BAC,得b 2=qc;由△ACD∽△CBD,得h 2=pq;由△ACD∽△ABC 或由△ABC 面积,得ab=ch.(5)如图所示,若CD 是直角三角形ABC 中斜边上的中线,则①CD=AD=BD=12AB;②点D 是Rt△ABC 的外心,外接圆半径R=12AB.(6)如图所示,若r 是直角三角形ABC 的内切圆半径,则2a b c ab r a b c +-==++.直角三角形的面积:①如图所示,111sin 222ABC S ab ch ac B === △.(h 为斜边上的高)②如图所示,1()2ABCS r a b c=++△.典例7:(2022•黄石)我国魏晋时期的数学家刘徽首创“割圆术”:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体,而无所失矣”,即通过圆内接正多边形割圆,从正六边形开始,每次边数成倍增加,依次可得圆内接正十二边形,内接正二十四边形,….边数越多割得越细,正多边形的周长就越接近圆的周长.再根据“圆周率等于圆周长与该圆直径的比”来计算圆周率.设圆的半径为R,图1中圆内接正六边形的周长l6=6R,则π≈=3.再利用圆的内接正十二边形来计算圆周率,则圆周率π约为()A.12sin15°B.12cos15°C.12sin30°D.12cos30°【分析】利用圆内接正十二边形的性质求出A6A7=2A6M=2R×sin15°,再根据“圆周率等于圆周长与该圆直径的比”,即可解决问题.【解答】解:在正十二边形中,∠A6OM=360°÷24=15°,∴A6M=sin15°×OA6=R×sin15°,∵OA6=OA7,OM⊥A6A7,∴A6A7=2A6M=2R×sin15°,∴π≈=12sin15°,故选:A.【点评】本题主要考查了圆内接多边形的性质,解直角三角形等知识,读懂题意,计算出正十二边形的周长是解题的关键.。

中考复习: 锐角三角函数

中考复习: 锐角三角函数

中考复习:锐角三角函数知识梳理一、锐角三角函数(正弦、余弦、正切)1、定义:在Rt △ABC 中,∠C =90°,我们把锐角A的对边与斜边的比叫做∠A 的正弦(sinc ), 记作sin A ,即sin A aA c∠==的对边斜边。

把∠A 的邻边与斜边的比叫做∠A 的余弦(cosine ),记作cos A ,即;把∠A 的对边与邻边的比叫做∠A 的正切(tangent ),记作tan A ,即。

锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数(trigonometric function of acute angle )。

当锐角A 的大小确定时,∠A 的对边与斜边的比(正弦)、∠A 的邻边与斜边的比(余弦)、∠A 的对边与邻边的比(正切)分别是确定的。

2、增减性:在0°到90°之间,正弦值、正切值随着角度的增大而增大,余弦随着角度的增大而减小。

3、取值范围:当∠A 为锐角时,三角函数的取值范围是:0<sin A <1,0<cos A <1,tan A >0。

4、互余两角的函数关系:如果两角互余,则其中一有的正弦等于另一角的余弦,即:若α是一个锐角,则sin α=cos (90°-α),cos α=sin (90°-α)。

5、正、余弦的平方关系:sin 2α+ cos 2α=1。

二、300、450、600的正弦值、余弦值和正切值如下表:三、解直角三角形bcos c A A ∠==的邻边斜边atan bA A A ∠=∠的对边=的邻边C ∠A 的邻边b∠A 的对边a在直角三角形中,由已知元素求未知元素的过程就是解直角三角形。

1、在Rt△ABC 中,∠C=90°,设三个内角A 、B 、C 所对的边分别为a 、b 、c (以下字母同),则解直角三角形的主要依据是:(1)边角之间的关系: sinA =cosB =a c , cosA =sinB =bc,tanA =cotB =a b ,cotA =tanB =b a。

锐角三角函数

锐角三角函数

初中数学锐角三角函数初中知识点一、锐角三角函数的定义1.勾股定理:直角三角形两直角边a .b 的平方和等于斜边c 的平方。

222c b a =+ 在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B ):定 义表达式 取值范围 关 系正弦 斜边的对边A A ∠=sin c aA =sin1sin 0<<A(∠A 为锐角)B A cos sin = B A sin cos =1cos sin 22=+A A余弦 斜边的邻边A A ∠=coscbA =cos1cos 0<<A(∠A 为锐角)正切的邻边的对边A tan ∠∠=A Aba A =tan 0tan >A(∠A 为锐角)B A cot tan = B A tan cot =AA cot 1tan =(倒数) 1cot tan =⋅A Atan α=sin cos αα,cot α=cos sin αα余切的对边的邻边A A A ∠∠=cotab A =cot 0cot >A(∠A 为锐角)注意:(1)正弦.余弦.正切.余切都是在直角三角形中给出的,要避免应用时对任意的三角形随便套用定义;(2)sinA 不是sin 与A 的乘积,是三角形函数记号,是一个整体。

“sinA ”表示一个比值,其他三个三角函数记号也是一样的;(3)锐角三角函数值与三角形三边长短无关,只与锐角的大小有关。

例题:1.在Rt △ABC 中,∠C 为直角,a =1,b =2,则cosA =________ ,tanA =_________.2. 在Rt △ABC 中,∠C 为直角,AB =5,BC =3,则sinA =________ ,tanA =_________.3.在Rt △ABC 中,∠C 为直角, ∠A =300,b =4,则a =__________,c =__________4.(2008·威海中考)在△ABC 中,∠C =90°,tanA =31,则sinB =( ) A .1010B .23 C .34D .310105.在△ABC 中,∠C =90°,a, b, c 分别为∠A ,∠B ,∠C 的对边,下列各式错误的是( )A .a =c ·sinAB .b =c ·cosBC .b =a ·tanBD .a =b ·tanA6.在△ABC 中,∠C =90°,(1)已知:c = 83,∠A =60°,求∠B .a .b . (2) 已知:a =36, ∠A =30°,求∠B .b .c .7.(2009·漳州中考)三角形在方格纸中的位置如图所示,则tan 的值是( )A .35B .43 C .34D .45练习:1.在Rt △ABC 中,∠C 为直角,若sinA =53,则cosB =_________. 2.已知cosA =23,且∠B =900-∠A ,则sinB =__________. 3.∠A 为锐角,已知sinA =135,那么cos (900-A)=___________ . 4.在Rt △ABC 中,∠C 为直角,AC =4,BC =3,则sinA =( ) A .43 B .34 C . 53 D .54 5.在Rt △ABC 中,∠C 为直角,sinA =22,则cosB 的值是( ) A .21 B .23 C .1D .22知识点二、特殊角所对的三角函数值1. 0°.30°.45°.60°.90°特殊角的三角函数值(重要)三角函数0° 30°45°60°90° αsin0 2122 231 αcos1 23 22210 αtan 0 331 3- αcot-3133注意:记忆特殊角的三角函数值,可用下述方法:0°.30°.45°.60°.90°的正弦值分别是02.12.22.32.42,而它们的余弦值分别是42.32.22.12.02;30°.45°.60°的正切值分别是13.22.31,而它们的余切值分别是31.22.13。

锐角三角函数知识点

锐角三角函数知识点

锐角三角函数知识点锐角三角函数:一、基本概念:1、什么是锐角三角函数:锐角三角函数是一类特殊的函数,涉及到角度和角度对应的三角函数值,用于计算平面向量在多边形中和求解三角形的面积。

2、锐角三角函数的定义:锐角三角函数是基于角度θ,从而定义的三角函数值。

一般情况下,它用半圆线直叙指函数如下所示:sinθ,cosθ,tanθ,cotθ,secθ,cscθ。

3、锐角三角函数的基本关系:cosθ= sin (π/2-θ);sinθ= cos (π/2-θ);tanθ=cot (π/2-θ);cotθ=tan (π/2-θ);secθ=csc(π/2-θ);cscθ=sec (π/2-θ)。

二、圆周角:1、什么是圆周角:圆周角是指以圆等分线在a轴上的量度,即由圆心和两个点确定的弧的长度。

圆周角定义在一个圆的周围,与半径的长度有关,可以用角度μ来表示。

2、单位:圆周角的单位是弧度rad,又称为radian,表示当一个圆的半径为1时,圆周角的长度。

三、锐角的余弦定理:1、锐角余弦定理是用弦和角定义的三角形问题,可以求解共有三角形A、B、C三个锐角所对应边长a、b、c满足关系:a²=b²+c²-2bc cosA;b²=a²+c²-2ac cosB;c²=a²+b²-2ab cosC。

2、此外,锐角余弦定理也可以利用三角形所有边长求解A、B、C三个锐角所对应的角度值,记为A=cos-1[(b²+c²-a²)/2bc];B=cos-1[(a²+c²-b²)/2ac];C=cos-1[(a²+b²-c²)/2ab]。

四、锐角的正弦定理:1、锐角正弦定理是求解三角形的已知一边和两个对边角的问题,满足条件如下:a=b sinA/sinB;b=a sinB/sinA;c=a sinC/sinA,c=bsinC/sinB。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

锐角三角函数知识点总结与习题附答案
1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

9. 如下图,在Rt △ABC 中,∠C 为直角, 则∠A 的锐角三角函数为(∠A 可换成∠B):
3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。

4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。

5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)
6、正弦、余弦的增减性:
当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。

7、正切、余切的增减性:
当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。

1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。

依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。

(注意:尽量避免使用中间数据和除法)
2、应用举例:
10. 仰角:视线在水平线上方的角; 11. 俯角:视线在水平线下方的角。

(3)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。

用字母i 表示,即h
i l
=。

坡度一般写成
1:m 的形式,如1:5i =等。

把坡面与水平面的夹角记作α(叫做坡角),那么tan h
i l
α=
=。

3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。

如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。

4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。

如图4:OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向),南偏东45°(东南方向),南偏西60°(西南方向),北偏西60°(西北方向)。

锐角三角函数(1)
基础扫描
1.求出下图中sinD ,sinE 的值.
12. 把Rt △ABC 各边的长度都扩大2倍得Rt △A ′B ′C ′, 那么锐角A 、A ′的正弦值的关系为( ).
A .sinA =sinA ′
B . sinA =2sinA ′
C .2sinA =sinA ′
D .不能确定 3.在Rt △ABC 中,∠C =90°,若AB =5,AC =4,则sinB 的值是( )
A . 35
B . 45
C . 34
D . 4
3
13. 如图,△ABC 中,AB=25,BC=7,CA=24.
求sinA 的值.
5. 计算:sin30°·sin60°+sin45°.
能力拓展
6. 如图,B 是线段AC 的中点,过点C 的直线l 与AC 成60°的角,在直线上取一点P ,连接AP 、PB ,使sin
8
5
F E D 25
247
C B A
∠APB=1
2,则满足条件的点P的个数是()
A 1个
B 2个
C 3个
D 不存在
8.等腰△ABC中,AB=AC=5,BC=6,求sinA、sinB.
创新学习
14.如图,△ABC的顶点都是正方形网格中的格点,则sin∠BAC 等于()
A.2
B.
5
C.
10
D.
1
3
锐角三角函数(2)
基础扫描
1.在Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,若b=3a,则tanA= .
2.在△ABC中,∠C=90°,cosA=3
,c=4,则a=_______.
3.如果a
∠是等腰直角三角形的一个锐角,则cosα的值是()
A.1
2B.
2
2C.1D.2
4.如图,P是∠α的边OA上一点,且P点坐标为(2,3),则sinα=_______,cosα=_________,tanα=______ .
5.如图,在△ABC中,∠ACB=90°,CD⊥AB于D,若
56
AC=,65
AB=,则tan∠ACD的值为()
A.5B.
5
5C.
30
6D.6
6.已知α是锐角,且cosα=3
4,求sinα、tanα的值.
能力拓展
7.若α为锐角,试证明:
sin
tan
cos
α
α
α
=

α
y
x
P(2,3)
O
A
8. 如图,在Rt △ABC 中,CD 、CE 分别为斜边AB 上的高和中线,BC=a ,AC=b (b >a ),若tan ∠DCE=1
2,求
a
b
的值.
创新学习
9.如图,Rt △ABC 中,∠C=90°,D 为CA 上一点,∠DBC=30°,DA=3,
cosA 与tanA 的值.
锐角三角函数(3)
基础扫描
1. 已知sin α
1
2=
,则锐角α= 度. 2. 若tan 1α=,则2cos α= .
3.
计算tan 60452cos30+-o o o
的结果是( )
A .2
B
C .1
D

13-

4. 如图,已知等腰梯形ABCD 中,A B ∥CD ,∠A=60°,AB=10,CD=3,则此梯形的周长为( ) A . 25 B . 26 C . 27 D . 28. 5. 计算: (1
)计算:()0
1
3sin 452007tan 30
-+-o
o
(2) 先化简,再求值:
()22
21x x
x x +-÷+1,其中,tan 60x =o

(3)已知tanA=2.236,用计算器求锐角A (精确到1度).
C
B
A
D
D C B
A
C B
A
能力拓展
6.如图,小明利用一个含60°角的直角三角板测量一栋楼的高度,已知他与楼之间的水平距离BD 为10m ,眼高AB 为1.6m (即小明的眼睛距地面的距离),那么这栋楼的高是( )
A .(81035+
)m B .21.6m C . 103m D .103835⎛⎫
+ ⎪ ⎪⎝

m
7.如图,已知AB 是半圆O 的直径,弦AD 、BC 相交于点P ,若∠DPB=α,那么CD
AB 等于( )
A .sin α
B .COS α
C .tan α
D .1
tan α
8.如图,⊙O 的半径为3,弦AB 的长为5.求cosA 的值.
创新学习
9.如图,∠C=90°,∠DBC=45°,AB=DB ,利用此图求tan22.5°的值.
11、如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( ) A .90° B .60° C .45° D .30°
13、 如图,台风中心位于点P ,并沿东北方向PQ 移动,已知台风移动的速度为30千米/时,受影响区域的半径为200千米,B 市位于点P 的北偏东75°方向上,距离点P 320千米处.
(1) 说明本次台风会影响B 市; (2)求这次台风影响B 市的时间.
P
北B
Q。

相关文档
最新文档