2020年高考数学(理)《三角恒等变换》专题练习(含答案解析)

合集下载

(黄冈名师)2020版高考数学大一轮复习 三角恒等变换(理)(含解析)新人教A版

(黄冈名师)2020版高考数学大一轮复习 三角恒等变换(理)(含解析)新人教A版

核心素养提升练二十二三角恒等变换(30分钟60分)一、选择题(每小题5分,共25分)1.(2018·成都模拟)计算:sin 20°cos10°-cos 160°·sin 10°=( )A. B.- C.- D.【解析】选D.原式=sin 20°cos10°+cos20°sin10°=sin(20°+10°)=sin30°=.2.已知sin=,则sin 2θ=( )A.-B.-C.D.【解析】选A.因为sin=,所以(sin θ+cosθ)=,两边平方得(1+sin 2θ)=,解得sin 2θ=-.3.已知锐角θ满足sin=,则cos的值为( )A.-B.C. D.-【解析】选D.由sin=,得1-2sin2=1-=,即cos=,由θ为锐角且cos=>0,所以θ+为锐角,所以sin>0,cos=cos=-sin=-=-.4.已知sin=,那么cos 2α+ sin 2α=( )A. B.- C.- D.【解析】选A.因为cos 2α+sin 2α=2sin,故cos 2α+sin 2α=2sin=2cos=2-4sin2=.5.(2019·莆田模拟)已知sin α=,sin(β-α)=-,α,β均为锐角,则角β等于( )A. B. C. D.【解析】选C.因为sin α=,sin(β-α)=-,结合α,β均为锐角,可以求得cosα=,cos(β-α)=,所以sin β=sin[α+(β-α)]=sin αcos(β-α)+cosαsin(β-α)=×+×==,所以β=.二、填空题(每小题5分,共15分)6.2sin2-1=________.【解析】由题得2sin2-1=2×-1=-.答案:-7.设sin 2α=-sin α,α∈,则tan(π-2α)=________.【解析】因为sin 2α=-sin α,α∈,所以cos α=-,α=,因此tan(π-2α)=tan=tan=-.答案:-8.(2018·全国卷Ⅱ)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________. 【解析】由sin α+cos β=1与cos α+sin β=0分别平方相加得sin2α+2sin αcos β+cos2β+cos2α+2cos αsin β+sin2β=1,即2+2sin αcos β+2cos αsin β=1,所以sin(α+β)=-.答案:-三、解答题(每小题10分,共20分)9.已知函数f(x)=sin cos-sin2.(1)求f(x)的单调递增区间.(2)求f(x)在区间[-π,0]上的最小值.【解析】(1)f(x)=sin cos-sin2=sin x-·=sin x+cos x-=sin-.由2kπ-≤x+≤2kπ+,k∈Z,得2kπ-≤x≤2kπ+,k∈Z,则f(x)的单调递增区间为,k∈Z.(2)因为-π≤x≤0,所以-≤x+≤,当x+=-,x=-时,f(x)min=-1-.10.(2018·南京模拟)在平面直角坐标系xOy中,锐角α,β的顶点为坐标原点O,始边为x轴的正半轴,终边与单位圆O的交点分别为P,Q.已知点P的横坐标为,点Q的纵坐标为.(1)求cos 2α的值.(2)求2α-β的值.【解析】(1)因为点P的横坐标为,P在单位圆上,α为锐角,所以cos α=,所以cos 2α=2cos2α-1=.(2)因为点Q的纵坐标为,所以sin β=.又因为β为锐角,所以cos β=.因为cos α=,且α为锐角,所以sin α=,因此sin 2α=2sinαcosα=,所以sin(2α-β) =×-×=.因为α为锐角,所以0<2α<π.又cos 2α>0,所以0<2α<,又β为锐角,所以-<2α-β<,所以2α-β=.(20分钟40分)1.(5分)若sin(α+β)=,sin(α-β)=,则等于( )A.5B.-1C.6D.【解析】选A.因为sin(α+β)=,所以sin αcosβ+cosαsinβ=.①因为sin(α-β)=,所以sin αcosβ-cos αsinβ=.②①+②得sin αcosβ=.②-①得cos αsinβ=.==5.2.(5分)(2018·大连模拟)已知cos4α-sin4α=且α∈,则cos= ________.【解析】因为cos4α-sin4α=(cos2α-sin2α)(cos2α+sin2α)=cos2α-sin2α =cos 2α=, 又因为α∈,所以2α∈(0,π),故sin 2α==,所以原式=cos 2αcos-sin 2αsin=×-×=-.答案:-3.(5分)已知sin cos+cos sin=,x∈,则tan 2x= ________.【解析】sin cos+cos sin=sin=-cos x=,故cos x=-,因为x∈,故sin x=-,故tan x=,故tan 2x=-.答案:-4.(12分)已知α,β均为锐角,且sin α=,tan(α-β)=-.(1)求sin(α-β)的值.(2)求cos β的值.【解析】(1)因为α,β∈,从而-<α-β<.又因为tan(α-β)=-<0,所以-<α-β<0.利用同角三角函数的基本关系可得sin2(α-β)+cos2(α-β)=1,且=-, 解得sin(α-β)=-.(2)由(1)可得,cos(α-β)=.因为α为锐角,sin α=,所以cos α=.所以cos β=cos[α-(α-β)]=cos αcos(α-β)+sinαsin(α-β)=×+×=.5.(13分)(2019·宁波模拟)已知函数f(x)=4cos x·sin-1.(1)求函数f(x)的单调递增区间.(2)在△ABC中,角A,B,C的对边分别为a,b,c,若满足f(B)=0,a=2,且D是BC的中点,P是直线AB上的动点,求CP+PD的最小值.【解析】(1)f(x)=4cos x-1=sin 2x-cos 2x-2=2sin-2,由-+2kπ<2x-<+2kπ,k∈Z,得kπ-<x<kπ+,k∈Z,所以f(x)的单调递增区间为,k∈Z.(2)由f(B)=2sin-2=0,得2B-=,所以B=.作C关于AB的对称点C′,连接C′D,C′P,C′B,由余弦定理得(C′D)2=BD2+(BC′)2-2·BD·BC′·cos 120°=7.CP+PD=C′P+PD≥C′D=,所以当C′,P,D共线时,CP+PD取最小值.。

高考数学专题复习四-4.2三角恒等变换-高考真题练习(附答案)

高考数学专题复习四-4.2三角恒等变换-高考真题练习(附答案)

4.2三角恒等变换考点三角恒等变换1.(2017课标Ⅲ文,4,5分)已知sinα-cosα=43,则sin2α=()A.-79 B.-29C.29D.79答案A ∵(sinα-cosα)2=169,∴sin2α=-79.解后反思涉及sinα±cosα,sinαcosα的问题,通常利用公式(sinα±cosα)2=1±2sinαcosα进行转换.2.(2017山东文,4,5分)已知cosx=34,则cos2x=()A.-14 B.14C.-18D.18答案D 本题考查二倍角余弦公式.因为cosx=34,所以cos2x=2cos 2-1=18.3.(2016课标Ⅲ文,6,5分)若tanθ=-13,则cos2θ=()A.-45 B.-15C.15D.45答案D 解法一:cos2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1−tan 2θ1+tan 2θ=45.故选D.解法二:由tanθ=-13,可得因而cos2θ=1-2sin 2θ=45.评析本题考查化归与转化的能力.属中档题.4.(2015课标Ⅰ理,2,5分)sin20°cos10°-cos160°sin10°=()C.-12D.12答案D 原式=sin20°cos10°+cos20°sin10°=sin(20°+10°)=sin30°=12,故选D.5.(2015重庆理,9,5分)若tanα=2tan π5,)A.1B.2C.3D.4答案C=sinvos π5+cosLin π5sinvos π5-cosLin π5=tanrtan π5tanttan π5,∵tanα=2tanπ5,∴=3tanπ5tanπ5=3.故选C.6.(2015重庆文,6,5分)若tanα=13,tan(α+β)=12,则tanβ=()A.17B.16C.57D.56答案A tanβ=tan[(α+β)-α]=tan(rp-tan1+tan(rp·tan=12-131+12×13=17,故选A.7.(2013课标Ⅱ文,6,5分)已知sin2α=23,则cos2)A.16B.13C.12D.23答案A cos2=1−sin22,把sin2α=23代入,原式=16.选A.评析本题考查了三角函数的化简求值,考查了降幂公式、诱导公式的应用.8.(2016课标Ⅱ,9,5分)若-α=35,则sin2α=()A.725B.15C.-15D.-725答案D解法一:因为-α=35,所以-2α=cos2-α=2cos-α-1=-725.故选D.解法二-α(cosα+sinα)=35⇒1+sin2α=1825,∴sin2α=-725.故选D. 9.(2021全国乙文,6,5分)cos2π12−cos25π12=()A.12答案D解析解法一:cos2π5π12=π=cos2π12−sin2π12=cosπ6=解法二:cos2π12−cos25π12cos2−cos2=cosπ4π6π4π4π6sinπ4×10.(2021全国甲理,9,5分)若α∈tan2α=cos2−sin,则tanα=()答案A 解题指导:先将切化弦,再将分式化为整式,利用两角差的余弦公式及二倍角公式将异角化为同角,最后利用同角三角函数的基本关系求解.解析∵tan 2α=cos 2−sin ,且α∈0,∴sin2cos2=cos2−sin ,∴2sin 2α=cos αcos 2α+sin αsin 2α,即4sin αcos α=cos (2α-α)=cos α,又cos α≠0,∴4sin α=1,∴sin α=14,∴cos αtan αA .疑难突破将tan 2α转化为sin2cos2是本题的突破口.11.(2021新高考Ⅰ,6,5分)若tan θ=-2,则sino1+sin2psinrcos=()A.-65B.−25C.25D.65答案Csino1+sin2psinrcos=sinosin 2rcos 2r2sinbcospsinrcos=sinosinrcosp 2sinrcos=sin θ(sin θ+cos θ)=sin 2θ+sin θ·cosθ=sin 2rsinbcos sin 2rcos 2=tan 2rtan tan 2r1=(−2)2−2(−2)2+1=25.故选C .12.(2022新高考Ⅱ,6,5分)若sin (α+β)+cos (α+β)=22cos β,则()A.tan (α-β)=1B.tan (α+β)=1C.tan (α-β)=-1D.tan (α+β)=-1答案C 因为sin (α+β)+cos (α+β)=sin αcos β+cos αsin β+cos αcos β-sin αsin β,22cos β=(2cosα-2sin α)sin β=2cos αsin β-2sin αsin β,所以sin αcos β+cos αsin β+cos αcos β-sin αsin β=2cos αsin β-2sin αsin β,即sin αcos β-cos αsin β+cos αcos β+sin αsin β=0,进而得sin (α-β)+cos (α-β)=0,又知cos (α-β)≠0,所以tan (α-β)=-1,故选C .13.(2022浙江,13,6分)若3sin α-sin β=10,α+β=π2,则sin α=,cos 2β=.答案45解析设a =sin α,b =sin β=cos α,则3−=10,21,解得a b∴sin α=a cos 2β=1-2sin 2β=1-2b 2=45.14.(2020课标Ⅱ文,13,5分)若sinx=-23,则cos2x=.答案19解析∵sinx=-23,∴cos2x=1-2sin2x=1-2×=19.15.(2018课标Ⅱ文,15,5分)已知tan t=15,则tanα=.答案32解析本题主要考查两角差的正切公式.tan t=tanttan5π41+tanMan5π4=tant11+tan=15,解得tanα=32.16.(2017课标Ⅰ文,15,5分)已知α∈则cos t=.答案解析因为α∈且tanα=sin cos=2,所以sinα=2cosα,又sin2α+cos2α=1,所以则cos t=cosαcosπ4+sinαsinπ4=易错警示在求三角函数值时,常用到sin2α+cos2α=1和tanα=sin cos,同时要注意角的范围,以确定三角函数值的正负.17.(2017江苏,5,5分)若tan t=16,则tanα=.答案75解析本题考查两角和的正切公式.因为tan=16,所以tanα=tan=16+11−16×1=75.18.(2016浙江,理10,文10,5分)已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),则A=,b=.答案2;1解析∵2cos2x+sin2x=1+cos2x+sin2x=2sin2+1,∴A=2,b=1.评析本题主要考查三角恒等变换,熟练利用两角和的正弦公式及二倍角公式是解题关键. 19.(2016课标Ⅰ文,14,5分)已知θ是第四象限角,且sin=35,则tan t=.答案-43解析解法一:∵sin×(sinθ+cosθ)=35,∴sinθ+cosθ=①,∴2sinθcosθ=-725.∵θ是第四象限角,∴sinθ<0,cosθ>0,∴sinθ-cosθ=-1−2sinvos=-由①②得,∴tanθ=-17,∴tan=tant11+tan=-43.解法二:∵-θ=π2,∴sin=35,又2kπ-π2<θ<2kπ,k∈Z,∴2kπ-π4<θ+π4<2kπ+π4,k∈Z,∴cos=45,∴sin-θ=45,-θ=43,∴tan=-43.评析本题主要考查了三角恒等变换,熟练掌握同角三角函数关系式及诱导公式是解题的关键.20.(2016四川理,11,5分)cos2π8-sin2π8=.答案解析由二倍角公式易得cos2π8-sin2π8=cosπ4=21.(2015江苏,8,5分)已知tanα=-2,tan(α+β)=17,则tanβ的值为.答案3解析tanβ=tan[(α+β)-α]=tan(rp-tan1+tan(rptan=17-(-2)1+17×(−2)=3.22.(2015四川理,12,5分)sin15°+sin75°的值是.答案解析sin15°+sin75°=sin15°+cos15°=2sin(15°+45°)=2sin60°=23.(2014课标Ⅱ理,14,5分)函数f(x)=sin(x+2φ)-2sinφcos(x+φ)的最大值为.答案1解析f(x)=sin[(x+φ)+φ]-2sinφcos(x+φ)=sin(x+φ)cosφ+cos(x+φ)sinφ-2sinφcos(x+φ)=sin(x+φ)cosφ-sinφcos(x+φ)=sin(x+φ-φ)=sinx,∴f(x)的最大值为1.24.(2014课标Ⅱ文,14,5分)函数f(x)=sin(x+φ)-2sinφcosx的最大值为.答案1解析f(x)=sin(x+φ)-2sinφcosx=sinxcosφ+cosxsinφ-2sinφcosx=sinxcosφ-cosxsinφ=sin(x-φ)≤1,所以f(x)max=1.25.(2015广东文,16,12分)已知tanα=2.(1)求tan;(2)求sin2sin2α+sinvostcos2t1的值.解析(1)因为tanα=2,所以tan=tanrtanπ41−tan·tanπ4=2+11−2×1=-3.(2)因为tanα=2,所以sin2sin2α+sinvostcos2t1=2sinvossin2α+sinvost(cos2α-sin2α)-(sin2α+cos2α)=2sinvostan2α+tant2=2×222+2−2=1.sin2α+sinvost2cos2α=2tan26.(2014江苏,15,14分)已知,π(1)求α的值;(2)求-2α.解析(1)因为2,π所以cosα=-1−sin2α=-故α=sinπ4cosα+cosπ4sinα×(2)由(1)知-=-45,cos2α=1-2sin2=35,所以-2α=cos5π6cos2α+sin5π6sin2α=×35+12×评析本题主要考查三角函数的基本关系式、两角和与差的正、余弦公式及二倍角公式,考查运算求解能力.。

2020年高考数学(理)之三角函数与解三角形 专题04 三角恒等变换(解析版)

2020年高考数学(理)之三角函数与解三角形 专题04 三角恒等变换(解析版)

三角函数与平面向量04 三角恒等变换一、具本目标:1.两角和与差的三角函数公式 (1)会用向量的数量积推导出两角差的余弦公式;(2)能利用两角差的余弦公式导出两角差的正弦、正切公式;(3)能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;2.简单的三角恒等变换:能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆)3.(1) 已知两角的正余弦,会求和差角的正弦、余弦、正切值. (2) 会求类似于15°,75°,105°等特殊角的正、余弦、正切值. (3) 用和差角的正弦、余弦、正切公式化简求值. (4)逆用和差角的正弦、余弦、正切公式化简求值. (5) 会配凑、变形、拆角等方法进行化简与求值. 二、知识概述:知识点一 两角和与差的正弦、余弦、正切公式两角和与差的正弦公式: ()sin sin cos cos sin α+β=αβ+αβ,()sin sin cos cos sin α-β=αβ-αβ.两角和与差的余弦公式:()cos cos cos sin sin α+β=αβ-αβ, ()cos cos cos sin sin α-β=αβ+αβ.【考点讲解】两角和与差的正切公式:()tan tan tan 1tan tan α+βα+β=-αβ,()tan tan tan 1tan tan α-βα-β=+αβ.【特别提醒】公式的条件:1. 两角和与差的正弦、余弦公式中的两个角α、β为任意角.2.两角和与差的正切公式中两个角有如下的条件:(),,,.2222k k k k k z ππππα+β≠π+α-β≠π+α≠π+β≠π+∈知识点二 公式的变用1. 两角和与差的正弦公式的逆用与辅助角公式:()sin cos a x b x x +=+ϕ(其中φ角所在的象限由a,b 的符号确定,φ的值由tan baϕ=确定),在求最值、化简时起着重要的作用. 2. ()tan tan tan 1tan tan α+βα+β=-αβ变形为()()tan tan tan 1tan tan α+β=α+β-αβ,()tan tan tan 1tan tan α+βα+β=-αβ变形为()tan tan tan tan 1tan α+βαβ=-α+β.()tan tan tan 1tan tan α-βα-β=+αβ变形为()()tan tan tan 1tan tan α-β=α-β+αβ,()tan tan tan 1tan tan α-βα-β=+αβ变形为()tan tan tan tan 1tan α-βαβ=-α-β来使用. 条件为:(),,,.2222k k k k k z ππππα+β≠π+α-β≠π+α≠π+β≠π+∈ 知识点三 二倍角公式: 1.22tan sin 22sin cos 1tan ααααα==+2222221tan cos 2cos sin 2cos 112sin 1tan ααααααα-=-=-=-=+22tan tan 21tan ααα=-2. 常见变形:(1)22cos 1sin 2αα-=,22cos 1cos 2αα+=(2)()2cos sin 2sin 1ααα+=+,()2cos sin 2sin 1ααα-=-;(3)αα2cos 22cos 1=+,αα2sin 22cos 1=-.3.半角公式:2cos 12sin αα-±=,2cos 12cos αα+±=,αααcos 1cos 12tan+-±=,αααααsin cos 1cos 1sin 2tan-=+=.1.【2019年高考全国Ⅱ卷文理】已知a ∈(0,π2),2sin2α=cos2α+1,则sin α=( ) A .15BCD【解析】本题是对三角函数中二倍角公式、同角三角函数基本关系式的考查.2sin 2cos21αα=+Q ,24sin cos 2cos .0,,cos 02αααααπ⎛⎫∴⋅=∈∴> ⎪⎝⎭Q ,sin 0,α>2sin cos αα∴=,又22sin cos 1αα+=,2215sin 1,sin 5αα∴==,又sin 0α>,sin α∴=B . 【答案】B2.【2019年高考全国Ⅲ卷文数】函数()2sin sin2f x x x =-在[0,2π]的零点个数为( ) A .2B .3C .4D .5【解析】由()2sin sin 22sin 2sin cos 2sin (1cos )0f x x x x x x x x =-=-=-=,得sin 0x =或cos 1x =,[]0,2πx ∈Q ,0π2πx ∴=、或.()f x ∴在[]0,2π的零点个数是3,故选B .【答案】B3.【2018年高考全国Ⅰ卷文数】已知函数()222cos sin 2f x x x =-+,则( )【真题分析】A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为4 【解析】本题考查的是二倍角公式及余弦型函数的周期及最值问题.根据题意有()135cos 21(1cos 2)2cos 2222f x x x x =+--+=+,所以函数()f x 的最小正周期为2ππ2T ==,且最大值为()max 35422f x =+=,故选B. 【答案】B4.【2018年高考全国Ⅰ卷】若1sin 3α=,则cos2α=( ) A .89 B .79 C .79- D .89-【解析】本题主要考查二倍角公式及求三角函数的值.2217cos 212sin 12()39αα=-=-⨯=.故选B. 【答案】B5.【2018年高考全国Ⅰ卷文数】已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos 23α=,则a b -=( )A .15 B.5 C.5D .1 【解析】本题主要考查任意角的三角函数和三角恒等变換根据条件,可知,,O A B 三点共线,从而得到2b a =,因为222cos22cos 1213⎛⎫=-=⋅-=αα,解得215a =,即a =所以2a b a a -=-=. 【答案】B6.【2017年高考全国Ⅰ卷文数】已知4sin cos 3αα-=,则sin 2α=( ) A .79-B .29-C .29D .79【解析】()2sin cos 17sin 22sin cos 19ααααα--===--.所以选A. 【答案】A7.【2019年高考全国Ⅰ卷文数】函数3π()sin(2)3cos 2f x x x =+-的最小值为___________.【解析】23π()sin(2)3cos cos 23cos 2cos 3cos 12f x x x x x x x =+-=--=--+23172(cos )48x =-++,1cos 1x -≤≤Q ,∴当cos 1x =时,min ()4f x =-,故函数()f x 的最小值为4-.【答案】4-8.【2019年高考北京卷理数】函数f (x )=sin 22x 的最小正周期是__________.【解析】本题主要考查二倍角的三角函数公式、三角函数的最小正周期公式,函数()2sin 2f x x ==1cos 42x -,周期为π2. 【答案】π29.【2019年高考江苏卷】已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 . 【解析】由()tan 1tan tan tan 2tan 1πtan 13tan 1tan 4αααααααα-===-++⎛⎫+ ⎪-⎝⎭,得23tan 5tan 20αα--=, 解得tan 2α=,或1tan 3α=-.πππsin 2sin 2cos cos 2sin 444ααα⎛⎫+=+ ⎪⎝⎭()22222sin cos cos sin sin 2cos 2=22sin cos αααααααα⎫+-=+⎪+⎝⎭222tan 1tan =2tan 1ααα⎫+-⎪+⎝⎭, 当tan 2α=时,上式222212==22110⎛⎫⨯+-⨯ ⎪+⎝⎭ 当1tan 3α=-时,上式=22112()1()33[]=1210()13⨯-+---+综上,πsin 24α⎛⎫+= ⎪⎝⎭【答案】1010.【2018年高考全国Ⅰ卷文数】已知5π1tan()45-=α,则tan =α__________. 【解析】本题主要考查三角恒等变换,考查考生的运算求解能力.5πtan tan5πtan 114tan 5π41tan 51tan tan 4ααααα--⎛⎫-=== ⎪+⎝⎭+⋅,解方程得3tan 2=α.故答案为32. 【答案】3211.【2018年高考全国Ⅱ理数】已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________. 【解析】本题主要考查三角恒等变换.因为sin cos 1+=αβ,cos sin 0+=αβ,所以()()221sin cos 1,-+-=αα所以11sin ,cos 22==αβ, 因此()22111111sin sin cos cos sin cos 1sin 1.224442+=+=⨯-=-+=-+=-αβαβαβαα【答案】12-12.【2017年高考江苏卷】若π1tan(),46-=α则tan =α .【解析】11tan()tan7644tan tan[()]14451tan()tan 1446ααααππ+-+ππ=-+===ππ---.故答案为75. 【答案】7513.【2018年高考全国Ⅰ理数】已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.【解析】()()212cos 2cos 24cos 2cos 24cos 1cos 2f x x x x x x x ⎛⎫'=+=+-=+-⎪⎝⎭, 所以当1cos 2x <时函数单调递减,当1cos 2x >时函数单调递增,从而得到函数的递减区间为()5ππ2π,2π33k k k ⎡⎤--∈⎢⎥⎣⎦Z ,函数的递增区间为()ππ2π,2π33k k k ⎡⎤-+∈⎢⎥⎣⎦Z , 所以当π2π,3x k k =-∈Z 时,函数()f x取得最小值,此时sin ,sin222x x =-=-, 所以()min 2f x ⎛=⨯= ⎝⎭,故答案是2-.【答案】2-14.【2017年高考全国Ⅱ理数】函数()23sin 4f x x x =+-(π0,2x ⎡⎤∈⎢⎥⎣⎦)的最大值是 . 【解析】本题主要考查的是三角函数式的化简及三角函数的问题转化为二次函数的问题,二次函数、二次方程与二次不等式统称“三个二次”化简三角函数的解析式的综合考查.()222311cos cos cos 144f x x x x x x ⎛=-+-=-++=--+ ⎝⎭, 由自变量的范围:π0,2x ⎡⎤∈⎢⎥⎣⎦可得:[]cos 0,1x ∈,当cos 2x =时,函数()f x 取得最大值1.【答案】115.【2019年高考浙江卷】设函数()sin ,f x x x =∈R .(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值; (2)求函数22[()][()]124y f x f x ππ=+++的值域. 【解析】本题主要考查三角函数及其恒等变换等基础知识.(1)因为()sin()f x x θθ+=+是偶函数,所以,对任意实数x 都有sin()sin()x x θθ+=-+, 即sin cos cos sin sin cos cos sin x x x x θθθθ+=-+,故2sin cos 0x θ=,所以cos 0θ=. 又[0,2π)θ∈,因此π2θ=或3π2. (2)2222ππππsin sin 124124y fx f x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ππ1cos 21cos 213621cos 2sin 222222x x x x ⎛⎫⎛⎫-+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭=+=-- ⎪ ⎪⎝⎭π123x ⎛⎫=+ ⎪⎝⎭.因此,函数的值域是[1+. 【答案】(1)π2θ=或3π2;(2)[1+. 16.【2018年高考北京卷文数】已知函数2()sin cos f x x x x =+.(1)求()f x 的最小正周期; (2)若()f x 在区间[,]3m π-上的最大值为32,求m 的最小值. 【解析】本题主要考查二倍角公式、辅助角公式、正弦函数的性质. (1)1cos 211π1()22cos 2sin(2)22262x f x x x x x -==-+=-+,所以()f x 的最小正周期为2ππ2T ==. (2)由(1)知π1()sin(2)62f x x =-+.因为π[,]3x m ∈-,所以π5ππ2[,2]666x m -∈--. 要使得()f x 在π[,]3m -上的最大值为32,即πsin(2)6x -在π[,]3m -上的最大值为1.所以ππ262m -≥,即π3m ≥.所以m 的最小值为π3.【答案】(1)π;(2)π3.1. sin15°sin105°的值是( ) A .14 B .14-C.4D.4-【解析】本题的考点二倍角的正弦和诱导公式:sin15°sin105°=sin15°cos15°=12sin30°=14,故选A . 【答案】A2.已知sin2α=13,则cos 2(π4α-)=( ) A .34 B .23 C .45 D .56【解析】本题考点二倍角的余弦,三角函数的化简求值.∵sin2α=13,∴cos 2(π4α-)=π11cos 211sin 22232223αα⎛⎫+-+⎪+⎝⎭===.故选B . 【答案】B3.已知sin α=45-,α∈(π,3π2),则tan 2α等于( ) A .-2 B .12 C .12-或2 D .-2或12【解析】∵sin α=45-,α∈(π,3π2),∴cos α=35-,∴tan α=43.∵α∈(π,3π2),∴2α∈(π2,3π4),∴tan 2α<0. tan α=22tan21tan 2αα- =43,即2tan 22α+ 【模拟考场】3tan2α-2=0,解得tan 2α=-2,或tan 2α=12(舍去),故选A . 【答案】A 4.设π0,2α⎛⎫∈ ⎪⎝⎭,π0,4β⎛⎫∈ ⎪⎝⎭,且tan α=1sin 2cos 2ββ+,则下列结论中正确的是( ) A .2π4αβ-=B .π24αβ+=C .π4αβ-=D .π4αβ+= 【解析】本题的考点二倍角的余弦,二倍角的正弦..tan α=()222sin cos 1sin 2sin cos 1tan cos 2cos sin cos sin 1tan ββββββββββββ++++===---πtan 4β⎛⎫=+ ⎪⎝⎭ 因为π0,2α⎛⎫∈ ⎪⎝⎭,πππ,442β⎛⎫+∈ ⎪⎝⎭,所以π4αβ-=.故选C . 【答案】C5.已知角αβ,均为锐角,且cos α=35,tan (α−β)=−13,tan β=( ) A .13 B .913 C .139D .3【解析】∵角α,β均为锐角,且cos α=35,∴sin α=45,tan α=43,又tan (α−β)=tan tan 1+tan tan αβαβ-=4tan 341+tan 3ββ-=−13,∴tan β=3,故选D .【答案】D6.设α为锐角,若π3cos()65α+=,则πsin()12α-=( ) A.10 B.10- C .45 D .45- 【解析】因为α为锐角,所以ππ2π,663α⎛⎫+∈ ⎪⎝⎭,因为π3cos()65α+=,所以π4sin()65α+=,故πππππsin()sin sin cos 126464ααα⎡⎤⎛⎫⎛⎫-=+-=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ππ43cos sin 6425510α⎛⎫⎛⎫+=-= ⎪ ⎪⎝⎭⎝⎭.故选A.【答案】A7.设函数2()sin sin f x x b x c =++,则()f x 的最小正周期( )A .与b 有关,且与c 有关B .与b 有关,但与c 无关C .与b 无关,且与c 无关D .与b 无关,但与c 有关【解析】本题考查的是二倍角的降幂公式与三角函数的最小正周期,先利用三角恒等变换(降幂公式)化简函数()f x ,再判断b 和c 的取值是否影响函数()f x 的最小正周期.21cos 2cos 21()sin sin sin sin 222-=++=++=-+++x x f x x b x c b x c b x c ,其中当0=b 时,cos 21()22=-++x f x c ,此时周期是π;当0≠b 时,周期为2π,而c 不影响周期.故选B . 【答案】B8.已知34cos sin =-αα,则=α2sin ( ) A .97- B .92- C .92 D .97【解析】本题的考点是二倍角的正弦正逆用,将34cos sin =-αα两边平方()2234cos sin ⎪⎭⎫ ⎝⎛=-αα, 化简后可得916cos sin 2cos sin 22=-+αααα即=α2sin 97-.【答案】A 9.函数()⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=6cos 3sin 51ππx x x f 的最大值为( ) A .56B .1C .53D .51【解析】将()⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=6cos 3sin 51ππx x x f 化简,利用两角和、差的正余弦公式及辅助角公式,三角函数 最值的性质可以求得函数最大值.由()6sin sin 6cos cos 3sin cos 3cos sin 51ππππx x x x x f ++⎪⎭⎫ ⎝⎛+=x x x x sin 21cos 23cos 103sin 101+++=⎪⎪⎭⎫ ⎝⎛+=+=x x x x cos 23sin 2156cos 533sin 53⎪⎭⎫ ⎝⎛+=3sin 56πx ,因为13sin 1≤⎪⎭⎫ ⎝⎛+≤-πx ,所以函数的最大值为56. 【答案】A10.若tan 2tan 5πα=,则3cos()10sin()5παπα-=-( ) A.1 B.2 C.3 D.4【解析】本题考点是两角和与差的正弦(余弦)公式,同角间的三角函数关系,三角函数的恒等变换. 三角恒等变换的主要是求值,在求值时只要根据求解目标的需要,结合已知条件选用合适的公式计算.本例应用两角和与差的正弦(余弦)公式化简所求式子,利用同角关系式求出使已知条件可代入的值,然后再化简,求解过程中注意公式的顺用和逆用.3cos()10sin()5παπα-=-33cos cos sin sin 1010sin cos cos sin 55ππααππαα+-33cos tan sin 1010tan cos sin 55ππαππα+=-33cos 2tan sin 105102tan cos sin 555ππππππ+=- 33cos cos 2sin sin 510510sin cos 55ππππππ+==333cos cos sin sin sin sin 510510510sin cos 55ππππππππ++ =333cos cos sin 5101010sin cos 55ππππππ⎛⎫-+ ⎪⎝⎭=13cos sin 1025sin cos 55ππππ+1cos cos 10210sin cos 55ππππ+=1cos cos 1021014sin 210πππ+= 3cos103cos 10ππ==.【答案】C11.已知向量a r =(sin θ,2-),b r =(1,cos θ),且a r ⊥b r ,则sin 2θ+cos 2θ的值为( )A .1B .2C .12D .3 【解析】本题考点是三角函数的恒等变换及化简求值,数量积判断两个平面向量的垂直关系.由题意可得a r ·b r =sin θ-2cos θ=0,即tan θ=2.∴sin 2θ+cos 2θ=2222sin cos +cos cos +sin θθθθθ=22tan +11+tan θθ=1,故选A . 【答案】A12.已知cos θ=-725,θ∈(-π,0),则sin 2θ+cos 2θ=( ) A .125B .15±C .15D .15- 【解析】∵cos θ=-725,θ∈(-π,0), ∴cos 22θ-sin 22θ=(cos 2θ+sin 2θ)(cos 2θ-sin 2θ)<0,2θ∈(π2-,0),∴sin 2θ+cos 2θ<0,cos 2θ-sin 2θ>0,∵(sin 2θ+cos 2θ)2=1+sin θ=1=125,∴sin 2θ+cos 2θ=15-.故选D .【答案】D13. =+οο75sin 15sin .【解析】本题考查的是三角恒等变换及特殊角的三角函数值的求解.法一、sin15sin 75sin15cos1545)+=+=+=o o o o o o .法二、sin15sin 75sin(4530)sin(4530)2sin 45cos30+=-++==o o o o o o o o .法三、sin15sin 75+==o o .【答案】214.在锐角三角形ABC 中,若sin 2sin sin A B C =,则tan tan tan A B C 的最小值是 .【解析】本题考查的是三角恒等变换及正切的性质,本题要求会利用三角形中隐含的边角关系作为消元依据,同时要记住斜三角形ABC 中恒有tan tan tan tan tan tan A B C A B C =++,sin sin(B C)2sin sin tan tan 2tan tan A B C B C B C =+=⇒+=,因此tan tan tan tan tan tan tan 2tan tan tan tan tan 8A B C A B C A B C A B C =++=+≥≥,即最小值为8.【答案】8.15.【2018江苏卷16】已知,αβ为锐角,4tan 3α=,cos()αβ+= (1)求cos2α的值;(2)求tan()αβ-的值.【解析】(1)因为,,所以. 因为,所以, 因此,. (2)因为为锐角,所以.又因为,所以, 因此.因为,所以, 因此,. 16.【2016高考山东理数】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知tan tan 2(tan tan ).cos cos A B A B B A +=+ (Ⅰ)证明:a +b =2c ;(Ⅱ)求cos C 的最小值.【解析】试题分析:(Ⅰ)根据两角和的正弦公式、正切公式、正弦定理即可证明;(Ⅱ)根据余弦定理公式表示出cosC ,由基本不等式求cos C 的最小值.试题解析:()I 由题意知sin sin sin sin 2cos cos cos cos cos cos A B A B A B A B A B ⎛⎫+=+ ⎪⎝⎭, 化简得()2sin cos sin cos sin sin A B B A A B +=+,即()2sin sin sin A B A B +=+.因为A B C π++=,所以()()sin sin sin A B C C π+=-=.从而sin sin =2sin A B C +.由正弦定理得2a b c +=.()∏由()I 知2a b c +=, 所以 2222222cos 22a b a b a b c C ab ab +⎛⎫+- ⎪+-⎝⎭==311842b a a b ⎛⎫=+-≥ ⎪⎝⎭, 当且仅当a b =时,等号成立.故 cos C 的最小值为12. 4tan 3α=sin tan cos ααα=4sin cos 3αα=22sin cos 1αα+=29cos 25α=27cos22cos 125αα=-=-,αβ(0,π)αβ+∈cos()αβ+=sin()αβ+=tan()2αβ+=-4tan 3α=22tan 24tan 21tan 7ααα==--tan 2tan()2tan()tan[2()]1+tan 2tan()11ααβαβααβααβ-+-=-+==-+17.已知函数()22sin sin 6f x x x π⎛⎫=-- ⎪⎝⎭,R x ∈ (I)求()f x 最小正周期;(II)求()f x 在区间[,]34p p -上的最大值和最小值. 【解析】本题考点两角和与差的正余弦公式、二倍角的正余弦公式、三角函数的图象与性质.综合运用三角 知识,从正确求函数解析式出发,考查最小正周期的求法与函数单调性的应用,从而求出函数的最大值与最小值,体现数学思想与方法的应用.(I) 由已知,有1cos 21cos21113()cos22cos2222222x x f x x x x π⎛⎫-- ⎪⎛⎫-⎝⎭=-=+- ⎪⎝⎭112cos2sin 24426x x x π⎛⎫--=- ⎪⎝⎭. 所以()f x 的最小正周期22T ππ==. (II)因为()f x 在区间[,]36p p --上是减函数,在区间[,]64p p -上是增函数,11(),(),()346244f f f πππ-=--=-=,所以()f x 在区间[,]34p p -上的最大值为4,最小值为12-. 【答案】(I)π; (II) max ()4f x =,min 1()2f x =-.。

专题03 三角恒等变换-直击2020新高考数学多选题

专题03 三角恒等变换-直击2020新高考数学多选题

专题03 三角恒等变换一、知识梳理1.两角和与差的正弦、余弦、正切公式 cos(α-β)=cos αcos β+sin αsin β. cos(α+β)=cos αcos β-sin αsin β. sin(α+β)=sin αcos β+cos αsin β. sin(α-β)=sin αcos β-cos αsin β. tan(α+β)=tan α+tan β1-tan αtan β.tan(α-β)=tan α-tan β1+tan αtan β.2.二倍角公式 sin 2α=2sin αcos α.cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. tan 2α=2tan α1-tan 2α.3.升幂缩角公式 1+cos 2α=2cos 2α. 1-cos 2α=2sin 2α.4.降幂扩角公式sin x cos x =sin 2x2,cos 2x =1+cos 2x 2,sin 2x =1-cos 2x2.5.和差角正切公式变形tan α+tan β=tan(α+β)(1-tan αtan β),tan α-tan β =tan(α-β)(1+tan αtan β). 6.辅助角公式y =a sin ωx +b cos ωx =a 2+b 2sin(ωx +θ).二、跟踪检测1.下列四个选项,化简正确的是( ) A.cos(-15°)=426 B.cos 15°cos 105°+sin 15°sin 105°=cos(15°-105°)=0C.cos(α-35°)cos(25°+α)+sin(α-35°)sin(25°+α)=cos[(α-35°)-(25°+α)]=cos(-60°)=cos 60°=12.D.sin 14°cos 16°+sin 76°cos 74°=12.【答案】B ,C ,D【解析】对于A :方法一 原式=cos(30°-45°)=cos 30°cos 45°+sin 30°sin 45°=32×22+12×22=6+24,A 错误 方法二 原式=cos 15°=cos(45°-30°)=cos 45°cos 30°+sin 45°sin 30°=22×32+22×12=6+24. 对于B :原式=cos(15°-105°)=cos(-90°)=cos 90°=0,B 正确 对于C :原式=cos[(α-35°)-(25°+α)]=cos(-60°)=cos 60°=12.对于D :原式=cos 76°cos 16°+sin 76°sin 16°=cos(76°-16°)=cos 60°=12.故选B ,C ,D.2.下列说法中错误的是A .存在这样的α和β的值,使得βαβαβαsin sin cos cos )cos(+=+B .不存在无穷多个α和β的值,使得βαβαβαsin sin cos cos )cos(+=+C .对任意的α和β,有βαβαβαsin sin cos cos )cos(-=+D .存在这样的α和β的值,使得βαβαsin sin )sin(+=+ 【答案】A ,C ,D【解析】对于A ,当0==βα时,10sin 0sin 0cos 0cos )00cos(=+=+,故正确 对于B ,当)(2z k k ∈==πβα时,1)cos(,1cos cos ,0sin sin =+====βαβαβα 则βαβαβαsin sin cos cos )cos(+=+,故错误对于C ,对任意的α和β,有βαβαβαsin sin cos cos )cos(-=+,这是两角和的余弦公式,故正确 对于D ,当0=α,当2πβ=时使得βαβαsin sin )sin(+=+,故正确,故选A ,C ,D3.对于函数x x x f cos 3sin )(+=,给出下列选项其中不正确的是( ) A .函数)(x f 的图象关于点)0,6(π对称 B .存在)3,0(πα∈,使1)(=αfC .存在)3,0(πα∈,使函数)(α+x f 的图象关于y 轴对称 D .存在)3,0(πα∈,使)3()(αα+=+x f x f 恒成立【答案】A ,B ,D【解析】函数=+=x x x f cos 3sin )(2sin (x 3π+), 对于A :函数f (x )=2sin (x 3π+),当x=6π时,2sin (36ππ+)=2,不能得到函数)(x f 的图象关于点)0,6(π对称.∴A不对. 对于B :)3,0(πα∈,可得α3π+∈(323ππ,),]2,3()(∈αf ,不存在1)(=αf ;∴B 不对.对于C :函数)(α+x f 的对称轴方程为:πππαk x +=++23x ,可得αππ-+=6k x ,当k =0,6πα=时,可得图象关于y 轴对称.∴C 对.对于D :f (x +α)=f (x +3α)说明2α是函数的周期,函数f (x )的周期为2π,故α=π,∴不存在)3,0(πα∈,使)3()(αα+=+x f x f 恒成立,∴D 不对.故选A ,B ,D .4.下列计算正确的选项有( ).A.148sin 22cos 48cos 158sin 0=+ B .170sin 160cos 110cos 20sin 0=+C.315tan 115tan 100=-+ D.2314cos 74sin 14sin 74cos 0000-=-.. 【答案】C,D【解析】对于A :048sin 22cos 48cos 158sin +170sin )4822sin(48sin 22cos 48cos 22sin 0000000≠=+=+=,所以A 错误对于B :000070sin 160cos 110cos 20sin +000070sin )20cos ()70cos 20sin -+-=(1)7020sin()70sin 20cos 70cos 20sin 000000-=+-=+-=(,所以B 错误对于C : 根据正切函数和角公式,化简得00000015tan 45tan 115tan 45tan 15tan 115tan 1⋅-+=-+=)1545tan(00+=3)60tan(0=所以C 正确对于D :000014cos 74sin 14sin 74cos -=2360sin -7414sin-==-)(,所以D 正确,故选C ,D. 5.函数x x x f cos sin )(=的单调递减区间可以是( ) A .)](4,43[z k k k ∈--ππππ B .)](43,4[z k k k ∈++ππππ C .)](22,42[z k k k ∈++ππππ D .)](2,4[z k k k ∈++ππππ 【答案】A ,B【解析】x x x x f 2sin 21cos sin )(==,由+2π2k π≤2x ≤2k π23π+, 即+4πk π≤x ≤k π43π+,k ∈Z ,所以函数x x x f cos sin )(=的单调递减区间是)](43,4[z k k k ∈++ππππ,因为函数的周期是k π,故A 正确,故选A ,B.6.已知函数x x x x f 2sin 2cos sin 2)(-=,给出下列四个选项,正确的有( )A.函数)(x f 的最小正周期是π;B.函数)(x f 在区间]858[ππ,上是减函数;C. 函数)(x f 的图像关于点)0,8(π-对称;D.函数)(x f 的图像可由函数x y 2sin 2=的图像向右平移8π个单位,再向下平移1个单位得到. 【答案】A ,B【解析】f (x )=sin2x ﹣2sin 2x +1﹣1=sin 2x +cos 2x ﹣12=sin (2x 4π+)﹣1. 对于A :因为ω=2,则f (x )的最小正周期T =π,结论正确. 对于B :当x ∈[858ππ,]时,2x 4π+∈[232ππ,],则sin x 在[858ππ,]上是减函数,结论正确. 对于C :因为f (8π-)=﹣1,得到函数f (x )图象的一个对称中心为(8π-,﹣1),结论不正确. 对于D :函数f (x )的图象可由函数y 2=sin2x 的图象向左平移8π个单位再向下平移1个单位得到,结论不正确.故正确结论有A ,B ,故选A ,B . 7.下列选下选项中,值为41的是( ) A .2cos 72°cos 36° B .sin π12sin 5π12 C .1sin 50°+3cos 50°. D .13-23cos 215°;【答案】A ,B【解析】对于A 中cos 36°cos 72°=2sin 36°cos 36°cos 72°2sin 36°=2sin 72°cos 72°4sin 36°=sin 144°4sin 36°=14.对于B 中sin π12sin 5π12=sin π12cos π12=2sin π12cos π122=sinπ62=14.对于C 中原式=cos 50°+3sin 50°sin 50°cos 50°=212cos 50°+32sin 50°12×2sin 50°cos 50°=2sin 80°12sin 100°=2sin 80°12sin 80°=4.对于D 中13-23cos 215°=-13(2cos 215°-1)=-13cos 30°=-36,故选A ,B.8.下列函数f (x )与g (x )中,能表示同一函数的是( ) A .f (x )=sin 2x g (x )=2sin x cos x B .f (x )=cos 2x g (x )=cos 2x -sin 2x C .f (x )=2cos 2x -1 g (x )=1-2sin 2x D .f (x )=tan 2x g (x )=2tan x1-tan 2x【答案】A 、B 、C【解析】显然选项A 、B 、C 均正确,对于D ,函数f (x )与g (x )的定义域不同,所以二者表示的函数不同.9.已知θ是锐角,那么下列各值中,sin θ+cos θ不能能取得的值是( ) A.43 B.34 C.53 D.12 【答案】B ,C ,D【解析】∵0<θ<π2,∴θ+π4∈)43,4(ππ,又sin θ+cos θ=2sin )4(πθ+,∴22<sin )4(πθ+≤1, ∴1<sin θ+cos θ≤ 2.故选B ,C ,D. 10.下列说法正确的是( ) A .存在x 0∈R ,使得B .函数y =sin2x cos2x 的最小正周期为C .函数的一个对称中心为D .角α的终边经过点(cos (﹣3),sin (﹣3)),则角α是第三象限角 【答案】B ,D【解析】在A 中,∵cos x 0∈[﹣1,1],∴1﹣cos 3x 0=(1﹣cos x 0)(1+cos x 0+cos 2x 0)≥0, ∵log 2<log 21=0,∴不存在x 0∈R ,使得,故A 错误;在B 中,函数y =sin2x cos2x =的最小正周期为,故B 正确; 在C 中,由2(x +)=+k π,k ∈Z ,得x =﹣,k ∈Z ,∴函数的对称中心为(﹣,0),k ∈Z ,故C 错误;在D 中,∵cos (﹣3)=cos3<0,sin (﹣3)=﹣sin3<0,∴角α的终边经过点(cos (﹣3),sin (﹣3)),则角α是第三象限角,故D 正确.故选B ,D .。

高考数学 分类题库考点8 三角恒等变换理

高考数学 分类题库考点8 三角恒等变换理

考点8 三角恒等变换1.(2020·福建高考文科·T2)计算212sin 22.5-︒的结果等于( ) (A)12(B)22 (C)33 (D)32【命题立意】此题考查余弦的倍角公式的逆用,即降幂公式,并进行三角函数的化简求值. 【思路点拨】直接套用倍角公式的逆用公式,即降幂公式即可.【标准解答】选B..【方式技术】关于三角公式的学习,要注意灵活把握其变形公式,才能进行灵活的恒等变换.如倍角公式:sin 2x 2sin x cos x =⋅,2222cos 2x 12sin x 2cos x 1cos x sin x =-=-=-的逆用公式为“降幂公式”,即为1sin x cos x sin 2x 2⋅=,221cos 2x 1cos 2xsin x ,cos x 22-+==,在三角函数的恒等变形中,降幂公式起着重要的作用.2.(2020·福建高考理科·T1)计算sin43cos13cos43sin13︒︒-︒︒的结果等于( ) (A)12(B)33 (C)22 (D)32【命题立意】此题考查学生关于三角函数两角差公式的运用和常见三角函数值的经历. 【思路点拨】 由正弦两角差公式βαβαβαsin cos cos sin )sin(-=-可得. 【标准解答】选A.2130sin 13sin 43cos 13cos 43sin ==- . 3.(2020 ·海南宁夏高考·理科T9)假设4cos 5α=-,α是第三象限的角,那么1tan21tan 2αα+=-( ) (A )12-(B )12(C )2 (D )2- 【命题立意】此题要紧考查了三角函数的恒等变换公式及同角三角函数的大体关系式. 【思路点拨】依照余弦值求出正弦值,然后化简表达式进行求解. 【标准解答】选A.由4cos 5α=-,α是第三象限的角,可得3sin 5α=-,sin211tancoscossin22221tan sin cos sin 22221cos2αααααααααα+++==---22231(cossin )1sin 15224cos 2cos sin 225αααααα-++====---,应选A. 4.(2020·浙江高考理科·T11)函数2()sin(2)22sin 4f x x x π=--的最小正周期是__________ .【命题立意】此题考查三角函数、三角变换,关键是熟练把握三角函数式变换的相关技术. 【思路点拨】把()f x 先统一角,再利用化一公式化成正弦型函数. 【标准解答】22()sin 2cos 22(1cos 2)22f x x x x =--- 22sin 2cos 2222x x =+-sin(2)24x π=+-,2T ππ2==. 【答案】π 【方式技术】(1)三角函数式化简时经常使用的技术有:统一角、降幂扩角、化一公式等.(2)求三角函数式的最小正周期时,一样先把函数化为sin()y A x ωϕ=+的正弦型函数,再求周期. 5.(2020 ·海南宁夏高考·理科T16)在ABC ∆中,D 为边BC 上一点,BD=12DC,ADB ∠=120°,AD=2,假设ADC ∆的面积为33-,那么BAC ∠= . 【命题立意】此题要紧考查了余弦定理及其推论的综合应用.【思路点拨】利用三角形中的余弦定理极为推论,列出边与角知足的关系式求解. 【标准解答】设BD x =,那么2CD x =,由ADC ∆的面积为33-可知1sin 60332CD AD =31x =,由余弦定理可知 2222cos AB AD BD AD BD ADB =+-∠6=,因此6AB =.2222cos AC AD DC AD DC ADC =+-∠24123=-6(31)AC =. 由222cos 2AB AC BC BAC AB AC+-∠=,及6,6(31),3(31)AB AC BC ==-=,可求得60BAC ∠= 【答案】60°【方式技术】找出三角形中隐含的角的关系,利用余弦定理或正弦定理找边与角的关系,列出等式求解.6.(2020·天津高考理科·T17)已知函数2()23sin cos 2cos 1()f x x x x x R =+-∈,(Ⅰ)求函数()f x 的最小正周期及在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值. (Ⅱ)假设006(),,542f x x ππ⎡⎤=∈⎢⎥⎣⎦,求0cos 2x 的值. 【命题立意】此题要紧考查正余弦的二倍角公式、两角和的正弦公式、函数sin()y A x ωϕ=+的性质、同角三角函数的大体关系、两角差的余弦公式等基础知识,考查考生大体运算能力. 【思路点拨】化成一个角的三角函数的形式,变角002266x x ππ⎛⎫=+- ⎪⎝⎭. 【标准解答】(Ⅰ)由2()23sin cos 2cos 1f x x x x =+-,得2()3(2sin cos )(2cos 1)3sin 2cos 22sin(2)6f x x x x x x x π=+-=+=+,因此函数()f x 的最小正周期为22T ππ==.因为()2sin 26f x x π⎛⎫=+⎪⎝⎭在区间0,6π⎡⎤⎢⎥⎣⎦上为增函数,在区间,62ππ⎡⎤⎢⎥⎣⎦上为减函数,又 (0)1,2,162f f f ππ⎛⎫⎛⎫===- ⎪ ⎪⎝⎭⎝⎭,因此函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值为2,最小值为-1. (Ⅱ)由(Ⅰ)可知00()2sin 26f x x π⎛⎫=+⎪⎝⎭,又因为06()5f x =,因此03sin 265x π⎛⎫+= ⎪⎝⎭,由0,42x ππ⎡⎤∈⎢⎥⎣⎦,得0272,636x πππ⎡⎤+∈⎢⎥⎣⎦,从而2004cos 21sin 2665x x ππ⎛⎫⎛⎫+=--+=- ⎪ ⎪⎝⎭⎝⎭,因此0000343cos 2cos 2cos 2cos sin 2sin 66666610x x x x ππππππ⎡⎤-⎛⎫⎛⎫⎛⎫=+-=+++= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 7.(2020·山东高考文科·T17)已知函数2()sin()cos cos f x x x x πωωω=-+(0ω>)的最小正周期为π,(1)求ω的值.(2)将函数()y f x =的图象上各点的横坐标缩短到原先的12,纵坐标不变,取得函数()y g x =的图象,求函数()y g x =在区间0,16π⎡⎤⎢⎥⎣⎦上的最小值.【命题立意】此题要紧考查综合运用三角函数公式、三角函数的性质,进行运算、变形、转换和求值的能力,考查了考生分析问题与解决问题的能力和运算求解能力.【思路点拨】(1)先利用二倍角公式将()f x 化简,再依照周期求出ω的值.(2)先依照()y f x =的图象与()y g x =图象的关系,求出()y g x =的解析式,再依照x 的范围求()y g x =的最小值.【标准解答】(1)因为()()2sin cos cos f x x x x πωωω=-+,因此1cos 211121()sin cos sin 2cos 2sin(2)2222242x f x x x x x x ωπωωωωω+=+=++=++,由于0ω>,依题意得22ππω=,因此1ω=. (2)由(1)知()21sin 2242f x x πω⎛⎫=++ ⎪⎝⎭,因此()()212sin 4242g x f x x π⎛⎫==++ ⎪⎝⎭. 当016x π≤≤时,4442x πππ≤+≤, 因此2sin 4124x π⎛⎫≤+≤ ⎪⎝⎭. 因此()1212g x +≤≤,故()g x 在区间0,16π⎡⎤⎢⎥⎣⎦上的最小值为1. 8.(2020·山东高考理科·T17)已知函数()()211sin 2sin cos cos sin 0222f x x x πϕϕϕϕπ⎛⎫=+-+ ⎪⎝⎭<<,其图象过点(π6,12). (1)求ϕ的值.(2)将函数()y f x =的图象上各点的横坐标缩短到原先的12,纵坐标不变,取得函数()g y x =的图象,求函数()g x 在[0,π4]上的最大值和最小值. 【命题立意】此题考查三角函数的诱导公式及二倍角等大体公式的灵活应用,图象变换和三角函数的最值问题,考查了考生的分析问题与解决问题的能力和运算求解能力.【思路点拨】(1)依照图象过点(π6,12),代入()y f x =化简可求ϕ值,同时应注意ϕ的取值范围.(2)利用(1)的结果,将()y f x =的解析式进行化简,再利用图象变换求出()g y x =的 解析式,最后依照()g x 的范围求出最值. 【标准解答】(1)因为已知函数图象过点(π6,12),因此有 1122=sin(2)6π⨯()21sin 2sin cos cos sin 06622πππϕϕϕϕπ⎛⎫⨯+-+ ⎪⎝⎭<<,即有331sin cos cos 22ϕϕϕ=+-=sin (+)6πϕ,又,因此+62ππϕ=,解得3πϕ=.(2)由(1)知3πϕ=,因此()()211sin 2sin cos cos sin 0233223f x x x ππππϕπ⎛⎫=+-+ ⎪⎝⎭<< =2311sin2x+cos x-424=311+cos 2x 1sin2x+-=4224⨯1sin (2x+)26π, 因此()g x =1sin (4x+)26π,因为x ∈[0, π4],因此4x+6π∈7[,]66ππ, 因此当4x+62ππ=时,()g x 取最大值12;当4x+6π=76π时,()g x 取最小值14-.。

高考数学专题《三角恒等变换》习题含答案解析

高考数学专题《三角恒等变换》习题含答案解析

专题5.4 三角恒等变换1.(2021·四川德阳市·高三二模(文))在平面直角坐标系中,已知点()2cos80,2sin 80A ︒︒,()2cos 20,2sin 20B ︒︒,那么AB =( )A .2B.C.D .4【答案】A 【解析】利用利用两点间的距离公式求得AB .【详解】AB ==2====.故选:A2.(2018·全国高考真题(文))(2018年全国卷Ⅲ文)若sin α=13,则cos2α=( )A .89 B .79 C .―79 D .―89【答案】B 【解析】cos2α=1―2sin 2α=1―29=79故答案为B.3.(2021·商丘市第一高级中学高三月考(文))已知2sin 21sin 22πθθ⎛⎫-=+ ⎪⎝⎭,则tan θ的所有取值之和为( )A .-5B .-6C .-3D .2【答案】D练基础利用诱导公式和二倍角公式化简已知式,得到sin cos θθ=-或sin 3cos θθ=,即得tan θ的可能取值,求和即可.【详解】依题意得,2cos 21sin 2θθ-=+,即()()2222sincos sin cos θθθθ-=+,即()()()22sin cos sin cos sin cos θθθθθθ+-=+,故sin cos 0θθ+=或()2sin cos sin cos θθθθ-=+,所以sin cos θθ=-或sin 3cos θθ=,可得tan 1θ=-或tan 3θ=,所以tan θ的所有取值之和为2.故选:D.4.(2021·北京北大附中高三其他模拟)已知()0,απ∈,且1cos 23α=,则sin α=( )A B .23C .13D 【答案】A 【解析】由余弦的二倍角公式,先求出2sin α的值,结合角α的范围可得答案.【详解】由21cos 212sin 3αα=-=,可得21sin 3α=又()0,απ∈,则sin α=故选:A5.(2022·河南高三月考(理))若,2παπ⎛⎫∈ ⎪⎝⎭,且23cos sin 210αα-=,则tan α=( )A .-7B .13C .17-D .-7或13【答案】A 【解析】利用二倍角公式及同角三角函数的基本关系将弦化切,再解方程即可;解:因为23cos sin 210αα-=,所以2222cos sin 2cos 2sin cos 31sin cos 10ααααααα--==+,所以212tan 3tan 110αα-=+,得23tan 20tan 70αα+-=,则tan 7=-α或1tan 3α=,又,2παπ⎛⎫∈⎪⎝⎭,所以tan 7=-α.故选:A6.(2021·江苏淮安市·高三三模)设2sin 46a =︒,22cos 35sin 35b =︒-︒,2tan 321tan 32c ︒=-︒,则a ,b ,c 的大小关系为( )A .b c a <<B .c a b <<C .a b c <<D .b a c<<【答案】D 【解析】根据正弦函数的单调性,结合不等式性质,可得到a 的范围;利用二倍角公式化简b 、c ,结合函数单调性,可得到b 、c 的大致范围;从而,可以比较a 、b 、c 的大小.【详解】因为sin 45sin 46sin 60︒<︒<︒,所以有222sin 45sin 46sin 60︒<︒<︒,即222sin 46<︒<,所以1324a <<;因为222cos 35sin 3512sin 35︒-︒=-︒,而sin 30sin 35sin 45︒<︒<︒,所以有211sin 3542<︒<,所以21012sin 352<-︒<,即102b <<;因为22tan 3212tan 321tan 641tan 3221tan 322︒︒=⨯=︒-︒-︒,而tan 64tan 60︒>︒=所以c >显然,b a <,而22233(44c >=>,所以34c >,即c a>所以b a c <<故选:D7.(2020·河北高三其他模拟(文))已知函数()22sincos f x x x x ωωω=+(0>ω)的最小正周期为π,关于函数()f x 的性质,则下列命题不正确的是( )A .1ω=B .函数()f x 在R 上的值域为[]1,3-C .函数()f x 在,63ππ⎡⎤-⎢⎥⎣⎦上单调递增D .函数()f x 图象的对称轴方程为3x k ππ=+(k ∈Z )【答案】D 【解析】首先把函数的关系式进行恒等变换,把函数的关系式变形成正弦型函数,进一步利用函数的性质的应用求出结果.【详解】解:函数()22sincos f x x x xωωω=+1cos 222sin 216x x x πωωω⎛⎫=-+=-+ ⎪⎝⎭,由于函数()f x 的最小正周期为π,即22ππω=,所以1ω=,故A 正确;故()2sin 216f x x π⎛⎫=-+ ⎪⎝⎭.对于B :由于x ∈R ,所以函数()f x 的最小值为1-,函数的最大值为3,故函数的值域为[]1,3-,故B 正确;对于C :当,63x ππ⎡⎤∈-⎢⎥⎣⎦时,2,622πππ⎡⎤-∈-⎢⎥⎣⎦x ,故函数在该区间上单调递增,故C 正确;对于D :当262x k πππ-=+,()k Z ∈时,整理得23k x ππ=+(k ∈Z )为函数的对称轴,故D 错误.故选:D .8.(2020·全国高考真题(文))若,则__________.【答案】【解析】.故答案为:.9.(2021·贵溪市实验中学高二期末)tan 42tan1842tan18︒+︒︒︒的值是___________.【解析】由()tan18tan 42tan 60tan 18421tan18tan 42︒+︒︒=︒+︒==-︒⋅︒进行转化,可得答案.【详解】解:由()tan18tan 42tan 60tan 18421tan18tan 42︒+︒︒=︒+︒==-︒⋅︒)tan18tan 421tan18tan 42∴︒+︒=-︒⋅︒tan18tan 42tan 42∴︒+︒︒⋅︒=.10.(2021·山东高三其他模拟)若tan()4πα-=,则3cos 22απ⎛⎫+ ⎪⎝⎭=__________________.【答案】﹣817【解析】先用诱导公式化简,再根据二倍角及22sin cos 1a a +=变形,再求值即可.【详解】解:因为tan (π﹣α)=﹣tan α=4,2sin 3x =-cos 2x =1922281cos 212sin 12()1399x x =-=-⨯-=-=19所以tan α=﹣4,则cos (2α+32π)=sin2α=2sin αcos α=222sin cos sin cos a a a a +=22tan 1tan a a+=﹣817.故答案为:﹣817.1.(2021·广东佛山市·高三其他模拟)(sin 40tan10-=( )A .2B .-2C .1D .-1【答案】D 【解析】利用切化弦,三角恒等变换,逆用两角差的正弦公式,二倍角公式,诱导公式化简求值.【详解】(sin 40tan10sin10=sin40(cos10sin 40sin 402(cos 60sin10sin 60cos10)sin 40cos102sin(1060)sin 40cos102sin 50sin 40cos102sin -︒︒⋅-︒==︒⋅︒-︒⋅︒=︒⋅︒︒-︒=︒⋅︒-︒=︒⋅︒-=⋅ 40cos 40cos10sin 80cos101︒⋅︒︒-︒=︒=-2.(2021·沈阳市·辽宁实验中学高三二模)攒尖是古代中国建筑中屋顶的一种结构形式,宋代称为撮尖,清代称攒尖.攒尖建筑的屋面在顶部交汇为一点,形成尖顶,依其平面有圆形攒尖、三角攒尖、四角攒尖、八角攒尖.也有单檐和重檐之分,多见于亭阁式建筑、园林建筑.辽宁省实验中学校园内的明心亭,为一个八角攒尖,它的主要部分的轮廓可近似看作一个正八棱锥,设正八棱锥的侧面等腰三角形的顶角为2θ,练提升它的侧棱与底面内切圆半径的长度之比为( ).ABCD【答案】A 【解析】分别用SA 和θ表示出AB 的一半,得出侧棱与底面边长的比,再根据正八边形的结构特征求出底面内切圆的半径与边长的关系,即可求出结果.【详解】设O 为正八棱锥S ABCDEFGH -底面内切圆的圆心,连接OA ,OB ,取AB 的中点M ,连接SM 、OM ,则OM 是底面内切圆半径R ,如图所示:设侧棱长为x ,底面边长为a ,由题意知2ASB θ∠=,ASM θ∠=,则12sin axθ=,解得2sin a x θ=;由底面为正八边形,其内切圆半径OM 是底面中心O 到各边的距离,AOB V 中,45AOB ∠=︒,所以22.5AOM ∠=︒,由22tan 22.5tan 4511tan 22.5︒︒==-︒,解得tan 22.51︒=,所以12tan 22.512aa R R==︒=-,所以2sin 12x R θ=-,解得x R =,.故选:A .3.(2020·海南枫叶国际学校高一期中)若,则的值为( )3cos 22sin()4παα=-(,)2παπ∈sin 2αA .B .C .D.【答案】C 【解析】因为,所以,,,因为,所以,所以所以,两边平方得,所以,故选:C4.(2019·江苏高考真题)已知,则的值是_____..【解析】由,得,解得,或.79-793cos 22sin()4παα=-3cos 22(sincos cossin )sin )44ππααααα=-=-223(cos sin )sin )αααα--3(cos sin )(cos sin )sin )αααααα+--(,)2παπ∈cos sin 0αα-≠3(cos sin )αα+cos sin αα+=212cos sin 9αα+=7sin 29α=-tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭πsin 24α⎛⎫+ ⎪⎝⎭()tan 1tan tan tan 2tan 1tan 13tan 1tan 4αααααπααα-===-++⎛⎫+ ⎪-⎝⎭23tan 5tan 20αα--=tan 2α=1tan 3α=-,当时,上式当时,上式综上,5.(2021·全国高三其他模拟(理))已知函数2ππ()sin 6212x f x x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭在[0,]m 上恰有10个零点,则m 的取值范围是________________.【答案】55π61π,66⎡⎫⎪⎢⎣⎭【解析】先用降幂公式和辅助角公式化简()f x ,再转化为图象与x 轴交点个数问题.【详解】∵()2ππππsin sin 1cos 621266x f x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=++-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦π2sin 6x ⎛⎫=- ⎪⎝⎭,∴π()02sin 06f x x ⎛⎫=⇔-= ⎪⎝⎭,∵()f x 在[0,]m 上恰有10个零点,sin 2sin 2cos cos 2sin444πππααα⎛⎫+=+ ⎪⎝⎭)22222sin cos cos sin sin 2cos 2=sin cos αααααααα⎫+-=+⎪+⎭222tan 1tan tan 1ααα⎫+-⎪+⎭tan 2α=22221221⎫⨯+-⎪+⎭1tan 3α=-22112133113⎛⎫⎛⎫⎛⎫⨯-+--⎪ ⎪ ⎪⎝⎭⎝⎭⎪⎪⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭sin 24πα⎛⎫+= ⎪⎝⎭∴πsin 06x ⎛⎫-= ⎪⎝⎭在[0,]m 上恰有10个解,∴π9π10π6m -<…,解得55π61π66m <…,故答案为:55π61π,66⎡⎫⎪⎢⎣⎭.6.(2021·上海复旦附中高三其他模拟)已知函数()3sin 24cos 2f x x x =+.若存在0x R ∈,对任意x ∈R ,都有()()0f x f x ≥成立.给出下列两个命题:(1)对任意x ∈R ,不等式()02f x f x π⎛⎫+⎪⎝⎭≤都成立.(2)存在512πθ>-,使得()f x 在005,12x x πθ⎛⎫-+ ⎪⎝⎭上单调递减.则其中真命题的序号是__________.(写出所有真命题的序号)【答案】(1)(2)【解析】由辅助角公式可得()5sin(2)f x x ϕ=+,由题意可得0x 是()f x 的最小值点,()f x 关于0x x =对称,由三角函数的性质逐个分析各个选项,即可求得结论.【详解】解:函数()3sin 24cos 25sin(2)f x x x x ϕ=+=+,其中ϕ为锐角,且3cos 5ϕ=,由题意,0x 是()f x 的最小值点,所以()f x 关于0x x =对称,因为()f x 的最小正周期22T ππ==,所以0()2f x π+为最大值,所以任意x ∈R ,0()(2f x f x π+…,故(1)正确;因为函数()f x 在()00,2x k x k k Z πππ⎛⎫-++∈ ⎪⎝⎭上单调递减,取4πθ=-,则00005,,1242x x x x πππ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭Ü,所以()f x 即在005,124x x ππ⎛⎫-- ⎪⎝⎭内单调递减,故(2)正确;故答案为:(1)(2)7.(2021·全国高三其他模拟(文))已知角0,4πα⎛⎫∈ ⎪⎝⎭,,2πβπ⎛⎫∈⎪⎝⎭,若3sin 35πα⎛⎫-=- ⎪⎝⎭,1cos 32πβ⎛⎫-=- ⎪⎝⎭,则()cos αβ-=___________.【答案】【解析】根据,αβ的范围确定,33ππαβ--的范围,然后求出cos 3πα⎛⎫- ⎪⎝⎭和sin 3πβ⎛⎫- ⎪⎝⎭,将()cos αβ-变形为cos 33ππαβ⎡⎤⎛⎫⎛⎫-++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,结合两角和的余弦公式即可求解.【详解】∵0,4πα⎛⎫∈ ⎪⎝⎭,,2πβπ⎛⎫∈ ⎪⎝⎭,∴3312πππα-<-<-,2336πππβ-<-<-,又3sin 35πα⎛⎫-=- ⎪⎝⎭,1cos 032πβ⎛⎫-=-< ⎪⎝⎭,∴2332πππβ-<-<-∴4cos 35πα⎛⎫-=== ⎪⎝⎭,sin 3πβ⎛⎫-=== ⎪⎝⎭∴()cos cos 33ππαβαβ⎡⎤⎛⎫⎛⎫-=-++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦cos cos sin sin 3333ππππαβαβ⎛⎫⎛⎫⎛⎫⎛⎫=----- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭413525⎛⎛⎫⎛⎫=⨯---⨯ ⎪ ⎪ ⎝⎭⎝⎭⎝=.故答案为:.8.(2021·江西新余市·高一期末(理))已知单位圆上第三象限内的一点P 沿圆周逆时针旋转4π到点Q ,若点Q 的横坐标为35,则点P 的横坐标为___________.【答案】【解析】首先设(cos ,sin )2P πθθπθ⎛⎫-<<- ⎪⎝⎭,根据题意得到cos ,sin 44ππθθ⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,从而得到3cos 45πθ⎛⎫+= ⎪⎝⎭,4sin 45πθ⎛⎫+=- ⎪⎝⎭,再根据cos cos 44ππθθ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦求解即可.【详解】由题意设(cos ,sin )2P πθθπθ⎛⎫-<<-⎪⎝⎭,从而点P 沿圆周逆时针旋转4π到点Q ,即Q 点坐标为cos ,sin 44ππθθ⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以3cos 45πθ⎛⎫+= ⎪⎝⎭,3,444πππθ⎛⎫+∈-- ⎪⎝⎭,∵3cos 045πθ⎛⎫+=> ⎪⎝⎭,∴,424πππθ⎛⎫+∈-- ⎪⎝⎭,则4sin 45πθ⎛⎫+=- ⎪⎝⎭,所以cos cos cos cos sin sin 444444ππππππθθθθ⎡⎤⎛⎫⎛⎫⎛⎫=+-=+++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦3455=-=所以点P 的横坐标为故答案为:9.(2020·浙江吴兴�湖州中学高三其他)已知,,,则02πα<<4sin 5α=1tan()3αβ-=-tan β=_________.【答案】3 【解析】因为,,所以,所以,因为所以,,故答案为:3;.10.(2021·聊城市·山东聊城一中高三其他模拟)在①6x π=-是函数()f x 图象的一条对称轴,②12π是函数()f x 的一个零点,③函数()f x 在[],a b 上单调递增,且b a -的最大值为2π,这三个条件中任选一个,补充在下面问题中,并解答.已知函数1()2sin cos (02)62f x x x πωωω⎛⎫=--<< ⎪⎝⎭,__________,求()f x 在,22ππ⎡⎤-⎢⎥⎣⎦上的单调递减区间.注:如果选择多个条件分别解答,按第一个解答计分.【答案】选择见解析;单调递减区间为,26ππ⎡⎤--⎢⎥⎣⎦,,32ππ⎡⎤⎢⎥⎣⎦.【解析】利用三角函数恒等变换的应用化简函数解析式可得()sin(2)6f x x πω=-,=3202πα<<4sin 5α=3cos 5α===sin 4tan cos 3ααα==1tan()3αβ-=-tan tan()tan tan[()]1tan tan()ααββααβααβ--=--=+-415()33334151()339--===+⨯-sin tan 33cos sin 1tan 132βββββ---====---32若选①,利用正弦函数的对称性可得362k πωπππ--=+,k Z ∈,得32k ω=--,k Z ∈,又02ω<<,可得ω,可求()sin(26f x x π=-;若选②,由题意可得2126k ππωπ⨯-=,可得61k ω=+,k Z ∈,又02ω<<,可得ω,可求()sin(2)6f x x π=-;若选③,可求22T ππω==,可得1ω=,可得()sin(2)6f x x π=-,利用正弦函数的单调性,结合22x ππ-……,即可求解()f x 在[2π-,]2π上的单调递减区间.【详解】解:11()2sin cos 2sin cos cos sin sin 62662f x x x x x x πππωωωωω⎛⎫⎛⎫=--=+- ⎪ ⎪⎝⎭⎝⎭21sin sin 2x x x ωωω=+-12cos 22x x ωω=-sin x π⎛⎫=ω- ⎪⎝⎭26.①若6x π=-是函数()f x 图象的一条对称轴,则362k πωπππ--=+,k Z ∈,即233k πωππ-=+,k Z ∈,得32k ω=--,k Z ∈,又02ω<<,∴当1k =-时,1ω=,()sin 26f x x π⎛⎫=- ⎪⎝⎭.②若12π是函数()f x 的一个零点,则2126k ππωπ⨯-=,即66k ππωπ=+,k Z ∈,得61k ω=+,k Z ∈.又02ω<<,∴当0k =时,1ω=,所以,()sin 26f x x π⎛⎫=- ⎪⎝⎭.③若()f x 在[],a b 上单调递增,且b a -的最大值为2π.则22T ππω==,故1ω=,所以()sin 26f x x π⎛⎫=- ⎪⎝⎭.由3222262k x k πππππ+≤-≤+,k Z ∈,得536k x k ππππ+≤≤+,k Z ∈,令0k =,得536x ππ≤≤,令1k =-,得236k ππ-≤≤-,又22x ππ-≤≤,所以()f x 在,22ππ⎡⎤-⎢⎥⎣⎦上的单调递减区间为,26ππ⎡⎤--⎢⎥⎣⎦,,32ππ⎡⎤⎢⎥⎣⎦.1.(2021·全国高考真题(文))函数()sin cos 33x xf x =+的最小正周期和最大值分别是( )A .3πB .3π和2C .6πD .6π和2【答案】C 【解析】利用辅助角公式化简()f x ,结合三角函数最小正周期和最大值的求法确定正确选项.【详解】由题,()34x f x π⎛⎫=+ ⎪⎝⎭,所以()f x 的最小正周期为2613T pp ==.故选:C .2.(2021·北京高考真题)函数()cos cos 2f x x x =-,试判断函数的奇偶性及最大值( )A .奇函数,最大值为2B .偶函数,最大值为2C .奇函数,最大值为98D .偶函数,最大值为98【答案】D 【解析】由函数奇偶性的定义结合三角函数的性质可判断奇偶性;利用二倍角公式结合二次函数的性质可判断最大值.【详解】练真题由题意,()()()()cos cos 2cos cos 2f x x x x x f x -=---=-=,所以该函数为偶函数,又2219()cos cos 22cos cos 12cos 48f x x x x x x ⎛⎫=-=-++=--+ ⎪⎝⎭,所以当1cos 4x =时,()f x 取最大值98.故选:D.3.(2019·全国高考真题(文))tan255°=( )A .-2B .-C .2D .【答案】D 【解析】=4.(2019·全国高考真题(文理))已知a ∈(0,),2sin2α=cos2α+1,则sinα=( )A .BCD【答案】B 【解析】,.,又,,又,B .5.(2020·全国高考真题(理))已知2tan θ–tan(θ+π4)=7,则tan θ=( )A .–2B .–1C .1D .2【答案】D000000tan 255tan(18075)tan 75tan(4530)=+==+000tan 45tan 3021tan 45tan 30+==+-π2152sin 2cos 21α=α+ 24sin cos 2cos .0,,cos 02π⎛⎫∴α⋅α=αα∈∴α> ⎪⎝⎭sin 0,2sin cos α>∴α=α22sin cos 1αα+=2215sin 1,sin 5∴α=α=sin 0α>sin α∴=【解析】2tan tan 74πθθ⎛⎫-+= ⎪⎝⎭,tan 12tan 71tan θθθ+∴-=-,令tan ,1t t θ=≠,则1271tt t+-=-,整理得2440t t -+=,解得2t =,即tan 2θ=.故选:D.6.(2020·全国高考真题(文))已知πsin sin =31θθ⎛⎫++ ⎪⎝⎭,则πsin =6θ⎛⎫+ ⎪⎝⎭( )A .12B C .23D 【答案】B 【解析】由题意可得:1sin sin 12θθθ++=,则:3sin 12θθ+=1cos 2θθ+=从而有:sin coscos sin66ππθθ+=,即sin 6πθ⎛⎫+= ⎪⎝⎭故选:B.。

2020届高考数学(理)一轮复习讲练测专题4.5简单的三角恒等变换(讲)【含答案】

2020届高考数学(理)一轮复习讲练测专题4.5简单的三角恒等变换(讲)【含答案】

2020年高考数学(理)一轮复习讲练测专题4.5 简单的三角恒等变换1.会用向量的数量积推导出两角差的余弦公式.会用两角差的余弦公式推导出两角差的正弦、正切公式。

2.会用两角差的余弦公式推导出两角和的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式,了解它们的内在联系。

3.能运用上述公式进行简单的恒等变换。

知识点一 两角和与差的正弦、余弦、正切公式 C (α-β) cos(α-β)=cos α cos β+sin α sin β C (α+β) cos(α+β)=cos α cos β-sin α sin β S (α-β) sin(α-β)=sin α cos β-cos α sin β S (α+β)sin(α+β)=sin αcos β+cos α sin β T (α-β)tan(α-β)=tan α-tan β1+tan αtan β;变形:tan α-tan β=tan(α-β)(1+tan αtan β) T (α+β)tan(α+β)=tan α+tan β1-tan αtan β;变形:tan α+tan β=tan(α+β)(1-tan αtan β)知识点二 二倍角公式S 2αsin 2α=2sin_αcos_α;变形:1+sin 2α=(sin α+cos α)2, 1-sin 2α=(sin α-cos α)2C 2αcos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;变形:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2T 2α tan 2α=2tan α1-tan 2α考点一 三角函数式的化简求值【典例1】(江西省临川第一中学2019届模拟)2cos 2α-12tan ⎝⎛⎭⎫π4-αsin 2⎝⎛⎭⎫π4+α=________ 。

【解析】原式=cos 2α2tan ⎝⎛⎭⎫π4-αcos 2⎝⎛⎭⎫π4-α=cos 2α2sin ⎝⎛⎭⎫π4-αcos ⎝⎛⎭⎫π4-α=cos 2αsin ⎝⎛⎭⎫π2-2α=cos 2αcos 2α=1. 【答案】1 【方法技巧】1.三角函数式化简的方法(1)弦切互化,异名化同名,异角化同角,降幂或升幂.(2)在三角函数式的化简中“次降角升”和“次升角降”是基本的规律,根号中含有三角函数式时,一般需要升次,去掉根号.2.三角恒等式的证明方法(1)从等式的比较复杂的一边化简变形到另一边,相当于解决化简题目. (2)等式两边同时变形,变形后的结果为同一个式子.(3)先将要证明的式子进行等价变形,再证明变形后的式子成立. 3.三角函数式的化简遵循的三个原则(1)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的变换,从而正确使用公式.(2)二看“名”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”或“弦化切”. (3)三看“形”,分析结构特征,可以帮助我们找到变形的方向,常见的有“遇到分式要通分”“整式因式分解”“二次式配方”“遇到平方要降幂”等.【变式1】 (2019·辽宁抚顺一中模拟) 化简:2cos 4x -2cos 2x +122tan ⎝⎛⎭⎫π4-x sin 2⎝⎛⎭⎫π4+x =________ 。

2023年高考数学真题分训练 三角函数定义与三角函数恒等变换(含答案含解析)

2023年高考数学真题分训练  三角函数定义与三角函数恒等变换(含答案含解析)

专题 11 三角函数定义与三角函数恒等变换十年大数据x 全景展示年份题号考点 考查内容理 5 三角函数定义 文 7 三角恒等变换2011课标三角函数定义与二倍角正弦公式同角三角函数根本关系与诱导公式同角三角函数根本关系式、三角函数在各象限 的符号及两角和的正切公式 卷 2理 15三角恒等变换 2023同角三角函数根本关系与诱导公式 三角恒等变换卷 2文 6理 8二倍角公式及诱导公式同角三角函数根本关系与诱导公式三角恒等变换 此题两角和与差的三角公式公式、诱导公式、 三角函数性质等根底知识 卷 12023卷 1文 2 三角函数定义同角三角函数根本关系与诱导公式 三角函数在各象限的符号 2023卷 1理 2 诱导公式及两角和与差的三角公式三角恒等变换 三角恒等变换两角差的正切公式、同角三角函数根本关系、 卷 2 理 9二倍角公式二倍角正弦公式、同角三角函数根本关系、三卷 3理 5 同角三角函数根本关系与诱导公式角函数式求值.2023诱导公式、同角三角函数根本关系、三角函数卷 1文 14 同角三角函数根本关系与诱导公式求值利用二倍角公式及同角三角函数根本关系求卷 3 文 6 同角三角函数根本关系与诱导公式 值三角恒等变换同角三角函数根本关系、两角和公式及化归与 转化思想卷 1文 14同角三角函数根本关系与诱导公式 三角恒等变换2023卷 3文 4二倍角的正弦公式与同角三角函数根本关系. 同角三角函数根本关系与诱导公式 三角恒等变换同角三角函数根本关系、两角和公式及化归 与转化思想卷 2 理 15 同角三角函数根本关系与诱导公式 理 4 三角恒等变换2023 卷 3 二倍角余弦公式,运算求解能力文 4卷 三角函数定义三角函数定义、同角三角函数根本关系,转化 与化归思想与运算求解能力文 111同角三角函数根本关系与诱导公式同角三角函数根本关系与诱导公式三角恒等变换诱导公式、两角和与差的正切公式,转化与化 归思想与运算求解能力卷 2文 15二倍角公式及同角三角函数根本关系,运算求解能力卷 2 理 10 三角恒等变换三角恒等变换卷 3卷 1文 5文 7二倍角公式,已知函数值求角及函数零点.诱导公式,两角和的正切公式函数零点2023同角三角函数根本关系与诱导公式三角恒等变换同角三角函数根本关系与诱导公式三角恒等变换 同角三角函数根本关系、二倍角公式、已知函 数值求角,运算求解能力 二倍角公式,平方关系 二倍角公式,三角函数的符号 二倍角公式 卷 2 文 11 卷 1 卷 2理 9 三角恒等变换 理 2三角恒等变换2023文 13 三角恒等变换 理 9 三角恒等变换 文 5三角恒等变换卷 3 卷 3两角和的正切公式 两角和的正弦公式大数据分析x 预测高考考 点出现频率2023 年预测三角函数定义4/232023 年高考仍将重点考查同角三角函数根本关系及三 角恒等变换,同时要注意三角函数定义的复习,题型仍 为选择题或填空题,难度为根底题或中档题.同角三角函数根本关系与诱导公式 16/23 三角恒等变换13/23十年真题分类x 探求规律考点 36 三角函数定义1.(2023•新课标Ⅰ,文 11)已知角 的顶点为坐标原点,始边与 x 轴的非负半轴重合,终边上有两点 A (1,a ) ,2B (2,b ),且cos 2 ,则| a b | ()3 1 55 2 5 5A .B .C .D .15(答案)B2(解析) 角 的顶点为坐标原点,始边与 x 轴的非负半轴重合,终边上有两点 A (1,a ) ,B (2,b ) ,且cos 2 , 3 2 3 5630 630 36 6 cos 2 2 c os 2 1, 解 得 cos 2, | cos | , | sin | 1,66b a 2 1 | s in | | cos | 56 30 6 | tan | | | | a b | ,应选 B .52.(2023 新课标 I ,文 2)假设 tan 0,则 A. sin 2 0 B . cos 0C . sin 0D . cos 2 0(答案)A(解析)由tan 0知, 在第—、第三象限,即k k 即2 在第—、第二象限,故只有sin 2 0,应选 A .(k Z ),∴2k 2 2k,23.(2011 全国课标理 5 文 7)已知角 的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线 y 2x 上,则cos 2 =4 53 53 5 45(A)(B)(C)(D) (答案)By 2 5(解析)在直线 y 2x 取一点 P(1,2),则r = 5 ,则sin ==, r 53∴cos2=1 2 s in 2 = ,应选 B . 53 4 4.(2023 浙江)已知角 的顶点与原点O 重合,始边与 x 轴的非负半轴重合,它的终边过点 P ( , ) .5 5(1)求sin( )的值; 5(2)假设角 满足sin( ),求cos 的值. 133 4 (解析)(1)由角 的终边过点P ( , ) 得sin ,5 545 45 所以sin() sin . 3 4 3 (2)由角 的终边过点P ( , ) 得cos ,5 555 得cos( ) 12 由sin( ) . 13 13由 ( ) 得cos cos( ) c os sin( ) s in ,56 或cos 16 所以cos.65 65考点 37 同角三角函数根本关系与诱导公式1.(2023•新课标Ⅱ,文 11)已知 (0, ),2sin 2 cos 2 1,则sin ()2 1 55 3 2 5 5A .B .C .D .53(答案)B(解析) 2sin 2 cos 2 1 , 可得: 4sin cos 2 c os2, (0, ) , sin 0 , cos 0 ,25cos 2sin , sin 2 cos 2 sin 2 (2sin ) 2 5sin21, 解得:sin ,应选 B . 53 4 tan,则cos 2sin 222.(2023 新课标卷 3,理 5)假设 6448 25 16 25(A)(B)(C) 1(D)25(答案)A 3 4 3 4 5 3 45 (解析)由tan,得 sin , c os 或 sin , c os ,所以 5 5 16 2512 64cos22sin 2 4 ,应选 A .25 25 1 3.(2023 全国课标卷 3,文 6)假设tan ,则cos2 ( )3451 5 15 4 5(A) (B)(C) (D) (答案)D104.(2023 浙江)已知R ,sin 2costan 2 ,则( )2 43 34 3 4 A . B .C .D .43(答案)C10 2sin 2 4c os 2 4 s in cos 10 (解析)由 (sin 2 c os )( ) 可得 ,进一步整理可得 22 sin cos 4 2 212 t an 33 t an 2 8 t an 3 0,解得 tan 3或tan ,于是 tan 2,应选 C .31 tan2 4sin cos 1sin cos 25.(2023 江西)假设,则 tan2α=( )3 34 4 3A .−B .C .−D .4 43(答案)B(解析)分子分母同除cos 得: sin cos tan 1 1,∴ tan 3,sin cos tan 1 22 t an 3∴tan 24 1 tan25 1 5 6.(2023 广东)已知sin( ) ,那么 cos22 5B . 151 25A .C .D .5(答案)C 5 215 (解析)sin( ) sin(2 + ) sin cos ,选 C .2 2 37.(2023•新课标Ⅰ,文 14)已知 是第四象限角,且sin( ) ,则 tan( ).4 5 4 43(答案)(解析) 是第四象限角, 2k 2k ,则 2k2k ,k Z , 2 4 4 43533 45 又 sin( ) , cos( ) 1 sin2( ) 1 ( ) 2 , ∴ cos() = sin( ) =, 4 5 44 5 4 44sin( )4 44 5 3 sin( ) cos( ) ,则tan( ) = tan( ) = = = .4 45 4 43 cos( )4 51 28.(2023 新课标Ⅱ,理 15)假设 为第二象限角,tan( ,则sin cos.) 4 (答案)1 2 tan 1,即cos 3sin ,∵sin (解析)(法 1)由 tan() 得,= 2cos 2 1,为第二4 310 3 10 10105象限角,∴sin =,cos = ,∴sin cos . 1059.(2023 江苏)已知 ( , ) ,sin. 25(1)求sin( ) 的值;45(2)求cos( 2 ) 的值.65 52 55 (解析)(1)∵, ,sin ,∴cos 1 sin 2 24 4 2 2 10 10sin sin cos cos sin(cos sin ) ; 4 4 5 35(2)∵sin 2 2sin cos ,cos 2 cos sin 2 26 63 3 1 43 34 ∴cos 2 cos cos 2 sin sin 2 . 6 25 2 5 10 考点 38 三角恒等变换1.(2023 全国Ⅰ理 9)已知 0,π ,且3cos2 8cos 5,则sin ()52 31 35 A .B .C .D .39(答案)A(思路导引)用二倍角的余弦公式,将已知方程转化为关于cos的一元二次方程,求解得出cos,再用同角间的三角函数关系,即可得出结论. (解析)3cos 28cos 5,得6cos 2 8cos 8 0,即3cos 4 c os4 0,解得225cos 或cos 2(舍去),又 1 cos 20,, sin ,应选 A . 332.(2023 全国Ⅱ理 2)假设 为第四象限角,则 ()A .cos 2 0 (答案)DB .cos 2 0C .sin 2 0D .sin 2 0(思路导引)由题意结合二倍角公式确定所给的选项是否正确即可.0,选项 B 错误;当2时,cos2 cos 3(解析)当 时,cos2 cos 0,6 3sin 0, c os 3 0 ,则sin2 2sin cos 0 选项 A 错误;由 在第四象限可得: ,选项 C 错误,选项 D 正确,应选 D .363.(2023 全国Ⅲ文 5)已知sin sin 1,则sin( )1 23 2 3 2 A .B .C .D .32(答案)B(思路导引)将所给的三角函数式展开变形,然后再逆用两角和的正弦公式即可求得三角函数式的值. 1 23 3 3 3 13 (解析)由题意可得:sinsin cos 1,则: sin cos 1, sin cos,2 2 2 2 2 3从而有:sin coscos sin3 ,即6 3 .应选 B .sin6 63 34.(2023 全国Ⅲ理 9)已知2 t an tan 7 ,则 tan4()A . 2B . 1C .1D .2(答案)D(思路导引)利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案.4tan 1 1 t 2 t an tan7, 2tan 1 tan 7,令t tan ,t 1,则2t 1 t 7,整(解析) 理得t 24t 4 0 ,解得t 2,即 tan 2.应选 D .5.(2023•新课标Ⅱ,理 10)已知 (0, ),2sin 2 cos 2 1,则sin ()2 1 55 3 2 55A .B .C .D .53(答 案)B(解析) 2sin 2 cos 2 1, 4sin cos 2 c os2, (0, ) ,sin 0,cos 0 , cos 2sin ,25sin 2 cos 2 sin 2 (2sin ) 2 5sin21, sin ,应选 B . 56.(2023•新课标Ⅲ,文 5)函数 f (x ) 2sin x sin 2x 在0 ,2 ]的零点个数为( )A .2B .3C .4D .5(答案)B(解析)函数 f (x ) 2sin x sin 2x 在0 ,2 ]的零点个数,即:2sin x sin 2x 0在区间0 ,2 ]的根个数, 即2sin x sin 2x ,即sin x (1 cos x ) 0,即sin x 0或cos x 1,∵ x 0 ,2 ],∴ x 0, ,2 ,应选B .7.(2023•新课标Ⅰ,文 7) tan 255 ( )A . 2 3 (答案)DB . 2 3C .2 3D .2 3(解析)∵tan 255 tan(180 75 ) tan 75 tan(45 30 )31tan 45 tan 30 1 tan 45 tan 30 3 3 (3 3) 2 12 6 3 3 2 3 ,应选 D . 3 3 36 6 1 1318.(2023•新课标Ⅲ,理 4 文 4)假设sin ,则cos 2 ()3 8 97 97 98 A .B .C .D .9(答案)B11 71 2 ,应选 B .9 9(解析) sin , cos 2 1 2sin2349.(2023 新课标卷 3,文 4)已知sin cos ,则sin 2 = 37 92 92 97 9A .B .C .D .(答案)Acos 21 sin 79(解析)因为sin 2 2sin cos,应选 A .1 310.(2023•新课标Ⅱ,理 9)假设cos( ) ,则sin 2 ()4 5 715C . 17 A .B .D .25 525(答案)D3(解析)法1 : cos( ) ,4 59 7sin 2 cos( 2 ) cos 2( ) 2 c os 2 ( ) 1 2 125 25 , 2 4 4 法2 : cos( ) 2(sin cos ) , (1 sin 2 ) 3 1 9 , sin 2 2 1259 7, 4 2 5 2 25 25 应选 D .11.(2023 新课标Ⅰ,理 2)sin20°cos10°-con160°sin10°=3 3 1 2 1 2A .B .C .D .22(答案)D1 (解析)原式=sin20°cos10°+cos20°sin10°=sin30°= ,应选 D . 21 sincos 12.(2023 新课标Ⅰ,理 8)设 (0, ), (0, ) ,且 tan,则2 2 A .3(答案)BB .2C .3D .22222sin 1 sin(解析)∵tan,∴sin cos cos cos sin cos cos2sin cos ,0 sin , 2 2 2 2 ∴,即2 ,选 B 2 22 313.(2023 新课标Ⅱ,文 6)已知sin 2 ,则cos 2( ) ()4 161 3 1 22 3(A)(B)(C)(D)(答案)A2 1 1 1 (解析)因为sin 2,所以cos 2( ) 1 cos 2( )]= (1 sin 2 ) = ,应选 A ., 3 4 2 4 2 63cos()10 14.(2023 重庆)假设tan 2 t an ,则=( ) 5 sin( ) 5A .1B .2C .3D .4(答案)C3 3 3 3 3 cos() cos cos sin sin cos tan sin 10 10 10 10 10(解析)sin( ) sin cos cos sin tan cos sin5 5 5 5 53 3 3 3cos 2 t an sin cos cos 2s in sin 10 5 10 5 10 5 102 t an cos sin sin cos5 5 5 5 51 2(cos 5cos 5 cos ) (cos ) 3cos cos 10 10 1 10 10 10 = 3,选 C . 22sin5 104 23 7 8 15.(2023 山东)假设, ,sin 2 ,则sin ( ) 34 57 43 A .B .C .D .5 4(答案)D 4 2 2 1, (解析)由2 , cos 2 1 sin , 2, 可得 2 81 cos2 34sin,应选 D . 21 316.(2011 浙江)假设0< < ,- < <0,cos( ) ,cos( ),则cos( ) 22434 2 3 233 5 3 96 A . B .C .D .339(答案)C) cos((解析)cos() ( )] ) cos( ) c os( )2 4 4 2 4 4 23sin( ) s in( ) ( , ( , ),,而 , 4 4 2 4 4 4 4 2 4 2 2 2 3 ,sin( ) 4 26因此sin( ), 4 31 32 26 5 3 则cos( )3 3. 2 3 3 9 217.(2023 全国Ⅱ文 13)设sin x ,则cos 2x.3 1 9(答案)(思路导引)直接利用余弦的二倍角公式进行运算求解即可. 2 8 1 1 (解析)cos2x 1 2sin 2x 1 2 ( ) 1 2.故答案为:.3 9 992 18.(2023 江苏 8)已知sin 2 ( ) ,则sin 2 的值是________.4 31(答案)32 1 1 21 3(解析)∵sin2( ) ,由sin 2 ( ) (1 cos( 2 )) (1 sin 2 ) ,解得sin 2 . 4 3 4 2 2 2 3π419.(2023 浙江 13)已知tan 2,则cos2 ; tan .3 1(答案); 5 3(思路导引)利用二倍角余弦公式以及弦化切得cos2 ,依据两角差正切公式得 tan( )4cos cos 2 2 sin sin 2 2 1 tan 1 tan 2 2 3tan 1 14 1 tan 3 (解析) cos 2 cos 2sin 2, tan ,故 5 3 1答案为: ;.5 320.(2023 北京 14)假设函数 f (x ) sin(x ) cos x 的最大值为2,则常数 的一个取值为 .(答案)2(解析)∵ f (x ) sin(x ) cos x sin x cos cos x sin cos x sin x cos cos x (sin 1)cos (sin 1) sin(x ),(sin 1) 4,cos sin 2 2则cos 2 2 22 2sin 1 1 2sin 1 4,∴sin 1,∴. 221.(2023•新课标Ⅱ,理 15)已知sin cos 1,cos sin 0 ,则sin( ) .1 (答案)2(解析)sin cos 1,两边平方可得:sin 22sin cos cos 2 1,①,cos sin 0 , 两 边 平 方 可 得 : cos22cos sin sin 2 0 , ② , 由 ① ② 得 :1 2 2(sin cos cos sin ) 1 ,即2 2sin( ) 1, 2sin( ) 1, sin( ) . 25 122.(2023•新课标Ⅱ,文 15)已知 tan( ) ,则 tan .4 53 2 (答案) 5 1 515(解析)tan() ,tan( ), 则4 4 15 tan( ) tan1 1 5 6 3 .4 4 tan tan( ) 15 1 4 2 4 4 1 tan( ) t an 1 14 45 ππcos ( ) 23.(2023 新课标卷,文 14)已知a (0,) ,tan α=2,则=__________.243 10 10(答案)1(解析)由tan 2得sin 2cos ,又sin2cos 2 1,所以cos 2 ,因为 (0, ),所5 2 5 2 55以cos,sin ,因为. cos( ) cos cos sin sin,所以5 4 4 45 2 2 5 2 3 10cos( )4 5 2 5 2 10f (x ) sin2x 的最小正周期是 ________. 2 24.(2023 北京 9)函数(答案)21 cos 4x 1 12π πf x 〕 sin 〔22x 〕cos 4x ,所以 f x 的最小正周期T 2 2 (解析)因为 . 2 4 2tan 23π4 π 4 sin 2 ,则25.(2023 江苏 13)已知 的值是_________. tan2(答案)10tan 2 tan 2 3 (解析)由,得 ,3 tan( ) tan tan 1 tan tan4 44tan (1 tan ) 2 1所以,解得 tan 2或 tan .1 tan 3 32tan 4 1 tan 2 3 5当tan 2时,sin2 5 ,cos2 , 1 tan 2 1 tan 2 4 2 3 2 2sin(2 ) sin2 cos cos2 sin. 4 4 4 5 2 5 2 101 tan2 4 1时,sin2 2tan,cos2 3 当tan , 3 1 tan 2 51 tan 5 23 24 22 所以sin(2 ) sin2 cos cos2 sin. 4 4 4 5 2 5 2 102 综上,sin(2 )的值是. 4 1026.(2023 北京)在平面直角坐标系 中,角与角 均以Ox为始边,它们的终边关于 轴对称.假设yxOy1 3 sin cos( ) =___________.,则 7 (答案)9y 2k, 所 以( 解 析 ) ∵ 角与 角 的 终 边 关 于 轴 对 称 , 所 以 ;1sin sin(2k ) sin ,cos cos31 2 379cos( ) cos cos sin sin cos 2 sin 2 2sin 2 1 2 ( ) 1 .127.(2023 江苏)假设tan( ) ,则tan =. 4 67 5(答案)tan( ) tan7 4 4 (解析) tan tan( ). 4451 tan( ) tan4 428.(2023 四川)sin15sin75.6(答案)26(解析)sin15 sin 75 sin15 cos15 2 s in(15 45 ). 2129.(2023 江苏)已知 tan 2, tan(答案)3,则 tan 的值为_______. 71 2tan( ) tan 1 tan( ) t an 7 (解析) tan tan( )3. 21 730.(2023 四川)设sin 2 sin , ( , ),则 tan 2 的值是_____. 2(答案) 31(解析) sin 2 2sin cos sin ,则cos,又 ( , ) ,2 22 t an 2 31 3 则tan 3,tan 23.1 tan 24 6 531.(2023 江苏)设 为锐角,假设cossin 2 ,则 .的值为1217 2 50(答案)4 324 7(解析) 因为 为锐角,cos( )= ,∴sin( )= ,∴sin2( ) cos2( ), 6 5 6 5 625,6 25 2 17 17 2 所以 sin(2) sin2( ) ] .12 6 4 2 25 5045 32.(2023 江苏)已知 , 为锐角, tan,cos( ) . 3 5(1)求cos 2 的值; (2)求 tan( )的值. 4sin cos 4(解析)(1)因为 tan ,tan,所以 , sin cos . 33 9因为sin 2 cos 2 1 ,所以cos 2257因此,cos 2 2c os 1 2. 25(2)因为 , 为锐角,所以 (0, π) . 5 2 55又因为cos( ) ,所以sin( ) 1 cos 2 ( ), 5 因此 tan( ) 2 .4 2 t an 247 因为 tan ,所以 tan 2 ,3 1 tan 2 tan 2 tan( ) 1+ t an 2 tan( ) 2因此,tan( ) tan2 ( ).11f x a 2cos 2 x cos 2x 为奇函数 ,且 f 0 33.(2023江西)已知函数 (1)求a , 的值;,其中a R , 0, . 44 2 23(2)假设 f ,, ,求sin 的值. 5 (解析)(1)因为 f x a 2 c os2x cos 2x 是奇函数,而 y a 2c os x 为偶函数,所以 21y 2 cos(2x )为奇函数,又 0, ,得. 2f 0,得 (a 1) 0 ,即a 1. f x = sin 2x a 2 c os x由 2 所以 〔 44 1 25 1 4(2)由(1)得: f x f sinsin , ,得 sin 4x , 因为 2 2 5 235 又 , ,所以cos ,3 4 3 3 sin sin cos sin cos 因此. 3 3 1012f (x ) 2 cos x,x R 34.(2023 广东)已知函数 . 3 f (1) 求 的值; 33 2cos , ,2 f ,求 (2) 假设. 65(解析)(1) f () 2 cos 1. 3 12 43 3 94 (2)由于cos ,<θ<2π,所以sin 1 cos 21 , 5 225 5 66 12因此 f 2 cos43 24 2 21 2 cos 2 cos cos 2 sin sin 2 .4 45 2 5 2 5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档