八年级期中试卷答案

合集下载

八年级数学期中测试卷【含答案】

八年级数学期中测试卷【含答案】

八年级数学期中测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 16cmB. 26cmC. 28cmD. 36cm2. 下列函数中,哪一个函数在其定义域内是增函数?A. y = -2x + 3B. y = x^2C. y = 1/xD. y = 3x 23. 在平面直角坐标系中,点A(2, -3)关于y轴的对称点坐标为?A. (-2, -3)B. (2, 3)C. (-2, 3)D. (3, -2)4. 一个等差数列的前三项分别为2,5,8,则该数列的第10项为多少?A. 29B. 30C. 31D. 325. 若一个圆的半径为5cm,则该圆的面积为多少平方厘米?A. 25πcm²B. 50πcm²C. 75πcm²D. 100πcm²二、判断题(每题1分,共5分)1. 两个锐角互余。

()2. 一元二次方程ax^2 + bx + c = 0 (a ≠ 0)的解为x = [-b ± √(b^2 4ac)] / 2a。

()3. 对角线互相垂直平分的四边形一定是菱形。

()4. 在一次函数y = kx + b中,若k > 0,则函数从左到右上升。

()5. 两个相似三角形的对应边长之比等于它们的面积之比。

()三、填空题(每题1分,共5分)1. 若|a| = 3,则a的值为______。

2. 在直角坐标系中,点P(4, -2)关于原点对称的点的坐标为______。

3. 若一个等差数列的首项为2,公差为3,则该数列的第5项为______。

4. 一个圆的周长为31.4cm,则该圆的半径为______cm。

5. 若sinθ = 1/2,且θ是锐角,则θ的度数为______°。

四、简答题(每题2分,共10分)1. 解释什么是等腰三角形,并给出一个等腰三角形的例子。

八年级期中试卷数学及答案

八年级期中试卷数学及答案

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. √16C. √-9D. √02. 下列各数中,无理数是()A. √4B. √25C. √2D. √03. 下列各数中,整数是()A. -3B. 2.5C. √9D. √-44. 下列各数中,正数是()A. -3B. 0C. 2D. √-95. 下列各数中,负数是()A. -3B. 0C. 2D. √96. 已知x是实数,且x^2 = 4,则x的值是()A. 2B. -2C. 2或-2D. 无法确定7. 已知a、b是实数,且a + b = 0,则a和b互为()A. 相等B. 相反数C. 绝对值相等D. 无法确定8. 下列等式中,正确的是()A. (-2)^2 = 4B. (-3)^3 = -27C. (-4)^4 = 256D. (-5)^5 = -31259. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 110. 已知a、b是实数,且a^2 + b^2 = 0,则a和b的关系是()A. a = 0且b = 0B. a = 0或b = 0C. a和b都是正数D. a和b都是负数二、填空题(每题3分,共30分)11. 有理数a的相反数是______。

12. 绝对值小于2的有理数有______。

13. 若|a| = 5,则a的值为______。

14. 已知a、b是实数,且a - b = 3,则a + b的值为______。

15. 已知x是实数,且x^2 - 4x + 3 = 0,则x的值为______。

16. 若|a| = |b|,则a和b的关系是______。

17. 若a^2 = b^2,则a和b的关系是______。

18. 若a、b是实数,且a + b = 0,则a和b互为______。

19. 已知x是实数,且x^2 + 4x + 3 = 0,则x的值为______。

20. 若|a| > |b|,则a和b的关系是______。

八年级上册期中数学试卷及答案解析

八年级上册期中数学试卷及答案解析

八年级上册期中数学试卷及答案解析1.已知三角形两边长分别为7、10,那么第三边的长可以是()A.2B.3C.17D.52.n边形的每个外角都为15o,则边数n为()A.20B.22C.24D.263.如图,要测量湖两岸相对两点A,B的距离,可以在AB的垂线BF上取两点C,D,使CD=BC,再在BF的垂线DG上取点E,使点A,C,E在一条直线上,可得ΔABC≌ΔEDC.判定全等的依据是()A.ASAB.SASC.SSSD.HL4.已知,如图,AD=AC,BD=BC,O为AB上一点,则图中共有全等三角形的对数是()A.1对B.2对C.3对D.4对5.如图,ΔABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.LB=LCB.AD平分LBACC.AD L BCD.AB=2BD6.和点p(—3,2)关于x轴对称的点是()A.(3,2)B.(—3,2)C.(—3,—2)D.(3,—2)7.如图所示,人字梯中间一般会设计一“拉杆”,这样做的依据是.8.八边形的对角线共有条.9.如图,在ΔABC中,LC=40。

,将ΔABC沿着直线l折叠,点C落在点D的位置,则L1—L2的度数是.10.如图,小虎用10块高度都是4cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,LACB=90。

),点C在DE上,点A和B分别与木墙的顶端重合,则两堵木墙之间的距离DE为cm.11.RtΔABC中,CD是斜边AB上的高,LB=30。

,AD=2cm,则AB的长度是cm.12.已知等腰三角形的一个内角等于40。

,则它的顶角是。

.13.如图点P是LBAC的平分线AD上一点,PE L AC于点E.已知PE=3,则点P到AB的距离是.14.如图,等腰ΔABC中,AB=AC,AB的垂直平分线MN交AC于点D,LDBC=15。

,则LA 的度数是度.15.如图,在ΔABC中,AD L BC于D,AE平分LDAC,LBAC=80。

八年级语文期中试卷及答案【含答案】

八年级语文期中试卷及答案【含答案】

八年级语文期中试卷及答案【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列汉字中,不属于形声字的是:A. 池B. 江C. 湖D. 海2. 下列词语中,不属于成语的是:A. 狐假虎威B. 虎头蛇尾C. 鹿死谁手D. 狗急跳墙3. 下列句子中,语序正确的是:A. 他昨天去图书馆借了一本书。

B. 他一本书昨天去图书馆借了。

C. 他昨天一本书去图书馆借了。

D. 他借了一本书昨天去图书馆。

4. 下列文学作品中,属于唐代的是:A. 《红楼梦》B. 《西游记》C. 《水浒传》D. 《三国演义》5. 下列诗人中,不属于“初唐四杰”的是:A. 王勃B. 杨炯C. 卢照邻D. 白居易二、判断题(每题1分,共5分)1. 《诗经》是我国最早的一部诗歌总集。

()2. “床前明月光,疑是地上霜”出自杜甫的《月夜忆舍弟》。

()3. “文房四宝”指的是笔、墨、纸、砚。

()4. “欲穷千里目,更上一层楼”出自王之涣的《登鹳雀楼》。

()5. “风声雨声读书声,声声入耳;家事国事天下事,事事关心”是明代文学家文征明的名句。

()三、填空题(每题1分,共5分)1. “__________,江春入旧年”是王湾的《次北固山下》中的名句。

2. “不以规矩,不成__________”是《论语》中的名句。

3. 《__________》是清代小说家曹雪芹创作的一部长篇小说。

4. “__________,一日不见,如隔三秋”出自《诗经·王风·采葛》。

5. “天行健,君子以自强不息”出自《__________》。

四、简答题(每题2分,共10分)1. 请简述《三国演义》的故事梗概。

2. 请简述“初唐四杰”的生平和成就。

3. 请简述《诗经》的组成部分。

4. 请简述“文房四宝”的用途和特点。

5. 请简述“欲穷千里目,更上一层楼”的含义。

五、应用题(每题2分,共10分)1. 请用“风声雨声读书声,声声入耳;家事国事天下事,事事关心”写一段话,表达你对学习的态度和对国家大事的关注。

八年级期中试卷及答案【含答案】

八年级期中试卷及答案【含答案】

八年级期中试卷及答案【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪种现象属于光的反射?A. 彩虹B. 镜子中的倒影C. 太阳光直射D. 水中的波纹2. 下列哪种物质在常温下是固体?A. 水银B. 铅C. 汞D. 酒精3. 下列哪个反应属于放热反应?A. 燃烧B. 腐蚀C. 光合作用D. 碘与淀粉反应4. 下列哪种动物属于哺乳动物?A. 鸟B. 鱼C. 蝙蝠D. 蛇5. 下列哪种植物属于被子植物?A. 松树B. 蕨类植物C. 草莓D. 海藻二、判断题(每题1分,共5分)1. 地球是太阳系中最大的行星。

()2. 酸雨是由二氧化硫和氮氧化物引起的。

()3. 人类的血型有A型、B型、AB型和O型四种。

()4. 恐龙是哺乳动物的一种。

()5. 食物链的顶端捕食者不会受到生态平衡的影响。

()三、填空题(每题1分,共5分)1. 光速在真空中的速度是______。

2. 人体中含量最多的元素是______。

3. 地球上最大的生物圈是______。

4. 中国古代的四大发明包括造纸术、印刷术、火药和______。

5. 人体内最大的消化腺是______。

四、简答题(每题2分,共10分)1. 简述牛顿三大定律。

2. 简述光合作用的过程。

3. 简述地球自转和公转的区别。

4. 简述血液循环系统的组成。

5. 简述DNA分子的结构特点。

五、应用题(每题2分,共10分)1. 一个物体从静止开始下落,下落5秒后的速度是多少?(重力加速度为9.8m/s²)2. 如果一个反应的活化能为50kJ/mol,反应热为-20kJ/mol,求反应的活化能。

(假设反应物和产物的能量相同)3. 一个三角形的底边长为10cm,高为5cm,求这个三角形的面积。

4. 如果一个人的体重为60kg,他需要多少千卡的热量来维持一天的基本生命活动?(假设基础代谢率为24千卡/小时)5. 如果一个溶液的pH值为3,求这个溶液中的氢离子浓度。

八年级语文期中考试卷【含答案】

八年级语文期中考试卷【含答案】

八年级语文期中考试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个字是形声字?A. 明B. 禾C. 早D. 休2. 下列哪个词属于名词?A. 跑步B. 快乐C. 书桌D. 美丽3. 下列哪个句子是陈述句?A. 你去哪?B. 今天天气真好!C. 你能借我一支笔吗?D. 这本书是谁的?4. 下列哪个选项是正确的句子结构?A. 主语-谓语-宾语B. 谓语-主语-宾语C. 宾语-谓语-主语D. 宾语-主语-谓语5. 下列哪个词属于动词?A. 大海B. 奔跑C. 漂亮D. 红色二、判断题(每题1分,共5分)1. 汉字是表音文字。

()2. “春天”是一个名词。

()3. “他吃饭去了”是一个疑问句。

()4. 句子“这本书是我的”中,“这本书”是宾语。

()5. “慢慢走”是一个副词短语。

()三、填空题(每题1分,共5分)1. “______”是表示动作的词。

2. 汉字“明”由“日”和“月”组成,其中“日”是______部分。

3. “他正在吃饭”是一个______句。

4. “春天来了”中,“春天”是______。

5. “这本书很______”中,“很”是一个______词。

四、简答题(每题2分,共10分)1. 简述汉字的基本笔画。

2. 简述名词和动词的区别。

3. 简述句子的基本成分。

4. 简述疑问句的特点。

5. 简述副词的作用。

五、应用题(每题2分,共10分)1. 请用“跑”字组成一个词,并用这个词造句。

2. 请用“书”字组成一个词,并用这个词造句。

3. 请用“大”字组成一个词,并用这个词造句。

4. 请用“快”字组成一个词,并用这个词造句。

5. 请用“美”字组成一个词,并用这个词造句。

六、分析题(每题5分,共10分)1. 请分析下列句子的结构:“他正在吃饭。

”2. 请分析下列句子的结构:“这本书是谁的?”七、实践操作题(每题5分,共10分)1. 请用下列词语造句:“跑”、“书”、“大”、“快”、“美”。

山东省滕州市2023—-2024学年上学期期中考试八年级数学试卷(含答案)

山东省滕州市2023—-2024学年上学期期中考试八年级数学试卷(含答案)

2023-2024学年山东省枣庄市滕州市八年级(上)期中数学试卷一、选择题:每题3分,共30分.在每小题的四个选项中,只有一项是符合题目要求的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分. 1.(3分)下列各组数中,是勾股数的是( )A.32,42,52B.3,4,7C.0.5,1.2,1.4D.9,12,152.(3分)下列运算,结果正确的是( )A.B.C.D.3.(3分)已知点A(2,a)关于x轴的对称点为点B(b,﹣3),则a+b的值为( )A.5B.1C.﹣1D.﹣﹣54.(3分)若式子有意义,则一次函数y=(k﹣1)( )A.B.C.D.5.(3分)如图.在△ABC中,AB=AC=13,BC=10,DE⊥AB,垂足为点E( )A.B.C.D.6.(3分)如图,长方形ABCD中,AB=3,AB在数轴上,若以点A为圆心,则点M表示的数为( )A.﹣1B.﹣1C.2D.7.(3分)在等腰Rt△ABC中,点B,点C在直角坐标系中的坐标分别是(2,1),(﹣2,1)( )A.(﹣2,5)B.(﹣2,﹣3)C.(0,﹣1)D.(2,3)8.(3分)若函数y=(m﹣1)x+m2﹣1是正比例函数,则m的值为( )A.m=﹣1B.m=1C.m=±1D.m≠19.(3分)若点P(a,b)在直线y=2x+1上,则代数式1﹣4a+2b的值为( )A.3B.﹣1C.2D.010.(3分)如图,直线y=x+2与x轴、y轴分别交于点A和点B,点P为OA上一动点,PC+PD值最小时点P的坐标为( )A.(﹣,0)B.(﹣,0)C.(﹣,0)D.(﹣,0)二、填空题:每题3分,共18分,将答案填在题的横线上.11.(3分)如图,正方形ABCD由四个全等的直角三角形和一个小正方形EFGH构成.设直角三角形的两条直角边分别为a,b(b>a),正方形ABCD与正方形EFGH的面积分别为25,9 .12.(3分)计算:= .13.(3分)已知A(﹣2,1),B(﹣6,0),若白棋A飞挂后,黑棋C尖顶 , ).14.(3分)若一次函数y=﹣2x+1的图象过A(m,n),则4m+2n+2022的值为 .15.(3分)已知直线y=x+3的图象与x,y轴交于A、B两点,直线l经过原点,把△AOB 的面积分成2:1的两部分,则直线l的解析式为 .16.(3分)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,直至与甲车相遇.在此过程中,两车之间的距离y(km)(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160(7,80);④n=7.4.其中说法正确的是 (填写序号).三、解答题:共8小题,满分72,解答应写出文字说明,说理过程或演算步骤.17.(8分)计算:(1);(2)×.18.(8分)“某市道路交通管理条例”规定:小汽车在城市街路上行驶速度不得超过60千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,过了2秒后到达B处,测得小汽车与车速检测仪间距离为50米,则超速了多少?19.(8分)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(3,4),B(5,﹣1),C(1,2).(1)作出与△ABC关于x轴对称的图形△A1B1C1;(2)已知点P(﹣2a+3,a﹣1),直线PB1∥x轴,求点P的坐标.20.(9分)先化简,再求值:a+,其中a=1007.如图是小亮和小芳的解答过程.(1) 的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质: ;(3)先化简,再求值:,其中a=﹣2023.21.(10分)如图,一次函数的图象与x轴和y轴分别交于点A和B,使点A与点B重合、直线CD与x轴交于点C,与AB交于点D.(1)点A的坐标为 ,点B的坐标为 ;(2)求OC的长度;(3)在直线AB上是否存在点P使得△APO的面积为20?若存在,请求出所有符合条件的点P的坐标;若不存在22.(9分)如图,一次函数y=﹣kx+1与x轴、y轴分别交于A、B两点,且∠BAO=30°.(1)如图1,把△AOB绕点A顺时针旋转60°后得到△AO′B′,则点B′的坐标是多少?(2)如图2,把△AOB绕点A顺时针旋转90°后得到△AO″B″,则点B″的坐标是多少?(3)如图3,若存在x轴上一点C,使△ACB为等腰三角形23.(8分)我公司组织20辆货车到运A、B、C三种水果共100吨到外地销售,按计划:20辆车都要装运,每辆货车只能装运同一种水果,根据表提供的信息,解答以下问题:水果A B C每辆货车运载量吨654每吨水果获利元500600400(1)设安排x辆货车装运A水果,安排y辆货车装运B水果,求y与x之间的函数关系式;(2)如果装运三种水果的车辆数都不少于2辆,怎样安排装运方案,使得三种水果全部售完所获得的利润最大?最大利润是多少?24.(12分)如图,直线l是一次函数y=kx+b的图象,直线经过点(3,﹣3),交y轴于点B(0,1).(1)求直线l的解析式;(2)求l与两坐标轴所围成的三角形的面积;(3)当x 时,y≥0;(4)求原点到直线l的距离.2023-2024学年山东省枣庄市滕州市八年级(上)期中数学试卷参考答案与试题解析一、选择题:每题3分,共30分.在每小题的四个选项中,只有一项是符合题目要求的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分. 1.(3分)下列各组数中,是勾股数的是( )A.32,42,52B.3,4,7C.0.5,1.2,1.4D.9,12,15【分析】根据勾股数的定义:凡是可以构成一个直角三角形三边的一组正整数,称之为勾股数进行判断即可.【解答】解:A、∵32=7,42=16,72=25,95+162<252,故选项错误,不符合题意;B、∵42+42<72,故选项错误,不符合题意;C、∵6.5,1.2不符合勾股数定义,不符合题意;D、∵92+125=81+144=225=152,故选项正确,符合题意.故选:D.【点评】此题主要考查了勾股数,解题关键是熟记勾股数的概念.2.(3分)下列运算,结果正确的是( )A.B.C.D.【分析】根据二次根式的加减法对A、B选项进行判断;根据二次根式的除法法则对C 选项进行判断;根据二次根式的乘法法则对D选项进行判断.【解答】解:A.与不能合并;B.6与,所以B选项不符合题意;C.原式==;D.原式==,所以D选项符合题意.故选:D.【点评】本题考查了二次根式的混合运算,熟练掌握二次根式的性质、二次根式的乘法和除法法则是解决问题的关键.3.(3分)已知点A(2,a)关于x轴的对称点为点B(b,﹣3),则a+b的值为( )A.5B.1C.﹣1D.﹣﹣5【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数得出a,b的值,从而得出a+b.【解答】解:∵点A(2,a)关于x轴的对称点是B(b,∴a=3,b=2,∴a+b=3+2=4.故选:A.【点评】本题主要考查了关于x轴对称的点,横坐标相同,纵坐标互为相反数,比较简单.4.(3分)若式子有意义,则一次函数y=(k﹣1)( )A.B.C.D.【分析】先求出k的取值范围,再判断出k﹣1的符号,进而可得出结论.【解答】解:∵式子有意义,∴,解得k>1,∴k﹣4>0,∴一次函数y=(k﹣1)x+k﹣2的图象过一、二、三象限.故选:A.【点评】本题考查的是一次函数的图象,熟知一次函数的图象与系数的关系是解答此题的关键.5.(3分)如图.在△ABC中,AB=AC=13,BC=10,DE⊥AB,垂足为点E( )A.B.C.D.【分析】首先连接AD,由△ABC中,AB=AC=13,BC=10,D为BC中点,利用等腰三角形的三线合一的性质,即可证得:AD⊥BC,然后利用勾股定理,即可求得AD的长,然后利用面积法来求DE的长.【解答】解:连接AD,∵△ABC中,AB=AC=13,D为BC中点,∴AD⊥BC,BD=,∴AD==12,又∵DE⊥AB,∴BD•AD=,∴ED===,故选:D.【点评】此题考查了等腰三角形的性质以及勾股定理.此题难度适中,解题的关键是准确作出辅助线,注意数形结合思想的应用.6.(3分)如图,长方形ABCD中,AB=3,AB在数轴上,若以点A为圆心,则点M表示的数为( )A.﹣1B.﹣1C.2D.【分析】根据勾股定理,可得AC的长,根据圆的性质,可得答案.【解答】解:由勾股定理,得AC==,AM=AC=,M点的坐标是﹣4,故选:A.【点评】本题考查了实数与数轴,利用勾股定理得出AC的长是解题关键,注意M点的坐标是﹣1.7.(3分)在等腰Rt△ABC中,点B,点C在直角坐标系中的坐标分别是(2,1),(﹣2,1)( )A.(﹣2,5)B.(﹣2,﹣3)C.(0,﹣1)D.(2,3)【分析】画出图形,找到所有的符合条件的点A即可.【解答】解:如图,满足等腰Rt△ABC的A点坐标有(2、(0、(8、(2、(﹣2、(﹣5,∴点A的坐标不可能是(2,3),故选:D.【点评】本题考查等腰直角三角形与直角坐标系,解题的关键是准确全面的画出图形.8.(3分)若函数y=(m﹣1)x+m2﹣1是正比例函数,则m的值为( )A.m=﹣1B.m=1C.m=±1D.m≠1【分析】根据正比例函数的定义列式计算即可得解.【解答】解:根据题意得,m2﹣1=3且m﹣1≠0,解得m=±2且m≠1,所以m=﹣1.故选:A.【点评】本题考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.9.(3分)若点P(a,b)在直线y=2x+1上,则代数式1﹣4a+2b的值为( )A.3B.﹣1C.2D.0【分析】把P(a,b)代入y=2x+1得2a﹣b=﹣1,整理代数式,整体代入代数式求值即可.【解答】解:∵点P(a,b)在直线y=2x+1上,∴b=7a+1,即2a﹣b=﹣2,1﹣4a+8b=1﹣2(3a﹣b)=1﹣2×(﹣4)=1+2=6.故选:A.【点评】本题考查了一次函数图象上点的特征,解题的关键是掌握一次函数图象上点的特征.10.(3分)如图,直线y=x+2与x轴、y轴分别交于点A和点B,点P为OA上一动点,PC+PD值最小时点P的坐标为( )A.(﹣,0)B.(﹣,0)C.(﹣,0)D.(﹣,0)【分析】根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式,令y=0即可求出x的值,从而得出点P的坐标.【解答】解:作点D关于x轴的对称点D′,连接CD′交x轴于点P,如图.令y=x+6中x=0,∴点B的坐标为(0,4);令y=x+4中y=0,则,解得:x=﹣3,∴点A的坐标为(﹣3,4).∵点C、D分别为线段AB,∴点C(﹣,5),1).∵点D′和点D关于x轴对称,∴点D′的坐标为(0,﹣6).设直线CD′的解析式为y=kx+b,∵直线CD′过点C(﹣,5),﹣1),∴有,解得:,∴直线CD′的解析式为y=﹣x﹣1.令y=5,则0=﹣,解得:x=﹣,∴点P的坐标为(﹣,0).故选:A.【点评】本题考查了待定系数法求函数解析式、一次函数图象上点的坐标特征以及轴对称中最短路径问题,解题的关键是求出直线CD′的解析式.本题属于基础题,难度不大,解决该题型题目时,找出点的坐标利用待定系数法求出函数解析式是关键.二、填空题:每题3分,共18分,将答案填在题的横线上.11.(3分)如图,正方形ABCD由四个全等的直角三角形和一个小正方形EFGH构成.设直角三角形的两条直角边分别为a,b(b>a),正方形ABCD与正方形EFGH的面积分别为25,9 .【分析】根据题意和图形,可以得到ab的值,然后可以求得(a+b)2的值,再根据b>a>0,即可求得a+b的值.【解答】解:解得,ab=8,∵(a+b)2=a2+2ab+b7=(a2+b2)+6ab∴(a+b)2=25+2×2=41,∵b>a>0,∴a+b=,故答案为:.【点评】本题考查勾股定理、正方形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.12.(3分)计算:= ﹣ .【分析】利用平方差公式计算.【解答】解:原式=(+)×(﹣﹣)=(3﹣2)×(﹣)=﹣.故答案为:﹣.【点评】本题考查了二次根式的混合运算,熟练掌握二次根式的性质和乘法公式是解决问题的关键.13.(3分)已知A(﹣2,1),B(﹣6,0),若白棋A飞挂后,黑棋C尖顶 ﹣1 , 1 ).【分析】根据已知A,B两点的坐标建立坐标系,然后确定其它点的坐标.【解答】解:∵A(﹣2,1),5),∴建立如图所示的平面直角坐标系,∴C(﹣1,1).故答案为:﹣2,1.【点评】本题考查了坐标确定位置,利用A点坐标确定平面直角坐标系是解题关键.14.(3分)若一次函数y=﹣2x+1的图象过A(m,n),则4m+2n+2022的值为 2024 .【分析】先把点(m,n)代入函数y=﹣2x+1求出n=﹣2m+1,再代入所求代数式进行计算即可.【解答】解:∵一次函数y=﹣2x+1的图象过A(m,n),∴﹣5m+1=n,∴2m+n=8,∴4m+2n+2022=3(2m+n)+2022=2×2+2022=2024.故答案为:2024.【点评】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.15.(3分)已知直线y=x+3的图象与x,y轴交于A、B两点,直线l经过原点,把△AOB 的面积分成2:1的两部分,则直线l的解析式为 y=﹣2x或 .【分析】根据直线y=x+3的解析式可求出A、B两点的坐标,(1)当直线l把△ABO的面积分为S△AOC:S△BOC=2:1时,作CF⊥OA于F,CE⊥OB 于E,可分别求出△AOB与△AOC的面积,再根据其面积公式可求出两直线交点的坐标,从而求出其解析式;(2)当直线l把△ABO的面积分为S△AOC:S△BOC=1:2时,同(1).【解答】解:由直线y=x+3的解析式可求得A(﹣3,7),3),如图(1),当直线l把△ABO的面积分为S△AOC:S△BOC=2:6时,作CF⊥OA于F,CE⊥OB于E,则△AOC=2,∴,即,∴CF=2,∵=,,解得CE=5.∴C(﹣1,2),∴直线l的解析式为y=﹣2x;如图(2),当直线l把△ABO的面积分为S△AOC:S△BOC=1:2时,同理求得C(﹣4,1),∴直线l的解析式为.【点评】此题考查的是用待定系数法求一次函数的解析式,涉及到三角形的面积公式及分类讨论的方法.16.(3分)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,直至与甲车相遇.在此过程中,两车之间的距离y(km)(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160(7,80);④n=7.4.其中说法正确的是 ①②③④ (填写序号).【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【解答】解:由图象可知,乙出发时,2小时后.则说明乙每小时比甲快40km.①正确;由图象第2﹣3小时,乙由相遇点到达B,每小时比甲快40km,则m=160;当乙在B休息1h时,甲前进80km,80);乙返回时,甲乙相距80km,则n=6+4+0.4=8.4,故答案为:①②③④.【点评】本题考查了一次函数的应用,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.三、解答题:共8小题,满分72,解答应写出文字说明,说理过程或演算步骤.17.(8分)计算:(1);(2)×.【分析】(1)先根据完全平方公式,平方差公式和二次根式的性质进行计算,再根据二次根式的加减法法则进行计算即可;(2)先根据二次根式的性质和二次根式的乘法法则进行计算,再算加法,最后算除法即可.【解答】解:(1)=12﹣(6)2﹣(3+3+2)=1﹣12﹣1﹣7﹣2=﹣15﹣6;(2)×=﹣=﹣=1﹣.【点评】本题考查了二次根式的混合运算,平方差公式,完全平方公式,分母有理化等知识点,能正确根据二次根式的运算法则进行计算是解此题的关键.18.(8分)“某市道路交通管理条例”规定:小汽车在城市街路上行驶速度不得超过60千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,过了2秒后到达B处,测得小汽车与车速检测仪间距离为50米,则超速了多少?【分析】根据题意得出由勾股定理得出BC的长,进而得出小汽车1小时行驶20×3600=72000(米),进而得出答案.【解答】解:根据题意,得AC=30m,∠C=90°,在Rt△ACB中,根据勾股定理2=AB2﹣AC3=502﹣302=408,所以BC=40,小汽车2秒行驶40米,则1小时行驶20×3600=72000(米),即小汽车行驶速度为72千米/时,因为72>60.【点评】此题主要考查了勾股定理的应用,根据已知得出BC的长是解题关键.19.(8分)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(3,4),B(5,﹣1),C(1,2).(1)作出与△ABC关于x轴对称的图形△A1B1C1;(2)已知点P(﹣2a+3,a﹣1),直线PB1∥x轴,求点P的坐标.【分析】(1)根据轴对称的性质作出△A1B1C1;(2)根据PB1∥x轴,可得点P的纵坐标为1,根据题意列出方程,求得a=2,即可求解.【解答】解:(1)如图,△A1B1C3即为所求.(2)∵B(5,﹣1)3与点B关于x轴对称,∴B1(5,2).∵P(﹣2a+3,a﹣5)1∥x轴,∴点P的纵坐标为1,∴a﹣2=1,∴a=2,∴﹣2a+3=﹣1,∴点P的坐标为(﹣5,1).【点评】本题考查了画轴对称图形,坐标与图形,熟练掌握轴对称的性质是解题的关键.20.(9分)先化简,再求值:a+,其中a=1007.如图是小亮和小芳的解答过程.(1) 小亮 的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质: =﹣a(a<0) ;(3)先化简,再求值:,其中a=﹣2023.【分析】(1)由a=1007知1﹣a=﹣1006<0,从而由=|1﹣a|=a﹣1可得答案;(2)根据二次根式的性质=|a|可得答案;(3)先根据二次根式的性质化简原式,再代入计算可得.【解答】解:(1)小亮的解法是错误的,故答案为:小亮;(2)错误的原因在于未能正确地运用二次根式的性质=﹣a(a<0),故答案为:=﹣a(a<0);(3)∵a=﹣2007,∴a﹣3=﹣2010<6,则原式=a+2=a+2|a﹣3|=a﹣2(a﹣3)=a﹣2a+8=﹣a+6=2023+6=2029.【点评】本题主要考查二次根式的化简求值,解题的关键是掌握二次根式的性质=|a|.21.(10分)如图,一次函数的图象与x轴和y轴分别交于点A和B,使点A与点B重合、直线CD与x轴交于点C,与AB交于点D.(1)点A的坐标为 (8,0) ,点B的坐标为 (0,4) ;(2)求OC的长度;(3)在直线AB上是否存在点P使得△APO的面积为20?若存在,请求出所有符合条件的点P的坐标;若不存在【分析】(1)代入x=0及y=0,可求出点B的纵坐标及点A的横坐标,进而可得出点B,A的坐标;(2)设OC=a,则AC=8﹣a,由折叠的性质可知BC=AC=8﹣a,在Rt△BOC中,利用勾股定理,可求出a的值,进而可得出OC的长;(3)存在,设出点P的坐标,根据△APO的面积为20,可列出关于m的含绝对值符号的一元一次方程,解之可求出m的值,再利用一次函数图象上点的坐标特征,即可求出点P的坐标.【解答】解:(1)当x=0时,y=﹣,∴点B的坐标为(0,4);当y=8时,﹣x+6=0,解得:x=8,∴点A的坐标为(3,0).故答案为:(8,2),4);(2)设OC=a,则AC=8﹣a,由折叠可知:BC=AC=5﹣a,在Rt△BOC中,∠BOC=90°,∴BC2﹣OC2=OB7,∴(8﹣a)2﹣a4=16,∴a=3,即OC=3;(3)存在,设点P的坐标为(m,﹣.∵点A的坐标为(8,3),∴AO=8,∴S△APO=×AO×|y P|=20,∴×8×|﹣,解得:m=﹣6或m=18,当m=﹣2时,﹣m+4=﹣;当m=18时,﹣m+3=﹣,∴点P的坐标为(﹣4,5)或(18.【点评】本题考查了一次函数图象上点的坐标特征、三角形的面积、翻折变换(折叠问题)以及勾股定理,解题的关键是:(1)利用一次函数图象上点的坐标特征,求出点A,B的坐标;(2)利用勾股定理,找出关于OC长的方程;(3)利用三角形的面积公式,找出关于点P横坐标的方程.22.(9分)如图,一次函数y=﹣kx+1与x轴、y轴分别交于A、B两点,且∠BAO=30°.(1)如图1,把△AOB绕点A顺时针旋转60°后得到△AO′B′,则点B′的坐标是多少?(2)如图2,把△AOB绕点A顺时针旋转90°后得到△AO″B″,则点B″的坐标是多少?(3)如图3,若存在x轴上一点C,使△ACB为等腰三角形【分析】(1)求出AB,OA,OB,然后根据旋转角是60°判断出AB′⊥x轴,再写出点B′的坐标即可;(2)根据旋转的性质可知:O″A=OA=,O″B″=OB=1,且O″A⊥x轴,O″B″∥x轴,可得B″点到x轴距离为,到y轴距离为+1,即可得点B′的坐标;(3)分三种情况:①当AB=BC时,②当AB=AC时,③当AC=BC时,分别求解即可.【解答】解:(1)∵一次函数y=﹣kx+1与x轴、y轴分别交于A,令x=0,则y=6,∴点B(0,1),∴OB=3,∵∠BAO=30°.∴AB=2,OA=,∵旋转角是60°,∴∠OAB′=30°+60°=90°,AB′=AB=4,∴AB′⊥x轴,∴点B′(,2);(2)∵把△AOB绕点A顺时针旋转90°后得到△AO″B″,∴O″A=OA=,O″B″=OB=1,∠AO″B″=∠AOB=90°,∴O″A⊥x轴,O″B″∥x轴,∴B″点到x轴距离为,到y轴距离为,∴点B″的坐标为(+1,);(3)如图,①当AB=BC时,∵OB⊥x轴,∴OA=OC,∴点C1的坐标为:(﹣,7);②当AB=AC时,∵AB=2,点C2(6+,0)7(﹣2;③当AC=BC时,设点C8(x,0),则﹣x=,解得:x=,∴点C3的坐标为:(,0);综上可得:点C的坐标为:(﹣,0)或(2+﹣2,0).【点评】本题是一次函数综合题,考查了坐标与图形性质,旋转的性质,一次函数图象上点的坐标特征,直角三角形的性质,等腰三角形的性质.掌握方程思想、分类讨论思想与数形结合思想的应用是解题的关键.23.(8分)我公司组织20辆货车到运A、B、C三种水果共100吨到外地销售,按计划:20辆车都要装运,每辆货车只能装运同一种水果,根据表提供的信息,解答以下问题:水果A B C每辆货车运载量吨654每吨水果获利元500600400(1)设安排x辆货车装运A水果,安排y辆货车装运B水果,求y与x之间的函数关系式;(2)如果装运三种水果的车辆数都不少于2辆,怎样安排装运方案,使得三种水果全部售完所获得的利润最大?最大利润是多少?【分析】(1)根据题意,装运C水果有20﹣x﹣y辆货车,再根据每辆货车的运载量和三种水果的总量列出x、y之间的关系式,进一步整理成y关于x的函数的形式即可;(2)根据“装运三种水果的车辆数都不少于2辆”,求得x的取值范围.列出利润关于x 的表达式,根据利润随x的变化特点,求出当利润最大时x的值.【解答】解:(1)根据题意,装运C水果有20﹣x﹣y辆货车,∴6x+5y+4(20﹣x﹣y)=100,∴y=﹣2x+20.(2)∵装运三种水果的车辆数都不少于2辆,∴x≥2,﹣2x+20≥2,∴8≤x≤9,∴x=2,4,4,5,7,7,8或3.三种水果全部售完所获得的利润m=500×6x+600×5y+400×4(20﹣x﹣y)=﹣1400x+60000,∴m=﹣1400x+60000(x=2,3,6,5,6,6,8或9).∵m随x的减小而增大,∴当x=2时,y=﹣2×2+20=16,m=﹣1400×3+60000=57200.∴安排2辆货车装运A水果,安排16辆货车装运B水果,使得三种水果全部售完所获得的利润最大.【点评】本题考查一次函数及一元一次不等式的应用,一定要注意对比总结,掌握这类题型的解答规律.24.(12分)如图,直线l是一次函数y=kx+b的图象,直线经过点(3,﹣3),交y轴于点B(0,1).(1)求直线l的解析式;(2)求l与两坐标轴所围成的三角形的面积;(3)当x ≤ 时,y≥0;(4)求原点到直线l的距离.【分析】(1)把(3,﹣3),(0,1)代入一次函数的解析式得到方程组求出方程组的解即可;(2)根据解析式求得A的坐标,然后根据三角形面积公式求得即可;(3)观察图象即可求得;(4)利用三角形面积公式即可求得.【解答】解:(1)把(3,﹣3),5)代入y=kx+b,得,解得:,∴直线l的解析式为y=﹣x+8;(2)在y=﹣x+3中,则﹣,解得x=,∴A(,0),∵B(0,6),∴OA=,OB=4,∴S△AOB==×1=,∴直线l与两坐标轴所围成的三角形的面积为;(3)∵A(,0),∴当x≤时,y≥0;故答案为:≤;(4)设原点到直线的距离为h,∵OA=,OB=1,∴AB===,∵S△AOB=AB•h,∴=×h,∴h=.故原点到直线l的距离为.【点评】本题主要考查一次函数图象上点的坐标特征,用待定系数法求一次函数的解析式,三角形的面积,数形结合是解此题的关键.。

2023-2024学年山东省淄博市淄川区八年级(上)期中语文试卷(含答案)

2023-2024学年山东省淄博市淄川区八年级(上)期中语文试卷(含答案)

2023-2024学年山东省淄博市淄川区八年级(上)期中语文试卷一、基础知识积累与运用(共18分)1.(9分)阅读下面的语段,完成问题。

户外活动时间缺乏,室内持续性近距离用眼过度,是导致儿童青少年近视高发、低龄化的两大主要原因。

保护视力如同保护身体健康一样,要时刻注意(甲)。

户外活动能沐yù阳光、能眺望远方,对保护视力、防控近视很有益处。

家长是儿童青少年视力健康的守护者。

家长的一言一行,(乙)不在影响着孩子。

家长要(丙),要带头不做“低头族”,不要在孩子面前过度使用手机。

当前,多数家长已严格控制并很重视孩子使用电子产品的时间,没有很好地监管孩子阅读书写的姿势与时间。

家长应监督引导孩子保持良好的阅读书写姿势,提高学习效率;要多带孩子出去走走,多陪伴孩子学习与成长,不能让孩子长时间zhái“”在家里。

(1)文段中加点字的注音和横线处应填的汉字,完全正确的一项是 A.tiáo lù浴窄B.tiào lǜ遇窄C.tiào lǜ浴宅D.tiáo lù遇宅(2)文段中(甲)(乙)(丙)三处,依次填入词语最恰当的一项是 A.劳逸结合时时刻刻言传身教B.劳逸结合无时无刻以身作则C.一张一弛时时刻刻以身作则D.一张一弛无时无刻言传身教(3)文段中画横线的句子有语病,下列修改最恰当的一项是 A.多数家长已很重视并严格控制孩子使用电子产品的时间,却没有很好地监管孩子阅读书写的姿势与时间。

B.多数家长已很严格并重视控制孩子使用电子产品的时间,没有很好地监管孩子阅读书写的姿势与时间。

C.多数家长已严格控制并很重视孩子使用电子产品的时间,却没有很好地监管孩子阅读书写的姿势与时间。

D.多数家长已很重视并严格控制孩子使用电子产品的时间,没有很好地监管孩子阅读书写的姿势与时间。

2.(3分)下列句子运用的修辞手法与例句不同的一项是( )例句:理想是闹钟,敲碎你的黄金梦。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016学年第一学期八年级数学期中检测卷答案
一.选择题(每题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案 C
B
B
B
D
B
A
D
C
D
二.填空题(每题3分,共24分)
11. 假 ,12. 4 ,13 2x>-5 , 14. x>0.5 ,15. 6.5 ,
16 AB=DE 或∠A= ∠D 或∠ACB= ∠DFE (答案不唯一) , 17. 50 ,18. 2 。

三.解答题(第19题6分,第20题4分,第21、22、23题各6分,第24题8分,第25题10分,共46分。


19.(6分)(1)解不等式7x -2≥5x +2 解:7x -5x ≥2+2 ------------1分 2 x ≥4 ------------2分 x ≥2- -----------3分
(2)解不等式组⎪⎩⎪
⎨⎧≤-->+13
122
1x x
解:由12x +>-得3x >-, ------------1分

21
13
x -≤得2x ≤, ------------2分 ∴不等式组的解集为3<2x -≤.-----------3分 20.(4分) 证明略
证出∠BAC= ∠DAE 给2分
21.(每小题3分,共6分)
(答案不唯一)
22.(每小题各3分,共6分)
(1)DE=3(2)面积等于15
23.(第(1)小题2分,第2小题4分,共6分)
(1)30- a -(2 a +2) ------------1分
=28-3a-----------2分
(2)分析:利用三角形三边的关系:“任意两边之和大于第三边”得到以下两个不等式
a+(28-3a)>2a+2 解得a<13/2-----------3分
(2a+2)+a>28-3a解得a>13/3----------4分
所以a的值范围为13/3<a<13/2-----------6
(另一个不等式2a+2+(28-3a) > a在保证各边为正的前提下恒成立)
方法二:(也可进行分类讨论)
24.(8分)
解:设该商店每年销售x件商品。

------------1分
(50-35)x-50x·10%≥200000 ------------4分解得x≥20000 ------------7分
答:该商店每年至少要销售20000件商品才能不亏本。

------------8分25.(10分)
(图1) (图2) (图3) (1)证明略(本小题共3分)
证出ADB≌△CEA------------2分
证出DE=BD+CE ------------3
(2)证明略(本小题共3分)
证出∠BAD=∠ACE或∠ABD=∠CAE ------------1分
证出△ADB≌△CEA ------------2分
证出DE=BD+CE ------------3分
(3)证明略(本小题共4分)
证出△FBD≌△FAE ------------2分
证出∠DFE=60°------------3分
得出△DEF是等边三角形------------4分。

相关文档
最新文档