高考数学(理)一轮课件:8.4空间中的平行关系
高考一轮复习通用版8.4直线平面平行的判定与性质课件(55张)

【对点训练】
1.如图所示,在四棱锥PABCD中,四边形ABCD是平行四边形,M 是PC的中点,在DM上取一点G,过G和PA作平面交BD于点H.
求证:PA∥GH.
2.[2022·江苏南通市检测]《九章算术》是我国古代的数学著作,是“算经 十书”中最重要的一部,它对几何学的研究比西方要早1 000多年.在《九
线线平行”)
符号语言
因为 _l_∥__a__, _a_⊂__α__, __l⊄__α__, 所以l∥α
因为 __l∥__α__, __l⊂__β__, ______, 所以l∥b
[提醒] 应用判定定理时,要注意“内”“外”“平行”三个条件 必须都具备,缺一不可.
2.平面与平面平行的判定定理和性质定理
2.在长方体ABCDA1B1C1D1中,已知AB=AD, E为AD的中点,在线段B1C1上是否存在点F, 使得平面A1AF∥平面ECC1?若存在,请加 以证明,若不存在,请说明理由.
微专题29 函数思想破解立体几何中的问题
名师点评利用函数思想建立MN与a的函数关系式是解此题的关键, 立体几何中的最值问题,通常借助函数思想求解.
因为 _α_∥__β__, ______, ______, 所以a∥b
二、必明2个常用结论 1.平行间的三种转化关系
2.平行关系中的三个重要结论
(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β. (2)平行于同一平面的两个平面平行,即若α∥β,β∥γ,则α∥γ. (3)垂直于同一平面的两条直线平行,即若a⊥α,b⊥α,则a∥b.
关键能力—考点突破
考点一 与线、面平行相关命题的判定 [基础性]
1.设a,b是空间中不同的直线,α,β是不同的平面,则下列说法 正确的是( )
2023年新高考数学一轮复习8-4 直线、平面平行的判定及性质(知识点讲解)含详解

专题8.4 直线、平面平行的判定及性质(知识点讲解)【知识框架】【核心素养】以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理,运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题,凸显逻辑推理、直观想象、数学运算的核心素养.【知识点展示】(一)空间平行关系1.直线与平面平行的判定与性质a∥α,a⊂β,2.利用线面平行的定义,一般用反证法;利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β); 利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β). (二)平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a ⊥α,a ⊥β,则α∥β. (2)垂直于同一个平面的两条直线平行,即若a ⊥α,b ⊥α,则a ∥b. (3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.【常考题型剖析】题型一:与线、面平行相关命题的判定例1. (2023·全国·高三专题练习)已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列结论中正确的是( ) A .若m //α,m //n ,则n //α B .若m //α,n //α,则m //n C .若m //α,n ⊂α,则m //nD .若m //α,m ⊂β,αβ=n ,则m //n例2.(2022·上海静安·二模)在下列判断两个平面α与β平行的4个命题中,真命题的个数是( ). (1)α、β都垂直于平面r ,那么α∥β. (2)α、β都平行于平面r ,那么α∥β. (3)α、β都垂直于直线l ,那么α∥β.(4)如果l 、m 是两条异面直线,且l ∥α,m ∥α,l ∥β,m ∥β,那么α∥β A .0B .1C .2D .3例3.(四川·高考真题(文))下列命题正确的是( ) A .若两条直线和同一个平面所成的角相等,则这两条直线平行 B .若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行 C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D .若两个平面都垂直于第三个平面,则这两个平面平行例4. (2022·云南师大附中模拟预测(理))若α,β是两个不同平面,m ,n 是两条不同直线,则下列4个推断中正确的是( )A .m α∥,m β∥,n ⊂α,n m n β⊂⇒∥B .m α⊂,n β⊂,m n αβ⇒∥∥C .m α∥,n α∥,m β⊂,n βαβ⊂⇒∥D .m α⊂,n β⊂,m n αβ⇒∥∥ 【方法技巧】直线、平面间平行的判定方法(1)关注是否符合判定定理与性质定理,并注意定理中易忽视的条件. (2)结合题意构造或绘制图形,结合图形作出判断. (3)利用实物进行空间想象,比较判断.(4)熟记一些常见结论,如垂直于同一条直线的两个平面平行等. 题型二:直线与平面平行的判定例5.(2023·全国·高三专题练习)在直三棱柱111ABC A B C -中,D 、E 、F 、M 、N 分别是BC 、11B C 、1AA 、1CC 、1A C 的中点,给出下列四个判断:①//EF 平面1ADB ;②//EM 平面1ADB ; ③//EN 平面1ADB ; ④1//A M 平面1ADB , 错误的序号为___________.例6.【多选题】(2017·全国·高考真题(文))如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 平行的是( )A.B.C.D.例7.(2023·全国·高三专题练习)如图,AB是圆O的直径,点C是圆O上异于,A B的点,直线PC 平面ABC,,E F分别是PA,PC的中点.记平面BEF与平面ABC的交线为l,求证:直线l//平面PAC【总结提升】证明直线与平面平行的方法(1)线面平行的定义:一条直线与一个平面无公共点(不相交).(2)线面平行的判定定理:关键是找到平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边、成比例线段出现平行线或过已知直线作一平面找其交线.注意内外平行三条件,缺一不可.题型三:线面平行性质定理的应用例8.(福建·高考真题(文))如图,在正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD 上.若EF∥平面AB1C,则线段EF的长度等于________.例9.(2019·全国卷Ⅰ改编)如图,直四棱柱ABCD A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.证明:MN ∥平面C 1DE .例10.如图,在直四棱柱ABCD A 1B 1C 1D 1中,E 为线段AD 上的任意一点(不包括A ,D 两点),平面CEC 1∩平面BB 1D =FG .证明:FG ∥平面AA 1B 1B .【总结提升】 1.思路方法:(1)通过线面平行可得到线线平行,其中一条线应是两平面的交线,要树立这种应用意识. (2)利用线面平行性质必须先找出交线. 2.易错提醒(1)在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.(2)线面平行关系证明的难点在于辅助面和辅助线的添加,在添加辅助线、辅助面时一定要以某一性质定理为依据,绝不能主观臆断.(3)解题中注意符号语言的规范应用. 题型四:平面与平面平行的判定与性质例11.(2023·全国·高三专题练习)已知长方体1111ABCD A B C D -中,4AB AD ==,12AA =,E ,F 分别为棱11A B 和11A D 的中点,M 为长方体表面上任意一点.若BM ∥平面AEF ,则BM 的最大值为( )A.B .C .D .6例12.(2020·全国·高三专题练习(文))如图,平面//α平面β,PAB △所在的平面与α,β分别交于CD 和AB ,若2PC =,3CA =,1CD =,则AB =______.例13.(2023·全国·高三专题练习)如图,在正方体1111ABCD A B C D -中,E ,F分别为棱11,DD CC 的中点.求证:平面1//AEC 平面BDF例14.(陕西·高考真题(文))如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O∥平面ABCD, 12AB AA ==.(1)证明: 平面A 1BD // 平面CD 1B 1;(2)求三棱柱ABD -A 1B 1D 1的体积.【规律方法】 1.证明面面平行的常用方法 (1)利用面面平行的定义.(2)利用面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行. (3)利用“垂直于同一条直线的两个平面平行”.(4)利用“如果两个平面同时平行于第三个平面,那么这两个平面平行”. (5)利用“线线平行”“线面平行”“面面平行”的相互转化.2.面面平行的应用(1)两平面平行,构造与之相交的第三个平面,可得交线平行.(2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行,可用于证明线面平行.3.三种平行关系之间的转化其中线面平行是核心,线线平行是基础,要注意它们之间的灵活转化.专题8.4 直线、平面平行的判定及性质(知识点讲解)【知识框架】【核心素养】以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理,运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题,凸显逻辑推理、直观想象、数学运算的核心素养.【知识点展示】(一)空间平行关系1.直线与平面平行的判定与性质a∥α,a⊂β,2.利用线面平行的定义,一般用反证法;利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β); 利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β). (二)平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a ⊥α,a ⊥β,则α∥β. (2)垂直于同一个平面的两条直线平行,即若a ⊥α,b ⊥α,则a ∥b. (3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.【常考题型剖析】题型一:与线、面平行相关命题的判定例1. (2023·全国·高三专题练习)已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列结论中正确的是( ) A .若m //α,m //n ,则n //α B .若m //α,n //α,则m //n C .若m //α,n ⊂α,则m //n D .若m //α,m ⊂β,αβ=n ,则m //n【答案】D 【解析】 【分析】举例说明判断A ,B ,C ;利用线面平行的性质判断D 作答. 【详解】如图,长方体1111ABCD A B C D -中,平面1111D C B A 视为平面α,对于A ,直线AB 视为m ,直线11A B 视为n ,满足m //α,m //n ,而n ⊂α,A 不正确;对于B,直线AB视为m,直线BC视为n,满足m//α,n//α,而m与n相交,B不正确;A D视为n,满足m//α,n⊂α,显然m与n是异面直线,C不正确;对于C,直线AB视为m,直线11对于D,由直线与平面平行的性质定理知,D正确.故选:D例2.(2022·上海静安·二模)在下列判断两个平面α与β平行的4个命题中,真命题的个数是().(1)α、β都垂直于平面r,那么α∥β.(2)α、β都平行于平面r,那么α∥β.(3)α、β都垂直于直线l,那么α∥β.(4)如果l、m是两条异面直线,且l∥α,m∥α,l∥β,m∥β,那么α∥βA.0B.1C.2D.3【答案】D【解析】【分析】由面面平行的判定定理及其相关结论分析可得结果.【详解】由面面平行的判定定理分析可知(1)错,(2),(3),(4)正确.故选:D例3.(四川·高考真题(文))下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行【答案】C【解析】【详解】若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D错;故选项C正确.例4. (2022·云南师大附中模拟预测(理))若α,β是两个不同平面,m ,n 是两条不同直线,则下列4个推断中正确的是( )A .m α∥,m β∥,n ⊂α,n m n β⊂⇒∥B .m α⊂,n β⊂,m n αβ⇒∥∥C .m α∥,n α∥,m β⊂,n βαβ⊂⇒∥D .m α⊂,n β⊂,m n αβ⇒∥∥【答案】A【解析】【分析】利用线面,面面位置关系逐项分析即得.【详解】对于A ,如图,n ⊂α,n n βαβ⊂⇒⋂=,结合m α,m β,可知m n ∥,故A 正确;对于B ,如图,m ,n 可能异面,故B 错误;对于C ,如图,α,β可能相交,故C 错误;对于D ,如图,αβ,可能相交,故D 错误.故选:A .【方法技巧】直线、平面间平行的判定方法(1)关注是否符合判定定理与性质定理,并注意定理中易忽视的条件.(2)结合题意构造或绘制图形,结合图形作出判断.(3)利用实物进行空间想象,比较判断.(4)熟记一些常见结论,如垂直于同一条直线的两个平面平行等.题型二:直线与平面平行的判定例5.(2023·全国·高三专题练习)在直三棱柱111ABC A B C -中,D 、E 、F 、M 、N 分别是BC 、11B C 、1AA 、1CC 、1A C 的中点,给出下列四个判断:①//EF 平面1ADB ;②//EM 平面1ADB ;③//EN 平面1ADB ;④1//A M 平面1ADB ,错误的序号为___________.【答案】①②④【解析】【分析】连接DE 、1A E 、CE 、EF 、EM 、EN 、1A M 、FM ,证明出平面1//A CE 平面1AD B ,利用面面平行的性质结合假设法可判断①②③④的正误.【详解】连接DE 、1A E 、CE 、EF 、EM 、EN 、1A M 、FM ,在三棱柱111ABC A B C -中,因为11//BB CC 且11BB CC =,所以,四边形11BB C C 为平行四边形,则11//BC B C 且11BC B C =,D 、E 分别为BC 、11B C 的中点,则1//CD B E 且1CD B E =,故四边形1CDB E 为平行四边形,则1//CE B D ,CE ⊄平面1ADB ,1B D ⊂平面1ADB ,故//CE 平面1ADB ,同理可证四边形1BB ED 为平行四边形,则11////DE BB AA ,11DE BB AA ==,则四边形1AA ED 为平行四边形,所以,1//A E AD ,1A E ⊄平面1ADB ,AD ⊂平面1ADB ,则1//A E 平面1ADB ,1CE A E E =,故平面1//A CE 平面1AD B ,EN ⊂平面1A CE ,则//EN 平面1ADB ,③对;对于①,若//EF 平面1ADB ,EF EN E =,则平面//EFN 平面1ADB ,因为过点E 且与平面1ADB 平行的平面只有一个,矛盾,故①错,同理可知,②④均错.故答案为:①②④.例6.【多选题】(2017·全国·高考真题(文))如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 平行的是( )A .B .C .D .【答案】BCD【解析】【分析】利用线面平行判定定理逐项判断可得答案.【详解】对于选项A,OQ∥AB,OQ与平面MNQ是相交的位置关系,故AB和平面MNQ不平行,故A错误;对于选项B,由于AB∥CD∥MQ,结合线面平行判定定理可知AB∥平面MNQ,故B正确;对于选项C,由于AB∥CD∥MQ,结合线面平行判定定理可知AB∥平面MNQ:故C正确;对于选项D,由于AB∥CD∥NQ,结合线面平行判定定理可知AB∥平面MNQ:故D正确;故选:BCD例7.(2023·全国·高三专题练习)如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,直线PC ⊥平面ABC ,,E F 分别是PA ,PC 的中点.记平面BEF 与平面ABC 的交线为l ,求证:直线l //平面PAC【答案】证明见解析【解析】【分析】先通过//EF AC 可得出//EF 平面ABC ,再利用线面平行的性质即可证明.【详解】因为,E F 分别是,PA PC 的中点,所以//EF AC ,又因为AC ⊂平面ABC ,EF ⊄平面ABC ,所以//EF 平面ABC ,又EF ⊂平面BEF ,平面BEF 与平面ABC 的交线为l ,所以//EF l ,而l ⊄平面PAC ,EF ⊂平面PAC ,所以//l 平面P AC .【总结提升】证明直线与平面平行的方法(1)线面平行的定义:一条直线与一个平面无公共点(不相交).(2)线面平行的判定定理:关键是找到平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边、成比例线段出现平行线或过已知直线作一平面找其交线.注意内外平行三条件,缺一不可. 题型三:线面平行性质定理的应用例8.(福建·高考真题(文))如图,在正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于________.【解析】【分析】根据直线与平面平行的性质定理可得//EF AC ,再根据E 为AD 的中点可得F 为CD 的中点,从而根据三角形的中位线可得.【详解】如图:因为//EF 平面1AB C ,EF ⊂平面DABC ,且平面1A C B 平面ABCD AC =,所以//EF AC ,又因为E 为AD 的中点,所以F 为CD 的中点, 所以12EF AC =,因为正方体的棱长为2.所以AC =所以EF =故答案为.例9.(2019·全国卷Ⅰ改编)如图,直四棱柱ABCD A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M,N分别是BC,BB1,A1D的中点.证明:MN∥平面C1DE.【答案】见解析【解析】证明:连接B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=12B1C.又因为N为A1D的中点,所以ND=12A1D.由题设知A1B1//=DC,可得B1C//=A1D,故ME//=ND,因此四边形MNDE为平行四边形,所以MN∥ED.又MN⊄平面C1DE,ED⊂平面C1DE,所以MN∥平面C1DE.例10.如图,在直四棱柱ABCDA1B1C1D1中,E为线段AD上的任意一点(不包括A,D两点),平面CEC1∩平面BB1D=FG.证明:FG∥平面AA1B1B.【答案】见解析【解析】证明:在直四棱柱ABCDA1B1C1D1中,BB1∥CC1,BB1⊂平面BB1D,CC1⊄平面BB1D,所以CC1∥平面BB1D.又CC1⊂平面CEC1,平面CEC1∩平面BB1D=FG,所以CC1∥FG.因为BB1∥CC1,所以BB1∥FG.而BB1⊂平面AA1B1B,FG⊄平面AA1B1B,所以FG∥平面AA1B1B.【总结提升】1.思路方法:(1)通过线面平行可得到线线平行,其中一条线应是两平面的交线,要树立这种应用意识.(2)利用线面平行性质必须先找出交线.(1)在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.(2)线面平行关系证明的难点在于辅助面和辅助线的添加,在添加辅助线、辅助面时一定要以某一性质定理为依据,绝不能主观臆断.(3)解题中注意符号语言的规范应用.题型四:平面与平面平行的判定与性质例11.(2023·全国·高三专题练习)已知长方体1111ABCD A B C D -中,4AB AD ==,12AA =,E ,F 分别为棱11A B 和11A D 的中点,M 为长方体表面上任意一点.若BM ∥平面AEF ,则BM 的最大值为( )A.B .C .D .6【答案】C【解析】【分析】由面面平行的性质结合题意可确定点M 所在的平面,再由平面几何的性质即可确定BM 的值为最大值时的位置,即可求解【详解】如图所示,取G ,H 分别为棱11B C 和11D C 的中点,连接11,,,BG DH BD B D ,由题意易知1111,BF B D GH B D ∥∥,所以BF GH ∥;又易知AF BG ∥,故可以证明平面BGHD ∥平面AEF ;又BM ∥平面AEF ,由面面平行的性质可知M ∈平面BGHD ,所以由题意可知M 在等腰梯形BGHD 四条边上运动,过点H 作HQ BD ⊥,交BD 于点Q ,由题意可知BD GH DH BG DQ ====所以HQ BQ BD DQ =-=所以BH又BD BH ==,所以故当M 与D 点重合时,BM 的值为最大值,此时BM BD ==例12.(2020·全国·高三专题练习(文))如图,平面//α平面β,PAB △所在的平面与α,β分别交于CD 和AB ,若2PC =,3CA =,1CD =,则AB =______. 【答案】52【解析】【分析】根据面面平行的性质,证得//CD AB ,结合CD PC AB PA =,即可求解. 【详解】由题意,平面//α平面β,PAB △所在的平面与α,β分别交于CD 和AB , 根据面面平行的性质,可得//CD AB ,所以CD PC AB PA =, 因为2PC =,3CA =,1CD =,所以15522CD PA AB PC ⋅⨯===.故答案为:52. 例13.(2023·全国·高三专题练习)如图,在正方体1111ABCD A B C D -中,E ,F 分别为棱11,DD CC 的中点.求证:平面1//AEC 平面BDF【答案】证明见解析【解析】【分析】根据1//DF EC ,可证明1//EC 平面BDF ;又//BF AE ,可得//AE 平面BDF .进而根据线面平行证明面面平行.【详解】证明:在正方体1111ABCD A B C D -中,E ,F 分别为棱11,DD CC 的中点, 所以11111,22DE DD C F CC ==. 因为11CC DD =,且11//CC DD ,所以1DE C F =,且1//DE C F ,所以四边形1DEC F 是平行四边形,所以1//DF EC 又DF ⊂平面BDF ,1EC ⊄平面BDF ,所以1//EC 平面BDF .同理,//BF AE ,又BF ⊂平面BDF ,AE ⊄平面BDF , 所以//AE 平面BDF .又1AE EC E ⋂=,1,AE EC ⊂平面1AEC ,所以平面1//AEC 平面BDF 例14.(陕西·高考真题(文))如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O∥平面ABCD, 1AB AA =(1)证明: 平面A 1BD // 平面CD 1B 1;(2)求三棱柱ABD -A 1B 1D 1的体积.【答案】(1)证明见解析;(2)1.【解析】【详解】试题分析:(1)要证明1A C ⊥平面11BB D D ,只要证明1A C 垂直于平面11BB D D 内的两条相交直线即可,由已知可证出1A C ⊥BD ,取11B D 的中点为1E ,通过证明四边形11A OCE 为正方形可证1A C ⊥1E O .由线面垂直的判定定理问题得证;(2)由已知1A O 是三棱柱ABD ﹣A 1B 1D 1的高,由此能求出三棱柱ABD ﹣A 1B 1D 1的体积 试题解析:(Ⅰ)∵四棱柱ABCD ﹣A 1B 1C 1D 1的底面ABCD 是正方形,O 为底面中心,A 1O ⊥平面ABCD ,AB=AA 1=,由棱柱的性质可得BB 1和DD 1平行且相等,故四边形BB 1D 1D 为平行四边形,故有BD 和B 1D 1平行且相等.而BD 不在平面CB 1D 1内,而B 1D 1在平面CB 1D 1内,∴BD ∥平面CB 1D 1.同理可证,A 1BCD 1为平行四边形,A 1B ∥平面CB 1D 1.而BD 和A 1B 是平面A 1BD 内的两条相交直线,故有平面A 1BD ∥平面CD 1B 1 .(Ⅱ)由题意可得A 1O 为三棱柱ABD ﹣A 1B 1D 1的高.三角形A 1AO 中,由勾股定理可得A 1O===1,∴三棱柱ABD ﹣A 1B 1D 1的体积V=S △ABD •A 1O=•A 1O=×1=1.【规律方法】1.证明面面平行的常用方法 (1)利用面面平行的定义.(2)利用面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(3)利用“垂直于同一条直线的两个平面平行”.(4)利用“如果两个平面同时平行于第三个平面,那么这两个平面平行”.(5)利用“线线平行”“线面平行”“面面平行”的相互转化.2.面面平行的应用(1)两平面平行,构造与之相交的第三个平面,可得交线平行.(2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行,可用于证明线面平行.3.三种平行关系之间的转化其中线面平行是核心,线线平行是基础,要注意它们之间的灵活转化.。
2020版高考数学一轮总复习第八单元立体几何课时4空间中的平行关系课件文新人教A版201908024110

答案:D
2.直线 a∥平面 α,直线 b⊂α,则 a 与 b 的位置关系
是( )
A.a∥b
B.a⊥b
C.a,b 异面
D.a∥b 或 a 与 b 异面
解:直线 a∥平面 α,直线 b⊂α,所以 a 与 b 无公共点, 所以 a 与 b 平行或异面,选 D.
⇒β∥α平面平行的性质 (1)两个平面平行,其中一个平面内的直线 平行于 另
一个平面.
符号表示:α ∥β ,a⊂α,则 a∥β
.
(2)如果两个平行平面同时和第三个平面相交,那么它
们的交线 平行 . 符号表示:α∥β,α∩γ=a,β∩γ=b,则 a∥b .
考点二·平面与平面平行的判定
【例 2】(2015·四川卷节选)一个正方体的平面展开图 及该正方体的直观图的示意图如图所示.
(1)请将字母 F,G,H 标记在正方体相应的顶点处(不 需说明理由);
(2)判断平面 BEG 与平面 ACH 的位置关系,并证明你 的结论.
解:(1)点 F,G,H 的位置如图所示.
点评:证面面平行的基本方法是利用面面平行的判定 定理,即转化为证线面平行.
【变式探究】
2.如图,已知 ABC-A1B1C1 是正三棱柱,E,F 分别是 AC, A1C1 的中点.求证:平面 AB1F∥平面 BEC1.
证明:因为 E、F 分别是 AC、A1C1 的中点, 所以 AE=FC1.又因为 AE∥FC1, 所以四边形 AEC1F 是平行四边形,所以 AF∥EC1. 因为 EC1⊂平面 BEC1,AF⊄平面 BEC1, 所以 AF∥平面 BEC1. 连接 EF.因为 EF∥BB1,EF=BB1, 所以四边形 BB1FE 是平行四边形, 所以 B1F∥BE,B1F⊄平面 BEC1,BE⊂平面 BEC1, 所以 B1F∥平面 BEC1. 因为 AF,B1F 是平面 AB1F 内的相交直线, 所以平面 AB1F∥平面 BEC1.
2019届高三数学最新复习课件:空间中的平行关系.ppt

同理可证明 GN∥平面 BCE. ∵MG∩NG=G, ∴平面 MNG∥平面 BCE. 又 MN 平面 MNG, ∴MN∥平面 BCE.
【误区警示】 线面平行没有传递性,即平 行线中的一条平行于一平面,另一条不一定 平行该平面.
平面与平面平行的判定
判定平面与平面平行的常用方法有: (1)利用定义(常用反证法). (2)利用判定定理:转化为判定一个平面内的两条相 交直线分别平行于另一个平面.客观题中,也可直 接利用一个平面内的两条相交线分别平行于另一个 平面内的两条相交线来证明两平面平行.
2AD 2CD ∴MADG=MCDN=NACG=13. 又△ACD 为正三角形, ∴△MNG 也为正三角形, 且边长为31×2=32,
面积 S= 43×94= 93.
【名师点评】 面面平行常转化为线面平行, 而线面平行又可转化为线线平行,需要注意 其中转化思想的应用.
直线与平面平行的性质及应用
利用线面平行的性质,可以实现由线面平行到线线 平行的转化.在平时的解题过程中,若遇到线面平 行这一条件,就需在图中找(或作)过已知直线与已 知平面相交的平面.这样就可以由性质定理实现平 行转化.
3.下列命题中正确的个数是( )
①若直线a不在α内,则a∥α;
②若直线l上有无数个点不在平面α内,则l∥α;
③如果两条平行线中的一条与一个平面平行,
那么另一条也与这个平面平行;
④若l与平面α平行,则l与α内任何一条直线都没
有公共点;
⑤平行于同一平面的两直线可以相交.
A.1
B.2
C.3
D.4
答案:B
例3 (2011年济源质检)如图所示,在四面体 ABCD中,截面EFGH平行于对棱AB和CD,试问截 面在什么位置时,其截面面积最大?
2021版新高考数学一轮复习第八章8.3空间中的平行关系课件新人教B版

第三节ꢀ空间中的平行关系内容索引【教材·知识梳理】1.直线与平面平行的判定定理和性质定理文字语言此平面内图形语言符号语言平面外一条直线与_________l∥a,因为______判定的一条直线平行,则该直线定理与此平面平行(简记为“线线平行⇒线面平行”)a⊂α,l⊄α___________,所以l∥α一条直线与一个平面平行,则过这条直线的任一平面与l∥α,因为_______ _______α∩β=b_________,l⊂β,性质定理交线此平面的_____与该直线平行(简记为“线面平行⇒线线平行”)所以l∥b2.平面与平面平行的判定定理和性质定理文字语言图形语言符号语言a∥β,因为________相交直线判一个平面内的两条_________b∥β,a∩b=P,________________a ⊂α,b ⊂α定与另一个平面平行,则定这两个平面平行(简记为理“线面平行⇒面面平行”)____________,所以α∥βα∥β,因为_________性如果两个平行平面同时和质α∩γ=a,___________β∩γ=b 相交第三个平面_____,那么它定理_________,交线们的_____平行所以a∥b【常用结论】1.两个平面平行,则其中任意一个平面内的直线与另一个平面平行.2.三种平行关系的转化:线线平行、线面平行、面面平行的相互转化是解决与平行有关的证明题的指导思想,解题中既要注意一般的转化规律,又要看清题目的具体条件,选择正确的转化方向.【知识点辨析】ꢀ(正确的打“√”,错误的打“×”)(1)若直线a与平面α内无数条直线平行,则a∥α.(ꢀꢀ)(2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.(ꢀꢀ)(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.(ꢀꢀ)(4)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.(ꢀꢀ)(5)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.(ꢀꢀ)(6)平行于同一条直线的两个平面平行.(ꢀꢀ)提示:(1) ×.若直线a与平面α内无数条直线平行,则a∥α或a⊂α.(2)×. 一条直线与一个平面平行,那么它与平面内的直线可能平行,也可能是异面直线.(3)×.如果一个平面内的两条相交直线平行于另一个平面,那么这两个平面平行.(4)×.若平面外的一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.(5)√.这两条直线没有公共点.(6)×.平行于同一条直线的两个平面平行或相交.【易错点索引】序号易错警示典题索引考点一、T3 1证明线面平行时忽略该直线不在平面内致误考点二、T2利用线面平行的性质定理时不会找过该直线的2考点二、T1平面3证明面面平行时忽略两直线相交致误考点三、角度1【教材·基础自测】1.(必修2 P44练习BT2改编)平面α∥平面β的一个充分条件是(ꢀꢀ)A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α【解析】选D.若α∩β=l,a∥l,a⊄α,a⊄β,则a∥α,a∥β,故排除A.若α∩β=l,a⊂α,a∥l,则a∥β,故排除B.若α∩β=l,a⊂α,a∥l,b⊂β,b∥l,则a∥β,b∥α,故排除C.2.(必修2 P46练习AT1改编)下列命题中正确的是(ꢀꢀ)A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α【解析】选D.A中,a可以在过b的平面内;B中,a与α内的直线可能异面;C中,两平面可相交;D中,由直线与平面平行的判定定理知,b∥α,正确.3.(必修2 P44 练习BT4改编)如图,长方体ABCD-ABCD中,E为DD的中点,则BD与111111平面AEC的位置关系为________.ꢀ【解析】连接BD,设BD∩AC=O,连接EO,在△BDD1中,O为BD的中点,所以EO为△BDD1的中位线,则BD∥EO,而BD⊄平面ACE,EO⊂平面ACE,所以BD∥平面ACE.111答案:平行考点一ꢀ直线、平面平行的基本问题ꢀ【题组练透】1.如图,P为平行四边形ABCD所在平面外一点,Q为PA的中点,O为AC与BD的交点,下面说法错误的是(ꢀꢀ)A.OQ∥平面PCD C.AQ∥平面PCDB.PC∥平面BDQ D.CD∥平面PAB2.已知a,b表示直线,α,β,γ表示平面,则下列推理正确的是(ꢀꢀ)A.α∩β=a,b⊂α⇒a∥bB.α∩β=a,a∥b⇒b∥α且b∥βC.a∥β,b∥β,a⊂α,b⊂α⇒α∥βD.α∥β,α∩γ=a,β∩γ=b⇒a∥b3.如图是正方体的平面展开图.关于这个正方体,有以下判断:①EC⊥平面AFN;②CN∥平面AFB;③BM∥DE;④平面BDE∥平面NCF.其中正确判断的序号是(ꢀꢀ)A.①③B.②③C.①②④D.②③④4.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.世纪金榜导学号ꢀꢀ【解析】1.选C.因为O为平行四边形ABCD对角线的交点,所以AO=OC,又Q为PA的中点,所以QO∥PC.由线面平行的判定定理,可知A、B正确,又四边形ABCD为平行四边形,所以AB∥CD,故CD∥平面PAB,故D正确.2.选D.选项A中,α∩β=a,b⊂α,则a,b可能平行也可能相交,故A不正确;选项B中,α∩β=a,a∥b,则可能b∥α且b∥β,也可能b在平面α或β内,故B不正确;选项C中,a∥β,b∥β,a⊂α,b⊂α,根据面面平行的判定定理,再加上条件a∩b=A,才能得出α∥β,故C不正确;选项D为面面平行性质定理的符号语言.3.选C.由已知中正方体的平面展开图,得到正方体的直观图如图所示:由⇒FN⊥平面EMC,故FN⊥EC;同理AF⊥EC,故EC⊥平面AFN,故①正确;由CN∥BE,则CN∥平面AFB,故②正确;由图可知BM∥DE显然错误,故③不正确;由BD∥NF得BD∥平面NCF,DE∥CF得DE∥平面NCF,由面面平行判定定理可知平面BDE∥平面NCF,故④正确.4.因为平面ABFE∥平面CDHG,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面CDHG=HG,所以EF∥HG.同理EH∥FG,所以四边形EFGH是平行四边形.答案:平行四边形【规律方法】ꢀ直线、平面间平行的判定方法(1)关注是否符合判定定理与性质定理,并注意定理中易忽视的条件.(2)结合题意构造或绘制图形,结合图形作出判断.(3)利用实物进行空间想象,比较判断.(4)熟记一些常见结论,如垂直于同一条直线的两个平面平行等.【秒杀绝招】ꢀ直接法解T1,因为Q是AP的中点,故AQ∩平面PCD =P,所以AQ∥平面PCD是错误的.考点二ꢀ直线、平面平行的判定与性质ꢀ【典例】1.在三棱锥S-ABC中,△ABC是边长为6的正三角形,SA=SB=SC=15,平面DEFH分别与AB,BC,SC,SA交于D,E,F,H.D,E分别是AB,BC的中点,如果直线SB∥平面DEFH,那么四边形DEFH的面积为________.ꢀ2.在直三棱柱ABC-A1B1C1中,△ABC为正三角形,点D在棱BC上,且CD=3BD,点E,F分别为棱AB,BB1的中点.求证:A1C∥平面DEF.【解题导思】序号1联想解题由直线SB∥平面DEFH,联想到利用线面平行的性质,判定四边形DEFH的形状,进而得到其面积.求证A C∥平面DEF,只要设法在平面DEF上找到与A C 112平行的直线即可,因为CD=3BD,故联想到连接A1B,在△BA1C中由比例关系证明平行关系.【解析】1.取AC的中点G,连接SG,BG.易知SG⊥AC,BG⊥AC,SG∩BG=G,故AC⊥平面SGB,所以AC⊥SB.因为SB∥平面DEFH,SB⊂平面SAB,平面SAB∩平面DEFH=HD,则SB∥HD.同理SB∥FE.又D,E分别为AB,BC的中点,则H,F也为AS,SC的中点,从而得HF∥AC∥DE,且HF=AC=DE,所以四边形DEFH为平行四边形.又AC⊥SB,SB∥HD,DE∥AC,所以DE⊥HD,所以四边形DEFH为矩形,其面积S=HF·HD=答案:2.如图,连接AB,A B,交于点H,A B交EF于点K,连接DK,111因为ABB A为矩形,所以H为线段A B的中点,因为点E,F分别为棱AB,BB的中点,所1111K=3BK,以点K为线段BH的中点,所以A1又因为CD=3BD,所以A C∥DK,又A C⊄平面DEF,DK⊂平面DEF,所以A C∥平面DEF.111【规律方法】1.利用判定定理判定直线与平面平行,关键是找平面内与已知直线平行的直线.可先直观判断平面内是否已有,若没有,则需作出该直线,常考虑三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线.2.判断或证明线面平行的常用方法(1)利用线面平行的定义(无公共点).(2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α).(3)利用面面平行的性质(α∥β,a⊂α⇒a∥β;α∥β,a⊄β,a∥α⇒a∥β).【变式训练】1.如图所示,在正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长度为________.ꢀ【解析】在正方体ABCD-A1B1C1D1中,AB=2,所以AC=2.又E为AD中点,EF∥平面AB C,EF⊂平面ADC,平面ADC∩平面AB C=AC,11所以EF∥AC,所以F为DC中点,所以EF=AC=.答案:2.如图,在四棱锥P-ABCD中,底面ABCD为梯形,AB∥CD,∠BAD=60°,AB=2,CD=4,E 为PC的中点.求证:BE∥平面PAD.【证明】设F为PD的中点,连接EF,FA.因为EF为△PDC的中位线,所以EF∥CD,且EF=CD=2.又AB∥CD,AB=2,所以AB EF,故四边形ABEF为平行四边形,所以BE∥AF.又AF⊂平面PAD,BE⊄平面PAD,所以BE∥平面PAD.考点三面面平行的判定与性质及平行的综合问题命考什么:(1)考查面面平行的判定与性质定理的应用.(2)考查直线、平题面平行的综合问题.(3)考查直观想象、逻辑推理、数学运算的核心素精养.解怎么考:以柱、锥等几何体为载体,考查证明线线、线面、面面平行.读新趋势:考查作已知几何体的截面或求截面面积问题.1.证明面面平行的方法学(1)面面平行的定义.霸(2)面面平行的判定定理.好(3)垂直于同一条直线的两个平面平行.方(4)两个平面同时平行于第三个平面,那么这两个平面平行.法(5)利用“线线平行”“线面平行”“面面平行”的性质相互转化.2.交汇问题:常联系柱、锥等几何体命题,考查平行、垂直或空间角.命题角度1面面平行的判定与性质【典例】如图所示,在三棱柱ABC-A B C中,E,F,G,H分别是AB,AC,A B,A C的中1111111点,求证:(1)B,C,H,G四点共面.∥平面BCHG.(2)平面EFA1【证明】(1)因为G,H分别是A B,A C的中点,1111所以GH是△A B C的中位线,所以GH∥B C.11111又因为B1C1∥BC,所以GH∥BC,所以B,C,H,G四点共面.(2)因为E,F分别是AB,AC的中点,所以EF∥BC.因为EF⊄平面BCHG,BC⊂平面BCHG,所以EF∥平面BCHG.又G,E分别为A B,AB的中点,A B∥AB且A B=AB,所以A G∥EB,A G=EB, 11111111所以四边形A EBG是平行四边形,所以A E∥GB.11E⊄平面BCHG,GB⊂平面BCHG,又因为A1所以AE∥平面BCHG.1又因为A E∩EF=E,A E,EF⊂平面EFA,111∥平面BCHG.所以平面EFA1命题角度2平行关系的综合应用【典例】如图所示,四棱锥P-ABCD的底面是边长为a的正方形,侧棱PA⊥底面ABCD,在侧面PBC内,有BE⊥PC于E,且BE=a,试在AB上找一点F,使EF∥平面PAD.世纪金榜导学号【解析】在平面PCD内,过E作EG∥CD交PD于G,连接AG,在AB上取点F,使AF=EG,因为EG∥CD∥AF,EG=AF,所以四边形FEGA为平行四边形,所以FE∥AG.又AG⊂平面PAD,FE⊄平面PAD,所以EF∥平面PAD.所以F即为所求的点.又PA⊥平面ABCD,所以PA⊥BC,又BC⊥AB,所以BC⊥平面PAB.所以PB⊥BC.所以PC2=BC2+PB2=BC2+AB2+PA2.设PA=x则PC=,由PB·BC=BE·PC得:a,所以x=a,即PA=a,所以PC= a.又CE=所以即GE=CD=a,所以AF= a.故点F是AB上靠近B点的一个三等分点.【题组通关】【变式巩固·练】1.如图,平面α∥平面β∥平面γ,两条直线a,b分别与平面α,β,γ相交于点A,B,C和点D,E,F.已知AB=2 cm,DE=4 cm,EF=3 cm,则AC的长为______ cm.【解析】因为平面α∥平面β∥平面γ,两条直线a,b分别与平面α,β,γ相交于点A,B,C和点D,E,F,过D作直线平行于a交β于M,交γ于N.连接AD,BM,CN,ME, NF,所以AD∥BM∥CN,ME∥NF,所以因为AB=2 cm,DE=4 cm,EF=3 cm,所以解得BC=cm,所以AC=AB+BC=2+=(cm).答案:2.如图,在正方体ABCD-A B C D中,S是B D的中点,E,F,G分别是BC,DC,SC的中点,111111求证:(1)直线EG∥平面BDD1B 1 .(2)平面EFG∥平面BDD1B 1 .【证明】(1)如图,连接SB,因为E,G分别是BC,SC的中点,所以EG∥SB.又因为SB⊂平面BDD B,EG⊄平面BDD B,1111所以直线EG∥平面BDD1B 1 .(2)连接SD,因为F,G分别是DC,SC的中点,所以FG∥SD.又因为SD⊂平面BDD B,FG⊄平面BDD B,1111所以FG∥平面BDD1B 1 ,又EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,所以平面EFG∥平面BDD1B 1 .【综合创新·练】1.在四面体ABCD中,M,N分别是面△ACD、△BCD的重心,则四面体的四个面中与MN平行的是________.【解析】如图,连接AM并延长交CD于E,连接BN并延长交CD于F,由重心性质可知, E,F重合为一点,且该点为CD的中点E,由,得MN∥AB,因此,MN∥平面ABC且MN∥平面ABD.答案:平面ABC、平面ABD。
高考一轮复习理科数学课件空间中的平行关系

02
表示方法
01
定义
用符号"//"表示,如直线a与直线 b平行,记作a//b。
平行公理与推论
01
平行公理
02
推论
经过直线外一点,有且只有一条直线与已知直线平行。
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
平行线间距离公式
• 公式:两平行线间的距离等于夹在它们之间的任意两 条垂线段的长。设两条平行线为$Ax + By + C1 = 0$ 和$Ax + By + C2 = 0$,则它们之间的距离公式为: $d = \frac{|C1 - C2|}{\sqrt{A^2 + B^2}}$
例题2
在同一平面内,如果两条直线被 第三条直线所截,且同旁内角的 度数之比为1:2,那么这两条直线 的位置关系是什么?
误区提示和易错点总结
误区1
认为只要两直线不相交就一定平行。实 际上,在同一平面内不相交的两条直线 才一定平行。
误区2
在利用平行线的性质定理进行推理时, 忽略了定理的前提条件,导致推理错误 。
高考一轮复习理科数学课件 空间中的平行关系
汇报人:XX
汇报时间:2024-0ቤተ መጻሕፍቲ ባይዱ-05
目录
• 平行线基本概念与性质 • 平面内平行线判定与性质 • 空间中平行关系拓展 • 平行关系在几何体中应用
目录
• 高考真题回顾与模拟训练 • 总结与展望
01
平行线基本概念与性质
平行线定义及表示方法
在同一平面内,永不相交的两 条直线叫做平行线。
忽视平行关系的传递性
在复杂的空间关系中,容易忽视平行关系的传递性,导致解题出现错误。
高中数学理人教A版一轮参考课件:8-4 空间中的平行关系

考向1
考向2
考向3
微型技巧总结
考向1
考向2
考向3
微型技巧总结
(2014 河南开封 3 月模拟)正方形 ABCD 与正方形 ABEF 所在平面相交 于 AB,在 AE,BD 上各有一点 P,Q,且 AP=DQ.求证:PQ∥平面 BCE. 证法一:如图所示.作 PM∥AB 交 BE 于 M,作 QN∥AB 交 BC 于 N,连接 MN.
主干梳理
要点梳理
考点自测
3.面面平行的判定与性质
判定 定义 图 形 a⊂ β,b⊂ β,a∩b=P,a∥ 条 件 结 论 作 用 α∩β=⌀ α,b∥α α∥β 判定面面平 行 α ∥β β,α∩γ=a,β∩γ=b a∥b 面面平行⇒ 线线 平行 a∥α 面面平行⇒ 线 面平行 α∥ α∥β,a⊂ β 定理 性质
线面平行⇒ 面面平行
主干梳理
要点梳理
考点自测
4.与垂直相关的平行的判定 (1)a⊥α,b⊥α⇒a∥b; (2)a⊥α,a⊥β⇒α∥β. 5.线线平行、线面平行、面面平行间的相互转换
主干梳理
要点梳理
考点自测
1
2
3
4
5
1.下列说法中正确的是( ) ①一条直线如果和一个平面平行,它就和这个平面内的无数条直线平行;② 一条直线和一个平面平行,它就和这个平面内的任何直线无公共点;③过直 线外一点,有且仅有一个平面和已知直线平行;④如果直线 l 和平面 α 平行, 那么过平面 α 内一点和直线 l 平行的直线在 α 内. A.①②③④ B.①②③ C.②④ D.①②④ 解析:由线面平行的性质定理知①④正确; 由直线与平面平行的定义知②正确; ③错误,因为经过一点可作一直线与已知直线平行, 而经过这条直线可作无数个平面. 答案:D
高考数学理一轮总复习教师课件7.4空间中的平行关系

F、 G、 H 分别是 AB、 AC、 A1C1、 A1B1 的中点. 求证:平面 A1EF∥平面 BCGH.
【证明】 ∴ EF∥ BC.
△ ABC 中, E、 F 分别为 AB、 AC 的中点,
又∵ EF⊄平面 BCGH, BC⊂平面 BCGH, ∴ EF∥平面 BCGH. 又∵ G、 F 分别为 A1C1、 AC 的中点, ∴ A1G 綊 FC.
BD1∥平面ACE. 答案:平行
考点探究讲练互动
考点突破 考点 1 直线与平面平行的判定与性质
例1 (2012· 高考辽宁卷 )如图, 直三棱柱 ABC- A′ B′ C′,∠
BAC= 90° , AB= AC= 2, AA′=1, 点 M、 N 分别为 A′ B 和 B′ C′的中点. (1)证明: MN∥平面 A′ ACC′; (2)求三棱锥 A′- MNC 的体积. 1 (锥体体积公式 V= Sh,其中 S 为底面面积, h 为高 ) 3
∴四边形 A1FCG 为平行四边形. ∴ A1F∥ GC. 又 A1F⊄平面 BCGH, CG⊂ 平面 BCGH, ∴ A1F∥平面 BCGH. 又∵ A1F∩ EF= F, ∴平面 A1EF∥平面 BCGH.
文字语言
图形语言
符号语言
平面外一条直
线与此平面内 判定定理 的一条直线平 行,则直线与 此平面平行
(2)性质定理 文字语言 如果一条直线和一个 性质 定理 平面平行,经过这条 直线的平面和这个平 图形语言 符号语言
面相交,那么这条直
线就和交线平行
2.平面与平面平行 (1)判定定理 文如图,连接 AB′、AC′,因为∠ BAC= 90° ,AB= AC,所 以三棱柱 ABC- A′ B′ C′为直三棱柱, 所以点 M 为 AB′ 的中点.又因为点 N 为 B′ C′的中点,所以 MN∥ AC′ .