专题复习空间中的平行关系
空间中的平行与垂直例题和知识点总结

空间中的平行与垂直例题和知识点总结在立体几何的学习中,空间中的平行与垂直关系是非常重要的内容。
理解和掌握这些关系,对于解决相关的几何问题具有关键作用。
下面我们通过一些例题来深入探讨,并对相关知识点进行总结。
一、平行关系(一)线线平行1、定义:如果两条直线在同一平面内没有公共点,则这两条直线平行。
2、判定定理:如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行。
例 1:在正方体 ABCD A₁B₁C₁D₁中,E,F 分别是 AB,BC 的中点,求证:EF∥A₁C₁。
证明:连接 AC,因为 E,F 分别是 AB,BC 的中点,所以 EF∥AC。
又因为正方体中,AC∥A₁C₁,所以 EF∥A₁C₁。
(二)线面平行1、定义:如果一条直线与一个平面没有公共点,则称这条直线与这个平面平行。
2、判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
例 2:已知四棱锥 P ABCD 的底面是平行四边形,M 是 PC 的中点,求证:PA∥平面 MBD。
证明:连接 AC 交 BD 于 O,连接 MO。
因为四边形 ABCD 是平行四边形,所以 O 是 AC 的中点。
又因为 M 是 PC 的中点,所以MO∥PA。
因为 MO⊂平面 MBD,PA⊄平面 MBD,所以 PA∥平面MBD。
(三)面面平行1、定义:如果两个平面没有公共点,则称这两个平面平行。
2、判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
例 3:在正方体 ABCD A₁B₁C₁D₁中,求证:平面 A₁BD∥平面 B₁D₁C。
证明:因为 A₁B∥D₁C,A₁D∥B₁C,且 A₁B 和 A₁D 是平面A₁BD 内的两条相交直线,D₁C 和 B₁C 是平面 B₁D₁C 内的两条相交直线,所以平面 A₁BD∥平面 B₁D₁C。
二、垂直关系(一)线线垂直1、定义:如果两条直线所成的角为 90°,则这两条直线垂直。
1.2.2空间中的平行关系4

五、定理运用 形成技能
例2、已知点P 是平行四边形ABCD所在平面外一点,
分别是 E, F上的点,
① 若E、F分别为PA、BD的中点,求证:EF // 面PBC
P
P
E
E
N
D
C
D
C
F
A
B
F
M
A
B
五、定理运用 形成技能
例2、已知点P 是平行四边形ABCD所在平面外一点,
分别是 E, F上的点,
① 若E、F分别为PA、BD的中点,求证:EF // 面PBC
D1
S
C1
A1
P •
N
B1 R
Q
M
D
C
A
B
六、收获感悟 总结提高
一、直线与平面平行的判定定理 二、证明直线与平面平行的方法 三、运用判定定理时的几个要点 四、运用定理的关键:找平行线 五、立体几何的基本思想:化归
七、分层作业 共同进步
谢 谢!
a // c
又由P a, P c a c P
故假设不成立,所以a //
矛盾!
五、定理运用 形成技能
例1、空间四边形ABCD中,E,F分别AB,AD的中点.判 断并证明EF与平面BCD的位置关系.
变式1、把上题中“△ABD”改为“梯形BDHG”,E、F 分别是BG、DH的中点,判断并证明 EF与平面BCD 的位置关系.
一、复习回顾
在空间中,直线与平面有哪几种位置关系?
一、复习回顾
在空间中,直线与平面有哪几种位置关系?
文字语言 图形语言 符号语言
直线在
平面内 α a
a
直线与平面 直线与 的位置关系 平面相交
a A
高考数学一轮复习考点知识专题讲解52---直线、平面平行的判定与性质

高考数学一轮复习考点知识专题讲解直线、平面平行的判定与性质考点要求1.理解空间中直线与直线、直线与平面、平面与平面的平行关系,并加以证明.2.掌握直线与平面、平面与平面平行的判定与性质,并会简单应用.知识梳理1.线面平行的判定定理和性质定理文字语言图形语言符号语言判定定理平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行错误!⇒a∥α性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行错误!⇒a∥b2.面面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行错误!⇒β∥α性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行错误!⇒a∥b常用结论(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.(2)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.(3)垂直于同一个平面的两条直线平行,即a⊥α,b⊥α,则a∥b.(4)若α∥β,a⊂α,则a∥β.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.(×)(2)若直线a∥平面α,P∈α,则过点P且平行于直线a的直线有无数条.(×)(3)若直线a⊂平面α,直线b⊂平面β,a∥b,则α∥β.(×)(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.(√)教材改编题1.下列说法中,与“直线a∥平面α”等价的是()A.直线a上有无数个点不在平面α内B.直线a与平面α内的所有直线平行C.直线a与平面α内无数条直线不相交D.直线a与平面α内的任意一条直线都不相交答案D解析因为a∥平面α,所以直线a与平面α无交点,因此a和平面α内的任意一条直线都不相交.2.已知不重合的直线a,b和平面α,则下列选项正确的是()A.若a∥α,b⊂α,则a∥bB.若a∥α,b∥α,则a∥bC.若a∥b,b⊂α,则a∥αD.若a∥b,a⊂α,则b∥α或b⊂α答案D解析若a∥α,b⊂α,则a∥b或异面,A错;若a∥α,b∥α,则a∥b或异面或相交,B错;若a∥b,b⊂α,则a∥α或a⊂α,C错;若a∥b,a⊂α,则b∥α或b⊂α,D对.3.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为______.答案平行四边形解析∵平面ABFE∥平面DCGH,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG,∴EF∥HG.同理EH∥FG,∴四边形EFGH是平行四边形.题型一直线与平面平行的判定与性质命题点1直线与平面平行的判定例1如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,E,F分别是BC,PD的中点,求证:(1)PB∥平面ACF;(2)EF∥平面PAB.证明(1)如图,连接BD交AC于O,连接OF,∵四边形ABCD 是平行四边形, ∴O 是BD 的中点, 又∵F 是PD 的中点, ∴OF ∥PB ,又∵OF ⊂平面ACF ,PB ⊄平面ACF , ∴PB ∥平面ACF .(2)取PA 的中点G ,连接GF ,BG . ∵F 是PD 的中点, ∴GF 是△PAD 的中位线, ∴GF 綉12AD ,∵底面ABCD 是平行四边形,E 是BC 的中点, ∴BE 綉12AD ,∴GF 綉BE ,∴四边形BEFG 是平行四边形, ∴EF ∥BG ,又∵EF ⊄平面PAB ,BG ⊂平面PAB , ∴EF ∥平面PAB .命题点2直线与平面平行的性质例2如图所示,在四棱锥P -ABCD 中,四边形ABCD 是平行四边形,M 是PC 的中点,在DM上取一点G,过G和PA作平面交BD于点H.求证:PA∥GH.证明如图所示,连接AC交BD于点O,连接OM,∵四边形ABCD是平行四边形,∴O是AC的中点,又M是PC的中点,∴PA∥OM,又OM⊂平面BMD,PA⊄平面BMD,∴PA∥平面BMD,又平面PAHG∩平面BMD=GH,∴PA∥GH.教师备选如图,四边形ABCD是矩形,P∉平面ABCD,过BC作平面BCFE交AP于点E,交DP于点F,求证:四边形BCFE是梯形.证明∵四边形ABCD为矩形,∴BC∥AD.∵AD⊂平面PAD,BC⊄平面PAD,∴BC∥平面PAD.∵平面BCFE∩平面PAD=EF,BC⊂平面BCFE,∴BC∥EF.∵AD=BC,AD≠EF,∴BC≠EF,∴四边形BCFE是梯形.思维升华(1)判断或证明线面平行的常用方法①利用线面平行的定义(无公共点).②利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α).③利用面面平行的性质(α∥β,a⊂α⇒a∥β).④利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).(2)应用线面平行的性质定理的关键是确定交线的位置,有时需要经过已知直线作辅助平面确定交线.跟踪训练1如图所示,已知四边形ABCD是正方形,四边形ACEF是矩形,M是线段EF的中点.(1)求证:AM∥平面BDE;(2)若平面ADM∩平面BDE=l,平面ABM∩平面BDE=m,试分析l与m的位置关系,并证明你的结论.(1)证明如图,记AC与BD的交点为O,连接OE.因为O,M分别为AC,EF的中点,四边形ACEF是矩形,所以四边形AOEM是平行四边形,所以AM∥OE.又因为OE⊂平面BDE,AM⊄平面BDE,所以AM∥平面BDE.(2)解l∥m,证明如下:由(1)知AM∥平面BDE,又AM⊂平面ADM,平面ADM∩平面BDE=l,所以l∥AM,同理,AM∥平面BDE,又AM⊂平面ABM,平面ABM∩平面BDE=m,所以m∥AM,所以l∥m.题型二平面与平面平行的判定与性质例3如图所示,在三棱柱ABC-A1B1C1中,过BC的平面与上底面A1B1C1交于GH(GH与B1C1不重合).(1)求证:BC∥GH;(2)若E,F,G分别是AB,AC,A1B1的中点,求证:平面EFA1∥平面BCHG.证明(1)∵在三棱柱ABC-A1B1C1中,∴平面ABC∥平面A1B1C1,又∵平面BCHG∩平面ABC=BC,且平面BCHG∩平面A1B1C1=HG,∴由面面平行的性质定理得BC∥GH.(2)∵E,F分别为AB,AC的中点,∴EF∥BC,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.又G,E分别为A1B1,AB的中点,A1B1綉AB,∴A1G綉EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.又∵A 1E ∩EF =E ,A 1E ,EF ⊂平面EFA 1, ∴平面EFA 1∥平面BCHG .延伸探究 在本例中,若将条件“E ,F ,G 分别是AB ,AC ,A 1B 1的中点”变为“点D ,D 1分别是AC ,A 1C 1上的点,且平面BC 1D ∥平面AB 1D 1”,试求ADDC的值. 解如图,连接A 1B 交AB 1于O ,连接OD 1.由平面BC 1D ∥平面AB 1D 1, 且平面A 1BC 1∩平面BC 1D =BC 1, 平面A 1BC 1∩平面AB 1D 1=D 1O ,所以BC 1∥D 1O ,则A 1D 1D 1C 1=A 1OOB =1.又由题设A 1D 1D 1C 1=DC AD, 所以DC AD=1,即ADDC=1.如图,在三棱柱ABC -A 1B 1C 1中,E ,F ,G 分别为B 1C 1,A 1B 1,AB 的中点.(1)求证:平面A 1C 1G ∥平面BEF ;(2)若平面A1C1G∩BC=H,求证:H为BC的中点.证明(1)∵E,F分别为B1C1,A1B1的中点,∴EF∥A1C1,∵A1C1⊂平面A1C1G,EF⊄平面A1C1G,∴EF∥平面A1C1G,又F,G分别为A1B1,AB的中点,∴A1F=BG,又A1F∥BG,∴四边形A1GBF为平行四边形,则BF∥A1G,∵A1G⊂平面A1C1G,BF⊄平面A1C1G,∴BF∥平面A1C1G,又EF∩BF=F,EF,BF⊂平面BEF,∴平面A1C1G∥平面BEF.(2)∵平面ABC∥平面A1B1C1,平面A1C1G∩平面A1B1C1=A1C1,平面A1C1G与平面ABC有公共点G,则有经过G的直线,设交BC于点H,如图,则A1C1∥GH,得GH∥AC,∵G为AB的中点,∴H为BC的中点.思维升华证明面面平行的常用方法(1)利用面面平行的判定定理.(2)利用垂直于同一条直线的两个平面平行(l⊥α,l⊥β⇒α∥β).(3)利用面面平行的传递性,即两个平面同时平行于第三个平面,则这两个平面平行(α∥β,β∥γ⇒α∥γ).跟踪训练2如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形.(1)证明:平面A1BD∥平面CD1B1;(2)若平面ABCD∩平面CD1B1=直线l,证明:B1D1∥l.证明(1)由题设知BB1綉DD1,所以四边形BB1D1D是平行四边形,所以BD∥B1D1.又BD⊄平面CD1B1,B1D1⊂平面CD1B1,所以BD∥平面CD1B1.因为A1D1綉B1C1綉BC,所以四边形A1BCD1是平行四边形,所以A1B∥D1C.又A1B⊄平面CD1B1,D1C⊂平面CD1B1,所以A1B∥平面CD1B1.又因为BD∩A1B=B,BD,A1B⊂平面A1BD,所以平面A1BD∥平面CD1B1.(2)由(1)知平面A1BD∥平面CD1B1,又平面ABCD∩平面CD1B1=直线l,平面ABCD∩平面A1BD=直线BD,所以直线l∥直线BD,在四棱柱ABCD-A1B1C1D1中,四边形BDD1B1为平行四边形,所以B1D1∥BD,所以B1D1∥l.题型三平行关系的综合应用例4如图,在正方体ABCD-A1B1C1D1中,E为DD1的中点.(1)求证:BD1∥平面AEC;(2)CC1上是否存在一点F,使得平面AEC∥平面BFD1,若存在,请说明理由.(1)证明如图,连接BD交AC于O,连接EO.因为ABCD-A1B1C1D1为正方体,底面ABCD为正方形,对角线AC,BD交于O点,所以O为BD的中点,又因为E为DD1的中点,所以在△DBD1中,OE是△DBD1的中位线,所以OE∥BD1.又因为OE⊂平面AEC,BD1⊄平面AEC,所以BD1∥平面AEC.(2)解当CC1上的点F为中点时,即满足平面AEC∥平面BFD1.连接BF,D1F,因为F为CC1的中点,E为DD1的中点,所以CF綉ED1,所以四边形CFD1E为平行四边形,所以D1F∥EC,又因为EC⊂平面AEC,D1F⊄平面AEC,所以D1F∥平面AEC.由(1)知BD1∥平面AEC,又因为BD1∩D1F=D1,BD1,D1F⊂平面BFD1,所以平面AEC∥平面BFD1.教师备选如图,四边形ABCD与ADEF均为平行四边形,M,N,G分别是AB,AD,EF的中点.求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.证明(1)如图,连接AE,则AE必过DF与GN的交点O,连接MO,则MO为△ABE的中位线,所以BE∥MO.又BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN,又DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.又M为AB的中点,所以MN为△ABD的中位线,所以BD∥MN,又MN⊂平面MNG,BD⊄平面MNG,所以BD∥平面MNG,又DE,BD⊂平面BDE,DE∩BD=D,所以平面BDE∥平面MNG.思维升华证明平行关系的常用方法熟练掌握线线、线面、面面平行关系间的相互转化是解决线线、线面、面面平行的综合问题的关键.面面平行判定定理的推论也是证明面面平行的一种常用方法.跟踪训练3如图所示,四边形EFGH为空间四边形ABCD的一个截面,若截面为平行四边形.(1)求证:AB∥平面EFGH;(2)若AB=4,CD=6,求四边形EFGH周长的取值范围.(1)证明∵四边形EFGH为平行四边形,∴EF∥HG.∵HG ⊂平面ABD ,EF ⊄平面ABD , ∴EF ∥平面ABD . 又∵EF ⊂平面ABC , 平面ABD ∩平面ABC =AB , ∴EF ∥AB ,又∵AB ⊄平面EFGH ,EF ⊂平面EFGH , ∴AB ∥平面EFGH . (2)解设EF =x (0<x <4), 由(1)知EF ∥AB , ∴CF CB =EF AB =x 4, 与(1)同理可得CD ∥FG , ∴FG CD =BF BC, 则FG 6=BF BC =BC -CF BC =1-x 4, ∴FG =6-32x .∴四边形EFGH 的周长L =2⎝ ⎛⎭⎪⎫x +6-32x =12-x . 又∵0<x <4, ∴8<L <12,故四边形EFGH 周长的取值范围是(8,12).课时精练1.(2022·宁波模拟)下列命题中正确的是()A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a⊂α,b⊄α,则b∥α答案D解析A中,a可以在过b的平面内;B中,a与α内的直线也可能异面;C中,两平面可能相交;D中,由直线与平面平行的判定定理知b∥α,正确.2.设l是直线,α,β是两个不同的平面,则下列能判断l∥α的是()A.l∥β,α∥βB.l与平面α内无数条直线平行C.l⊂β,α∥βD.l⊥β,α⊥β答案C解析对于A,l可能在α内,故不能判断l∥α,故A不正确;对于B,l可能在α内,故不能判断l∥α,故B不正确;对于C,因为l⊂β,α∥β,由面面平行的定义得l∥α,故C正确;对于D,l可能在α内,故不能判断l∥α,故D不正确.3.(2022·成都模拟)如图,在三棱柱ABC-A1B1C1中,AM=2MA1,BN=2NB1,过MN作一平面分别交底面△ABC的边BC,AC于点E,F,则()A.MF∥EB B.A1B1∥NEC.四边形MNEF为平行四边形 D.四边形MNEF为梯形答案D解析由于B,E,F三点共面,F∈平面BEF,M∉平面BEF,故MF,EB为异面直线,故A错误;由于B1,N,E三点共面,B1∈平面B1NE,A1∉平面B1NE,故A1B1,NE为异面直线,故B错误;∵在平行四边形AA1B1B中,AM=2MA1,BN=2NB,1∴AM∥BN,AM=BN,故四边形AMNB为平行四边形,∴MN∥AB.又MN⊄平面ABC,AB⊂平面ABC,∴MN∥平面ABC.又MN⊂平面MNEF,平面MNEF∩平面ABC=EF,∴MN∥EF,∴EF∥AB,显然在△ABC中,EF≠AB,∴EF≠MN,∴四边形MNEF为梯形,故C错误,D正确.4.(2022·杭州模拟)已知P为△ABC所在平面外一点,平面α∥平面ABC,且α交线段PA,PB,PC于点A′,B′,C′,若PA′∶AA′=2∶3,则S∶S△ABC等于()△A′B′C′A.2∶3 B.2∶5C.4∶9 D.4∶25答案D解析∵平面α∥平面ABC,∴A′C′∥AC,A′B′∥AB,B′C′∥BC,∴S△A′B′C′∶S△ABC=(PA′∶PA)2,又PA′∶AA′=2∶3,∴PA′∶PA=2∶5,∴S△A′B′C′∶S△ABC=4∶25.5.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()答案D解析A项,由正方体性质可知AB∥NQ,NQ⊂平面MNQ,AB⊄平面MNQ,AB∥平面MNQ,排除;B,C项,由正方体性质可知AB∥MQ,MQ⊂平面MNQ,AB⊄平面MNQ,AB∥平面MNQ,排除;D项,由正方体性质易知,直线AB与平面MNQ不平行,满足题意.6.如图,透明塑料制成的长方体容器ABCD-A1B1C1D1内灌进一些水,固定容器一边AB于地面上,再将容器倾斜,随着倾斜程度的不同,有下面几个结论,其中正确的是()①没有水的部分始终呈棱柱形;②水面EFGH所在四边形的面积为定值;③随着容器倾斜程度的不同,A1C1始终与水面所在平面平行;④当容器倾斜如图(3)所示时,AE·AH为定值.A.①② B.①④C.②③ D.③④答案B解析根据棱柱的特征(有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行),结合题中图形易知①正确;由题图可知水面EFGH的边EF的长保持不变,但邻边的长却随倾斜程度而改变,可知②错误;因为A1C1∥AC,AC⊂平面ABCD,A 1C 1⊄平面ABCD ,所以A 1C 1∥平面ABCD ,当平面EFGH 不平行于平面ABCD 时,A 1C 1不平行于水面所在平面,故③错误;当容器倾斜如题图(3)所示时,因为水的体积是不变的,所以棱柱AEH -BFG 的体积V 为定值,又V =S △AEH ·AB ,高AB 不变,所以S △AEH 也不变,即AE ·AH 为定值,故④正确.7.考查①②两个命题,①⎭⎪⎬⎪⎫m ⊂αl ∥m ⇒l ∥α;②⎭⎪⎬⎪⎫l ∥m m ∥α⇒l ∥α,它们都缺少同一个条件,补上这个条件就可以使其构成真命题(其中l ,m 为直线,α为平面),则此条件为__________. 答案l ⊄α解析①由线面平行的判定定理知l ⊄α;②由线面平行的判定定理知l ⊄α.8.如图所示,在正四棱柱ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别是棱CC 1,C 1D 1,D 1D ,DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 只需满足条件______,就有MN ∥平面B 1BDD 1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)答案点M 在线段FH 上(或点M 与点H 重合) 解析连接HN ,FH ,FN (图略), 则FH ∥DD 1,HN ∥BD ,∴平面FHN ∥平面B 1BDD 1,只需M ∈FH ,则MN ⊂平面FHN ,∴MN ∥平面B 1BDD 1.9.如图,在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别是BC ,CC 1,C 1D 1,AA 1的中点,求证:(1)BF ∥HD 1; (2)EG ∥平面BB 1D 1D ; (3)平面BDF ∥平面B 1D 1H . 证明如图.(1)取B 1B 的中点M ,连接HM ,MC 1,易证四边形HMC 1D 1是平行四边形, ∴HD 1∥MC 1. 又MC 1∥BF , ∴BF ∥HD 1.(2)取BD 的中点O ,连接OE ,OD 1, 则OE 綉12DC .又D 1G 綉12DC ,∴OE綉D1G.∴四边形OEGD1是平行四边形,∴EG∥D1O.又D1O⊂平面BB1D1D,EG⊄平面BB1D1D,∴EG∥平面BB1D1D.(3)由(1)知BF∥HD1,由题意易证B1D1∥BD.又B1D1,HD1⊂平面B1D1H,BF,BD⊂平面BDF,且B1D1∩HD1=D1,DB∩BF=B,∴平面BDF∥平面B1D1H.10.如图,在四棱锥P-ABCD中,AD∥BC,AB=BC=12AD,E,F,H分别为线段AD,PC,CD的中点,AC与BE交于O点,G是线段OF上一点.(1)求证:AP∥平面BEF;(2)求证:GH∥平面PAD.证明(1)如图,连接EC,因为AD∥BC,BC=12 AD,所以BC∥AE,BC=AE,所以四边形ABCE是平行四边形,所以O为AC的中点.又因为F是PC的中点,所以FO ∥AP ,因为FO ⊂平面BEF ,AP ⊄平面BEF , 所以AP ∥平面BEF .(2)连接FH ,OH ,因为F ,H 分别是PC ,CD 的中点, 所以FH ∥PD ,因为PD ⊂平面PAD ,FH ⊄平面PAD , 所以FH ∥平面PAD .又因为O 是BE 的中点,H 是CD 的中点, 所以OH ∥AD ,因为AD ⊂平面PAD ,OH ⊄平面PAD , 所以OH ∥平面PAD .又FH ∩OH =H ,FH ,OH ⊂平面OHF , 所以平面OHF ∥平面PAD . 又因为GH ⊂平面OHF , 所以GH ∥平面PAD .11.(2022·福州检测)如图所示,正方体ABCD -A 1B 1C 1D 1中,点E ,F ,G ,P ,Q 分别为棱AB ,C 1D 1,D 1A 1,D 1D ,C 1C 的中点,则下列叙述中正确的是()A.直线BQ∥平面EFGB.直线A1B∥平面EFGC.平面APC∥平面EFGD.平面A1BQ∥平面EFG答案B解析过点E,F,G的截面如图所示(H,I分别为AA1,BC的中点),连接A1B,BQ,AP,PC,易知BQ与平面EFG相交于点Q,故A错误;∵A1B∥HE,A1B⊄平面EFG,HE⊂平面EFG,∴A1B∥平面EFG,故B正确;AP⊂平面ADD1A1,HG⊂平面ADD1A1,延长HG与PA必相交,故C错误;易知平面A1BQ与平面EFG有交点Q,故D错误.12.如图所示,正方体ABCD-A1B1C1D1的棱长为3,M,N分别是棱A1B1,B1C1的中点,P是棱AD上的一点,AP=1,过P,M,N的平面交上底面于PQ,Q在CD上,则PQ=________.答案2 2解析因为平面ABCD∥平面A1B1C1D1,平面ABCD∩平面PQNM=PQ,平面A1B1C1D1∩平面PQNM=MN,所以MN∥PQ,又因为MN∥AC,所以PQ∥AC.又因为AP=1,所以PDAD=DQCD=PQAC=23,所以PQ=23AC=23×32=2 2.13.在正四棱柱ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,则点Q满足条件________时,有平面D1BQ∥平面PAO.答案Q为CC1的中点解析如图所示,设Q为CC1的中点,因为P为DD1的中点,所以QB∥PA.连接DB,因为P,O分别是DD1,DB的中点,所以D1B∥PO,又D1B⊄平面PAO,QB⊄平面PAO,PO⊂平面PAO,PA⊂平面PAO,所以D1B∥平面PAO,QB∥平面PAO,又D1B∩QB=B,D1B,QB⊂平面D1BQ,所以平面D 1BQ ∥平面PAO .故Q 为CC 1的中点时,有平面D 1BQ ∥平面PAO .14.在三棱锥P -ABC 中,PB =6,AC =3,G 为△PAC 的重心,过点G 作三棱锥的一个截面,使截面平行于PB 和AC ,则截面的周长为________. 答案8解析如图,过点G 作EF ∥AC ,分别交PA ,PC 于点E ,F ,过点E 作EN ∥PB 交AB 于点N ,过点F 作FM ∥PB 交BC 于点M ,连接MN ,则四边形EFMN 是平行四边形(平面EFMN 为所求截面),且EF =MN =23AC =2,FM =EN =13PB =2,所以截面的周长为2×4=8.15.(2022·合肥市第一中学模拟)正方体ABCD -A 1B 1C 1D 1的棱长为1,点M ,N 分别是棱BC ,CC 1的中点,动点P 在正方形BCC 1B 1(包括边界)内运动,且PA 1∥平面AMN ,则PA 1的长度范围为()A.⎣⎢⎡⎦⎥⎤1,52B.⎣⎢⎡⎦⎥⎤324,52C.⎣⎢⎡⎦⎥⎤324,32 D.⎣⎢⎡⎦⎥⎤1,32答案B解析取B 1C 1的中点E ,BB 1的中点F ,连接A 1E ,A 1F ,EF , 取EF 的中点O ,连接A 1O ,如图所示,∵点M ,N 分别是棱长为1的正方体ABCD -A 1B 1C 1D 1中棱BC ,CC 1的中点, ∴AM ∥A 1E ,MN ∥EF ,∵AM ∩MN =M ,A 1E ∩EF =E ,AM ,MN ⊂平面AMN ,A 1E ,EF ⊂平面A 1EF , ∴平面AMN ∥平面A 1EF ,∵动点P 在正方形BCC 1B 1(包括边界)内运动, 且PA 1∥平面AMN , ∴点P 的轨迹是线段EF , ∵A 1E =A 1F =12+⎝ ⎛⎭⎪⎫122=52,EF =1212+12=22, ∴A 1O ⊥EF ,∴当P 与O 重合时,PA 1的长度取最小值A 1O ,A 1O =⎝ ⎛⎭⎪⎫522-⎝ ⎛⎭⎪⎫242=324,当P 与E (或F )重合时,PA 1的长度取最大值A 1E 或A 1F ,A 1E =A 1F =52.∴PA 1的长度范围为⎣⎢⎡⎦⎥⎤324,52.16.(2022·郑州模拟)如图,在三棱锥P -ABC 中,AC ,BC ,PC 两两垂直,AC =BC ,E ,F 分别是AC ,BC 的中点,△ABC 的面积为8,四棱锥P -ABFE 的体积为4.(1)若平面PEF ∩平面PAB =l ,求证:EF ∥l ; (2)求三棱锥P -ABC 的表面积. (1)证明∵E ,F 分别是AC ,BC 的中点, ∴EF ∥AB ,∵AB ⊂平面PAB ,EF ⊄平面PAB , ∴EF ∥平面PAB .又平面PEF ∩平面PAB =l ,EF ⊂平面PEF , ∴EF ∥l .(2)解∵AC ,BC ,PC 两两垂直,AC ∩BC =C ,AC ,BC ⊂平面ABC , ∴PC ⊥平面ABC ,即PC 是四棱锥P -ABFE 的高. ∵S △ABC =8,AC =BC ,AC ⊥BC , ∴AC =BC =4.∵E ,F 分别是AC ,BC 的中点,V P -ABFE =4, ∴13×34×12AC ×BC ×PC =4,即PC =2. ∴PA =42+22=25,PB =42+22=25,AB =42+42=4 2.∴△PAB的面积为12×42×(25)2-⎝⎛⎭⎪⎫4222=4 6.∴三棱锥P-ABC的表面积S=2×12×4×2+8+46=16+4 6.。
立体几何复习专题及答案-高中数学

立体几何复习专题姓名: 班级:考点一、空间中的平行关系1.如图,在三棱锥P ABC -中,02,3,90PA PB AB BC ABC ====∠=,平面PAB ⊥平面ABC ,D 、E 分别为AB 、AC 的中点. (1)求证:DE //平面PBC ; (2)求证:AB PE ⊥;(3)求三棱锥B PEC -的体积.2. 如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,PA CD ⊥,2CD =,3AD =,(Ⅰ)设G H ,分别为PB AC ,的中点,求证:GH ∥平面PAD ; (Ⅱ)求证:PA ⊥平面PCD ;3.如图,七面体ABCDEF 的底面是凸四边形ABCD ,其中2AB AD ==,120BAD ∠=︒,AC ,BD 垂直相交于点O ,2OC OA =,棱AE ,CF 均垂直于底面ABCD .(1)证明:直线DE 与平面BCF 不.平行;4.(2014新课标Ⅱ)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设二面角D AE C --为60°,AP =1,AD =3,求三棱锥E ACD -的体积.考点二、空间中的垂直关系5.如图,在四面体ABCD 中,E ,F 分别是线段AD ,BD 的中点,90ABD BCD ∠=∠=,2EC =,2AB BD ==,直线EC 与平面ABC 所成的角等于30.(1)证明:平面EFC ⊥平面BCD ;6.已知某几何体的直观图和三视图如下图所示,其中正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.(1)求证:BN ⊥平面11C B N ;(2)设M 为AB 中点,在C B 边上求一点P ,使//MP 平面1C NB ,求CBPP 的值.7.(2016全国I )如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF为正方形,2AF FD =,90AFD ∠=,且二面角D AF E --与二面角C BE F --都是60.(I )证明:平面ABEF⊥平面EFDC ;(II )求二面角E BC A --的余弦值.考点三、折叠问题和探究性问题中的位置关系8.如图 1,在直角梯形ABCD 中, //,AB CD AB AD ⊥,且112AB AD CD ===.现以AD 为一边向外作正方形ADEF ,然后沿边AD 将正方形ADEF 翻折,使ADEF 平面与平面ABCD 垂直, M 为ED 的中点,如图 2.(1)求证: //AM 平面BEC ;(2)求证: BC ⊥平面BDE ; .9.如图,在边长为4的正方形ABCD 中,点E,F 分别是AB,BC 的中点,点M 在AD 上,且14AM AD =,将AED,DCF 分别沿DE,DF 折叠,使A,C 点重合于点P ,如图所示2.()1试判断PB 与平面MEF的位置关系,并给出证明;()2求二面角M EF D --的余弦值.10.如图所示,直角梯形ABCD 中,//AD BC ,AD AB ⊥,22AB BC AD ===,四边形EDCF 为矩形,3CF =,平面EDCF ⊥平面ABCD . (1)求证:DF //平面ABE ;(2)求平面ABE 与平面EFB 所成锐二面角的余弦值. (3)在线段DF 上是否存在点P ,使得直线BP 与平面ABE 所成角的正弦值为34,若存在,求出线段BP 的长,若不存在,请说明理由.11.如图1,在边长为4的正方形ABCD中,E是AD的中点,F是CD的中点,现-.将三角形DEF沿EF翻折成如图2所示的五棱锥P ABCFE(1)求证:AC//平面PEF;(2)若平面PEF⊥平面ABCFE,求直线PB与平面PAE所成角的正弦值.12.(2011•浙江)如图,在三棱锥P﹣ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2(1)证明:AP⊥BC;(2)在线段AP上是否存在点M,使得二面角A﹣MC﹣β为直二面角?若存在,求出AM的长;若不存在,请说明理由.13.如图,在直三棱柱111ABC A B C -中,底面ABC 为等边三角形,122CC AC ==.(Ⅰ)求三棱锥11C CB A -的体积;(Ⅱ)在线段1BB 上寻找一点F ,使得1CF AC ⊥,请说明作法和理由.考点四、知空间角求空间角问题14.(2014天津)如图四棱锥P ABCD -的底面ABCD 是平行四边形,2BA BD ==2AD =,5PA PD ==E ,F 分别是棱AD ,PC 的中点.(Ⅰ)证明: EF ∥平面PAB ; (Ⅱ)若二面角P AD B --为60°, (ⅰ)证明:平面PBC ⊥平面ABCD(ⅱ)求直线EF 与平面PBC 所成角的正弦值. PCDBF15.四棱锥P ABCD -中,底面ABCD 为矩形,PA ABCD ⊥平面,E 为PD 的中点.(1)证明://E PB A C 平面;(2)设13AP AD ==,,三棱锥P ABD -的体积34V =,求二面角D -AE -C 的大小16.如图,四棱锥P ABCD -中, PA ⊥底面ABCD ,底面ABCD 是直角梯形,90ADC ∠=︒, //AD BC , AB AC ⊥, 2AB AC ==,点E 在AD 上,且2AE ED =.(Ⅰ)已知点F 在BC 上,且2=CF FB ,求证:平面PEF ⊥平面PAC ;(Ⅱ)当二面角--A PB E 的余弦值为多少时,直线PC 与平面PAB 所成的角为45︒?立体几何专题参考答案1. (1)证明:∵在△ABC 中,D 、E 分别为AB 、AC 的中点,∴DE ∥BC . ∵DE ⊄平面PBC 且BC ⊂平面PBC ,∴DE ∥平面PBC . (2)证明:连接PD .∵PA =PB ,D 为AB 的中点,∴PD ⊥AB .∵DE ∥BC ,BC ⊥AB ,∴DE ⊥AB .又∵PD 、DE 是平面PDE 内的相交直线, ∴AB ⊥平面PDE .∵PE ⊂平面PDE ,∴AB ⊥PE .(3)解:∵PD ⊥AB ,平面PAB ⊥平面ABC ,平面PAB ∩平面ABC =AB ,∴PD ⊥平面ABC ,可得PD 是三棱锥P -BEC 的高. 又∵33,2BECPD S==,1332B PEC P BEC BEC V V S PD --∆∴==⨯=. 2.(I )见解析;(II )见解析;(III )33. (I )证明:连接BD ,易知AC BD H ⋂=,BH DH =,又由BG PG =,故GHPD ,又因为GH ⊄平面PAD ,PD ⊂平面PAD , 所以GH ∥平面PAD .(II )证明:取棱PC 的中点N ,连接DN ,依题意,得DN PC ⊥, 又因为平面PAC ⊥平面PCD ,平面PAC平面PCD PC =,所以DN ⊥平面PAC ,又PA ⊂平面PAC ,故DN PA ⊥, 又已知PA CD ⊥,CD DN D =,所以PA ⊥平面PCD . 3.(1)见解析;(2)23535本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
高二数学复习1:空间中的平行与垂直关系

.高二数学作业空间中的平行与垂直关系[知识要点]要点1、空间中的平行关系: ◆平行直线:公理4:平行于同一条直线的两条直线互相平行。
◆线面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。
推理模式:,,////a b a b a ααα⊄⊂⇒.◆线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行推理模式://,,//a a b a b αβαβ⊂=⇒.◆两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于一个平面,那么这两个平面平行。
定理的模式://////a b a b P a b ββαβαα⊂⎫⎪⊂⎪⎪=⇒⎬⎪⎪⎪⎭推论:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面互相平行。
推论模式:,,,,,,//,////a b P a b a b P a b a a b b ααββαβ'''''''=⊂⊂=⊂⊂⇒◆两个平面平行的性质(1)如果两个平面平行,那么其中一个平面内的直线平行于另一个平面; 〔2〕如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
◆注意体会以下平行问题的转化思路、方向与转化条件、途径:要点2、空间中的垂直关系: ◆线线垂直〔1〕线线垂直的定义:所成的角是直角,两直线垂直。
〔2〕垂直于平行线中的一条,必垂直于另一条。
◆线面垂直〔1〕定义:如果一条直线l 和一个平面α相交,并且和平面α内的任意一条直线都垂直,我们就说直线l 和平面α互相垂直其中直线l 叫做平面的垂线,平面α叫做直线l 的垂面,直线与平面的交点叫做垂足。
直线l 与平bab aααP P ab βαc b a βα2面α垂直记作:l ⊥α。
〔2〕直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线 都垂直,那么这条直线垂直于这个平面。
高一数学 空间中的平行关系

济南市长清第一中学
考点二 平面与平面平行的判定与性质
1、设直线l,m,平面α,β,下列条件能得 出α∥β的有( )
①l⊂α,m⊂α,且l∥β,m∥β; ②l⊂α,m⊂α,且l∥m,l∥β,m∥β; ③l∥α,m∥β,且l∥m; ④l∩m=P,l⊂α,m⊂α,且l∥β,m∥β. A.1个 B.2个 C.3个 D.0个
高中数学一年级
空间中的平行关系复习课
目录
1 知识回顾 2 考点一 直线与平面平行的判定与性质 3 考点二 平面与平面平行的判定与性质 4 考点三 线面、面面平行的综合应用
知识回顾:
一、直线与直线平行
1、基本事实4:平行于同一条直线的两条直线平行。
2、判定直线与直线平行的常用方法: (1)三角形中利用中位线定理 (2)构造平行四边形 (3)平行线的传递性 (4)平行线分线段成比例
故面GFH∥面ACD
方法二 取BE的中点M,连接GM,FM
G, M , F分别是CE, BE, AE的中点
GM // BC, FM // AB
又 GM 面GMF , FM 面GMF , AB 面ABC, BC 面ABC
GM FM M, AB BC B 面GMF // 面ABC
GF 面GMF
GF // 面ABC
考点一 直线与平面平行的判定与性质
1.“直线与平面内无数条直线平行”是“直线//平面”
的( )
A. 充要条件
B. 充分不必要条件
C. 必要不充分条件 D. 既不充分也不必要条件
答案:C
2.如图,已知四边形ABCD是平行四边形,点P是平 面ABCD外一点,M是PC的中点,在DM上取一点G, 过G和AP作平面交平面BDM于GH.求证:
高中数学《空间的平行关系》复习和习题课件PPT

巩固练习
过关练习
ห้องสมุดไป่ตู้固练习
过关练习
同学们!再见!
课后一定要多练习哦!
(2)直线与平面平行的判定定理:平面α外的一条直线l与平面α内的一条直线m
平行,则直线l与平面α平行.(线线平行 线面平行)
(3)直线与平面平行的性质定理:已知直线l与平面α平行,且经过直线l的平面β
与平面α相交于直线m,则直线l与直线m平行.(线面平行 线线平行)
知识清单
知识点四 平面与平面的平行
典例精析
例
变式训练
变式训练3
下列说法正确的是(). A.经过平面外一点有且仅有一条直线平行于这个平面 B.经过平面外一点有且仅有一条直线垂直于这个平面 C.经过直线外一点有且仅有一个平面平行于这条直线 D.经过直线外一点有且仅有一条直线垂直于这条直线
巩固练习
过关练习
巩固练习
过关练习
巩固练习
知识清单
知识点二 直线与平面的位置关系
直线与平面的三种位置关系:直线在平面内、直线与平面相交、直线与平面平 行.
(1)直线在平面内:直线上的所有点都在平面内. (2)直线与平面相交:直线与平面只有唯一一个公共点. (3)直线与平面平行:直线与平面没有公共点.
知识清单
知识点三 直线与平面的平行
(1)直线与平面平行的定义:若直线l与平面α没有公共点,则称直线l与平面α平 行.
线都与另一个平面平行.(面面平行 线面平行)
典例精析
例
变式训练
变式训练1
如图92所示,AB、CD是夹在两个平行平面α、β之间的 线段,M、N分别为AB、CD的中点. 求证:MN∥平面α.
典例精析
例
变式训练
专题复习:空间中的平行关系

中位线定理
平行四边形性质 平行公理 线面平行性质定理 (2)空间中的线线平行: 面面平行性质定理 线面垂直性质定理
(1)平面中的线线平行: 比例关系
P F P F
M
E B A C
D
B
E
A C
D
N
空间平行关系的常见判定方法:
1、线面平行 (1)利用线面平行的定义(无公共点); (2)利用线面平行的判定定理; (3)利用面面平行的性质.
空间平行关系的常见判定方法:
2、面面平行
(1)利用面面平行的定结论:垂直于同一条直线的两个平面
A1 G
H
C1
B1
A E
F B
C
探究:如图,已知三棱柱ABC-A1B1C1中,底面为正三 角形,侧棱与底面垂直,点E,F分别是CC1,BB1上的 点,点M是棱AC上的动点,且EC=2FB,当M在何位置 时,BM//平面AEF?
当堂检测
1、如图,在直三棱柱ABC A1 B1C1中,AB AC, D为BC中点,四边形B1 BCC1是正方形,求证:A1 B //平面AC1 D.
a // a // b
;
;
(3) , b , a // , b // a
//
;
(4)
// , a , b a // b .
空间中的平行关系
判定定理
线线平行
线面平行
判定定理 定义
面面平行
性质定理 性质定理
例1、如图,已知点P是平行四边形ABCD所 在平面外一点,E,F分别是AB,PD的中 点,求证:AF//平面PCE
M
N
2、如图,在正方体ABCD A1 B1C1 D1中,E、F 分别 为棱AD、AB的中点.求证:EF //平面CB1 D1.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间中的平行关系
线线平行
判定定理
判定定理
线面平行
面面平行
性质定理
定义
性质定理
例1、如图,已知点P是平行四边形ABCD所
在平面外一点,E,F分别是AB,PD的中
点,求证:AF//平面PCE
P
P
EA B
F
M
D E
A
CB
F
D
N
C
空间平行关系的常见判定方法:
1、线面平行 (1)利用线面平行的定义(无公共点); (2)利用线面平行的判定定理; (3)利用面面平行的性质.
判定定理
判定定理
线//线
线//面
面//面
性质定理
性质
性质定理
2、空间中的平行关系的常用判定方法
线线平行? 线面平行? 面面平行?
空间平行关系的常见判定方法:
3、线线平行
中位线定理
(1)平面中的线线平行: 比例关系
平行四边形性质
平行公理 线面平行性质定理
(2)空间中的线线平行: 面面平行性质定理
线面垂直性质定理
当堂检测
1、如图,在直三棱柱ABC A1B1C1中,AB AC, D为BC中点,四边形B1BCC1是正方形,求证:A1B //平面AC1D.
M
N
2、如图,在正方体ABCD A1B1C1D1中,E、F分别 为棱AD、AB的中点.求证:EF //平面CB1D1.
课堂小结 1、空间中的平行关系
求证:A1E//平面ADC1
A1
C1 A1
C1
E
E
B1
B1
A
CA
C
D
D
B
B
变式:如图,已知在三棱柱ABC-A1B1C1 中, E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证: (1)B,C,H,G四点共面;
(2)平面EFA1//平面BCHG
A1HBiblioteka C1GB1
A
F
C
E B
探究:如图,已知三棱柱ABC-A1B1C1中,底面为正三 角形,侧棱与底面垂直,点E,F分别是CC1,BB1上的 点,点M是棱AC上的动点,且EC=2FB,当M在何位置 时,BM//平面AEF?
如何学好立体几何
学好立体几何需注意的几个方面: 1、立足课本,夯实基础
2、建立数学模型,培养空间想象能力
3、规范解答,学会转化,总结规律,提高 逻辑论证能力
例:已知不重合的直线a,b和平面 , ,
试判断下列命题的真假.
(1)a // b,b a // ; (2)a //,b a // b ; (3)a ,b , a // ,b // // ; (4) // , a ,b a // b .
空间平行关系的常见判定方法:
2、面面平行 (1)利用面面平行的定义; (2)利用面面平行的判定定理; (3)利用结论:垂直于同一条直线的两个平面
平行; (4)利用结论:两个平面同时和第三个平面平
行,那么这两个平面平行
练习:如图,已知在三棱柱ABC-A1B1C1中, D,E分别是BC,B1C1的中点,