体育统计试题

合集下载

初三数学统计与概率试题答案及解析

初三数学统计与概率试题答案及解析

初三数学统计与概率试题答案及解析1.某学校为了增强学生体质,决定开设以下体育课外活动项目:A篮球;B乒乓球;C羽毛球;D足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)【答案】(1)200;(2)补图见解析;(3).【解析】(1)由喜欢篮球的人数除以所占的百分比即可求出总人数;(2)由总人数减去喜欢A,B及D的人数求出喜欢C的人数,补全统计图即可;(3)根据题意列出表格,得出所有等可能的情况数,找出满足题意的情况数,即可求出所求的概率.试题解析:(1)根据题意得:20÷=200(人),则这次被调查的学生共有200人;(2)补全图形,如图所示:(3)列表如下:甲乙丙丁所有等可能的结果为12种,其中符合要求的只有2种,则P=.【考点】1.条形统计图;2.扇形统计图;3.列表法与树状图法.2.为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生.某镇统计了该镇今年1-5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)某镇今年1-5月新注册小型企业一共有家.请将折线统计图补充完整.(2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业.现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.【答案】(1)15,将折线统计图补充完整见解析;(2).【解析】(1)根据3月份有4家,占25%,可求出某镇今年1-5月新注册小型企业一共有的家数,再求出1月份的家数,进而将折线统计图补充完整.(2)设该镇今年3月新注册的小型企业为甲、乙、丙、丁,其中甲、乙为餐饮企业,根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙2家企业恰好被抽到的情况,再利用概率公式求解即可求得答案.试题解析:(1)根据统计图可知,3月份有4家,占25%,所以某镇今年1-5月新注册小型企业一共有:4÷25%=16(家),1月份有:16-2-4-3-2=5(家).折线统计图补充如下:(2)设该镇今年3月新注册的小型企业为甲、乙、丙、丁,其中甲、乙为餐饮企业.画树状图得:∵共有12种等可能的结果,甲、乙2家企业恰好被抽到的有2种情况,∴所抽取的2家企业恰好都是餐饮企业的概率为:.【考点】1.折线统计图;2.扇形统计图;3.频数、频率和总量的关系;4.列表法或树状图法;5.概率.3.小伟调查了某校八年级学生和家长对“中学生不穿校服”现象的看法,制作了如下的统计图学生及家长对“中学生不穿校服”的态度统计图家长对“中学生不穿校服”的态度统计图(1)求参加这次调查的家长人数;(2)求图2中表示家长“反对”的圆心角的度数;(3)小伟随机调查了表示“赞成”的10位学生的成绩,其各科平均分如下:57,88,72,60,58,80,78,78,91,65,请写出这组数据的中位数和众数;(4)小伟从表示“赞成”的4位同学中随机选择2位进行深入调查,其中包含小明和小亮,请你利用树状图或列表的方法,求出小明和小亮被同时选中的概率.【答案】(1)400;(2)252°;(3)75,78;(4).【解析】(1)根据条形统计图,无所谓的家长有80人,根据扇形统计图,无所谓的家长占20%,据此即可求出家长总人数;(2)根据反对人数和(1)中求出的家长总人数,算出“反对”家长的百分比,即可得到表示家长“反对”的圆心角的度数;(3)先把数据从小到大排列,第五与第六个数的平均数即为这组数据的中位数,众数就是出现次数最多的数;(4)设小明和小亮分别用A、B表示,另外两个同学用C、D表示,画出树状图即可.(1)∵由条形统计图,无所谓的家长有80人,根据扇形统计图,无所谓的家长占20%,∴家长人数是80÷20%=400人;(2)表示家长“反对”的圆心角的度数为×360=252°;(3)把数据从小到大排列为,57,58,60,65,72,78,78,80,88,91,中位数是,众数是78;(4)设小明和小亮分别用A、B表示,另外两个同学用C、D表示,列树状图如下:∴一共有12种等可能的结果,同时选中小明和小亮有2种情况,∴P(小明和小亮同时被选中)=.【考点】1.条形统计图;2.扇形统计图;3.中位数;4.众数;5.列表法与树状图法.4.某中学为了预测本校应届毕业女生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图.根据统计图提供的信息解答下列问题:(1)补全频数分布直方图,并指出这个样本数据的中位数落在第小组;(2)若测试九年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校九年级女生共有260人,请估计该校九年级女生“一分钟跳绳”成绩为优秀的人数;(3)如测试九年级女生“一分钟跳绳”次数不低于170次的成绩为满分,在这个样本中,从成绩为优秀的女生中任选一人,她的成绩为满分的概率是多少?【答案】解:(1)补全频数分布直方图如下:,中位数位于第三组。

体育统计学试题及答案

体育统计学试题及答案

体育统计学试题及答案一、选择题1. 下列选项中,属于体育统计学的内容是:A. 运动员的饮食安排B. 运动员的心理素质C. 运动员的竞技成绩D. 运动员的训练计划答案:C2. 体育统计学主要研究以下哪个方面:A. 运动员的养生保健B. 运动项目的规则制定C. 运动员的竞技表现D. 运动场馆的建设规划答案:C3. 体育比赛中的场上实施情景统计是指:A. 记录运动员的训练计划B. 记录比赛时的主要情景C. 记录运动员的心理变化D. 记录比赛中的技术统计数据答案:B4. 体育统计学常用的数据分析方法包括:A. 方差分析B. 回归分析C. 相关分析D. 所有选项都对答案:D5. 作为体育统计学的研究对象,下列哪个属于场外统计:A. 记录运动员的体格指标B. 记录运动员在场上的表现C. 记录比赛场馆的气候情况D. 记录运动员的训练计划答案:A二、简答题1. 简述体育统计学在运动训练中的应用。

答:体育统计学在运动训练中有着广泛的应用。

首先,通过对运动员的竞技表现进行统计分析,可以了解运动员的优势和不足,进而制定有针对性的训练计划。

其次,通过运动员的技术统计数据,可以评估运动员的技术水平,及时发现问题并加以改进。

此外,体育统计学还可以帮助教练员进行对抗性训练的安排,提高运动员的竞技能力。

2. 你认为体育统计学对于提高比赛规则的公正性有何作用?答:体育统计学对于提高比赛规则的公正性起着重要作用。

通过对比赛进行统计分析,可以客观地评估比赛规则的合理性和公正性。

例如,在某项运动中,通过对比赛过程中的技术统计数据进行分析,可以判断现有的规则是否存在利于某一方的偏差,从而对规则进行相应的修改和完善,确保比赛结果的公正性。

三、论述题体育统计学在竞技体育中的应用分析体育统计学作为一门交叉学科的研究领域,它与体育竞技密不可分。

通过对运动员的竞技表现数据进行统计分析,可以了解运动员的优势和不足,制定相应的训练计划,提高运动员的竞技能力。

体育统计学试题及答案

体育统计学试题及答案

体育统计学试题及答案一、选择题(每题2分,共20分)1. 体育统计学中,数据的收集方法不包括以下哪一项?A. 观察法B. 实验法C. 调查法D. 推理法答案:D2. 在统计学中,以下哪一项不是描述数据集中趋势的指标?A. 平均数B. 中位数C. 众数D. 方差答案:D3. 体育统计中,相关系数的取值范围是?A. -1到1B. 0到1C. 0到正无穷D. -1到正无穷答案:A4. 以下哪一项不是体育统计学中常用的概率分布?A. 正态分布B. 二项分布C. 泊松分布D. 指数分布答案:D5. 在体育统计中,以下哪一项不是假设检验的步骤?A. 建立假设B. 选择显著性水平C. 计算检验统计量D. 确定样本容量答案:D6. 体育统计中,以下哪一项是衡量数据离散程度的指标?A. 平均数B. 方差C. 众数D. 中位数答案:B7. 在体育统计中,以下哪一项不是非参数检验?A. 卡方检验B. 曼-惠特尼U检验C. 配对样本t检验D. 克鲁斯卡尔-瓦利斯检验答案:C8. 体育统计中,以下哪一项是描述数据分布形态的指标?A. 偏度B. 方差C. 标准差D. 峰度答案:A9. 在体育统计中,以下哪一项不是数据的预处理步骤?A. 数据清洗B. 数据转换C. 数据插补D. 数据分析答案:D10. 体育统计中,以下哪一项不是数据的类型?A. 定性数据B. 定量数据C. 计数数据D. 混合数据答案:D二、填空题(每题2分,共20分)11. 体育统计学中,数据的收集方法包括观察法、实验法和_________。

答案:调查法12. 在统计学中,描述数据集中趋势的指标包括平均数、中位数、众数和_________。

答案:极差13. 体育统计中,相关系数的取值范围是-1到1,其中1表示_________相关。

答案:完全正14. 在体育统计中,常用的概率分布包括正态分布、二项分布、泊松分布和_________。

答案:t分布15. 体育统计中,假设检验的步骤包括建立假设、选择显著性水平、计算检验统计量和_________。

体育统计 (1)

体育统计 (1)

体育统计试题一、填空题(每小题2分,共8分)1.一组数据的均值为20,变异系数为0.2,则标准差为 4 。

2.正态曲线下μ+1σ至μ+3σ之间所包含的概率为 0.1524 。

3.某年级男生跳远成绩频数分布表各组频数依次为1,5,10,18,15,1次,第60百分位数就在第 4 组。

4.某体育学院招生身体素质加试项目分别为100米、立定跳远、800米、铅球,若采用标准百分的计分方法计分,每个项目25分,以x±5S为评分范围,请写出100米、800米跑成绩的计分公式学生实际成绩转化为百分位数除以4后取整。

二、单选题(每题2分,共10分)1.一组数据包含11个观察值,则中位数的位置为第几位( C )。

A、4B、5C、6D、5.52.某年级学生引体向上成绩呈正态分布时,用哪一特征数描述其集中趋势更为合理。

( A )A、变异系数B、标准差C、平均数D、中位数3.为了估计全国高中学生的平均身高,从20个城市选取了100所中学进行调查。

在该项研究中,研究者感兴趣的总体是( C )A、100所中学B、20个城市C、全国的高中学生D、100所中学的高中学生4.某运动员在运动会上以11秒5跑完100米,此为一( A )A、随机事件B、不可能事件C、必然现象D、随机现象5.甲乙两中学学生患近视率经u检验统计量为1.18,显著性水平α确定为0.05,检验结论为( B )。

A、P> 0.05 两校近视率差异有显著性意义。

B、P> 0.05 两校近视率差异无显著性意义。

C、P< 0.05 两校近视率差异无显著性意义。

D、P< 0.05 两校近视率差异有显著性意义。

三、多选题(每小题3分,共6分)1.描述观测数据的离中趋势的有( AB )A、标准差B、方差C、平均数D、中位数E、众数2.下列资料中属于连续资料的是( AC )。

A、肺活量B、引体向上C、血乳酸含量D、B型血人数E、足球射门次数四、判断对错(每小题2分,共6分)1.一组观测数据均减去130后计算得标准差为8.6,原数据的标准差为8.6。

体育统计学试题

体育统计学试题

统计学模拟试题一、名词解释。

1、总体参数:在统计学中,反映总体的一些数量特征称为总体参数2、样本统计量:由样本所获得的一些数量特征称为样本统计量3、随机事件:在一定的实验条件下,有可能发生也有可能不发生的事件为随机????????????????事件4、集中位置量数:反映一群性质相同的观察的平均水平或集中趋势的统计指标5、频数:是将数据资料按一定顺序分成若干组,并数出各组中所含有的数据。

6、统计推断:7、抽样误差:抽出的样本统计量之间或样本统计量与总体参数间的偏差,立要由于个体间的差异所造成。

8、相对数:相对数也称为相对指标,是两个有联系的指标的比率,它可以从数量上反映两个相互联系的事物(或现象)之间的对比关系。

9、假设检验:在实际检验过程中,主要的问题是要判定被检验的统计量之间的偏差是由抽样误差造成的,还是由于总体参数不同所造成的,要作出判断就需要对总体先建立某种假设,然后通过统计量的计算及概率判断,对所建立的假设是否成立进行检验。

这类方法称为假设检验。

10、平均数:反映一群性质相同的观察值的平均水平或集中趋势的统计指标。

11、变异系数:?也是反映变量离散程度的统计指标,它是以样本标准差与平均数的百分数来表示的!记作:CV12、总体与样本:13、离中位置量数:描述一群性质相同值的离散程度的统计指标14、抽样:指在总体中抽取一定含量的样本。

15、频率:16、系统误差:宏观世界是由实验对象本身的条件,或或者者仪器不准,场地品格出现故障,训练方法,手段不同所造成的,可使测试结果杨倾向性偏大或偏小。

17、结构相对数:是在分组基础上,以各个分组全计数值与总值对比的相对数。

18、a=0.05或a=0.01:指检验水准称小概率水平19、中位数:将样本的观察值按其数值大小顺序排列起来,处于中间位置的那个数值就是中位数,中位数通常用X表示,它处于频数分配的中点,不受极端数值的影响。

20、组距:组距指的是组与组之间的区间长度。

体育统计学试题及答案

体育统计学试题及答案

体育统计学试题及答案一、选择题1. 体育统计学是运用统计学原理和方法进行体育研究和分析的学科。

以下哪个不是体育统计学的应用领域?a. 运动员表现评估b. 战术分析与预测c. 运动项目选材d. 体育休闲旅游答案:d2. 体育统计学中的“场均得分”是指运动员或球队平均每场比赛的得分数。

下列哪种统计方法可以计算“场均得分”?a. 算术平均b. 中位数c. 众数d. 方差答案:a3. 在体育比赛中,常用的得分统计方法有哪些?a. 助攻b. 投篮命中率c. 三分球命中率d. 上场时间答案:a、b、c4. 体育统计学中的“胜率”是指球队或运动员在一定时间内所获得的胜利数与总比赛数之比。

以下哪个是计算胜率的公式?a. 胜利次数 / 失败次数b. 胜利次数 / 总比赛数c. 总比赛数 / 失败次数d. 胜利次数 + 总比赛数答案:b5. 体育统计学中的“效率值”是综合评价运动员比赛表现的指标。

以下哪个不是计算效率值的方法?a. 得分 + 助攻 + 篮板 - 失误b. 得分 + 助攻 + 篮板 + 抢断 + 盖帽c. 得分 + 助攻 + 篮板 + 抢断 + 盖帽 - 失误d. 得分 + 投篮命中率 + 三分球命中率 + 罚球命中率答案:d二、解答题1. 请简要说明体育统计学在职业篮球中的应用,并列举一个具体的例子。

答案:体育统计学在职业篮球中起到至关重要的作用。

通过对比赛数据的统计和分析,我们可以评估球队的整体表现、战术效果和球员个人能力。

例如,在一场篮球比赛中,我们可以使用体育统计学的方法来分析球队的得分、篮板、助攻等数据,进而评估球队的进攻和防守水平。

同时,通过对球员个人数据的统计分析,我们可以评估球员的得分效率、篮板能力、组织能力等,为球队的选秀和人员调整提供参考依据。

2. 假设你是一名篮球教练,请列举至少三种体育统计学方法,以帮助你进行战术分析和指导球队训练。

答案:作为一名篮球教练,可以利用以下体育统计学方法进行战术分析和训练指导:a. 视频分析:通过观看比赛录像,分析球队在不同战术下的表现,包括进攻时的传球配合、位置调整等,以及防守时的盯人和篮板表现等。

体育统计学试题修订稿

体育统计学试题修订稿

体育统计学试题WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-体育统计学模拟试题一、名词解释。

1、总体参数:在统计学中,反映总体的一些数量特征称为总体参数2、样本统计量:由样本所获得的一些数量特征称为样本统计量3、随机事件:在一定的实验条件下,有可能发生也有可能不发生的事件为随机事件4、集中位置量数:反映一群性质相同的观察的平均水平或集中趋势的统计指标5、频数:是将数据资料按一定顺序分成若干组,并数出各组中所含有的数据。

6、统计推断:7、抽样误差:抽出的样本统计量之间或样本统计量与总体参数间的偏差,立要由于个体间的差异所造成。

8、相对数:相对数也称为相对指标,是两个有联系的指标的比率,它可以从数量上反映两个相互联系的事物(或现象)之间的对比关系。

9、假设检验:在实际检验过程中,主要的问题是要判定被检验的统计量之间的偏差是由抽样误差造成的,还是由于总体参数不同所造成的,要作出判断就需要对总体先建立某种假设,然后通过统计量的计算及概率判断,对所建立的假设是否成立进行检验。

这类方法称为假设检验。

10、平均数:反映一群性质相同的观察值的平均水平或集中趋势的统计指标。

11、变异系数:也是反映变量离散程度的统计指标,它是以样本标准差与平均数的百分数来表示的!记作:CV12、总体与样本:13、离中位置量数:描述一群性质相同值的离散程度的统计指标14、抽样:指在总体中抽取一定含量的样本。

15、频率:16、系统误差:宏观世界是由实验对象本身的条件,或或者者仪器不准,场地品格出现故障,训练方法,手段不同所造成的,可使测试结果杨倾向性偏大或偏小。

17、结构相对数:是在分组基础上,以各个分组全计数值与总值对比的相对数。

18、a=或a=:指检验水准19、中位数:将样本的观察值按其数值大小顺序排列起来,处于中间位置的那个数值就是中位数,中位数通常用X表示,它处于频数分配的中点,不受极端数值的影响。

体育考试试题

体育考试试题

体育考试试题考试时间:90分钟一、选择题(每题1分,共20分)1. 以下哪个项目不属于田径比赛项目?A. 短跑B. 跳高C. 游泳D. 铅球2. 世界上最大的足球比赛是哪个比赛?A. 亚洲杯B. 欧洲杯C. 非洲杯D. 世界杯3. 篮球比赛一般由两支队伍组成,每队比赛时上场队员数量为?A. 6人B. 7人C. 8人D. 5人4. 以下哪项不是奥运会的比赛项目?A. 举重B. 射箭C. 棒球D. 蹦床5. 乒乓球比赛中,比赛用球是什么颜色的?A. 红色B. 蓝色C. 黄色D. 白色二、判断题(正确为True,错误为False,共10分)1. 游泳是一项国际奥委会承认的比赛项目。

()2. 篮球比赛中,进球后球员可以运球再次出手。

()3. 乒乓球比赛中,发球时只能用球拍的正面击球。

()4. 体操比赛一般分为男子组和女子组。

()5. 拳击比赛中,击打对手的头部是允许的。

()三、简答题(每题5分,共20分)1. 请简单描述一下足球比赛的比赛规则。

2. 介绍一下游泳比赛时的泳姿有哪些种类。

3. 你知道的任意一项奥运会比赛项目,简单介绍一下该项目的规则和注意事项。

4. 体育锻炼对于身体的好处有哪些?请列举至少三点。

四、大作文题(40分)就你个人而言,体育运动在你生活中的意义是什么?它对你的身心健康有何帮助?你平时都喜欢参加哪种体育活动?为什么会喜欢这种运动?请围绕这些问题展开你的思考并写出你的观点。

注意事项:1. 题目旁边标明的分数为该问题的分值,作文题占总分的40%。

2. 请注意书写工整,语句通顺,逻辑清晰。

3. 作答时请不要抄袭,以保证一个真实的测试成绩。

祝你考试顺利!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

体育统计一、名词解释1.体育统计:是运用数据统计的原理和方法对体育领域里各种随机现象规律性尽兴研究的一门基础应用学科,属方法论学科范畴。

2.体育统计工作的基本过程:1统计资料的搜集;2统计资料的整理;3统计资料的分析。

3.体育统计研究对象的特征:1运动性;2综合性;3客观性。

4.体育统计在体育活动中的作用:1体育统计是体育教育科研活动的基础;2体育统计有助于训练工作的科学化;3体育统计能帮助研究者制定研究设计;4体育统计能帮助研究者有效地获取文献资料。

5.总体:根究统计研究的具体研究目的而确定的同质对象的全体。

6.总体可分为假想总体和现存总体。

现存总体又分为有限总体和无限总体。

7.有限总体:指基本研究单位的边界是明晰的,并且基本研究单位的数量是有限的总体。

8.无限总体:指基本研究单位的数量是无限多的总体。

9.样本:根据需要与可能从总体中抽取的部分研究对象所形成的子集。

可分为随机样本和肥随机样本。

10.随机样本:指采用随机取样方法获得的样本。

非随机样本:指研究者根据研究的需要,寻找具备一定条件的对象所形成的样本。

11.样本含量用n表示,n大于等于45为大样本;n小于45为小样本。

12.等距随机抽样:机械随机抽样是先将总体中的个体按照与研究目的无关的任一特征进行排列,然后根据要求按一定间隔抽取个体组成样本的方法。

13.必然事件:事先能够预言一定会发生的事件。

14.随机事件:在一定的实验条件下,有可能发生也有可能不发生的事件。

15.随机变量:在统计研究中随机事件需由数值来表示,我们把随机事件的数量表现成为随机变量。

随机变量分连续型变量和离散型变量。

16.连续型变量:在一定的范围里,变量的所有的可能取值不能一一列举出来。

17.离散型变量:变量所有的可能取值能一一列举出来。

18.总体参数:反映总体的一些数量特征。

19.样本统计量:样本所获得的一些数量特征。

20.收集资料的方法:1日常积累;2全面普查;3专题研究。

21.简单随机抽样的方法:1抽签法;2随机数表法。

22.整群抽样:是在总体中先划分群,然后以集体为抽样的单位,在按简单随机抽样取出若干群所组成样本的一种抽样方法。

23.频数整理:该方法是将数据资料按一定顺序分成若干组,并数出各组中所含有的数据个数,制成频数分布表。

24.集中位置量数:反映一群性质相同的观察值的平均水平或集中趋势的统计指标。

25.中位数:将样本的观察值按其数值大小顺序排列起来,处于中间位置的那个数值就是中位数。

26.众数:是样本观测值在频数分布表中频数最多的那一组的组中值。

27.几何平均数:是反应集中位置量数的一种方法,它是样本观测值的连乘积,并以样本观测值的总数为次数,开方求得。

28.离中位置量数:描述一群性质相同的观察值的离散程度的统计指标。

29.标准差:方差能全面的反映数据的离散程度,可是由于方差的单位与原观察值的单位不一致,为了统一单位起见,将方差开方,便得到了标准差。

30.标准差:它只能在同一项目的情况下,对不能够组的数据进行离散程度的比较。

31.变异系数也是反映变量的离散程度的统计指标,它是一样本标准差与平均数的百分数来表示的,没有单位,记作CV。

32.变异系数兼顾了标准差与平均数两者,故它不受单位是否相同或所比较的两个项目(或指标)是否相同的条件的限制,即能对性质相同的项目(或指标)的数据进行离散程度的比较,又能对那些性质不同的项目(或)的数据离散程度进行比较。

33.在实际审核数据时,遇到在[X-3S,X+3S]区间外的数据,一班作为可疑数据处理。

34.相对数的作用或意义:1可使原来不能直接相比的数量指标成为可比;2是进行动态分析的重要依据。

35相对数分为有名数和无名数:有名数是有两个性质不同但又有联系的绝对数或平均数指标对比计算所等到的相对数;无名数可以根据不同的情况分别采用倍数、百分数或千分数等来表示。

相对数还可以分为结构相对数、比较相对数、强度相对数、完成程度相对数、动态相对数等种类。

结构相对数:是在分组基础上,以各个分组合计数值与总数值对比的相对数。

比较相对数:是指不同地区(部门、单位、事物)的同期、同类指标进行比较的相对数,它可以反映被比较的事物的差异情况及不平衡程度。

强度相对数:是两个性质不同但有密切联系,又属于同一时期或时点的绝对数或平均数指标的对比36倍数:是将对比的基数抽象化为1而计算出来的相对数。

37.百分数(%):是将对比的基数抽象化为100而计算出来的相对数。

这种形式一般应用于对比的分子数值与分母数值相差不是非常悬殊的场合,若分子过小,如比值为0.06%,则宜用倍数较好。

38.动态:是指各种现象在不同时间的发展过程。

39.动态数列:事物的某一统计指标随时间变化而形成的数据序列。

39.动态分析:用动态数列分析某指标随时间变化而发展的趋势、特征和规律。

40.动态数列的种类:1绝对数动态数列:是指某事物在不同时间上的发展规模、水平等的绝对数所形成的数列。

2相对数动态数列:是由同类事物的相对指标按时间的顺序排列而成的相对数值的动态数组。

3平均数动态数列:是把不同时间的同类指标的平均数按照时间的先后顺序排列而组成的动态数组。

41.U分法:是将原始变量转换成标准正态分布的横轴变量的一种统一单位的方法。

42.Z分法:是根据正态分布理论以差值的方式建立的一种统一变量单位的方法。

43.U分法和z分法的共同特征是等距升分。

35.累进记分法p76 46.36.百分位数法:是以某变量分布的百分位数记录分数,它要求将观测值从小到大进行排列,并以一定的方式把某变量的值转换成分数。

37.F检验是一种整体性检验,当经方差分析鉴别多个正态总体的平均数有差异显著时,并不能说明各组水平之间都存在显著差异,只是说至少有一对差异显著,究竟哪些差异不显著,则还需进行均数的多种比较。

当然,若F检验不显著时,则表明被检验的所有样本均数没有一对差异是显著的,此时无需进行均数的多种比较。

多种比较的方法有图凯法和S 法。

38.试验误差(随机误差):在方差分析的试验中,即使个水平的试验条件完全相同,但由于随机抽样或试验过程中随机因素的影响,气试验结果仍然会存在偏差。

39.条件误差:试验条件的不同引起试验结果的不同。

40.方差分析的目的:要把影响指标的条件误差和随机误差区别开来,从而判断条件误差对指标影响的显著程度。

41.双侧检验:否定域对称分布于曲线两侧的检验。

42.单侧检验:否定域仅存在于分布曲线一侧的检验。

体育统计:运用统计的原理和方法,通过对体育教学,训练,科研和管理中随机现象的描述,推理和分析,揭示其数量规律的一门应用科学。

包括描述统计,假设检验,参数估计,多元统计分析,非参数统计。

定类变量:是最低层次的变量,它的取值只有类别属性之分,而无大小,程度之分。

定序变量:它的测度水平高于定类变量,它的取值出了类别属性之外,还有等级,次序的差别定距变量:水平高于定类,取值除了类别属性之外,取值之间的距离还可以用标准化的距离去度量它,但定距变量没有自然以以下的零点。

样本特征数:描述样本数据分布特征的统计指标,主要分为集中量数和差异量数。

分布参数:描述样本数据分布形状的指标。

集中量数:是反映一组数据集中趋势的特征数,主要包括算术平均数,中位数,百分位数,众数。

中位数:将一组数据按大小顺序排列后,处于中间位置的数,用Me表示差异量数:是反映一组数据离散趋势的特征数,主要包括极差,四分差,方差,标准差,变异系数偏度系数:是反映数据分布的偏斜方向和程度的指标,用sk表示峰度系数:是反映数据分布尖峰或平峰程度的指标,用Ku表示若P(A)《=0.05,则称事件为小概率事件,小小概率事件在一次实验中可看作是不可能事件,认为不可能发生,这一原则称为小概率事件原则相关关系:变量之间存在的不确定的数量关系线性相关系数:对于两个连续性变量来说,描述两个变量之间直线关系的密切程度和相关方向的统计指标完全无关:当两个变量x与y之间,y的变化不受x的影响时(反之亦然)相对数:是两个有关的绝对数之比,也可以是两个统计指标值比动态分析法:是以客观现象所显现出来的数量特征为标准,判断被研究现象是否符合正常发展趋势的要求,探求其偏离正常发展趋势的原因并对未来的发展趋势进行预测的一种统计分析方法。

常见的动态分析指标有定基比,环比,增长率,增长速度率=某现象发生次数!该现象可能发生次数定基比=(报告期水平!基期水平)*100%环比=(报告期水平!前一期水平)*100%组内平方和:随机误差成为组内差异,反映了随机误差造成的差异大小。

用每个样本数据与其各族平均值利差平方和表示,记作Se又叫组内平方和组间平方和:不同的处理造成的差异,称为组间差异,记作Sr表示小概率事件原则:若P(A)<=0.05,则称事件A为小概率事件。

小概率事件在一次试验中可看作不可能事件,认为不可能发生,这一原则称为小概率事件原则。

随机变量:当用一个变量的取值来表示随机试验的结果时,该变量随着试验的不同结果而取不同的值,也就是说变量的取值是随机的。

抽样误差:从同一总体中抽取含量相等的若干样本,由于总体中各个体存在差异,而样本只包含总体的一部分个体,因此每次求得的样本统计量与总体参数或样本统计量之间均存在差异,这种由抽样引起的差异,称为抽样误差。

相关关系:当研究的两个事件或现象之间,既存在着相互影响,相互制约的数量关系,又不像函数关系那样,能由一个变量的数值精确地求出另一个变量的数值来,这类变量间的关系称为相关关系,简称相关。

二、判断题1 相关系数R》1说明两类变量之间一定存在直线相关关系。

(错)2 当R=0.00时表明两变量不存在相关关系(错)3 当两变量间的相关系数达到显著性水平时,说明两变量之间存在明显的相关关系(对)4 当R不等于0时,说明两变量之间错在线性相关关系(错)5 相关系数为负值时,说明相关关系不密切,反之,相关关系密切(错)6 样本含量越大计算得到的相关系数也会越大(错)三.填空题1.统计数据的来源:积累类数据,文献类数据,报表类数据,专题调查类数据2.数据收集方法:观察,实验,问卷调查,访问调查3.变量分类:离散型变量,连续性变量:如果按变量的测度属性分为定类变量,定序变量,定距变量,定比变量变量。

离散型变量:只能取有限个或可数个数值,一般为整数值。

连续型变量:可取任何某一区间内任何数值4.统计调查方案包括的主要内容:调查的目的和内容,调查对象和单位,调查项目,调查表调查时间。

5.抽取样本时,要要遵守(随机抽样)原则,使所有个体被抽中的机会(均等)6.参数估计的方法有(点估计)和(区间估计)7.对总体参数提出的假设可分为原假设和备择假设8,当原假设正确而被拒绝时所犯错误为(第一类);当备择假设正确而被接收时所犯错误为(第二类)9.假设检验所依据的基本原理是(小概率原理)10 变量间的关系包括(函数关系)(相关性关系)11 广义上说变量间可能存在的相关关系包括(线性相关关系)(spearman)(复相关关系)(偏相关关系)12 完全相关即是(函数关系),其相关系数为(1)13 回归直线方程y^=a+bx的参数a是截距,b是回归系数。

相关文档
最新文档