2019版高考数学一轮复习第五章数列课时训练_211
2019-2020年高考数学一轮总复习第五章数列5.3等比数列及其前n项和课时跟踪检测理

2019-2020年高考数学一轮总复习第五章数列5.3等比数列及其前n 项和课时跟踪检测理[课 时 跟 踪 检 测][基 础 达 标]1.已知数列{a n }为等比数列,若a 4+a 6=10,则a 7(a 1+2a 3)+a 3a 9的值为( ) A .10 B .20 C .100D .200解析:a 7(a 1+2a 3)+a 3a 9=a 7a 1+2a 7a 3+a 3a 9=a 24+2a 4a 6+a 26=(a 4+a 6)2=102=100. 答案:C2.设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18 B .-18C.578D .558解析:因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18.所以a 7+a 8+a 9=18.答案:A3.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-5B .-15C .5D .15解析:∵log 3a n +1=log 3a n +1,∴a n +1=3a n . ∴数列{a n }是公比q =3的等比数列. ∵a 5+a 7+a 9=q 3(a 2+a 4+a 6),∴log 13(a 5+a 7+a 9)=log 13(9×33)=log 1335=-5.答案:A4.(xx 届太原一模)在单调递减的等比数列{a n }中,若a 3=1,a 2+a 4=52,则a 1=( )A .2B .4 C. 2D .2 2解析:在等比数列{a n }中,a 2a 4=a 23=1,又a 2+a 4=52,数列{a n }为递减数列,所以a 2=2,a 4=12,所以q 2=a 4a 2=14,所以q =12,a 1=a 2q=4.答案:B5.(xx 届莱芜模拟)已知数列{a n },{b n }满足a 1=b 1=3,a n +1-a n =b n +1b n=3,n ∈N *,若数列{c n }满足c n =ba n ,则c 2 017=( )A .92 016B .272 016C .92 017D .272 017解析:由已知条件知{a n }是首项为3,公差为3的等差数列,数列{b n }是首项为3,公比为3的等比数列,所以a n =3n ,b n =3n. 又c n =ba n =33n, 所以c 2 017=33×2 017=272 017.答案:D6.(xx 届海口市调研测试)设S n 为等比数列{a n }的前n 项和,a 2-8a 5=0,则S 8S 4的值为( )A.12 B .1716 C .2D .17解析:设{a n }的公比为q ,依题意得a 5a 2=18=q 3,因此q =12.注意到a 5+a 6+a 7+a 8=q 4(a 1+a 2+a 3+a 4),即有S 8-S 4=q 4S 4,因此S 8=(q 4+1)S 4,S 8S 4=q 4+1=1716,选B.答案:B7.(xx 届衡阳模拟)在等比数列{a n }中,a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n =( )A .2n +1-2 B .3n C .2nD .3n-1解析:因为数列{a n }为等比数列,a 1=2,设其公比为q ,则a n =2qn -1,因为数列{a n +1}也是等比数列,所以(a n +1+1)2=(a n +1)(a n +2+1)⇒a 2n +1+2a n +1=a n a n +2+a n +a n +2⇒a n +a n+2=2a n +1⇒a n (1+q 2-2q )=0⇒q =1,即a n =2,所以S n =2n ,故选C.答案:C8.(xx 届广州市五校联考)已知数列{a n }的首项a 1=2,数列{b n }为等比数列,且b n =a n +1a n,若b 10b 11=2,则a 21=( )A .29B .210C .211D .212解析:由b n =a n +1a n ,且a 1=2,得b 1=a 2a 1=a 22,a 2=2b 1;b 2=a 3a 2,a 3=a 2b 2=2b 1b 2;b 3=a 4a 3,a 4=a 3b 3=2b 1b 2b 3;…;a n =2b 1b 2b 3…b n -1,所以a 21=2b 1b 2b 3…b 20,又{b n }为等比数列,所以a 21=2(b 1b 20)(b 2b 19)…(b 10b 11)=2(b 10b 11)10=211. 答案:C9.由正数组成的等比数列{a n }满足a 3a 8=32,则log 2a 1+log 2a 2+…+log 2a 10=________. 解析:log 2a 1+log 2a 2+…+log 2a 10=log 2(a 1a 10)·(a 2a 9)·…·(a 5a 6)=log 2(a 3a 8)5=log 2225=25.答案:2510.设S n 为等比数列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________. 解析:因为3S 1,2S 2,S 3成等差数列,所以4S 2=3S 1+S 3,即4(a 1+a 2)=3a 1+a 1+a 2+a 3.化简得a 3a 2=3,即等比数列{a n }的公比q =3,故a n =1×3n -1=3n -1.答案:3n -111.(xx 届南昌模拟)已知公比不为1的等比数列{a n }的首项a 1=12,前n 项和为S n ,且a 4+S 4,a 5+S 5,a 6+S 6成等差数列.(1)求等比数列{a n }的通项公式;(2)对n ∈N *,在a n 与a n +1之间插入3n 个数,使这3n+2个数成等差数列,记插入的这3n个数的和为b n ,求数列{b n }的前n 项和T n .解:(1)因为a 4+S 4,a 5+S 5,a 6+S 6成等差数列, 所以a 5+S 5-a 4-S 4=a 6+S 6-a 5-S 5, 即2a 6-3a 5+a 4=0, 所以2q 2-3q +1=0, 因为q ≠1, 所以q =12,所以等比数列{a n }的通项公式为a n =12n .(2)b n =a n +a n +12·3n=34⎝ ⎛⎭⎪⎫32n ,T n =34×32-⎝ ⎛⎭⎪⎫32n +11-32=94⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32n -1.12.设数列{a n }的前n 项和为S n (n ∈N *).已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n+2+5S n =8S n +1+S n -1. (1)求a 4的值;(2)证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列.解:(1)当n =2时,4S 4+5S 2=8S 3+S 1,即4⎝ ⎛⎭⎪⎫1+32+54+a 4+5⎝ ⎛⎭⎪⎫1+32=81+32+54+1,解得a 4=78.(2)证明:由4S n +2+5S n =8S n +1+S n -1(n ≥2), 得4S n +2-4S n +1+S n -S n -1=4S n +1-4S n (n ≥2), 即4a n +2+a n =4a n +1(n ≥2).∵4a 3+a 1=4×54+1=6=4a 2符合上式,∴4a n +2+a n =4a n +1(n ≥1), ∴a n +2-12a n +1a n +1-12a n=4a n +2-2a n +14a n +1-2a n=4a n +1-a n -2a n +14a n +1-2a n =2a n +1-a n 22a n +1-a n =12,∴数列⎩⎨⎧⎭⎬⎫a n +1-12a n 是以a 2-12a 1=1为首项,12为公比的等比数列.[能 力 提 升]1.若{a n }是正项递增等比数列,T n 表示其前n 项之积,且T 10=T 20,则当T n 取最小值时,n 的值为________.解析:T 10=T 20⇒a 11…a 20=1⇒(a 15a 16)5=1⇒a 15a 16=1,又{a n }是正项递增等比数列,所以0<a 1<a 2<…<a 14<a 15<1<a 16<a 17<…,因此当T n 取最小值时,n 的值为15.答案:152.(xx 届山西吕梁质检)已知数列2,8,4,12,…,该数列的特点是从第2项起,每一项都等于它的前后两项之积,则这个数列的前2 018项之积T 2 018等于________.解析:数列2,8,4,12,…,该数列的特点是从第2项起,每一项都等于它的前后两项之积,这个数列的前8项分别为2,8,4,12,18,14,2,8,易得从第7项起,数字重复出现,所以此数列为周期数列,且周期为6,前6项积为2×8×4×12×18×14=1.又因为2 018=336×6+2,所以这个数列的前2 018项之积T 2 018=1336×2×8=16. 答案:163.已知数列{a n }满足a 1=5,a 2=5,a n +1=a n +6a n -1(n ≥2). (1)求证:{a n +1+2a n }是等比数列; (2)求数列{a n }的通项公式.解:(1)证明:∵a n +1=a n +6a n -1(n ≥2), ∴a n +1+2a n =3a n +6a n -1=3(a n +2a n -1)(n ≥2). ∵a 1=5,a 2=5,∴a 2+2a 1=15, ∴a n +2a n -1≠0(n ≥2),∴a n +1+2a na n +2a n -1=3(n ≥2),∴数列{a n +1+2a n }是以15为首项,3为公比的等比数列. (2)由(1)得a n +1+2a n =15×3n -1=5×3n,则a n +1=-2a n +5×3n, ∴a n +1-3n +1=-2(a n -3n).又∵a 1-3=2,∴a n -3n≠0,∴{a n -3n}是以2为首项,-2为公比的等比数列. ∴a n -3n=2×(-2)n -1,即a n =2×(-2)n -1+3n.2019-2020年高考数学一轮总复习第五章数列5.4数列求和课时跟踪检测理[课 时 跟 踪 检 测][基 础 达 标]1.已知数列{a n }是等差数列,a 1=tan225°,a 5=13a 1,设S n 为数列{(-1)na n }的前n 项和,则S 2 014=( )A .2 015B .-2 015C .3 021D .-3 022解析:由题知a 1=tan(180°+45°)=1,∴a 5=13 ∴d =a 5-a 15-1=124=3. ∴a n =1+3(n -1)=3n -2. 设b n =(-1)na n =(-1)n(3n -2),∴S 2 014=(-1+4)+(-7+10)+…+(-6 037+6 040)=3×1 007=3 021.故选C. 答案:C2.设{a n }是公差不为零的等差数列,a 2=2,且a 1,a 3,a 9成等比数列,则数列{a n }的前n 项和S n =( )A.n 24+7n 4 B .n 22+3n 2C.n 24+3n4D .n 22+n2解析:设等差数列{a n }的公差为d ,则 由a 23=a 1a 9得(a 2+d )2=(a 2-d )(a 2+7d ), 代入a 2=2,解得d =1或d =0(舍). ∴a n =2+(n -2)×1=n , ∴S n =a 1+a n n2=1+n n 2=n 22+n 2.故选D. 答案:D3.等比数列{a n }的前n 项和为S n ,已知a 2a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( )A .29B .31C .33D .36解析:设等比数列{a n }的公比为q 则a 21q 3=2a 1,①a 1q 3+2a 1q 6=52,②解得a 1=16,q =12,∴S 5=a 11-q 51-q=31,故选B.答案:B4.已知等比数列{a n }的各项均为正数,a 1=1,公比为q ;等差数列{b n }中,b 1=3,且{b n }的前n 项和为S n ,a 3+S 3=27,q =S 2a 2.(1)求{a n }与{b n }的通项公式;(2)设数列{c n }满足c n =32S n ,求{c n }的前n 项和T n .解:(1)设数列{b n }的公差为d , ∵a 3+S 3=27,q =S 2a 2,∴⎩⎪⎨⎪⎧q 2+3d =18,6+d =q 2.求得q =3,d =3,∴a n =3n -1,b n =3n .(2)由题意得S n =n 3+3n2,c n =32S n =32×23×1n n +1=1n -1n +1. ∴T n =1-12+12-13+13-14+…+1n -1n +1=1-1n +1=nn +1.5.(xx 届广州综合测试)已知数列{a n }是等比数列,a 2=4,a 3+2是a 2和a 4的等差中项. (1)求数列{a n }的通项公式;(2)设b n =2log 2a n -1,求数列{a n b n }的前n 项和T n . 解:(1)设数列{a n }的公比为q , 因为a 2=4,所以a 3=4q ,a 4=4q 2. 因为a 3+2是a 2和a 4的等差中项, 所以2(a 3+2)=a 2+a 4, 化简得q 2-2q =0. 因为公比q ≠0,所以q =2. 所以a n =a 2qn -2=4×2n -2=2n (n ∈N *).(2)因为a n =2n,所以b n =2log 2a n -1=2n -1, 所以a n b n =(2n -1)2n,则T n =1×2+3×22+5×23+…+(2n -3)2n -1+(2n -1)2n,①2T n =1×22+3×23+5×24+…+(2n -3)2n+(2n -1)·2n +1.②由①-②得,-T n =2+2×22+2×23+…+2×2n -(2n -1)2n +1=2+2×41-2n -11-2-(2n -1)2n +1=-6-(2n -3)2n +1,所以T n =6+(2n -3)2n +1.6.S n 为数列{a n }的前n 项和,已知a n >0,a 2n +2a n =4S n +3. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和.解:(1)由a 2n +2a n =4S n +3,① 可知a 2n +1+2a n +1=4S n +1+3.②②-①,得a 2n +1-a 2n +2(a n +1-a n )=4a n +1, 即2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ). 由a n >0,得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3. 所以{a n }是首项为3,公差为2的等差数列, 通项公式为a n =2n +1. (2)由a n =2n +1可知b n =1a n a n +1=12n +12n +3=12⎝ ⎛⎭⎪⎫12n +1-12n +3.设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n +1-12n +3=n32n +3.7.已知数列{a n }与{b n }满足a n +1-a n =2(b n +1-b n )(n ∈N *). (1)若a 1=1,b n =3n +5,求数列{a n }的通项公式;(2)若a 1=6,b n =2n(n ∈N *)且λa n >2n +n +2λ对一切n ∈N *恒成立, 求实数λ的取值范围.解:(1)因为a n +1-a n =2(b n +1-b n ),b n =3n +5, 所以a n +1-a n =2(b n +1-b n )=2(3n +8-3n -5)=6, 所以{a n }是等差数列,首项为1,公差为6, 即a n =6n -5. (2)因为b n =2n, 所以a n +1-a n =2(2n +1-2n )=2n +1,当n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n +2n -1+…+22+6=2n +1+2,当n =1时,a 1=6,符合上式,所以a n =2n +1+2,由λa n >2n+n +2λ得λ>2n+n 2n +1=12+n 2n +1,令f (n )=12+n 2n +1,因为f (n +1)-f (n )=n +12n +2-n 2n +1=1-n 2n +2≤0, 所以12+n2n +1在n ≥1时单调递减,所以当n =1,2时,2n+n 2n +1取最大值34,故λ的取值范围为⎝ ⎛⎭⎪⎫34,+∞. [能 力 提 升]1.已知数列{a n }的首项为a 1=1,前n 项和为S n ,且数列⎩⎨⎧⎭⎬⎫S n n 是公差为2的等差数列.(1)求数列{a n }的通项公式;(2)若b n =(-1)na n ,求数列{b n }的前n 项和T n . 解:(1)由已知得S n n=1+(n -1)×2=2n -1, 所以S n =2n 2-n , 当n ≥2时,a n =S n -S n -1=2n 2-n -[2(n -1)2-(n -1)]=4n -3. a 1=1=4×1-3,所以a n =4n -3,n ∈N *.(2)由(1)可得b n =(-1)na n =(-1)n(4n -3). 当n 为偶数时,T n =(-1+5)+(-9+13)+…+[-(4n -7)+(4n -3)]=4×n2=2n ,当n 为奇数时,n +1为偶数,T n =T n +1-b n +1=2(n +1)-(4n +1)=-2n +1,综上,T n =⎩⎪⎨⎪⎧2n ,n =2k ,k ∈N *,-2n +1,n =2k -1,k ∈N *.2.在数列{a n }中,已知a n >1,a 1=1+3,且a n +1-a n =2a n +1+a n -2,记b n =(a n -1)2,n ∈N *.(1)求数列{b n }的通项公式;(2)设数列{b n }的前n 项和为S n ,证明:13≤1S 1+1S 2+1S 3+…+1S n <34.解:(1)因为a n +1-a n =2a n +1+a n -2,所以a 2n +1-a 2n -2a n +1+2a n =2, 即(a n +1-1)2-(a n -1)2=2. 又b n =(a n -1)2,n ∈N *,所以b n +1-b n =2,数列{b n }是以b 1=(1+3-1)2=3为首项,2为公差的等差数列, 故b n =2n +1,n ∈N *. (2)证明:由(1)得S n =n 3+2n +12=n (n +2),所以1S n =1nn +2=12⎝ ⎛⎭⎪⎫1n -1n +2,n ∈N *, 所以1S 1+1S 2+1S 3+…+1S n=12⎝ ⎛⎭⎪⎫1-13+12-14+13-15+…+1n -1n +2=12⎝ ⎛⎭⎪⎫32-1n +1-1n +2=34-12⎝ ⎛⎭⎪⎫1n +1+1n +2<34.记T n =1S 1+1S 2+1S 3+…+1S n,因为1S n>0,n ∈N *,所以T n 单调递增.故T n ≥T 1=1S 1=13.综上13≤1S 1+1S 2+…+1S n <34.3.已知各项均为正数的数列{a n }的前n 项和为S n ,且满足a 2n +a n =2S n . (1)求数列{a n }的通项公式; (2)求证:S n2<S 1+S 2+…+S n <S n +1-12.解:(1)因为当n ∈N *时,a 2n +a n =2S n , 故当n >1时,a 2n -1+a n -1=2S n -1,两式相减得,a 2n -a 2n -1+a n -a n -1=2S n -2S n -1=2a n , 即(a n +a n -1)(a n -a n -1)=a n +a n -1.因为a n >0,所以a n +a n -1>0,所以当n >1时,a n -a n -1=1.又当n =1时,a 21+a 1=2S 1=2a 1,得a 1=1, 所以数列{a n }是以1为首项,1为公差的等差数列, 所以a n =n .(2)证明:由(1)及等差数列的前n 项和公式知S n =n n +12,所以S n = n n +12>n 22=n2, 所以S 1+S 2+…+S n >12+22+…+n 2= 1+2+…+n 2=S n 2. 又S n = n n +12<n +122=n +12, 所以S 1+S 2+…+S n <22+32+…+n +12=1+2+…+n +12-12=S n +1-12, 所以S n2<S 1+S 2+…+S n <S n +1-12.。
高考数学一轮复习 第五章 数列 第二节 等差数列学案 文(含解析)新人教A版-新人教A版高三全册数学

第二节 等差数列2019考纲考题考情1.等差数列的有关概念 (1)等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示,定义表达式为a n -a n -1=d (常数)(n ∈N *,n ≥2)或a n +1-a n =d (常数)(n ∈N *)。
(2)等差中项若三个数a ,A ,b 成等差数列,则A 叫做a 与b 的等差中项,且有A =a +b2。
2.等差数列的有关公式 (1)等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d 。
(2)等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =na 1+n (n -1)2d 或S n =n (a 1+a n )2。
3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *)。
(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n 。
(等和性) (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d 。
(4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列。
(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列。
(6)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列。
(7)S 2n -1=(2n -1)a n 。
(8)若n 为偶数,则S 偶-S 奇=nd2;若n 为奇数,则S 奇-S 偶=a 中(中间项)。
1.用等差数列的定义判断数列是否为等差数列,要注意定义中的三个关键词:“从第2项起”“每一项与它的前一项的差”“同一个常数”。
【推荐K12】2019版高考数学一轮复习第五章数列课时训练

第五章 数 列第1课时 数列的概念及其简单表示法一、 填空题1. 数列23,-45,67,-89,…的第10项是________.答案:-2021解析:所给数列呈现分数形式,且正负相间,求通项公式时,我们可以把符号、分母、分子每一部分进行分解,就很容易归纳出数列{a n }的通项公式为a n =(-1)n +1·2n 2n +1,故a 10=-2021.2. 已知数列{a n }满足a n +2=a n +1-a n ,且a 1=2,a 2=3,则a 2 016的值为________. 答案:-1解析:由题意,得a 3=a 2-a 1=1,a 4=a 3-a 2=-2,a 5=a 4-a 3=-3,a 6=a 5-a 4=-1,a 7=a 6-a 5=2,∴ 数列{a n }是周期为6的周期数列.而2 016=6×336,∴ a 2 016=a 6=-1.3. 数列7,9,11,…,2n -1的项数是_________. 答案:n -3解析:易知a 1=7,d =2,设项数为m ,则2n -1=7+(m -1)×2,m =n -3.4. 已知数列{a n }的前n 项和为S n ,且a n ≠0(n∈N *),又a n a n +1=S n ,则a 3-a 1=________. 答案:1解析:因为a n a n +1=S n ,所以令n =1得a 1a 2=S 1=a 1,即a 2=1.令n =2,得a 2a 3=S 2=a 1+a 2,即a 3=1+a 1,所以a 3-a 1=1.5. 已知数列{a n }的前n 项和S n =n 2+2n +1,则{a n }的通项公式为__________.答案:a n =⎩⎪⎨⎪⎧4(n =1),2n +1(n≥2)解析:当n =1时,a 1=S 1=4;当n≥2时,a n =S n -S n -1=2n +1,∴ a n =⎩⎪⎨⎪⎧4(n =1),2n +1(n≥2).6. 已知数列{a n }的前n 项和为S n ,且S n =2a n -1(n ∈N *),则a 5=__________. 答案:16解析:当n =1时,S 1=2a 1-1,∴ a 1=1;当n≥2时,S n =2a n -1,S n -1=2a n -1-1,则有 a n =2a n -2a n -1,∴ a n =2a n -1.∴ {a n }是等比数列,且a 1=1,q =2,故a 5=a 1×q 4=24=16.7. 若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式a n =________.答案:(-2)n -1解析:当n =1时,a 1=1;当n≥2时,a n =S n -S n -1=23a n -23a n -1,则a na n -1=-2,得a n=(-2)n -1.8. 设数列{a n }满足a 1=a ,a n +1=a 2n -2a n +1(n∈N *).若数列{a n }是常数列,则a =________.答案:-2解析:因为数列{a n }是常数列,所以a =a 2=a 21-2a 1+1=a 2-2a +1,即a(a +1)=a 2-2,解得a=-2.9. 数列{a n }的前n 项积为n 2,那么当n≥2时,a n =________.答案:n2(n -1)2解析:设数列{a n }的前n 项积为T n ,则T n =n 2,当n≥2时,a n =T n T n -1=n2(n -1)2.10. 数列{a n }满足:a 1=1,且对任意的m ,n ∈N *都有a n +m =a n +a m +nm ,则a 100=________. 答案:5 050解析:令m =1,则a n +1=a n +1+n ⇒a n +1-a n =n +1⇒a 100=(a 100-a 99)+(a 99-a 98)+…+(a 3-a 2)+(a 2-a 1)+a 1=100+99+…+2+1=5 050.二、 解答题11. 数列{a n }的通项公式是a n =n 2-7n +6. (1) 这个数列的第4项是多少?(2) 150是不是这个数列的项?若是这个数列的项,它是第几项? (3) 该数列从第几项开始各项都是正数?解:(1) 当n =4时,a 4=42-4×7+6=-6.(2) 令a n =150,即n 2-7n +6=150,解得n =16或n =-9(舍去),即150是数列的第16项.(3) 令a n =n 2-7n +6>0,解得n >6或n <1(舍),∴ 从第7项起各项都是正数.12. 已知数列{a n }满足前n 项和S n =n 2+1,数列{b n }满足b n =2a n +1,且前n 项和为T n .设c n =T 2n +1-T n .(1) 求数列{b n }的通项公式; (2) 判断数列{c n }的增减性.解:(1) a 1=2,a n =S n -S n -1=2n -1(n≥2),∴ b n =⎩⎪⎨⎪⎧23(n =1),1n(n≥2).(2) ∵ c n =b n +1+b n +2+…+b 2n +1=1n +1+1n +2+…+12n +1, ∴ c n +1-c n =12n +2+12n +3-1n +1=12n +3-12n +2=-1(2n +3)(2n +2)<0, ∴ c n +1<c n .∴ 数列{c n }为递减数列.13. 已知数列{a n }中,a n =1+1a +2(n -1)(n∈N *,a ∈R ,且a≠0).(1) 若a =-7,求数列{a n }中的最大项和最小项的值;(2) 若对任意的n∈N *,都有a n ≤a 6成立,求a 的取值范围.解:(1) ∵ a n =1+1a +2(n -1)(n∈N *,a ∈R ,且a≠0),又a =-7,∴ a n =1+12n -9(n∈N *).结合函数f(x)=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n∈N *),∴ 数列{a n }中的最大项为a 5=2,最小项为a 4=0.(2) a n =1+1a +2(n -1)=1+12n -2-a2,对任意的n∈N *,都有a n ≤a 6成立,结合函数f(x)=1+12x -2-a 2的单调性,可知5<2-a2<6,即-10<a<-8,即a 的取值范围是(-10,-8).第2课时 等 差 数 列一、 填空题1. 在等差数列{a n }中,a 5=33,公差d =3,则201是该数列的第________项. 答案:61解析:∵ a n =a 5+(n -5)d ,∴ 201=33+3(n -5),n =61.2. 已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,则a 20=________. 答案:1 解析:∵ a 1+a 3+a 5=105,即3a 3=105,解得a 3=35,同理a 2+a 4+a 6=99,得a 4=33.∵ d =a 4-a 3=33-35=-2,∴ a 20=a 4+(20-4)d =33+16×(-2)=1.3. 在等差数列{a n }中,已知a 2+a 8=11,则3a 3+a 11的值为__________. 答案:22解析:3a 3+a 11=a 3+a 3+a 3+a 11=a 3+a 2+a 4+a 11=a 3+a 2+a 7+a 8=2(a 2+a 8)=11×2=22.4. 若等差数列{a n }的前5项和S 5=25,且a 4=3,则a 7=________. 答案:-3解析:S 5=25⇒5(a 1+a 5)2=25⇒a 3=5,所以d =a 4-a 3=-2,a 7=a 4+(7-4)d =3-6=-3.5. 在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时,S n 取最大值,则d 的取值范围是________.答案:-1<d<-78解析:由题意得,a 8>0,a 9<0,所以7+7d>0,7+8d<0,即-1<d<-78.6. 若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.答案:8解析:由等差数列的性质,得a 7+a 8+a 9=3a 8,a 8>0,又a 7+a 10<0,所以a 8+a 9<0,所以a 9<0,所以S 8>S 7,S 8>S 9,故数列{a n }的前8项和最大.7. 若一个等差数列{a n }的前3项和为34,最后3项的和为146,且所有项的和为390,则这个数列有________项.答案:13 解析:a 1+a 2+a 3+a n -2+a n -1+a n =34+146=180,所以3(a 1+a n )=180,即a 1+a n =60.由S n =390,知n (a 1+a n )2=390,所以n×602=390,解得n =13.8. 记等差数列{a n }的前n 项和为S n .已知a 1=2,且数列{S n }也为等差数列,则a 13的值为________.答案:50 解析:数列{S n }为等差数列,得S 1+S 3=2S 2,即2+6+3d =24+d ,则d =4,a 13 =a 1+12d =50.9. 已知等差数列{a n }的前n 项和为S n ,若S 3S 6=13,则S 6S 12=________.答案:310解析: 由等差数列的求和公式可得S 3S 6=3a 1+3d 6a 1+15d =13,可得a 1=2d ,且d≠0,所以S 6S 12=6a 1+15d 12a 1+66d =27d 90d =310.10. 在等差数列{a n }中,a 2=5,a 6=21,记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,若S 2n +1-S n ≤m15对n∈N *恒成立,则正整数m 的最小值为________.答案:5解析:由a 2=5,a 6=21易得等差数列{a n }的通项公式为a n =4n -3,所以1a n =14n -3.故S 2n +1-S n =1a 2n +1+1a 2n +1a 2n -1+…+1a n +2+1a n +1.设T n =S 2n +1-S n ,则T n +1=S 2(n +1)+1-S n +1=S 2n +3-S n +1,所以T n +1-T n =(S 2n +3-S n +1)-(S 2n +1-S n )=(S 2n +3-S 2n +1)-(S n +1-S n )=1a 2n +3+1a 2n +2-1a n +1=14(2n +3)-3+14(2n +2)-3-14(n +1)-3 =18n +9+18n +5-14n +1<18n +2+18n +2-14n +1=28n +2-14n +1=0. 所以T n +1-T n <0,即T n +1<T n .故T n =S 2n +1-S n 随n 的增大而减小,所以若S 2n +1-S n ≤m15对n∈N *恒成立,即(S 2n +1-S n )max =S 3-S 1=1a 3+1a 2=19+15=1445≤m 15.由1445≤m 15得m≥143,所以正整数m 的最小值为5.二、 解答题11. 在等差数列{a n }中,a 1=1,a 3=-3. (1) 求数列{a n }的通项公式;(2) 若数列{a n }的前k 项和S k =-35,求k 的值. 解:(1) 设等差数列{a n }的公差为d ,由a 1=1,a 3=-3,可得1+2d =-3,解得d =-2. 从而a n =1+(n -1)×(-2)=3-2n. (2) 由(1)可知a n =3-2n.所以S n =n[1+(3-2n )]2=2n -n 2.由S k =-35,可得2k -k 2=-35,即k 2-2k -35=0,解得k =7或k =-5.又k∈N *,故k =7.12. 设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足S 5S 6+15=0.(1) 若S 5=5,求S 6及a 1; (2) 求d 的取值范围.解:(1) 由题意知S 6=-15S 5=-3,a 6=S 6-S 5=-8,所以⎩⎪⎨⎪⎧5a 1+10d =5,a 1+5d =-8,解得⎩⎪⎨⎪⎧a 1=7,d =-3,因此S 6=-3,a 1=7.(2) 因为S 5S 6+15=0,所以(5a 1+10d)(6a 1+15d)+15=0,即2a 21+9da 1+10d 2+1=0.故(4a 1+9d)2=d 2-8,所以d 2≥8.故d 的取值范围是d≤-22或d≥2 2. 13. 在等差数列{a n }中,公差d >0,前n 项和为S n ,a 2·a 3=45,a 1+a 5=18. (1) 求数列{a n }的通项公式.(2) 令b n =S n n +c(n∈N *),是否存在一个非零常数c ,使数列{b n }也为等差数列?若存在,求出c 的值;若不存在,请说明理由.解:(1) 由题设,知{a n }是等差数列,且公差d >0,则由⎩⎪⎨⎪⎧a 2a 3=45,a 1+a 5=18,得⎩⎪⎨⎪⎧(a 1+d )(a 1+2d )=45,a 1+(a 1+4d )=18,解得⎩⎪⎨⎪⎧a 1=1,d =4.∴ a n =4n -3(n∈N *).(2) 由b n =S n n +c =n (1+4n -3)2n +c =2n ⎝ ⎛⎭⎪⎫n -12n +c.∵ c ≠0,∴ 可令c =-12,得到b n =2n.∵ b n +1-b n =2(n +1)-2n =2(n∈N *), ∴ 数列{b n }是公差为2的等差数列.即存在一个非零常数c =-12,使数列{b n }也为等差数列.第3课时 等 比 数 列一、 填空题1. 等比数列{a n }的公比大于1,a 5-a 1=15,a 4-a 2=6,则a 3=________. 答案:4解析:由a 5-a 1=15,a 4-a 2=6(q>1),得q =2,a 1=1,则a 3=4.2. 设等比数列{a n }的公比q =12,前n 项和为S n ,则S 4a 4=________.答案:15解析:S 4=a 1(1-q 4)1-q ,a 4=a 1q 3,所以S 4a 4=1-q 4q (1-q )=15.3. 在各项均为正数的等比数列{a n }中,若log 2a 2+log 2a 8=1,则a 3a 7=________. 答案:2解析:由log 2a 2+log 2a 8=1得log 2(a 2a 8)=1,所以a 2a 8=2,由等比数列性质可得a 3a 7=a 2a 8=2.4. 已知等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3依次成等差数列,若a 1=1,则S 5=________ .答案:31解析:因为4a 1,2a 2,a 3依次成等差数列,4a 2=4a 1+a 3,所以4a 1q =4a 1+a 1q 2,所以q=2.又a 1=1,所以S 5=a 1(1-q 5)1-q=31.5. 设S n 是等比数列{a n }的前n 项和,若a 5+2a 10=0,则S 20S 10的值是________.答案:54解析:当q =1时,a 5=a 10=0不合题意,∴ 公比q≠1.∴ q 5=a 10a 5=-12,因而S 20S 10=1-q 201-q 10=1+q 10=1+14=54.6. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯________盏.答案:3 解析:设塔的顶层共有灯x 盏,则各层的灯数构成一个首项为x ,公比为2的等比数列,结合等比数列的求和公式有:x×(1-27)1-2=381,解得x =3,即塔的顶层共有灯3盏.7. 设等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则a 7+a 8+a 9=__________. 答案:448解析:由S 3=7,S 6=63,得a 1+a 2+a 3=7,7+a 4+a 5+a 6=63,则a 4+a 5+a 6=(a 1+a 2+a 3)q 3=56,q 3=8,a 7+a 8+a 9=(a 4+a 5+a 6)q 3=56×8=448.8. 已知等比数列{a n }的前n 项和为S n ,若S 2=2a 2+3,S 3=2a 3+3,则公比q 的值为________.答案:2解析:∵ S 2=2a 2+3,S 3=2a 3+3,∴ a 1=a 1q +3,a 1(1+q)=a 1q 2+3,∴ q 2-2q =0,q ≠0,则公比q =2.9. 在等比数列{a n }中,已知a 1=1,a 4=8,设S 3n 为该数列的前3n 项和,T n 为数列{a 3n }的前n 项和.若S 3n =tT n ,则实数t 的值为________.答案:7解析: ∵a 4=a 1q 3=q 3=8,∴ q =2,S 3n =1-23n1-2=8n -1.由题意知,数列{a 3n }是首项为1,公比为8的等比数列,∴T n =1-8n1-8=17(8n-1).由S 3n =tT n ,得t =7.10. 在正项等比数列{a n }中,若a 4+a 3-2a 2-2a 1=6,则a 5+a 6的最小值为________. 答案:48解析:设 a 2+a 1=x ,等比数列的公比为q ,则a 4+a 3 =xq 2,a 5+a 6 =xq 4.再由a 4+a 3-2a 2-2a 1=6,得 xq 2=6+2x ,∴ x =6q 2-2>0,q >1.∴ a 5+a 6 =xq 4=6q 4q 2-2=6⎝⎛⎭⎪⎫q 2-2+4q 2-2+4≥6×(4+4)=48,当且仅当q 2-2=2时,等号成立,故a 5+a 6的最小值为48.二、 解答题11. 已知{a n }是首项为a 1,公比q 为正数(q≠1)的等比数列,其前n 项和为S n ,且5S 2=4S 4.(1) 求q 的值.(2) 设b n =q +S n ,请判断数列{b n }能否为等比数列?若能,请求出a 1的值;若不能,请说明理由.解:(1) 由题意知,5S 2=4S 4,∴ 5a 1(1-q 2)1-q =4a 1(1-q 4)1-q.∵ a 1≠0,q>0,且q≠1,∴ 4q 4-5q 2+1=0,解得q =12.(2) ∵ S n =a 1(1-q n)1-q =2a 1-a 1⎝ ⎛⎭⎪⎫12n -1,∴ b n =q +S n =12+2a 1-a 1⎝ ⎛⎭⎪⎫12n -1.∴ 当且仅当12+2a 1=0,即a 1=-14时,b n =⎝ ⎛⎭⎪⎫12n +1为等比数列,∴ {b n }能为等比数列,此时a 1=-14.12. 已知等差数列{a n }的公差d 不为0,且ak 1,ak 2,…,ak n ,…(k 1<k 2<…<k n <…)成等比数列,公比为q.(1) 若k 1=1,k 2=3,k 3=8,求a 1d的值;(2) 当a 1d为何值时,数列{k n }为等比数列.解:(1) 由已知可得a 1,a 3,a 8成等比数列,所以(a 1+2d)2=a 1(a 1+7d),整理可得,4d 2=3a 1d.因为d≠0,所以a 1d =43.(2) 设数列{k n }为等比数列,则k 22=k 1k 3.又ak 1,ak 2,ak 3成等比数列,所以[a 1+(k 1-1)d][a 1+(k 3-1)d]=[a 1+(k 2-1)d]2.整理,得a 1(2k 2-k 1-k 3)=d(k 1k 3-k 22-k 1-k 3+2k 2).因为k 22=k 1k 3,所以a 1(2k 2-k 1-k 3)=d(2k 2-k 1-k 3).因为2k 2≠k 1+k 3,所以a 1=d ,即a 1d=1.当a 1d=1时,a n =a 1+(n -1)d =nd ,所以ak n =k n d. 因为ak n =ak 1q n -1=k 1dq n -1,所以k n =k 1q n -1.所以k n +1k n =k 1q nk 1qn -1=q ,数列{k n }为等比数列.综上,当a 1d=1时,数列{k n }为等比数列.13. (2017·苏州期中)已知等比数列{a n }的公比q>1,且满足a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项.(1) 求数列{a n }的通项公式;(2) 若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,求使S n +n·2n +1>62成立的正整数n 的最小值.解:(1) ∵ a 3+2是a 2,a 4的等差中项, ∴ 2(a 3+2)=a 2+a 4,代入a 2+a 3+a 4=28,可得a 3=8, ∴ a 2+a 4=20,∴ ⎩⎪⎨⎪⎧a 1q 2=8,a 1q +a 1q 3=20,解得⎩⎪⎨⎪⎧a 1=2,q =2或⎩⎪⎨⎪⎧a 1=32,q =12. ∵ q>1,∴ ⎩⎪⎨⎪⎧a 1=2,q =2,∴ 数列{a n }的通项公式为a n =2n.(2) ∵ b n =a n log 12a n =2n log 122n =-n·2n,∴ S n =-(1×2+2×22+…+n·2n) ①,2S n =-(1×22+2×23+…+(n -1)·2n +n ·2n +1) ②,②-①得,S n =2+22+23+…+2n -n·2n +1=2(1-2n)1-2-n·2n +1=2n +1-2-n·2n +1.∵ S n +n·2n +1>62,∴ 2n +1-2>62,∴ n +1>6,n>5,∴ 使S n +n·2n +1>62成立的正整数n 的最小值为6.第4课时 数列的求和 一、 填空题1. 在数列{a n }中,若a 1=-2,且对任意的n∈N *有2a n +1=1+2a n ,则数列{a n }前10项的和为________.答案:52解析:由2a n +1=1+2a n 得a n +1-a n =12,所以数列{a n }是首项为-2,公差为12的等差数列,所以S 10=10×(-2)+10×(10-1)2×12=52.2. 已知数列{a n }的通项公式是a n =2n-12n ,其前n 项和S n =32164,则项数n =________.答案:6解析:∵ a n =1-12n ,∴ S n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫1-18+…+⎝ ⎛⎭⎪⎫1-12n =n -(12+14+18+…+12n )=n -12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=n -1+12n .由S n =32164=n -1+12n ,可得出n =6. 3. 数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n =________.答案:n 2+1-12n解析:该数列的通项公式为a n =(2n -1)+12n ,则S n =[1+3+5+…+(2n -1)]+(12+122+…+12n )=n 2+1-12n .4. 已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为________.答案:100101解析:∵ a 5=5,S 5=15,∴ 5(a 1+a 5)2=15,则a 1=1,∴ d =a 5-a 14=1,∴ a n =n ,∴ 1a n a n +1=1n (n +1)=1n -1n +1.设数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和为T n ,则 T 100=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1100-1101=1-1101=100101.5. 已知数列{a n }的前n 项和S n =n 2-6n ,则{|a n |}的前n 项和T n =__________.答案:⎩⎪⎨⎪⎧6n -n 2(1≤n≤3),n 2-6n +18(n>3)解析:由S n =n 2-6n 得{a n }是等差数列,且首项为-5,公差为2,∴ a n =-5+(n -1)×2=2n -7,∴ 当n≤3时,a n <0;当n>3时,a n >0,∴ T n =⎩⎪⎨⎪⎧6n -n 2(1≤n≤3),n 2-6n +18(n>3).6. 数列{a n }的前n 项和为S n ,已知S n =1-2+3-4+…+(-1)n -1·n ,则S 17=________. 答案:9解析:S 17=1-2+3-4+5-6+…+15-16+17=1+(-2+3)+(-4+5)+(-6+7)+…+(-14+15)+(-16+17)=1+1+1+…+1=9.7. 已知数列{a n }:12,13+23,14+24+34,…,110+210+310+…+910,….若b n =1a n a n +1,那么数列{b n }的前n 项和S n =________.答案:4nn +1解析:∵ a n =1+2+3+…+n n +1=n2,∴ b n =1a n a n +1=4n (n +1)=4⎝ ⎛⎭⎪⎫1n -1n +1,∴ S n =4[⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1]=4⎝ ⎛⎭⎪⎫1-1n +1=4n n +1. 8. 已知数列{a n }满足a n +2=-a n (n∈N +),且a 1=1,a 2=2,则数列{a n }的前2 014项的和为________.答案:3解析:∵ a n +2=-a n =-(-a n -2),n >2,∴ 数列{a n }是以4为周期的周期数列.S 2 014=503(a 1+a 2+a 3+a 4)+a 2 013+a 2 014=503(a 1+a 2-a 1-a 2)+a 503×4+1+a 503×4+2=a 1+a 2=3.9. 设数列{a n }满足a 1=1,且a n +1-a n =n +1(n∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.答案:2011解析:∵ a 1=1,a n +1-a n =n +1,∴ a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n.将以上n-1个式子相加得a n -a 1=2+3+…+n =n (n +1)-22,即a n =n (n +1)2.令b n =1a n,故b n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1,故S 10=b 1+b 2+…+b 10=2×(1-12+12-13+…+110-111)=2011. 二、 解答题10. 已知数列{a n }的通项a n =⎩⎪⎨⎪⎧6n -5(n 为奇数),2n (n 为偶数),求其前n 项和S n .解:奇数项组成以a 1=1为首项,公差为12的等差数列,偶数项组成以a 2=4为首项,公比为4的等比数列;当n 为奇数时,奇数项有n +12项,偶数项有n -12项,∴ S n =n +12(1+6n -5)2+4(1-4n -12)1-4=(n +1)(3n -2)2+4(2n -1-1)3;当n 为偶数时,奇数项和偶数项分别有n2项,∴ S n =n 2(1+6n -5)2+4(1-4n 2)1-4=n (3n -2)2+4(2n -1)3,∴ S n =⎩⎪⎨⎪⎧(n +1)(3n -2)2+4(2n -1-1)3(n 为奇数),n (3n -2)2+4(2n-1)3(n 为偶数). 11. 设等差数列{a n }的前n 项和为S n ,且S 3=2S 2+4,a 5=36. (1) 求a n ,S n ;(2) 设b n =S n -1(n∈N *),T n =1b 1+1b 2+1b 3+…+1b n,求T n .解:(1) 因为S 3=2S 2+4,所以a 1-d =-4.因为a 5=36,所以a 1+4d =36,解得d =8,a 1=4,所以a n =4+8(n -1)=8n -4,S n =n (4+8n -4)2=4n 2.(2) 因为b n =4n 2-1=(2n -1)(2n +1),所以1b n =1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,T n =1b 1+1b 2+1b 3+…+1b n=12⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1=12⎝⎛⎭⎪⎫1-12n +1=n2n +1.12. 已知数列{a n }是首项为a 1=14,公比为q =14的等比数列,设b n +2=3log 14a n (n∈N *),数列{c n }满足c n =a n ·b n .(1) 求数列{b n }的通项公式; (2) 求数列{c n }的前n 项和S n .解:(1) 由题意,知a n =⎝ ⎛⎭⎪⎫14n (n∈N *).又b n =3log 14a n -2,故b n =3n -2(n∈N *).(2) 由(1)知a n =⎝ ⎛⎭⎪⎫14n ,b n =3n -2(n∈N *),所以c n =(3n -2)×⎝ ⎛⎭⎪⎫14n (n∈N *),所以S n =1×14+4×⎝ ⎛⎭⎪⎫142+7×⎝ ⎛⎭⎪⎫143+…+(3n -5)×⎝ ⎛⎭⎪⎫14n -1+(3n -2)×⎝ ⎛⎭⎪⎫14n ,于是14S n =1×⎝ ⎛⎭⎪⎫142+4×⎝ ⎛⎭⎪⎫143+7×⎝ ⎛⎭⎪⎫144+…+(3n -5)×⎝ ⎛⎭⎪⎫14n +(3n -2)×(14)n +1,两式相减,得34S n =14+3[(14)2+(14)3+…+(14)n ]-(3n -2)×⎝ ⎛⎭⎪⎫14n +1=12-(3n +2)×(14)n +1,所以S n =23-3n +23×⎝ ⎛⎭⎪⎫14n (n∈N *).13. 在等差数列{a n }中,已知公差d =2,a 2是a 1与a 4的等比中项. (1) 求数列{a n }的通项公式;(2) 设b n =a n (n +1)2,记T n =-b 1+b 2-b 3+b 4-…+(-1)nb n ,求T n .解:(1) 由题意知(a 1+d)2=a 1(a 1+3d),即(a 1+2)2=a 1(a 1+6),解得a 1=2, 所以数列{a n }的通项公式为a n =2n.(2) 由题意知b n =a n (n +1)2=n(n +1),则b n +1-b n =2(n +1),所以T n =-1×2+2×3-3×4+…+(-1)nn ×(n +1). 当n 为偶数时,T n =(-b 1+b 2)+(-b 3+b 4)+…+(-b n -1+b n )=4+8+12+…+2n =n2(4+2n )2=n (n +2)2,当n 为奇数时,T n =T n -1+(-b n )=(n -1)(n +1)2-n(n +1)=-(n +1)22,所以T n =⎩⎪⎨⎪⎧-(n +1)22,n 为奇数,n (n +2)2,n 为偶数.第5课时 数列的综合应用一、 填空题1. 在等差数列{a n }中,满足3a 4=7a 7,且a 1>0,S n 是数列{a n }的前n 项和,若S n 取得最大值,则n =________.答案:9解析:设公差d ,由题设知3(a 1+3d)=7(a 1+6d),得d =-433a 1<0,解不等式a n >0,即a 1+(n -1)⎝ ⎛⎭⎪⎫-433a 1>0,解得n <374,则n≤9时,a n >0,同理可得n≥10时,a n <0,故当n =9时,S n 取得最大值.2. 在等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 9+a 10a 7+a 8=________.答案:3+2 2解析:∵ a 1,12a 3,2a 2成等差数列,∴ 2×12a 3=a 1+2a 2,即a 3=a 1+2a 2.设等比数列{a n }的公比为q 且q >0,则a 3=a 1q 2,a 2=a 1q ,∴ a 1q 2=a 1+2a 1q ,∴ q 2=1+2q ,解得q =1+2或1-2(舍),∴a 9+a 10a 7+a 8=a 9(1+q )a 7(1+q )=q 2=(2+1)2=3+2 2.3. 在数列{a n }中,S n 是其前n 项和,且S n =2a n +1,则数列的通项公式a n =________.答案:a n =-2n -1解析:依题意得S n +1=2a n +1+1,S n =2a n +1,两式相减得S n +1-S n =2a n +1-2a n ,即a n +1=2a n .又S 1=2a 1+1=a 1,所以a 1=-1,所以数列{a n }是以a 1=-1为首项,2为公比的等比数列,所以a n =-2n -1.4. 等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为________.答案:-24解析:设等差数列的公差为d ,由a 2,a 3,a 6成等比数列可得a 23=a 2a 6,即(1+2d)2=(1+d)(1+5d),整理可得d 2+2d =0.因为公差不为0,所以d =-2,数列的前6项和为S 6=6a 1+6×(6-1)2d =6×1+6×(6-1)2×(-2)=-24.5. 设等比数列{a n }的前n 项和为S n ,若S 3,S 9,S 6成等差数列,且a 2+a 5=4,则a 8的值为________.答案:2解析:∵ 等比数列{a n }的前n 项和为S n ,若S 3,S 9,S 6成等差数列,且a 2+a 5=4,∴ q ≠1,⎩⎪⎨⎪⎧2×a 1(1-q 9)1-q =a 1(1-q 3)1-q +a 1(1-q 6)1-q ,a 1q +a 1q 4=4,解得a 1q =8,q 3=-12,∴ a 8=a 1q 7=(a 1q)(q 3)2=8×14=2.6. 在等差数列{a n }中,已知首项a 1>0,公差d >0.若a 1+a 2≤60,a 2+a 3≤100,则5a 1+a 5的最大值为________.答案:200解析:由a 1+a 2≤60,a 2+a 3≤100得2a 1+d≤60,2a 1+3d≤100,a 1>0,d >0.由线性规划的知识得5a 1+a 5=6a 1+4d ,过点(20,20)时,取最大值为200.7. 设正项数列{a n }的前n 项和是S n ,{a n }和{S n }都是等差数列,则S n +10a n的最小值是____________.答案:21解析:由题设知S n =⎝⎛⎭⎪⎫a 1-d 2n +d 2n 2.又S n 为等差数列,从而a 1=d 2,从而a n =a 1+(n -1)d =d ⎝ ⎛⎭⎪⎫n -12,S n =d 2n 2,∴ S n +10a n =d 2(n +10)2d ⎝ ⎛⎭⎪⎫n -12=(n +10)22⎝ ⎛⎭⎪⎫n -12=(n +10)22n -1.令2n -1=t(t≥1),原式=⎝ ⎛⎭⎪⎫t +12+102t =14·⎝ ⎛⎭⎪⎫t +441t +42≥14·⎝ ⎛⎭⎪⎫2t·441t +42=21,从而当t =21,即n =11时,原式取到最小值21.8. 中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走了378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”问此人第4天和第5天共走了________里.答案:36解析:由题意知,此人每天走的里数构成公比为12的等比数列,设等比数列的首项为a 1,则有a 1⎝ ⎛⎭⎪⎫1-1261-12=378,解得a 1=192,所以a 4=192×18=24,a 5=24×12=12,a 4+a 5=24+12=36,所以此人第4天和第5天共走了36里.9. 已知{a n },{b n }均为等比数列,其前n 项和分别为S n ,T n ,若对任意的n∈N *,总有S n T n=3n+14,则a 3b 3=________.答案:9解析:设{a n },{b n }的公比分别为q ,q ′,∵ S n T n =3n+14,∴ 当n =1时,a 1=b 1.当n =2时,a 1+a 1q b 1+b 1q ′=52.当n =3时,a 1+a 1q +a 1q2b 1+b 1q ′+b 1q ′2=7,∴ 2q -5q′=3,7q ′2+7q′-q 2-q +6=0,解得q =9,q ′=3,∴ a 3b 3=a 1q 2b 1q ′2=9.10. 现有一根n 节的竹竿,自上而下每节的长度依次构成等差数列,最上面一节长为10 cm ,最下面的三节长度之和为114 cm ,第6节的长度是首节与末节长度的等比中项,则n =________.答案:16解析:设每节竹竿的长度对应的数列为{a n },公差为d(d >0).由题意知a 1=10,a n +a n -1+a n -2=114,a 26=a 1a n .由a n +a n -1+a n -2=114,得3a n -1=114,解得a n -1=38,∴ (a 1+5d)2=a 1(a n -1+d),即(10+5d)2=10(38+d),解得d =2,∴a n -1=a 1+(n -2)d =38,即10+2(n -2)=38,解得n =16.二、 解答题11. 设数列{a n }的前n 项和为S n ,满足2S n =a n +1-2n +1+1,且a 1,a 2+5,a 3成等差数列. (1) 求a 1,a 2的值;(2) 求证:数列{a n +2n}是等比数列,并求数列{a n }的通项公式. (1) 解:由已知,得2a 1=a 2-3 ①, 2(a 1+a 2)=a 3-7 ②,又a 1,a 2+5,a 3成等差数列, 所以a 1+a 3=2a 2+10 ③, 解①②③,得a 1=1,a 2=5.(2) 证明:由已知,n ∈N *时,2(S n +1-S n )=a n +2-a n +1-2n +2+2n +1,即a n +2=3a n +1+2n +1,即a n +1=3a n +2n(n≥2),由(1)得,a 2=3a 1+2,∴ a n +1=3a n +2n (n∈N *),从而有a n +1+2n +1=3a n +2n +2n +1=3a n +3×2n =3(a n +2n).又a 1+2>0,∴ a n +2n>0,∴ a n +1+2n +1a n +2n =3,∴ 数列{a n +2n}是等比数列,且公比为3,∴ a n +2n =(a 1+2)×3n -1=3n ,即a n =3n -2n. 12. 商学院为推进后勤社会化改革,与桃园新区商定,由该区向建设银行贷款500万元在桃园新区为学院建一栋可容纳一千人的学生公寓,工程于2017年初动工,年底竣工并交付使用,公寓管理处采用收费偿还建行贷款形式(年利率5%,按复利计算),公寓所收费用除去物业管理费和水电费18万元,其余部分全部用于年底还建行贷款.(1) 若公寓收费标准定为每生每年800元,问到哪一年可偿还建行全部贷款?(2) 若公寓管理处要在2025年年底把贷款全部还清,则每生每年的最低收费标准是多少元(精确到元)?(参考数据:lg 1.734 3≈0.239 1,lg 1.05≈0.021 2,1.058≈1.477 4)解:(1) 设公寓投入使用后n 年可偿还全部贷款,则公寓每年收费总额为1 000×800=800 000(元)=80万元,扣除18万元,可偿还贷款62万元.依题意有62[1+(1+5%)+(1+5%)2+…+(1+5%)n -1]≥500(1+5%)n +1,化简得62(1.05n-1)≥25×1.05n +1,∴ 1.05n≥1.734 3.两边取对数并整理得 n ≥lg 1.734 3lg 1.05≈0.239 10.021 2≈11.28,∴ 当取n =12时,即到2029年底可全部还清贷款.(2) 设每生每年的最低收费标准为x 元,因到2025年底公寓共使用了8年,依题意有⎝ ⎛⎭⎪⎫1 000x 10 000-18[1+(1+5%)+(1+5%)2+…+(1+5%)7]≥500(1+5%)9.化简得(0.1x -18)×1.058-11.05-1≥500×1.059,解得x≥992,∴ 每生每年的最低收费标准为992元.13. 已知数列{a n },{b n }满足2S n =(a n +2)b n ,其中S n 是数列{a n }的前n 项和.(1) 若数列{a n }是首项为23,公比为-13的等比数列,求数列{b n }的通项公式;(2) 若b n =n ,a 2=3,求数列{a n }的通项公式;(3) 在(2)的条件下,设c n =a nb n,求证:数列{c n }中的任意一项总可以表示成该数列其他两项之积.(1) 解:因为a n =23⎝ ⎛⎭⎪⎫-13n -1=-2⎝ ⎛⎭⎪⎫-13n ,S n =23⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-13n 1-⎝ ⎛⎭⎪⎫-13=12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-13n ,所以b n =2S n a n +2=1-⎝ ⎛⎭⎪⎫-13n -2⎝ ⎛⎭⎪⎫-13n +2=12.(2) 解:若b n =n ,则2S n =na n +2n , 所以2S n +1=(n +1)a n +1+2(n +1),两式相减得2a n +1=(n +1)a n +1-na n +2,即na n =(n -1)a n +1+2.当n≥2时,(n -1)a n -1=(n -2)a n +2,两式相减得(n -1)a n -1+(n -1)a n +1=2(n -1)a n , 即a n -1+a n +1=2a n .由2S 1=a 1+2,得a 1=2,又a 2=3,所以数列{a n }是首项为2,公差为3-2=1的等差数列, 故数列{a n }的通项公式是a n =n +1.(3) 证明:由(2)得c n =n +1n,对于给定的n∈N *,若存在k ,t ≠n ,k ,t ∈N *,使得c n=c k ·c t ,只需n +1n =k +1k ·t +1t ,即1+1n =⎝⎛⎭⎪⎫1+1k ·⎝ ⎛⎭⎪⎫1+1t ,即1n =1k +1t +1kt ,则t =n (k +1)k -n , 取k =n +1,则t =n(n +2),所以对数列{c n }中的任意一项c n =n +1n ,都存在c n +1=n +2n +1和c n2+2n =n 2+2n +1n +2n,使得c n =c n +1·c n2+2n .。
2019版高考数学一轮复习第5章数列5.4数列求和习题课件文

2.已知等差数列{an}的前 n 项和为 Sn,且满足S33-S22= 1,则数列{an}的公差是( )
∵672×3=2016,∴S2016=672S3=6720.
B级 三、解答题 15.已知 Sn 是数列{an}的前 n 项和,且满足 Sn-2an=n -4. (1)证明:{Sn-n+2}为等比数列; (2)求数列{Sn}的前 n 项和 Tn.
解 (1)证明:由题意知 Sn-2(Sn-Sn-1)=n-4(n≥2), 即 Sn=2Sn-1-n+4,
∴S3=a1+a1+2 1+3a12+1=3a1+1=10,解得 a1=3, 此时数列{an}为 3,2,5,3,2,5,….当 a1 为偶数时,a2=3a1-1, 此时 a2 为奇数,则 a3=a2+2 1=3a1-21+1=32a1,∴S3=a1 +3a1-1+32a1=121a1-1=10,解得 a1=2,此时数列{an}为 2,5,3,2,5,3,….上述三种情况中,数列{an}均为周期数列.
10.(2017·江西九校联考)已知数列{an}是等比数列,数
列{bn}是等差数列,若 a1·a6·a11=3 3,b1+b6+b11=7π,则
tan1b-3+a4b·a98的值是(
)
A.1
2 B. 2
C.-
2 2
D.- 3
解析 {an}是等比数列,{bn}是等差数列,且 a1·a6·a11 =3 3,b1+b6+b11=7π,∴a36=( 3)3,3b6=7π,∴a6= 3, b6=73π,∴tan1b-3+a4b·a98=tan12-b6a26=tan1-2× 733π2=tan-73π= tan-2π-π3=-tanπ3=- 3.故选 D.
2019版高考数学一轮复习第五章数列课时训练_【含答案】

第五章 数 列第1课时 数列的概念及其简单表示法一、 填空题1. 数列23,-45,67,-89,…的第10项是________.答案:-2021解析:所给数列呈现分数形式,且正负相间,求通项公式时,我们可以把符号、分母、分子每一部分进行分解,就很容易归纳出数列{a n }的通项公式为a n =(-1)n +1·2n 2n +1,故a 10=-2021.2. 已知数列{a n }满足a n +2=a n +1-a n ,且a 1=2,a 2=3,则a 2 016的值为________. 答案:-1解析:由题意,得a 3=a 2-a 1=1,a 4=a 3-a 2=-2,a 5=a 4-a 3=-3,a 6=a 5-a 4=-1,a 7=a 6-a 5=2,∴ 数列{a n }是周期为6的周期数列.而2 016=6×336,∴ a 2 016=a 6=-1.3. 数列7,9,11,…,2n -1的项数是_________. 答案:n -3解析:易知a 1=7,d =2,设项数为m ,则2n -1=7+(m -1)×2,m =n -3.4. 已知数列{a n }的前n 项和为S n ,且a n ≠0(n∈N *),又a n a n +1=S n ,则a 3-a 1=________. 答案:1解析:因为a n a n +1=S n ,所以令n =1得a 1a 2=S 1=a 1,即a 2=1.令n =2,得a 2a 3=S 2=a 1+a 2,即a 3=1+a 1,所以a 3-a 1=1.5. 已知数列{a n }的前n 项和S n =n 2+2n +1,则{a n }的通项公式为__________.答案:a n =⎩⎪⎨⎪⎧4(n =1),2n +1(n≥2)解析:当n =1时,a 1=S 1=4;当n≥2时,a n =S n -S n -1=2n +1,∴ a n =⎩⎪⎨⎪⎧4(n =1),2n +1(n≥2).6. 已知数列{a n }的前n 项和为S n ,且S n =2a n -1(n ∈N *),则a 5=__________. 答案:16解析:当n =1时,S 1=2a 1-1,∴ a 1=1;当n≥2时,S n =2a n -1,S n -1=2a n -1-1,则有 a n =2a n -2a n -1,∴ a n =2a n -1.∴ {a n }是等比数列,且a 1=1,q =2,故a 5=a 1×q 4=24=16.7. 若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式a n =________.答案:(-2)n -1解析:当n =1时,a 1=1;当n≥2时,a n =S n -S n -1=23a n -23a n -1,则a n a n -1=-2,得a n =(-2)n -1.8. 设数列{a n }满足a 1=a ,a n +1=a 2n -2a n +1(n∈N *).若数列{a n }是常数列,则a =________.答案:-2解析:因为数列{a n }是常数列,所以a =a 2=a 21-2a 1+1=a 2-2a +1,即a(a +1)=a 2-2,解得a =-2.9. 数列{a n }的前n 项积为n 2,那么当n≥2时,a n =________.答案:n2(n -1)2解析:设数列{a n }的前n 项积为T n ,则T n =n 2,当n ≥2时,a n =T n T n -1=n 2(n -1)2.10. 数列{a n }满足:a 1=1,且对任意的m ,n ∈N *都有a n +m =a n +a m +nm ,则a 100=________. 答案:5 050解析:令m =1,则a n +1=a n +1+n ⇒a n +1-a n =n +1⇒a 100=(a 100-a 99)+(a 99-a 98)+…+(a 3-a 2)+(a 2-a 1)+a 1=100+99+…+2+1=5 050.二、 解答题11. 数列{a n }的通项公式是a n =n 2-7n +6. (1) 这个数列的第4项是多少?(2) 150是不是这个数列的项?若是这个数列的项,它是第几项? (3) 该数列从第几项开始各项都是正数?解:(1) 当n =4时,a 4=42-4×7+6=-6.(2) 令a n =150,即n 2-7n +6=150,解得n =16或n =-9(舍去),即150是数列的第16项.(3) 令a n =n 2-7n +6>0,解得n >6或n <1(舍),∴ 从第7项起各项都是正数.12. 已知数列{a n }满足前n 项和S n =n 2+1,数列{b n }满足b n =2a n +1,且前n 项和为T n .设c n =T 2n +1-T n .(1) 求数列{b n }的通项公式; (2) 判断数列{c n }的增减性.解:(1) a 1=2,a n =S n -S n -1=2n -1(n≥2),∴ b n =⎩⎪⎨⎪⎧23(n =1),1n(n≥2).(2) ∵ c n =b n +1+b n +2+…+b 2n +1=1n +1+1n +2+…+12n +1, ∴ c n +1-c n =12n +2+12n +3-1n +1=12n +3-12n +2=-1(2n +3)(2n +2)<0, ∴ c n +1<c n .∴ 数列{c n }为递减数列.13. 已知数列{a n }中,a n =1+1a +2(n -1)(n∈N *,a ∈R ,且a≠0).(1) 若a =-7,求数列{a n }中的最大项和最小项的值;(2) 若对任意的n∈N *,都有a n ≤a 6成立,求a 的取值范围.解:(1) ∵ a n =1+1a +2(n -1)(n∈N *,a ∈R ,且a≠0),又a =-7,∴ a n =1+12n -9(n∈N *).结合函数f(x)=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n∈N *),∴ 数列{a n }中的最大项为a 5=2,最小项为a 4=0.(2) a n =1+1a +2(n -1)=1+12n -2-a 2,对任意的n∈N *,都有a n ≤a 6成立,结合函数f(x)=1+12x -2-a2的单调性,可知5<2-a2<6,即-10<a<-8,即a 的取值范围是(-10,-8).第2课时 等 差 数 列一、 填空题1. 在等差数列{a n }中,a 5=33,公差d =3,则201是该数列的第________项. 答案:61解析:∵ a n =a 5+(n -5)d ,∴ 201=33+3(n -5),n =61.2. 已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,则a 20=________. 答案:1解析:∵ a 1+a 3+a 5=105,即3a 3=105,解得a 3=35,同理a 2+a 4+a 6=99,得a 4=33.∵ d=a 4-a 3=33-35=-2,∴ a 20=a 4+(20-4)d =33+16×(-2)=1.3. 在等差数列{a n }中,已知a 2+a 8=11,则3a 3+a 11的值为__________. 答案:22解析:3a 3+a 11=a 3+a 3+a 3+a 11=a 3+a 2+a 4+a 11=a 3+a 2+a 7+a 8=2(a 2+a 8)=11×2=22. 4. 若等差数列{a n }的前5项和S 5=25,且a 4=3,则a 7=________. 答案:-3解析:S 5=25⇒5(a 1+a 5)2=25⇒a 3=5,所以d =a 4-a 3=-2,a 7=a 4+(7-4)d =3-6=-3.5. 在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时,S n 取最大值,则d 的取值范围是________.答案:-1<d<-78解析:由题意得,a 8>0,a 9<0,所以7+7d>0,7+8d<0,即-1<d<-78.6. 若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大. 答案:8解析:由等差数列的性质,得a 7+a 8+a 9=3a 8,a 8>0,又a 7+a 10<0,所以a 8+a 9<0,所以a 9<0,所以S 8>S 7,S 8>S 9,故数列{a n }的前8项和最大.7. 若一个等差数列{a n }的前3项和为34,最后3项的和为146,且所有项的和为390,则这个数列有________项.答案:13解析:a 1+a 2+a 3+a n -2+a n -1+a n =34+146=180,所以3(a 1+a n )=180,即a 1+a n =60.由S n =390,知n (a 1+a n )2=390,所以n×602=390,解得n =13. 8. 记等差数列{a n }的前n 项和为S n .已知a 1=2,且数列{S n }也为等差数列,则a 13的值为________. 答案:50解析:数列{S n }为等差数列,得S 1+S 3=2S 2,即2+6+3d =24+d ,则d =4,a 13 =a 1+12d =50.9. 已知等差数列{a n }的前n 项和为S n ,若S 3S 6=13,则S 6S 12=________.答案:310解析: 由等差数列的求和公式可得S 3S 6=3a 1+3d 6a 1+15d =13,可得a 1=2d ,且d≠0,所以S 6S 12=6a 1+15d 12a 1+66d =27d 90d =310.10. 在等差数列{a n }中,a 2=5,a 6=21,记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,若S 2n +1-S n ≤m 15对n∈N *恒成立,则正整数m 的最小值为________.答案:5解析:由a 2=5,a 6=21易得等差数列{a n }的通项公式为a n =4n -3,所以1a n =14n -3.故S 2n +1-S n =1a 2n +1+1a 2n+1a 2n -1+…+1a n +2+1a n +1. 设T n =S 2n +1-S n ,则T n +1=S 2(n +1)+1-S n +1=S 2n +3-S n +1,所以T n +1-T n =(S 2n +3-S n +1)-(S 2n +1-S n )=(S 2n +3-S 2n +1)-(S n +1-S n )=1a 2n +3+1a 2n +2-1a n +1=14(2n +3)-3+14(2n +2)-3-14(n +1)-3 =18n +9+18n +5-14n +1<18n +2+18n +2-14n +1=28n +2-14n +1=0. 所以T n +1-T n <0,即T n +1<T n .故T n =S 2n +1-S n 随n 的增大而减小,所以若S 2n +1-S n ≤m 15对n∈N *恒成立,即(S 2n+1-S n )max =S 3-S 1=1a 3+1a 2=19+15=1445≤m 15.由1445≤m 15得m≥143,所以正整数m 的最小值为5. 二、 解答题11. 在等差数列{a n }中,a 1=1,a 3=-3. (1) 求数列{a n }的通项公式;(2) 若数列{a n }的前k 项和S k =-35,求k 的值.解:(1) 设等差数列{a n }的公差为d ,由a 1=1,a 3=-3,可得1+2d =-3,解得d =-2. 从而a n =1+(n -1)×(-2)=3-2n. (2) 由(1)可知a n =3-2n.所以S n =n[1+(3-2n )]2=2n -n 2.由S k =-35,可得2k -k 2=-35,即k 2-2k -35=0,解得k =7或k =-5.又k∈N *,故k =7.12. 设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足S 5S 6+15=0. (1) 若S 5=5,求S 6及a 1; (2) 求d 的取值范围.解:(1) 由题意知S 6=-15S 5=-3,a 6=S 6-S 5=-8,所以⎩⎪⎨⎪⎧5a 1+10d =5,a 1+5d =-8,解得⎩⎪⎨⎪⎧a 1=7,d =-3,因此S 6=-3,a 1=7.(2) 因为S 5S 6+15=0,所以(5a 1+10d)(6a 1+15d)+15=0,即2a 21+9da 1+10d 2+1=0.故(4a 1+9d)2=d 2-8,所以d 2≥8.故d 的取值范围是d≤-22或d≥2 2. 13. 在等差数列{a n }中,公差d >0,前n 项和为S n ,a 2·a 3=45,a 1+a 5=18. (1) 求数列{a n }的通项公式.(2) 令b n =S n n +c(n∈N *),是否存在一个非零常数c ,使数列{b n }也为等差数列?若存在,求出c 的值;若不存在,请说明理由.解:(1) 由题设,知{a n }是等差数列,且公差d >0,则由⎩⎪⎨⎪⎧a 2a 3=45,a 1+a 5=18,得⎩⎪⎨⎪⎧(a 1+d )(a 1+2d )=45,a 1+(a 1+4d )=18,解得⎩⎪⎨⎪⎧a 1=1,d =4.∴ a n =4n -3(n∈N *).(2) 由b n =S n n +c =n (1+4n -3)2n +c =2n ⎝ ⎛⎭⎪⎫n -12n +c.∵ c ≠0,∴ 可令c =-12,得到b n =2n.∵ b n +1-b n =2(n +1)-2n =2(n∈N *), ∴ 数列{b n }是公差为2的等差数列.即存在一个非零常数c =-12,使数列{b n }也为等差数列.第3课时 等 比 数 列一、 填空题1. 等比数列{a n }的公比大于1,a 5-a 1=15,a 4-a 2=6,则a 3=________. 答案:4解析:由a 5-a 1=15,a 4-a 2=6(q>1),得q =2,a 1=1,则a 3=4.2. 设等比数列{a n }的公比q =12,前n 项和为S n ,则S 4a 4=________.答案:15解析:S 4=a 1(1-q 4)1-q ,a 4=a 1q 3,所以S 4a 4=1-q 4q 3(1-q )=15.3. 在各项均为正数的等比数列{a n }中,若log 2a 2+log 2a 8=1,则a 3a 7=________. 答案:2解析:由log 2a 2+log 2a 8=1得log 2(a 2a 8)=1,所以a 2a 8=2,由等比数列性质可得a 3a 7=a 2a 8=2.4. 已知等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3依次成等差数列,若a 1=1,则S 5=________ . 答案:31解析:因为4a 1,2a 2,a 3依次成等差数列,4a 2=4a 1+a 3,所以4a 1q =4a 1+a 1q 2,所以q =2.又a 1=1,所以S 5=a 1(1-q 5)1-q=31.5. 设S n 是等比数列{a n }的前n 项和,若a 5+2a 10=0,则S 20S 10的值是________.答案:54解析:当q =1时,a 5=a 10=0不合题意,∴ 公比q≠1.∴ q 5=a 10a 5=-12,因而S 20S 10=1-q 201-q 10=1+q 10=1+14=54.6. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯________盏.答案:3解析:设塔的顶层共有灯x 盏,则各层的灯数构成一个首项为x ,公比为2的等比数列,结合等比数列的求和公式有:x×(1-27)1-2=381,解得x =3,即塔的顶层共有灯3盏.7. 设等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则a 7+a 8+a 9=__________. 答案:448解析:由S 3=7,S 6=63,得a 1+a 2+a 3=7,7+a 4+a 5+a 6=63,则a 4+a 5+a 6=(a 1+a 2+a 3)q 3=56,q 3=8,a 7+a 8+a 9=(a 4+a 5+a 6)q 3=56×8=448.8. 已知等比数列{a n }的前n 项和为S n ,若S 2=2a 2+3,S 3=2a 3+3,则公比q 的值为________. 答案:2解析:∵ S 2=2a 2+3,S 3=2a 3+3,∴ a 1=a 1q +3,a 1(1+q)=a 1q 2+3,∴ q 2-2q =0,q ≠0,则公比q =2.9. 在等比数列{a n }中,已知a 1=1,a 4=8,设S 3n 为该数列的前3n 项和,T n 为数列{a 3n }的前n 项和.若S 3n=tT n ,则实数t 的值为________.答案:7解析: ∵a 4=a 1q 3=q 3=8,∴ q =2,S 3n =1-23n1-2=8n -1.由题意知,数列{a 3n }是首项为1,公比为8的等比数列,∴T n =1-8n1-8=17(8n-1).由S 3n =tT n ,得t =7.10. 在正项等比数列{a n }中,若a 4+a 3-2a 2-2a 1=6,则a 5+a 6的最小值为________. 答案:48解析:设 a 2+a 1=x ,等比数列的公比为q ,则a 4+a 3 =xq 2,a 5+a 6 =xq 4.再由a 4+a 3-2a 2-2a 1=6,得 xq2=6+2x ,∴ x =6q 2-2>0,q >1.∴ a 5+a 6 =xq 4=6q 4q 2-2=6⎝⎛⎭⎪⎫q 2-2+4q 2-2+4≥6×(4+4)=48,当且仅当q 2-2=2时,等号成立,故a 5+a 6的最小值为48.二、 解答题11. 已知{a n }是首项为a 1,公比q 为正数(q≠1)的等比数列,其前n 项和为S n ,且5S 2=4S 4. (1) 求q 的值.(2) 设b n =q +S n ,请判断数列{b n }能否为等比数列?若能,请求出a 1的值;若不能,请说明理由. 解:(1) 由题意知,5S 2=4S 4,∴ 5a 1(1-q 2)1-q =4a 1(1-q 4)1-q.∵ a 1≠0,q>0,且q≠1,∴ 4q 4-5q 2+1=0,解得q =12.(2) ∵ S n =a 1(1-q n)1-q =2a 1-a 1⎝ ⎛⎭⎪⎫12n -1,∴ b n =q +S n =12+2a 1-a 1⎝ ⎛⎭⎪⎫12n -1.∴ 当且仅当12+2a 1=0,即a 1=-14时,b n =⎝ ⎛⎭⎪⎫12n +1为等比数列,∴ {b n }能为等比数列,此时a 1=-14.12. 已知等差数列{a n }的公差d 不为0,且ak 1,ak 2,…,ak n ,…(k 1<k 2<…<k n <…)成等比数列,公比为q.(1) 若k 1=1,k 2=3,k 3=8,求a 1d的值;(2) 当a 1d为何值时,数列{k n }为等比数列.解:(1) 由已知可得a 1,a 3,a 8成等比数列,所以(a 1+2d)2=a 1(a 1+7d),整理可得,4d 2=3a 1d.因为d≠0,所以a 1d =43.(2) 设数列{k n }为等比数列,则k 22=k 1k 3.又ak 1,ak 2,ak 3成等比数列,所以[a 1+(k 1-1)d][a 1+(k 3-1)d]=[a 1+(k 2-1)d]2.整理,得a 1(2k 2-k 1-k 3)=d(k 1k 3-k 22-k 1-k 3+2k 2).因为k 22=k 1k 3,所以a 1(2k 2-k 1-k 3)=d(2k 2-k 1-k 3).因为2k 2≠k 1+k 3,所以a 1=d ,即a 1d=1.当a 1d=1时,a n =a 1+(n -1)d =nd ,所以ak n =k n d. 因为ak n =ak 1q n -1=k 1dq n -1,所以k n =k 1q n -1.所以k n +1k n =k 1q nk 1qn -1=q ,数列{k n }为等比数列.综上,当a 1d=1时,数列{k n }为等比数列.13. (2017·苏州期中)已知等比数列{a n }的公比q>1,且满足a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项. (1) 求数列{a n }的通项公式;(2) 若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,求使S n +n·2n +1>62成立的正整数n 的最小值.解:(1) ∵ a 3+2是a 2,a 4的等差中项, ∴ 2(a 3+2)=a 2+a 4,代入a 2+a 3+a 4=28,可得a 3=8, ∴ a 2+a 4=20,∴ ⎩⎪⎨⎪⎧a 1q 2=8,a 1q +a 1q 3=20,解得⎩⎪⎨⎪⎧a 1=2,q =2或⎩⎪⎨⎪⎧a 1=32,q =12. ∵ q>1,∴ ⎩⎪⎨⎪⎧a 1=2,q =2,∴ 数列{a n }的通项公式为a n =2n.(2) ∵ b n =a n log 12a n =2n log 122n =-n·2n,∴ S n =-(1×2+2×22+…+n·2n) ①,2S n =-(1×22+2×23+…+(n -1)·2n +n ·2n +1) ②,②-①得,S n =2+22+23+…+2n -n·2n +1=2(1-2n)1-2-n·2n +1=2n +1-2-n·2n +1.∵ S n +n·2n +1>62,∴ 2n +1-2>62,∴ n +1>6,n>5,∴ 使S n +n·2n +1>62成立的正整数n 的最小值为6.第4课时 数列的求和一、 填空题1. 在数列{a n }中,若a 1=-2,且对任意的n∈N *有2a n +1=1+2a n ,则数列{a n }前10项的和为________.答案:52解析:由2a n +1=1+2a n 得a n +1-a n =12,所以数列{a n }是首项为-2,公差为12的等差数列,所以S 10=10×(-2)+10×(10-1)2×12=52.2. 已知数列{a n }的通项公式是a n =2n-12n ,其前n 项和S n =32164,则项数n =________.答案:6解析:∵ a n =1-12n ,∴ S n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫1-18+…+⎝ ⎛⎭⎪⎫1-12n =n -(12+14+18+…+12n )=n -12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=n -1+12n .由S n =32164=n -1+12n ,可得出n =6. 3. 数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n =________.答案:n 2+1-12n解析:该数列的通项公式为a n =(2n -1)+12n ,则S n =[1+3+5+…+(2n -1)]+(12+122+…+12n )=n 2+1-12n . 4. 已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为________. 答案:100101解析:∵ a 5=5,S 5=15,∴ 5(a 1+a 5)2=15,则a 1=1,∴ d =a 5-a 14=1,∴ a n =n ,∴ 1a n a n +1=1n (n +1)=1n -1n +1.设数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和为T n ,则 T 100=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1100-1101=1-1101=100101.5. 已知数列{a n }的前n 项和S n =n 2-6n ,则{|a n |}的前n 项和T n =__________.答案:⎩⎪⎨⎪⎧6n -n 2(1≤n≤3),n 2-6n +18(n>3)解析:由S n =n 2-6n 得{a n }是等差数列,且首项为-5,公差为2,∴ a n =-5+(n -1)×2=2n -7,∴ 当n≤3时,a n <0;当n>3时,a n >0,∴ T n =⎩⎪⎨⎪⎧6n -n 2(1≤n≤3),n 2-6n +18(n>3).6. 数列{a n }的前n 项和为S n ,已知S n =1-2+3-4+…+(-1)n -1·n ,则S 17=________. 答案:9解析:S 17=1-2+3-4+5-6+…+15-16+17=1+(-2+3)+(-4+5)+(-6+7)+…+(-14+15)+(-16+17)=1+1+1+…+1=9.7. 已知数列{a n }:12,13+23,14+24+34,…,110+210+310+…+910,….若b n =1a n a n +1,那么数列{b n }的前n项和S n =________.答案:4nn +1解析:∵ a n =1+2+3+…+n n +1=n2,∴ b n =1a n a n +1=4n (n +1)=4⎝ ⎛⎭⎪⎫1n -1n +1,∴ S n =4[⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1]=4⎝ ⎛⎭⎪⎫1-1n +1=4n n +1. 8. 已知数列{a n }满足a n +2=-a n (n∈N +),且a 1=1,a 2=2,则数列{a n }的前2 014项的和为________.答案:3 解析:∵ a n +2=-a n =-(-a n -2),n >2,∴ 数列{a n }是以4为周期的周期数列.S 2 014=503(a 1+a 2+a 3+a 4)+a 2 013+a 2 014=503(a 1+a 2-a 1-a 2)+a 503×4+1+a 503×4+2=a 1+a 2=3.9. 设数列{a n }满足a 1=1,且a n +1-a n =n +1(n∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.答案:2011解析:∵ a 1=1,a n +1-a n =n +1,∴ a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n.将以上n -1个式子相加得a n-a 1=2+3+…+n =n (n +1)-22,即a n =n (n +1)2.令b n =1a n ,故b n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1,故S 10=b 1+b 2+…+b 10=2×(1-12+12-13+…+110-111)=2011.二、 解答题10. 已知数列{a n }的通项a n =⎩⎪⎨⎪⎧6n -5(n 为奇数),2n (n 为偶数),求其前n 项和S n .解:奇数项组成以a 1=1为首项,公差为12的等差数列,偶数项组成以a 2=4为首项,公比为4的等比数列;当n 为奇数时,奇数项有n +12项,偶数项有n -12项,∴ S n =n +12(1+6n -5)2+4(1-4n -12)1-4=(n +1)(3n -2)2+4(2n -1-1)3;当n 为偶数时,奇数项和偶数项分别有n2项,∴ S n =n 2(1+6n -5)2+4(1-4n 2)1-4=n (3n -2)2+4(2n -1)3,∴ S n =⎩⎪⎨⎪⎧(n +1)(3n -2)2+4(2n -1-1)3(n 为奇数),n (3n -2)2+4(2n-1)3(n 为偶数). 11. 设等差数列{a n }的前n 项和为S n ,且S 3=2S 2+4,a 5=36. (1) 求a n ,S n ;(2) 设b n =S n -1(n∈N *),T n =1b 1+1b 2+1b 3+…+1b n,求T n .解:(1) 因为S 3=2S 2+4,所以a 1-d =-4.因为a 5=36,所以a 1+4d =36,解得d =8,a 1=4,所以a n =4+8(n -1)=8n -4,S n =n (4+8n -4)2=4n 2.(2) 因为b n =4n 2-1=(2n -1)(2n +1),所以1b n =1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,T n =1b 1+1b 2+1b 3+…+1b n=12⎝⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1=12⎝⎛⎭⎪⎫1-12n +1=n2n +1. 12. 已知数列{a n }是首项为a 1=14,公比为q =14的等比数列,设b n +2=3log 14a n (n∈N *),数列{c n }满足c n =a n ·b n .(1) 求数列{b n }的通项公式; (2) 求数列{c n }的前n 项和S n .解:(1) 由题意,知a n =⎝ ⎛⎭⎪⎫14n(n∈N *).又b n =3log 14a n -2,故b n =3n -2(n∈N *).(2) 由(1)知a n =⎝ ⎛⎭⎪⎫14n ,b n =3n -2(n∈N *),所以c n =(3n -2)×⎝ ⎛⎭⎪⎫14n (n∈N *),所以S n =1×14+4×⎝ ⎛⎭⎪⎫142+7×⎝ ⎛⎭⎪⎫143+…+(3n -5)×⎝ ⎛⎭⎪⎫14n -1+(3n -2)×⎝ ⎛⎭⎪⎫14n ,于是14S n =1×⎝ ⎛⎭⎪⎫142+4×⎝ ⎛⎭⎪⎫143+7×⎝ ⎛⎭⎪⎫144+…+(3n -5)×⎝ ⎛⎭⎪⎫14n +(3n -2)×(14)n +1,两式相减,得34S n =14+3[(14)2+(14)3+…+(14)n ]-(3n -2)×⎝ ⎛⎭⎪⎫14n +1=12-(3n +2)×(14)n +1,所以S n =23-3n +23×⎝ ⎛⎭⎪⎫14n (n∈N *).13. 在等差数列{a n }中,已知公差d =2,a 2是a 1与a 4的等比中项. (1) 求数列{a n }的通项公式;(2) 设b n =a n (n +1)2,记T n =-b 1+b 2-b 3+b 4-…+(-1)nb n ,求T n .解:(1) 由题意知(a 1+d)2=a 1(a 1+3d),即(a 1+2)2=a 1(a 1+6),解得a 1=2, 所以数列{a n }的通项公式为a n =2n.(2) 由题意知b n =a n (n +1)2=n(n +1),则b n +1-b n =2(n +1),所以T n =-1×2+2×3-3×4+…+(-1)nn ×(n +1). 当n 为偶数时,T n =(-b 1+b 2)+(-b 3+b 4)+…+(-b n -1+b n )=4+8+12+…+2n =n2(4+2n )2=n (n +2)2,当n 为奇数时,T n =T n -1+(-b n )=(n -1)(n +1)2-n(n +1)=-(n +1)22,所以T n =⎩⎪⎨⎪⎧-(n +1)22,n 为奇数,n (n +2)2,n 为偶数.第5课时 数列的综合应用一、 填空题1. 在等差数列{a n }中,满足3a 4=7a 7,且a 1>0,S n 是数列{a n }的前n 项和,若S n 取得最大值,则n =________. 答案:9解析:设公差d ,由题设知3(a 1+3d)=7(a 1+6d),得d =-433a 1<0,解不等式a n >0,即a 1+(n -1)⎝ ⎛⎭⎪⎫-433a 1>0,解得n <374,则n≤9时,a n >0,同理可得n≥10时,a n <0,故当n =9时,S n 取得最大值.2. 在等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 9+a 10a 7+a 8=________.答案:3+2 2解析:∵ a 1,12a 3,2a 2成等差数列,∴ 2×12a 3=a 1+2a 2,即a 3=a 1+2a 2.设等比数列{a n }的公比为q 且q >0,则a 3=a 1q 2,a 2=a 1q ,∴ a 1q 2=a 1+2a 1q ,∴ q 2=1+2q ,解得q =1+2或1-2(舍),∴a 9+a 10a 7+a 8=a 9(1+q )a 7(1+q )=q 2=(2+1)2=3+2 2.3. 在数列{a n }中,S n 是其前n 项和,且S n =2a n +1,则数列的通项公式a n =________.答案:a n =-2n -1解析:依题意得S n +1=2a n +1+1,S n =2a n +1,两式相减得S n +1-S n =2a n +1-2a n ,即a n +1=2a n .又S 1=2a 1+1=a 1,所以a 1=-1,所以数列{a n }是以a 1=-1为首项,2为公比的等比数列,所以a n =-2n -1.4. 等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为________. 答案:-24解析:设等差数列的公差为d ,由a 2,a 3,a 6成等比数列可得a 23=a 2a 6,即(1+2d)2=(1+d)(1+5d),整理可得d 2+2d =0.因为公差不为0,所以d =-2,数列的前6项和为S 6=6a 1+6×(6-1)2d =6×1+6×(6-1)2×(-2)=-24.5. 设等比数列{a n }的前n 项和为S n ,若S 3,S 9,S 6成等差数列,且a 2+a 5=4,则a 8的值为________. 答案:2解析:∵ 等比数列{a n }的前n 项和为S n ,若S 3,S 9,S 6成等差数列,且a 2+a 5=4,∴ q ≠1,⎩⎪⎨⎪⎧2×a 1(1-q 9)1-q =a 1(1-q 3)1-q +a 1(1-q 6)1-q ,a 1q +a 1q 4=4,解得a 1q =8,q 3=-12,∴ a 8=a 1q 7=(a 1q)(q 3)2=8×14=2.6. 在等差数列{a n }中,已知首项a 1>0,公差d >0.若a 1+a 2≤60,a 2+a 3≤100,则5a 1+a 5的最大值为________.答案:200解析:由a 1+a 2≤60,a 2+a 3≤100得2a 1+d≤60,2a 1+3d≤100,a 1>0,d >0.由线性规划的知识得5a 1+a 5=6a 1+4d ,过点(20,20)时,取最大值为200.7. 设正项数列{a n }的前n 项和是S n ,{a n }和{S n }都是等差数列,则S n +10a n的最小值是____________.答案:21解析:由题设知S n =⎝ ⎛⎭⎪⎫a 1-d 2n +d 2n 2.又S n 为等差数列,从而a 1=d 2,从而a n =a 1+(n -1)d =d ⎝ ⎛⎭⎪⎫n -12,S n=d 2n 2,∴ S n +10a n =d 2(n +10)2d ⎝ ⎛⎭⎪⎫n -12=(n +10)22⎝ ⎛⎭⎪⎫n -12=(n +10)22n -1.令2n -1=t(t≥1),原式=⎝ ⎛⎭⎪⎫t +12+102t =14·⎝ ⎛⎭⎪⎫t +441t +42≥14·⎝ ⎛⎭⎪⎫2t·441t +42=21,从而当t =21,即n =11时,原式取到最小值21. 8. 中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走了378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”问此人第4天和第5天共走了________里.答案:36解析:由题意知,此人每天走的里数构成公比为12的等比数列,设等比数列的首项为a 1,则有a 1⎝ ⎛⎭⎪⎫1-1261-12=378,解得a 1=192,所以a 4=192×18=24,a 5=24×12=12,a 4+a 5=24+12=36,所以此人第4天和第5天共走了36里.9. 已知{a n },{b n }均为等比数列,其前n 项和分别为S n ,T n ,若对任意的n∈N *,总有S n T n =3n+14,则a 3b 3=________. 答案:9解析:设{a n },{b n }的公比分别为q ,q ′,∵ S n T n =3n +14, ∴ 当n =1时,a 1=b 1.当n =2时,a 1+a 1q b 1+b 1q ′=52.当n =3时,a 1+a 1q +a 1q 2b 1+b 1q ′+b 1q ′2=7,∴ 2q -5q′=3,7q ′2+7q′-q 2-q +6=0,解得q =9,q ′=3,∴ a 3b 3=a 1q 2b 1q ′2=9. 10. 现有一根n 节的竹竿,自上而下每节的长度依次构成等差数列,最上面一节长为10 cm ,最下面的三节长度之和为114 cm ,第6节的长度是首节与末节长度的等比中项,则n =________.答案:16解析:设每节竹竿的长度对应的数列为{a n },公差为d(d >0).由题意知a 1=10,a n +a n -1+a n -2=114,a 26=a 1a n .由a n +a n -1+a n -2=114,得3a n -1=114,解得a n -1=38,∴ (a 1+5d)2=a 1(a n -1+d),即(10+5d)2=10(38+d),解得d =2,∴a n -1=a 1+(n -2)d =38,即10+2(n -2)=38,解得n =16.二、 解答题11. 设数列{a n }的前n 项和为S n ,满足2S n =a n +1-2n +1+1,且a 1,a 2+5,a 3成等差数列.(1) 求a 1,a 2的值;(2) 求证:数列{a n +2n }是等比数列,并求数列{a n }的通项公式.(1) 解:由已知,得2a 1=a 2-3 ①,2(a 1+a 2)=a 3-7 ②,又a 1,a 2+5,a 3成等差数列,所以a 1+a 3=2a 2+10 ③,解①②③,得a 1=1,a 2=5.(2) 证明:由已知,n ∈N *时,2(S n +1-S n )=a n +2-a n +1-2n +2+2n +1,即a n +2=3a n +1+2n +1,即a n +1=3a n +2n (n≥2),由(1)得,a 2=3a 1+2,∴ a n +1=3a n +2n (n∈N *),从而有a n +1+2n +1=3a n +2n +2n +1=3a n +3×2n =3(a n +2n ).又a 1+2>0,∴ a n +2n >0,∴ a n +1+2n +1a n +2n =3, ∴ 数列{a n +2n }是等比数列,且公比为3,∴ a n +2n =(a 1+2)×3n -1=3n ,即a n =3n -2n .12. 商学院为推进后勤社会化改革,与桃园新区商定,由该区向建设银行贷款500万元在桃园新区为学院建一栋可容纳一千人的学生公寓,工程于2017年初动工,年底竣工并交付使用,公寓管理处采用收费偿还建行贷款形式(年利率5%,按复利计算),公寓所收费用除去物业管理费和水电费18万元,其余部分全部用于年底还建行贷款.(1) 若公寓收费标准定为每生每年800元,问到哪一年可偿还建行全部贷款?(2) 若公寓管理处要在2025年年底把贷款全部还清,则每生每年的最低收费标准是多少元(精确到元)?(参考数据:lg 1.734 3≈0.239 1,lg 1.05≈0.021 2,1.058≈1.477 4)解:(1) 设公寓投入使用后n 年可偿还全部贷款,则公寓每年收费总额为1 000×800=800 000(元)=80万元,扣除18万元,可偿还贷款62万元.依题意有62[1+(1+5%)+(1+5%)2+…+(1+5%)n -1]≥500(1+5%)n +1,化简得62(1.05n -1)≥25×1.05n +1,∴ 1.05n ≥1.734 3.两边取对数并整理得n ≥lg 1.734 3lg 1.05≈0.239 10.021 2≈11.28, ∴ 当取n =12时,即到2029年底可全部还清贷款.(2) 设每生每年的最低收费标准为x 元,因到2025年底公寓共使用了8年,依题意有⎝ ⎛⎭⎪⎫1 000x 10 000-18[1+(1+5%)+(1+5%)2+…+(1+5%)7]≥500(1+5%)9. 化简得(0.1x -18)×1.058-11.05-1≥500×1.059, 解得x≥992,∴ 每生每年的最低收费标准为992元.13. 已知数列{a n },{b n }满足2S n =(a n +2)b n ,其中S n 是数列{a n }的前n 项和.(1) 若数列{a n }是首项为23,公比为-13的等比数列,求数列{b n }的通项公式; (2) 若b n =n ,a 2=3,求数列{a n }的通项公式;(3) 在(2)的条件下,设c n =a n b n,求证:数列{c n }中的任意一项总可以表示成该数列其他两项之积. (1) 解:因为a n =23⎝ ⎛⎭⎪⎫-13n -1=-2⎝ ⎛⎭⎪⎫-13n , S n =23⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-13n 1-⎝ ⎛⎭⎪⎫-13=12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-13n , 所以b n =2S n a n +2=1-⎝ ⎛⎭⎪⎫-13n -2⎝ ⎛⎭⎪⎫-13n +2=12. (2) 解:若b n =n ,则2S n =na n +2n ,所以2S n +1=(n +1)a n +1+2(n +1),两式相减得2a n +1=(n +1)a n +1-na n +2,即na n =(n -1)a n +1+2.当n≥2时,(n -1)a n -1=(n -2)a n +2,两式相减得(n -1)a n -1+(n -1)a n +1=2(n -1)a n ,即a n -1+a n +1=2a n .由2S 1=a 1+2,得a 1=2,又a 2=3,所以数列{a n }是首项为2,公差为3-2=1的等差数列,故数列{a n }的通项公式是a n =n +1.(3) 证明:由(2)得c n =n +1n,对于给定的n∈N *,若存在k ,t ≠n ,k ,t ∈N *,使得c n =c k ·c t , 只需n +1n =k +1k ·t +1t ,即1+1n =⎝⎛⎭⎪⎫1+1k ·⎝ ⎛⎭⎪⎫1+1t , 即1n =1k +1t +1kt ,则t =n (k +1)k -n, 取k =n +1,则t =n(n +2),所以对数列{c n }中的任意一项c n =n +1n ,都存在c n +1=n +2n +1和c n2+2n =n 2+2n +1n 2+2n ,使得c n =c n +1·c n2+2n .。
一轮复习课时训练§5.2: 等差数列及其前n项和

第五章§2:等差数列及其前n 项和(与一轮复习课件对应的课时训练)满分100,训练时间45钟一、选择题:本大题共5小题,每小题8分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知{a n }为等差数列,且a 7-2a 4=-1,a 3=0,则公差d 等于A .-2B .-12 C.12 D .22.如果等差数列{a n }中,a 3+a 4+a 5=12,那么a 1+a 2+…+a 7等于A .14B .21C .28D .363.若向量a n =(cos2nθ,sinnθ),b n =(1,2sinnθ),数列{x n }满足x n =(a n ·b n )2-1,则{x n }是A .等差数列B .等比数列C .既是等差数列,又是等比数列D .既不是等差数列,又不是等比数列4.数列{a n }满足a 1=1,a 2=23,且1a n -1+1a n +1=2a n(n ≥2),则a 5等于A.13 B .3 C .4 D .145.已知数列{a n }满足a 1=8,a 2=0,a 3=-7,且数列{a n +1-a n }为等差数列,则a n 的最小值为A .-30B .-29C .-28D .-27二、填空题:本大题共3小题,每小题8分,共24分.6.若数列{a n }满足a n +a n +2=2a n +1,且S 9=27.则a 2+a 8=______.7.设等差数列{a n }的前n 项和为S n ,若S 3=a 6=12,则{a n }的通项公式为______. 8.已知数列{a n }满足递推关系式a n +1=2a n +2n -1(n ∈N *),且{a n +λ2n}为等差数列,则λ的值是________.三、解答题:本大题共2小题,共36分.解答应写出文字说明、证明过程或演算步骤.9.(本小题满分18分,(1)小问8分,(2)小问10分)已知数列{a n }是一个等差数列,且a 2=1,a 5=-5. (1)求{a n }的通项a n ;(2)求{a n }前n 项和S n 的最大值.10.(本小题满分18分,(1)小问8分,(2)小问10分)已知数列{a n }的前n 项和为S n ,a 1=1,nS n +1-(n +1)S n =n 2+cn(c ∈R ,n =1,2,3,…),且S 1,S 22,S 33成等差数列.(1)求c 的值;(2)求数列{a n }的通项公式.参考答案及其解析一、选择题:本大题共5小题,每小题8分,共40分.1.解析:a 7-2a 4=a 3+4d -2(a 3+d)=-a 3+2d =2d =-1,∴d =-12.答案:B2.解析:∵a 3+a 4+a 5=12,∴3a 4=12,a 4=4.∴a 1+a 2+…+a 7=7(a 1+a 7)2=7a 4=28.答案:C3.解析:a n ·b n =cos2nθ+2sin 2nθ=1,x n =0,{x n }是等差数列.答案:A4.解析:因为1a n -1+1a n +1=2a n ,所以1a n +1-1a n =1a n -1a n -1,所以{1a n }为等差数列,d =1a 2-1a 1=12,1a n =1+12(n -1)=n +12,1a 5=5+12=3,所以a 5=13. 答案:A5.解析:由已知a 2-a 1=-8,a 3-a 2=-7.又∵{a n +1-a n }为等差数列,∴a n +1-a n =n -9.a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =8-8-7+…+(n -10)=8+(n -18)(n -1)2=n 22-192n +17. ∴当n =9或10时a n 取最小值为-28. 答案:C二、填空题:本大题共3小题,每小题8分,共24分.6.解析:由a n +a n +2=2a n +1得{a n }为等差数列.∵S 9=27,∴9(a 1+a 9)2=27.∴a 1+a 9=6,∴a 2+a 8=6. 答案:67.解析:设公差为d ,则⎩⎪⎨⎪⎧3a 1+3d =12a 1+5d =12,∴⎩⎪⎨⎪⎧a 1=2d =2,∴a n =2n. 答案:a n =2n8.解析:由a n +1=2a n +2n -1可得a n +12n +1=a n 2n +12-12n +1,则a n +1+λ2n +1-a n +λ2n =a n +12n +1-a n 2n -λ2n +1=12-12n +1-λ2n +1=12-λ+12n +1,当λ的值是-1时,数列{a n -12n }是公差为12的等差数列. 答案:-1三、解答题:本大题共2小题,共36分.9.(本小题满分18分,(1)小问8分,(2)小问10分)解:(1)设{a n }的公差为d ,由已知条件,有⎩⎪⎨⎪⎧a 1+d =1a 1+4d =-5,解出a 1=3,d =-2.所以a n =a 1+(n -1)d =-2n +5. (2)S n =na 1+n (n -1)2d =-n 2+4n =4-(n -2)2. 所以n =2时,S n 取到最大值4.10.(本小题满分18分,(1)小问8分,(2)小问10分)解:(1)∵nS n +1-(n +1)S n =n 2+cn(n =1,2,3,…), ∴S n +1n +1-S n n =n 2+cnn (n +1)(n =1,2,3,…). ∵S 1,S 22,S 33成等差数列,∴S 22-S 11=S 33-S 22.∴1+c 2=4+2c 6, ∴c =1. (2)由(1)得S n +1n +1-S n n =1(n =1,2,3,…).∴数列{S n n }是首项为S 11,公差为1的等差数列.∴S n n =S 11+(n -1)·1=n. ∴S n =n 2.当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1. 当n =1时,上式也成立,∴{a n }的通项公式是a n =2n -1(n =1,2,3,…).。
〖高考数学总复习〗2019数学高考专题复习《第五章数列》课时训练(含答案)

第五章 数列第1课时 数列的概念及其简单表示法一、 填空题1. 数列23,-45,67,-89,…的第10项是________.答案:-2021解析:所给数列呈现分数形式,且正负相间,求通项公式时,我们可以把符号、分母、分子每一部分进行分解,就很容易归纳出数列{a n }的通项公式为a n =(-1)n +1·2n 2n +1,故a 10=-2021.2. 已知数列{a n }满足a n +2=a n +1-a n ,且a 1=2,a 2=3,则a 2 016的值为________. 答案:-1解析:由题意,得a 3=a 2-a 1=1,a 4=a 3-a 2=-2,a 5=a 4-a 3=-3,a 6=a 5-a 4=-1,a 7=a 6-a 5=2,∴ 数列{a n }是周期为6的周期数列.而2 016=6×336,∴ a 2 016=a 6=-1.3. 数列7,9,11,…,2n -1的项数是_________. 答案:n -3解析:易知a 1=7,d =2,设项数为m ,则2n -1=7+(m -1)×2,m =n -3.4. 已知数列{a n }的前n 项和为S n ,且a n ≠0(n∈N *),又a n a n +1=S n ,则a 3-a 1=________. 答案:1解析:因为a n a n +1=S n ,所以令n =1得a 1a 2=S 1=a 1,即a 2=1.令n =2,得a 2a 3=S 2=a 1+a 2,即a 3=1+a 1,所以a 3-a 1=1.5. 已知数列{a n }的前n 项和S n =n 2+2n +1,则{a n }的通项公式为__________.答案:a n =⎩⎪⎨⎪⎧4(n =1),2n +1(n≥2)解析:当n =1时,a 1=S 1=4;当n≥2时,a n =S n -S n -1=2n +1,∴ a n =⎩⎪⎨⎪⎧4(n =1),2n +1(n≥2).6. 已知数列{a n }的前n 项和为S n ,且S n =2a n -1(n ∈N *),则a 5=__________. 答案:16解析:当n =1时,S 1=2a 1-1,∴ a 1=1;当n≥2时,S n =2a n -1,S n -1=2a n -1-1,则有 a n =2a n -2a n -1,∴ a n =2a n -1.∴ {a n }是等比数列,且a 1=1,q =2,故a 5=a 1×q 4=24=16.7. 若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式a n =________.答案:(-2)n -1解析:当n =1时,a 1=1;当n≥2时,a n =S n -S n -1=23a n -23a n -1,则a na n -1=-2,得a n=(-2)n -1.8. 设数列{a n }满足a 1=a ,a n +1=a 2n -2a n +1(n∈N *).若数列{a n }是常数列,则a =________.答案:-2解析:因为数列{a n }是常数列,所以a =a 2=a 21-2a 1+1=a 2-2a +1,即a(a +1)=a 2-2,解得a=-2.9. 数列{a n }的前n 项积为n 2,那么当n≥2时,a n =________.答案:n2(n -1)2解析:设数列{a n }的前n 项积为T n ,则T n =n 2,当n≥2时,a n =T n T n -1=n2(n -1)2.10. 数列{a n }满足:a 1=1,且对任意的m ,n ∈N *都有a n +m =a n +a m +nm ,则a 100=________. 答案:5 050解析:令m =1,则a n +1=a n +1+n ⇒a n +1-a n =n +1⇒a 100=(a 100-a 99)+(a 99-a 98)+…+(a 3-a 2)+(a 2-a 1)+a 1=100+99+…+2+1=5 050.二、 解答题11. 数列{a n }的通项公式是a n =n 2-7n +6. (1) 这个数列的第4项是多少?(2) 150是不是这个数列的项?若是这个数列的项,它是第几项? (3) 该数列从第几项开始各项都是正数?解:(1) 当n =4时,a 4=42-4×7+6=-6.(2) 令a n =150,即n 2-7n +6=150,解得n =16或n =-9(舍去),即150是数列的第16项.(3) 令a n =n 2-7n +6>0,解得n >6或n <1(舍),∴ 从第7项起各项都是正数.12. 已知数列{a n }满足前n 项和S n =n 2+1,数列{b n }满足b n =2a n +1,且前n 项和为T n .设c n =T 2n +1-T n .(1) 求数列{b n }的通项公式; (2) 判断数列{c n }的增减性.解:(1) a 1=2,a n =S n -S n -1=2n -1(n≥2),∴ b n =⎩⎪⎨⎪⎧23(n =1),1n(n≥2).(2) ∵ c n =b n +1+b n +2+…+b 2n +1=1n +1+1n +2+…+12n +1, ∴ c n +1-c n =12n +2+12n +3-1n +1=12n +3-12n +2=-1(2n +3)(2n +2)<0, ∴ c n +1<c n .∴ 数列{c n }为递减数列.13. 已知数列{a n }中,a n =1+1a +2(n -1)(n∈N *,a ∈R ,且a≠0).(1) 若a =-7,求数列{a n }中的最大项和最小项的值;(2) 若对任意的n∈N *,都有a n ≤a 6成立,求a 的取值范围.解:(1) ∵ a n =1+1a +2(n -1)(n∈N *,a ∈R ,且a≠0),又a =-7,∴ a n =1+12n -9(n∈N *).结合函数f(x)=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n∈N *),∴ 数列{a n }中的最大项为a 5=2,最小项为a 4=0.(2) a n =1+1a +2(n -1)=1+12n -2-a2,对任意的n∈N *,都有a n ≤a 6成立,结合函数f(x)=1+12x -2-a 2的单调性,可知5<2-a2<6,即-10<a<-8,即a 的取值范围是(-10,-8).第2课时 等 差 数 列一、 填空题1. 在等差数列{a n }中,a 5=33,公差d =3,则201是该数列的第________项. 答案:61解析:∵ a n =a 5+(n -5)d ,∴ 201=33+3(n -5),n =61.2. 已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,则a 20=________. 答案:1 解析:∵ a 1+a 3+a 5=105,即3a 3=105,解得a 3=35,同理a 2+a 4+a 6=99,得a 4=33.∵ d =a 4-a 3=33-35=-2,∴ a 20=a 4+(20-4)d =33+16×(-2)=1.3. 在等差数列{a n }中,已知a 2+a 8=11,则3a 3+a 11的值为__________. 答案:22解析:3a 3+a 11=a 3+a 3+a 3+a 11=a 3+a 2+a 4+a 11=a 3+a 2+a 7+a 8=2(a 2+a 8)=11×2=22.4. 若等差数列{a n }的前5项和S 5=25,且a 4=3,则a 7=________. 答案:-3解析:S 5=25⇒5(a 1+a 5)2=25⇒a 3=5,所以d =a 4-a 3=-2,a 7=a 4+(7-4)d =3-6=-3.5. 在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时,S n 取最大值,则d 的取值范围是________.答案:-1<d<-78解析:由题意得,a 8>0,a 9<0,所以7+7d>0,7+8d<0,即-1<d<-78.6. 若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.答案:8解析:由等差数列的性质,得a 7+a 8+a 9=3a 8,a 8>0,又a 7+a 10<0,所以a 8+a 9<0,所以a 9<0,所以S 8>S 7,S 8>S 9,故数列{a n }的前8项和最大.7. 若一个等差数列{a n }的前3项和为34,最后3项的和为146,且所有项的和为390,则这个数列有________项.答案:13 解析:a 1+a 2+a 3+a n -2+a n -1+a n =34+146=180,所以3(a 1+a n )=180,即a 1+a n =60.由S n =390,知n (a 1+a n )2=390,所以n×602=390,解得n =13.8. 记等差数列{a n }的前n 项和为S n .已知a 1=2,且数列{S n }也为等差数列,则a 13的值为________.答案:50 解析:数列{S n }为等差数列,得S 1+S 3=2S 2,即2+6+3d =24+d ,则d =4,a 13 =a 1+12d =50.9. 已知等差数列{a n }的前n 项和为S n ,若S 3S 6=13,则S 6S 12=________.答案:310解析: 由等差数列的求和公式可得S 3S 6=3a 1+3d 6a 1+15d =13,可得a 1=2d ,且d≠0,所以S 6S 12=6a 1+15d 12a 1+66d =27d 90d =310.10. 在等差数列{a n }中,a 2=5,a 6=21,记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,若S 2n +1-S n ≤m15对n∈N *恒成立,则正整数m 的最小值为________.答案:5解析:由a 2=5,a 6=21易得等差数列{a n }的通项公式为a n =4n -3,所以1a n =14n -3.故S 2n +1-S n =1a 2n +1+1a 2n +1a 2n -1+…+1a n +2+1a n +1.设T n =S 2n +1-S n ,则T n +1=S 2(n +1)+1-S n +1=S 2n +3-S n +1,所以T n +1-T n =(S 2n +3-S n +1)-(S 2n +1-S n )=(S 2n +3-S 2n +1)-(S n +1-S n )=1a 2n +3+1a 2n +2-1a n +1=14(2n +3)-3+14(2n +2)-3-14(n +1)-3 =18n +9+18n +5-14n +1<18n +2+18n +2-14n +1=28n +2-14n +1=0. 所以T n +1-T n <0,即T n +1<T n .故T n =S 2n +1-S n 随n 的增大而减小,所以若S 2n +1-S n ≤m15对n∈N *恒成立,即(S 2n +1-S n )max =S 3-S 1=1a 3+1a 2=19+15=1445≤m 15.由1445≤m 15得m≥143,所以正整数m 的最小值为5.二、 解答题11. 在等差数列{a n }中,a 1=1,a 3=-3. (1) 求数列{a n }的通项公式;(2) 若数列{a n }的前k 项和S k =-35,求k 的值. 解:(1) 设等差数列{a n }的公差为d ,由a 1=1,a 3=-3,可得1+2d =-3,解得d =-2. 从而a n =1+(n -1)×(-2)=3-2n. (2) 由(1)可知a n =3-2n.所以S n =n[1+(3-2n )]2=2n -n 2.由S k =-35,可得2k -k 2=-35,即k 2-2k -35=0,解得k =7或k =-5.又k∈N *,故k =7.12. 设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足S 5S 6+15=0.(1) 若S 5=5,求S 6及a 1; (2) 求d 的取值范围.解:(1) 由题意知S 6=-15S 5=-3,a 6=S 6-S 5=-8,所以⎩⎪⎨⎪⎧5a 1+10d =5,a 1+5d =-8,解得⎩⎪⎨⎪⎧a 1=7,d =-3,因此S 6=-3,a 1=7.(2) 因为S 5S 6+15=0,所以(5a 1+10d)(6a 1+15d)+15=0,即2a 21+9da 1+10d 2+1=0.故(4a 1+9d)2=d 2-8,所以d 2≥8.故d 的取值范围是d≤-22或d≥2 2. 13. 在等差数列{a n }中,公差d >0,前n 项和为S n ,a 2·a 3=45,a 1+a 5=18. (1) 求数列{a n }的通项公式.(2) 令b n =S n n +c(n∈N *),是否存在一个非零常数c ,使数列{b n }也为等差数列?若存在,求出c 的值;若不存在,请说明理由.解:(1) 由题设,知{a n }是等差数列,且公差d >0,则由⎩⎪⎨⎪⎧a 2a 3=45,a 1+a 5=18,得⎩⎪⎨⎪⎧(a 1+d )(a 1+2d )=45,a 1+(a 1+4d )=18,解得⎩⎪⎨⎪⎧a 1=1,d =4.∴ a n =4n -3(n∈N *).(2) 由b n =S n n +c =n (1+4n -3)2n +c =2n ⎝ ⎛⎭⎪⎫n -12n +c.∵ c ≠0,∴ 可令c =-12,得到b n =2n.∵ b n +1-b n =2(n +1)-2n =2(n∈N *), ∴ 数列{b n }是公差为2的等差数列.即存在一个非零常数c =-12,使数列{b n }也为等差数列.第3课时 等 比 数 列一、 填空题1. 等比数列{a n }的公比大于1,a 5-a 1=15,a 4-a 2=6,则a 3=________. 答案:4解析:由a 5-a 1=15,a 4-a 2=6(q>1),得q =2,a 1=1,则a 3=4.2. 设等比数列{a n }的公比q =12,前n 项和为S n ,则S 4a 4=________.答案:15解析:S 4=a 1(1-q 4)1-q ,a 4=a 1q 3,所以S 4a 4=1-q 4q (1-q )=15.3. 在各项均为正数的等比数列{a n }中,若log 2a 2+log 2a 8=1,则a 3a 7=________. 答案:2解析:由log 2a 2+log 2a 8=1得log 2(a 2a 8)=1,所以a 2a 8=2,由等比数列性质可得a 3a 7=a 2a 8=2.4. 已知等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3依次成等差数列,若a 1=1,则S 5=________ .答案:31解析:因为4a 1,2a 2,a 3依次成等差数列,4a 2=4a 1+a 3,所以4a 1q =4a 1+a 1q 2,所以q=2.又a 1=1,所以S 5=a 1(1-q 5)1-q=31.5. 设S n 是等比数列{a n }的前n 项和,若a 5+2a 10=0,则S 20S 10的值是________.答案:54解析:当q =1时,a 5=a 10=0不合题意,∴ 公比q ≠1.∴ q 5=a 10a 5=-12,因而S 20S 10=1-q 201-q 10=1+q 10=1+14=54.6. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯________盏.答案:3 解析:设塔的顶层共有灯x 盏,则各层的灯数构成一个首项为x ,公比为2的等比数列,结合等比数列的求和公式有:x×(1-27)1-2=381,解得x =3,即塔的顶层共有灯3盏.7. 设等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则a 7+a 8+a 9=__________. 答案:448解析:由S 3=7,S 6=63,得a 1+a 2+a 3=7,7+a 4+a 5+a 6=63,则a 4+a 5+a 6=(a 1+a 2+a 3)q 3=56,q 3=8,a 7+a 8+a 9=(a 4+a 5+a 6)q 3=56×8=448.8. 已知等比数列{a n }的前n 项和为S n ,若S 2=2a 2+3,S 3=2a 3+3,则公比q 的值为________.答案:2解析:∵ S 2=2a 2+3,S 3=2a 3+3,∴ a 1=a 1q +3,a 1(1+q)=a 1q 2+3,∴ q 2-2q =0,q ≠0,则公比q =2.9. 在等比数列{a n }中,已知a 1=1,a 4=8,设S 3n 为该数列的前3n 项和,T n 为数列{a 3n }的前n 项和.若S 3n =tT n ,则实数t 的值为________.答案:7解析: ∵a 4=a 1q 3=q 3=8,∴ q =2,S 3n =1-23n1-2=8n -1.由题意知,数列{a 3n }是首项为1,公比为8的等比数列,∴T n =1-8n1-8=17(8n-1).由S 3n =tT n ,得t =7.10. 在正项等比数列{a n }中,若a 4+a 3-2a 2-2a 1=6,则a 5+a 6的最小值为________. 答案:48解析:设 a 2+a 1=x ,等比数列的公比为q ,则a 4+a 3 =xq 2,a 5+a 6 =xq 4.再由a 4+a 3-2a 2-2a 1=6,得 xq 2=6+2x ,∴ x =6q 2-2>0,q >1.∴ a 5+a 6 =xq 4=6q 4q 2-2=6⎝⎛⎭⎪⎫q 2-2+4q 2-2+4≥6×(4+4)=48,当且仅当q 2-2=2时,等号成立,故a 5+a 6的最小值为48.二、 解答题11. 已知{a n }是首项为a 1,公比q 为正数(q≠1)的等比数列,其前n 项和为S n ,且5S 2=4S 4.(1) 求q 的值.(2) 设b n =q +S n ,请判断数列{b n }能否为等比数列?若能,请求出a 1的值;若不能,请说明理由.解:(1) 由题意知,5S 2=4S 4,∴ 5a 1(1-q 2)1-q =4a 1(1-q 4)1-q.∵ a 1≠0,q>0,且q≠1,∴ 4q 4-5q 2+1=0,解得q =12.(2) ∵ S n =a 1(1-q n)1-q =2a 1-a 1⎝ ⎛⎭⎪⎫12n -1,∴ b n =q +S n =12+2a 1-a 1⎝ ⎛⎭⎪⎫12n -1.∴ 当且仅当12+2a 1=0,即a 1=-14时,b n =⎝ ⎛⎭⎪⎫12n +1为等比数列,∴ {b n }能为等比数列,此时a 1=-14.12. 已知等差数列{a n }的公差d 不为0,且ak 1,ak 2,…,ak n ,…(k 1<k 2<…<k n <…)成等比数列,公比为q.(1) 若k 1=1,k 2=3,k 3=8,求a 1d的值;(2) 当a 1d为何值时,数列{k n }为等比数列.解:(1) 由已知可得a 1,a 3,a 8成等比数列,所以(a 1+2d)2=a 1(a 1+7d),整理可得,4d 2=3a 1d.因为d≠0,所以a 1d =43.(2) 设数列{k n }为等比数列,则k 22=k 1k 3.又ak 1,ak 2,ak 3成等比数列,所以[a 1+(k 1-1)d][a 1+(k 3-1)d]=[a 1+(k 2-1)d]2.整理,得a 1(2k 2-k 1-k 3)=d(k 1k 3-k 22-k 1-k 3+2k 2).因为k 22=k 1k 3,所以a 1(2k 2-k 1-k 3)=d(2k 2-k 1-k 3).因为2k 2≠k 1+k 3,所以a 1=d ,即a 1d=1.当a 1d=1时,a n =a 1+(n -1)d =nd ,所以ak n =k n d. 因为ak n =ak 1q n -1=k 1dq n -1,所以k n =k 1q n -1.所以k n +1k n =k 1q nk 1qn -1=q ,数列{k n }为等比数列.综上,当a 1d=1时,数列{k n }为等比数列.13. (2017·苏州期中)已知等比数列{a n }的公比q>1,且满足a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项.(1) 求数列{a n }的通项公式;(2) 若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,求使S n +n·2n +1>62成立的正整数n 的最小值.解:(1) ∵ a 3+2是a 2,a 4的等差中项, ∴ 2(a 3+2)=a 2+a 4,代入a 2+a 3+a 4=28,可得a 3=8, ∴ a 2+a 4=20,∴ ⎩⎪⎨⎪⎧a 1q 2=8,a 1q +a 1q 3=20,解得⎩⎪⎨⎪⎧a 1=2,q =2或⎩⎪⎨⎪⎧a 1=32,q =12. ∵ q>1,∴ ⎩⎪⎨⎪⎧a 1=2,q =2,∴ 数列{a n }的通项公式为a n =2n.(2) ∵ b n =a n log 12a n =2n log 122n =-n·2n,∴ S n =-(1×2+2×22+…+n·2n) ①,2S n =-(1×22+2×23+…+(n -1)·2n +n ·2n +1) ②,②-①得,S n =2+22+23+…+2n -n·2n +1=2(1-2n)1-2-n·2n +1=2n +1-2-n·2n +1.∵ S n +n·2n +1>62,∴ 2n +1-2>62,∴ n +1>6,n>5,∴ 使S n +n·2n +1>62成立的正整数n 的最小值为6.第4课时 数列的求和 一、 填空题1. 在数列{a n }中,若a 1=-2,且对任意的n∈N *有2a n +1=1+2a n ,则数列{a n }前10项的和为________.答案:52解析:由2a n +1=1+2a n 得a n +1-a n =12,所以数列{a n }是首项为-2,公差为12的等差数列,所以S 10=10×(-2)+10×(10-1)2×12=52.2. 已知数列{a n }的通项公式是a n =2n-12n ,其前n 项和S n =32164,则项数n =________.答案:6解析:∵ a n =1-12n ,∴ S n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫1-18+…+⎝ ⎛⎭⎪⎫1-12n =n -(12+14+18+…+12n )=n -12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=n -1+12n .由S n =32164=n -1+12n ,可得出n =6. 3. 数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n =________.答案:n 2+1-12n解析:该数列的通项公式为a n =(2n -1)+12n ,则S n =[1+3+5+…+(2n -1)]+(12+122+…+12n )=n 2+1-12n .4. 已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为________.答案:100101解析:∵ a 5=5,S 5=15,∴ 5(a 1+a 5)2=15,则a 1=1,∴ d =a 5-a 14=1,∴ a n =n ,∴ 1a n a n +1=1n (n +1)=1n -1n +1.设数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和为T n ,则 T 100=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1100-1101=1-1101=100101.5. 已知数列{a n }的前n 项和S n =n 2-6n ,则{|a n |}的前n 项和T n =__________.答案:⎩⎪⎨⎪⎧6n -n 2(1≤n≤3),n 2-6n +18(n>3)解析:由S n =n 2-6n 得{a n }是等差数列,且首项为-5,公差为2,∴ a n =-5+(n -1)×2=2n -7,∴ 当n≤3时,a n <0;当n>3时,a n >0,∴ T n =⎩⎪⎨⎪⎧6n -n 2(1≤n≤3),n 2-6n +18(n>3).6. 数列{a n }的前n 项和为S n ,已知S n =1-2+3-4+…+(-1)n -1·n ,则S 17=________. 答案:9解析:S 17=1-2+3-4+5-6+…+15-16+17=1+(-2+3)+(-4+5)+(-6+7)+…+(-14+15)+(-16+17)=1+1+1+…+1=9.7. 已知数列{a n }:12,13+23,14+24+34,…,110+210+310+…+910,….若b n =1a n a n +1,那么数列{b n }的前n 项和S n =________.答案:4nn +1解析:∵ a n =1+2+3+…+n n +1=n2,∴ b n =1a n a n +1=4n (n +1)=4⎝ ⎛⎭⎪⎫1n -1n +1,∴ S n =4[⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1]=4⎝ ⎛⎭⎪⎫1-1n +1=4n n +1. 8. 已知数列{a n }满足a n +2=-a n (n∈N +),且a 1=1,a 2=2,则数列{a n }的前2 014项的和为________.答案:3解析:∵ a n +2=-a n =-(-a n -2),n >2,∴ 数列{a n }是以4为周期的周期数列.S 2 014=503(a 1+a 2+a 3+a 4)+a 2 013+a 2 014=503(a 1+a 2-a 1-a 2)+a 503×4+1+a 503×4+2=a 1+a 2=3.9. 设数列{a n }满足a 1=1,且a n +1-a n =n +1(n∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.答案:2011解析:∵ a 1=1,a n +1-a n =n +1,∴ a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n.将以上n-1个式子相加得a n -a 1=2+3+…+n =n (n +1)-22,即a n =n (n +1)2.令b n =1a n,故b n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1,故S 10=b 1+b 2+…+b 10=2×(1-12+12-13+…+110-111)=2011. 二、 解答题10. 已知数列{a n }的通项a n =⎩⎪⎨⎪⎧6n -5(n 为奇数),2n (n 为偶数),求其前n 项和S n .解:奇数项组成以a 1=1为首项,公差为12的等差数列,偶数项组成以a 2=4为首项,公比为4的等比数列;当n 为奇数时,奇数项有n +12项,偶数项有n -12项,∴ S n =n +12(1+6n -5)2+4(1-4n -12)1-4=(n +1)(3n -2)2+4(2n -1-1)3;当n 为偶数时,奇数项和偶数项分别有n2项,∴ S n =n 2(1+6n -5)2+4(1-4n 2)1-4=n (3n -2)2+4(2n -1)3,∴ S n =⎩⎪⎨⎪⎧(n +1)(3n -2)2+4(2n -1-1)3(n 为奇数),n (3n -2)2+4(2n-1)3(n 为偶数). 11. 设等差数列{a n }的前n 项和为S n ,且S 3=2S 2+4,a 5=36. (1) 求a n ,S n ;(2) 设b n =S n -1(n∈N *),T n =1b 1+1b 2+1b 3+…+1b n,求T n .解:(1) 因为S 3=2S 2+4,所以a 1-d =-4.因为a 5=36,所以a 1+4d =36,解得d =8,a 1=4,所以a n =4+8(n -1)=8n -4,S n =n (4+8n -4)2=4n 2.(2) 因为b n =4n 2-1=(2n -1)(2n +1),所以1b n =1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,T n =1b 1+1b 2+1b 3+…+1b n=12⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1=12⎝⎛⎭⎪⎫1-12n +1=n2n +1.12. 已知数列{a n }是首项为a 1=14,公比为q =14的等比数列,设b n +2=3log 14a n (n∈N *),数列{c n }满足c n =a n ·b n .(1) 求数列{b n }的通项公式; (2) 求数列{c n }的前n 项和S n .解:(1) 由题意,知a n =⎝ ⎛⎭⎪⎫14n (n∈N *).又b n =3log 14a n -2,故b n =3n -2(n∈N *).(2) 由(1)知a n =⎝ ⎛⎭⎪⎫14n ,b n =3n -2(n∈N *),所以c n =(3n -2)×⎝ ⎛⎭⎪⎫14n (n∈N *),所以S n =1×14+4×⎝ ⎛⎭⎪⎫142+7×⎝ ⎛⎭⎪⎫143+…+(3n -5)×⎝ ⎛⎭⎪⎫14n -1+(3n -2)×⎝ ⎛⎭⎪⎫14n ,于是14S n =1×⎝ ⎛⎭⎪⎫142+4×⎝ ⎛⎭⎪⎫143+7×⎝ ⎛⎭⎪⎫144+…+(3n -5)×⎝ ⎛⎭⎪⎫14n +(3n -2)×(14)n +1,两式相减,得34S n =14+3[(14)2+(14)3+…+(14)n ]-(3n -2)×⎝ ⎛⎭⎪⎫14n +1=12-(3n +2)×(14)n +1,所以S n =23-3n +23×⎝ ⎛⎭⎪⎫14n (n∈N *).13. 在等差数列{a n }中,已知公差d =2,a 2是a 1与a 4的等比中项. (1) 求数列{a n }的通项公式;(2) 设b n =a n (n +1)2,记T n =-b 1+b 2-b 3+b 4-…+(-1)nb n ,求T n .解:(1) 由题意知(a 1+d)2=a 1(a 1+3d),即(a 1+2)2=a 1(a 1+6),解得a 1=2, 所以数列{a n }的通项公式为a n =2n.(2) 由题意知b n =a n (n +1)2=n(n +1),则b n +1-b n =2(n +1),所以T n =-1×2+2×3-3×4+…+(-1)nn ×(n +1). 当n 为偶数时,T n =(-b 1+b 2)+(-b 3+b 4)+…+(-b n -1+b n )=4+8+12+…+2n =n2(4+2n )2=n (n +2)2,当n 为奇数时,T n =T n -1+(-b n )=(n -1)(n +1)2-n(n +1)=-(n +1)22,所以T n =⎩⎪⎨⎪⎧-(n +1)22,n 为奇数,n (n +2)2,n 为偶数.第5课时 数列的综合应用一、 填空题1. 在等差数列{a n }中,满足3a 4=7a 7,且a 1>0,S n 是数列{a n }的前n 项和,若S n 取得最大值,则n =________.答案:9解析:设公差d ,由题设知3(a 1+3d)=7(a 1+6d),得d =-433a 1<0,解不等式a n >0,即a 1+(n -1)⎝ ⎛⎭⎪⎫-433a 1>0,解得n <374,则n≤9时,a n >0,同理可得n≥10时,a n <0,故当n =9时,S n 取得最大值.2. 在等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 9+a 10a 7+a 8=________.答案:3+2 2解析:∵ a 1,12a 3,2a 2成等差数列,∴ 2×12a 3=a 1+2a 2,即a 3=a 1+2a 2.设等比数列{a n }的公比为q 且q >0,则a 3=a 1q 2,a 2=a 1q ,∴ a 1q 2=a 1+2a 1q ,∴ q 2=1+2q ,解得q =1+2或1-2(舍),∴a 9+a 10a 7+a 8=a 9(1+q )a 7(1+q )=q 2=(2+1)2=3+2 2.3. 在数列{a n }中,S n 是其前n 项和,且S n =2a n +1,则数列的通项公式a n =________.答案:a n =-2n -1解析:依题意得S n +1=2a n +1+1,S n =2a n +1,两式相减得S n +1-S n =2a n +1-2a n ,即a n +1=2a n .又S 1=2a 1+1=a 1,所以a 1=-1,所以数列{a n }是以a 1=-1为首项,2为公比的等比数列,所以a n =-2n -1.4. 等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为________.答案:-24解析:设等差数列的公差为d ,由a 2,a 3,a 6成等比数列可得a 23=a 2a 6,即(1+2d)2=(1+d)(1+5d),整理可得d 2+2d =0.因为公差不为0,所以d =-2,数列的前6项和为S 6=6a 1+6×(6-1)2d =6×1+6×(6-1)2×(-2)=-24.5. 设等比数列{a n }的前n 项和为S n ,若S 3,S 9,S 6成等差数列,且a 2+a 5=4,则a 8的值为________.答案:2解析:∵ 等比数列{a n }的前n 项和为S n ,若S 3,S 9,S 6成等差数列,且a 2+a 5=4,∴ q ≠1,⎩⎪⎨⎪⎧2×a 1(1-q 9)1-q =a 1(1-q 3)1-q +a 1(1-q 6)1-q ,a 1q +a 1q 4=4,解得a 1q =8,q 3=-12,∴ a 8=a 1q 7=(a 1q)(q 3)2=8×14=2.6. 在等差数列{a n }中,已知首项a 1>0,公差d >0.若a 1+a 2≤60,a 2+a 3≤100,则5a 1+a 5的最大值为________.答案:200解析:由a 1+a 2≤60,a 2+a 3≤100得2a 1+d≤60,2a 1+3d≤100,a 1>0,d >0.由线性规划的知识得5a 1+a 5=6a 1+4d ,过点(20,20)时,取最大值为200.7. 设正项数列{a n }的前n 项和是S n ,{a n }和{S n }都是等差数列,则S n +10a n的最小值是____________.答案:21解析:由题设知S n =⎝⎛⎭⎪⎫a 1-d 2n +d 2n 2.又S n 为等差数列,从而a 1=d 2,从而a n =a 1+(n -1)d =d ⎝ ⎛⎭⎪⎫n -12,S n =d 2n 2,∴ S n +10a n =d 2(n +10)2d ⎝ ⎛⎭⎪⎫n -12=(n +10)22⎝ ⎛⎭⎪⎫n -12=(n +10)22n -1.令2n -1=t(t≥1),原式=⎝ ⎛⎭⎪⎫t +12+102t =14·⎝ ⎛⎭⎪⎫t +441t +42≥14·⎝ ⎛⎭⎪⎫2t·441t +42=21,从而当t =21,即n =11时,原式取到最小值21.8. 中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走了378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”问此人第4天和第5天共走了________里.答案:36解析:由题意知,此人每天走的里数构成公比为12的等比数列,设等比数列的首项为a 1,则有a 1⎝ ⎛⎭⎪⎫1-1261-12=378,解得a 1=192,所以a 4=192×18=24,a 5=24×12=12,a 4+a 5=24+12=36,所以此人第4天和第5天共走了36里.9. 已知{a n },{b n }均为等比数列,其前n 项和分别为S n ,T n ,若对任意的n∈N *,总有S n T n=3n+14,则a 3b 3=________.答案:9解析:设{a n },{b n }的公比分别为q ,q ′,∵ S n T n =3n+14,∴ 当n =1时,a 1=b 1.当n =2时,a 1+a 1q b 1+b 1q ′=52.当n =3时,a 1+a 1q +a 1q2b 1+b 1q ′+b 1q ′2=7,∴ 2q -5q′=3,7q ′2+7q′-q 2-q +6=0,解得q =9,q ′=3,∴ a 3b 3=a 1q 2b 1q ′2=9.10. 现有一根n 节的竹竿,自上而下每节的长度依次构成等差数列,最上面一节长为10 cm ,最下面的三节长度之和为114 cm ,第6节的长度是首节与末节长度的等比中项,则n =________.答案:16解析:设每节竹竿的长度对应的数列为{a n },公差为d(d >0).由题意知a 1=10,a n +a n -1+a n -2=114,a 26=a 1a n .由a n +a n -1+a n -2=114,得3a n -1=114,解得a n -1=38,∴ (a 1+5d)2=a 1(a n -1+d),即(10+5d)2=10(38+d),解得d =2,∴a n -1=a 1+(n -2)d =38,即10+2(n -2)=38,解得n =16.二、 解答题11. 设数列{a n }的前n 项和为S n ,满足2S n =a n +1-2n +1+1,且a 1,a 2+5,a 3成等差数列. (1) 求a 1,a 2的值;(2) 求证:数列{a n +2n}是等比数列,并求数列{a n }的通项公式. (1) 解:由已知,得2a 1=a 2-3 ①, 2(a 1+a 2)=a 3-7 ②,又a 1,a 2+5,a 3成等差数列, 所以a 1+a 3=2a 2+10 ③, 解①②③,得a 1=1,a 2=5.(2) 证明:由已知,n ∈N *时,2(S n +1-S n )=a n +2-a n +1-2n +2+2n +1,即a n +2=3a n +1+2n +1,即a n +1=3a n +2n(n≥2),由(1)得,a 2=3a 1+2,∴ a n +1=3a n +2n (n∈N *),从而有a n +1+2n +1=3a n +2n +2n +1=3a n +3×2n =3(a n +2n).又a 1+2>0,∴ a n +2n>0,∴ a n +1+2n +1a n +2n =3,∴ 数列{a n +2n}是等比数列,且公比为3,∴ a n +2n =(a 1+2)×3n -1=3n ,即a n =3n -2n. 12. 商学院为推进后勤社会化改革,与桃园新区商定,由该区向建设银行贷款500万元在桃园新区为学院建一栋可容纳一千人的学生公寓,工程于2017年初动工,年底竣工并交付使用,公寓管理处采用收费偿还建行贷款形式(年利率5%,按复利计算),公寓所收费用除去物业管理费和水电费18万元,其余部分全部用于年底还建行贷款.(1) 若公寓收费标准定为每生每年800元,问到哪一年可偿还建行全部贷款?(2) 若公寓管理处要在2025年年底把贷款全部还清,则每生每年的最低收费标准是多少元(精确到元)?(参考数据:lg 1.734 3≈0.239 1,lg 1.05≈0.021 2,1.058≈1.477 4)解:(1) 设公寓投入使用后n 年可偿还全部贷款,则公寓每年收费总额为1 000×800=800 000(元)=80万元,扣除18万元,可偿还贷款62万元.依题意有62[1+(1+5%)+(1+5%)2+…+(1+5%)n -1]≥500(1+5%)n +1,化简得62(1.05n-1)≥25×1.05n +1,∴ 1.05n≥1.734 3.两边取对数并整理得 n ≥lg 1.734 3lg 1.05≈0.239 10.021 2≈11.28,∴ 当取n =12时,即到2029年底可全部还清贷款.(2) 设每生每年的最低收费标准为x 元,因到2025年底公寓共使用了8年,依题意有⎝ ⎛⎭⎪⎫1 000x 10 000-18[1+(1+5%)+(1+5%)2+…+(1+5%)7]≥500(1+5%)9.化简得(0.1x -18)×1.058-11.05-1≥500×1.059,解得x≥992,∴ 每生每年的最低收费标准为992元.13. 已知数列{a n },{b n }满足2S n =(a n +2)b n ,其中S n 是数列{a n }的前n 项和.(1) 若数列{a n }是首项为23,公比为-13的等比数列,求数列{b n }的通项公式;(2) 若b n =n ,a 2=3,求数列{a n }的通项公式;(3) 在(2)的条件下,设c n =a nb n,求证:数列{c n }中的任意一项总可以表示成该数列其他两项之积.(1) 解:因为a n =23⎝ ⎛⎭⎪⎫-13n -1=-2⎝ ⎛⎭⎪⎫-13n ,S n =23⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-13n 1-⎝ ⎛⎭⎪⎫-13=12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-13n ,所以b n =2S n a n +2=1-⎝ ⎛⎭⎪⎫-13n -2⎝ ⎛⎭⎪⎫-13n +2=12.(2) 解:若b n =n ,则2S n =na n +2n , 所以2S n +1=(n +1)a n +1+2(n +1),两式相减得2a n +1=(n +1)a n +1-na n +2,即na n =(n -1)a n +1+2.当n≥2时,(n -1)a n -1=(n -2)a n +2,两式相减得(n -1)a n -1+(n -1)a n +1=2(n -1)a n , 即a n -1+a n +1=2a n .由2S 1=a 1+2,得a 1=2,又a 2=3,所以数列{a n }是首项为2,公差为3-2=1的等差数列, 故数列{a n }的通项公式是a n =n +1.(3) 证明:由(2)得c n =n +1n,对于给定的n∈N *,若存在k ,t ≠n ,k ,t ∈N *,使得c n=c k ·c t ,只需n +1n =k +1k ·t +1t ,即1+1n =⎝⎛⎭⎪⎫1+1k ·⎝ ⎛⎭⎪⎫1+1t ,即1n =1k +1t +1kt ,则t =n (k +1)k -n , 取k =n +1,则t =n(n +2),所以对数列{c n }中的任意一项c n =n +1n ,都存在c n +1=n +2n +1和c n2+2n =n 2+2n +1n +2n,使得c n =c n +1·c n2+2n .。
2019届高三数学理一轮复习教师用书:第五章 数 列 含答案 精品

第五章 数 列第一节数列的概念与简单表示法1.数列的有关概念n n 若数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.5.数列的分类1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)根据数列的前几项归纳出数列的通项公式可能不止一个.( ) (2)1,1,1,1,…,不能构成一个数列.( )(3)任何一个数列不是递增数列,就是递减数列.( )(4)如果数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n +1=S n +1-S n .( ) 答案:(1)√ (2)× (3)× (4)√2.已知数列{a n }的通项公式为a n =9+12n ,则在下列各数中,不是{a n }的项的是( ) A .21 B .33 C .152D .153解析:选C 由9+12n =152,得n =14312∉N *.3.在数列{a n }中,a 1=1,a n =1+1a n -1(n ≥2),则a 4=( ) A.32 B.53 C.74D.85 解析:选B 由题意知,a 1=1,a 2=1+1a 1=2,a 3=1+1a 2=32,a 4=1+1a 3=53.4.已知数列{a n }满足a 1=1,a n =a n -1+2n (n ≥2),则a 7=( )A .53B .54C .55D .109解析:选C 由题意知,a 2=a 1+2×2,a 3=a 2+2×3,……,a 7=a 6+2×7,各式相加得a 7=a 1+2(2+3+4+…+7)=55.5.数列1,23,35,47,59,…的一个通项公式a n =________.解析:由已知得,数列可写成11,23,35,…,故通项公式可以为a n =n 2n -1.答案:n2n -16.已知数列{a n }的前n 项和S n =2n -3,则数列{a n }的通项公式是________________. 解析:当n =1时,a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n -3)-(2n -1-3)=2n -2n -1=2n -1.又a 1=-1不适合上式,故a n =⎩⎪⎨⎪⎧-1,n =1,2n -1,n ≥2.答案:a n =⎩⎪⎨⎪⎧-1,n =1,2n -1,n ≥2考点一 由a n 与S n 的关系求通项a n (基础送分型考点——自主练透)[考什么·怎么考]n n 1.已知S n =3n +2n +1,则a n =____________. 解析:因为当n =1时,a 1=S 1=6; 当n ≥2时,a n =S n -S n -1=(3n +2n +1)-[3n -1+2(n -1)+1]=2·3n -1+2,由于a 1不适合此式,所以a n =⎩⎪⎨⎪⎧6,n =1,2·3n -1+2,n ≥2.答案:⎩⎪⎨⎪⎧6,n =1,2·3n -1+2,n ≥22.(2017·全国卷Ⅲ改编)设数列{a n}满足a1+3a2+…+(2n-1)a n=2n,则a n=____________.解析:因为a1+3a2+…+(2n-1)a n=2n,故当n≥2时,a1+3a2+…+(2n-3)a n-1=2(n-1).两式相减得(2n-1)a n=2,所以a n=22n-1(n≥2).又由题设可得a1=2,满足上式,从而{a n}的通项公式为a n=22n-1(n∈N*).答案:22n-1(n∈N*)[题型技法]已知Sn求a n的3步骤(1)先利用a1=S1求出a1;(2)用n-1替换S n中的n得到一个新的关系,利用a n=S n-S n-1(n≥2)便可求出当n≥2时a n的表达式;(3)注意检验n=1时的表达式是否可以与n≥2的表达式合并.考法(二)由S n与a n的关系,求a n,S n3.设数列{a n}的前n项和为S n,且S n=2(a n-1)(n∈N*),则a n=()A.2n B.2n-1C.2n D.2n-1解析:选C当n=1时,a1=S1=2(a1-1),可得a1=2,当n≥2时,a n=S n-S n-1=2a n-2a n-1,∴a n=2a n-1,∴数列{a n}为首项为2,公比为2的等比数列,所以a n=2n.4.(2015·全国卷Ⅱ)设S n是数列{a n}的前n项和,且a1=-1,a n+1=S n S n+1,则S n=________.解析:∵a n+1=S n+1-S n,a n+1=S n S n+1,∴S n+1-S n=S n S n+1.∵S n≠0,∴1S n-1S n+1=1,即1S n+1-1S n=-1.又1S1=-1,∴⎩⎨⎧⎭⎬⎫1S n是首项为-1,公差为-1的等差数列.∴1S n=-1+(n-1)×(-1)=-n,∴S n=-1n.答案:-1n[题型技法]Sn与a n关系问题的求解思路根据所求结果的不同要求,将问题向不同的两个方向转化. (1)利用a n =S n -S n -1(n ≥2)转化为只含S n ,S n -1的关系式,再求解. (2)利用S n -S n -1=a n (n ≥2)转化为只含a n ,a n -1的关系式,再求解.考点二 由递推关系式求数列的通项公式 (基础送分型考点——自主练透)[考什么·怎么考]1.在数列{a n }中,a 1=1,a n =n -1n a n -1(n ≥2),则数列{a n }的通项公式为__________. 解析:∵a n =n -1n a n -1(n ≥2),∴a n -1=n -2n -1a n -2,a n -2=n -3n -2a n -3,…,a 2=12a 1.以上(n -1)个式子相乘得 a n =a 1·12·23·…·n -1n =a 1n =1n .当n =1时,a 1=1,上式也成立.∴a n =1n (n ∈N *). 答案:a n =1n(n ∈N *)[方法点拨] 叠乘法求通项公式的4步骤方法(二) 叠加法求通项公式2.设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列{a n }的通项公式为________________.解析:由题意有a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n (n ≥2). 以上各式相加,得a n -a 1=2+3+…+n =(n -1)(2+n )2=n 2+n -22.又∵a 1=1,∴a n =n 2+n2(n ≥2).∵当n =1时也满足上式,∴a n =n 2+n2(n ∈N *).答案:a n =n 2+n2(n ∈N *)[方法点拨] 叠加法求通项公式的4步骤方法(三) 构造法求通项公式3.已知数列{a n }满足a 1=1,a n +1=3a n +2,则数列{a n }的通项公式为________________. 解析:∵a n +1=3a n +2,∴a n +1+1=3(a n +1), ∴a n +1+1a n +1=3, ∴数列{a n +1}为等比数列,公比q =3, 又a 1+1=2,∴a n +1=2·3n -1,∴a n =2·3n -1-1(n ∈N *).答案:a n =2·3n -1-1(n ∈N *)[方法点拨] 构造法求通项公式的3步骤[怎样快解·准解]1.正确选用方法求数列的通项公式(1)对于递推关系式可转化为a n +1a n=f (n )的数列,并且容易求数列{f (n )}前n 项的积时,采用叠乘法求数列{a n }的通项公式.(2)对于递推关系式可转化为a n +1=a n +f (n )的数列,通常采用叠加法(逐差相加法)求其通项公式.(3)对于递推关系式形如a n +1=pa n +q (p ≠0,1,q ≠0)的数列,采用构造法求数列的通项. 2.避免2种失误(1)利用叠乘法,易出现两个方面的问题:一是在连乘的式子中只写到a 2a 1,漏掉a 1而导致错误;二是根据连乘求出a n 之后,不注意检验a 1是否成立.(2)利用构造法求解时应注意数列的首项的正确求解以及准确确定叠加、叠乘后最后一个式子的形式.考点三 数列的性质及应用 (重点保分型考点——师生共研)1.已知数列{a n }满足a n +1=11-a n,若a 1=12,则a 2 018=( )A .-1 B.12 C .1D .2解析:选D 由a 1=12,a n +1=11-a n ,得a 2=11-a 1=2,a 3=11-a 2=-1,a 4=11-a 3=12,a 5=11-a 4=2,…, 于是可知数列{a n }是以3为周期的周期数列,因此a 2 018=a 3×672+2=a 2=2. 2.已知数列{a n }满足a n =n +13n -16(n ∈N *),则数列{a n }的最小项是第________项.解析:因为a n =n +13n -16,所以数列{a n }的最小项必为a n <0,即n +13n -16<0,3n -16<0,从而n <163.又n ∈N *,所以当n =5时,a n 的值最小.答案:5[解题师说]1.解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值. 2.判断数列单调性的2种方法(1)作差比较法:比较a n +1-a n 与0的大小.(2)作商比较法:比较a n +1a n 与1的大小,注意a n 的符号.3.求数列最大项或最小项的方法(1)利用不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1(n ≥2)找到数列的最大项;(2)利用不等式组⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1(n ≥2)找到数列的最小项.[冲关演练]1.已知数列{a n }满足a 1=1,a n +1=a 2n -2a n +1(n ∈N *),则a 2 018=( )A .1B .0C .2 018D .-2 018解析:选B ∵a 1=1,a n +1=a 2n -2a n +1=(a n -1)2,∴a 2=(a 1-1)2=0,a 3=(a 2-1)2=1,a 4=(a 3-1)2=0,…,可知数列{a n }是以2为周期的数列,∴a 2 018=a 2=0,选B.2.等差数列{a n }的公差d <0,且a 21=a 211,则数列{a n }的前n 项和S n 取得最大值时的项数n 的值为( )A .5B .6C .5或6D .6或7解析:选C 由a 21=a 211,可得(a 1+a 11)(a 1-a 11)=0,因为d <0,所以a 1-a 11≠0,所以a 1+a 11=0, 又2a 6=a 1+a 11,所以a 6=0. 因为d <0,所以{a n }是递减数列,所以a 1>a 2>…>a 5>a 6=0>a 7>a 8>…,显然前5项和或前6项和最大,故选C.(一)普通高中适用作业A 级——基础小题练熟练快1.已知数列1,2,7,10,13,…,则219在这个数列中的项数是( ) A .16 B .24 C .26D .28解析:选C 因为a 1=1=1,a 2=2=4,a 3=7,a 4=10,a 5=13,…,所以a n=3n -2.令a n =3n -2=219=76,解得n =26.2.数列{a n }的前n 项和S n =2n 2-3n (n ∈N *),若p -q =5,则a p -a q =( ) A .10 B .15 C .-5D .20解析:选D 当n ≥2时,a n =S n -S n -1=2n 2-3n -[2(n -1)2-3(n -1)]=4n -5,当n =1时,a 1=S 1=-1,符合上式,所以a n =4n -5,所以a p -a q =4(p -q )=20.3.(2017·河南许昌二模)已知数列{a n }满足a 1=1,a n +2-a n =6,则a 11的值为( )A .31B .32C .61D .62解析:选A ∵数列{a n }满足a 1=1,a n +2-a n =6,∴a 3=6+1=7,a 5=6+7=13,a 7=6+13=19,a 9=6+19=25,a 11=6+25=31. 4.(2018·云南检测)设数列{a n }的通项公式为a n =n 2-bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为( )A .(-∞,-1]B .(-∞,2]C .(-∞,3)D.⎝⎛⎦⎤-∞,92 解析:选C 因为数列{a n }是单调递增数列,所以a n +1-a n =2n +1-b >0(n ∈N *),所以b <2n +1(n ∈N *),所以b <(2n +1)min =3,即b <3.5.(2018·湖南湘潭一中、长沙一中等六校联考)已知数列{a n }满足:∀m ,n ∈N *,都有a n ·a m =a n +m ,且a 1=12,那么a 5=( )A.132B.116C.14D.12解析:选A ∵数列{a n }满足:∀m ,n ∈N *,都有a n ·a m =a n +m ,且a 1=12,∴a 2=a 1a 1=14,a 3=a 1·a 2=18,∴a 5=a 3·a 2=132. 6.数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21为( )A .5 B.72 C.92D.132解析:选B ∵a n +a n +1=12,a 2=2,∴a n =⎩⎪⎨⎪⎧-32,n 为奇数,2, n 为偶数.∴S 21=11×⎝⎛⎭⎫-32+10×2=72. 7.已知数列{a n }的前n 项和S n =n 2+2n +1(n ∈N *),则a n =________. 解析:当n ≥2时,a n =S n -S n -1=2n +1, 当n =1时,a 1=S 1=4≠2×1+1,因此a n =⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2.答案:⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥28.已知数列{a n }为12,14,-58,1316,-2932,6164,…,则数列{a n }的一个通项公式是________.解析:各项的分母分别为21,22,23,24,…,易看出从第2项起,每一项的分子都比分母少3,且第1项可变为-2-32,故原数列可变为-21-321,22-322,-23-323,24-324,…故其通项公式为a n =(-1)n·2n -32n ,n ∈N *.答案:a n =(-1)n·2n -32n ,n ∈N *9.数列{a n }的前n 项和为S n ,若S n +S n -1=2n -1(n ≥2,n ∈N *),且S 2=3,则a 1+a 3的值为________.解析:∵S n +S n -1=2n -1(n ≥2),令n =2, 得S 2+S 1=3,由S 2=3得a 1=S 1=0, 令n =3,得S 3+S 2=5,所以S 3=2,则a 3=S 3-S 2=-1,所以a 1+a 3=0+(-1)=-1. 答案:-110.在一个数列中,如果∀n ∈N *,都有a n a n +1a n +2=k (k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{a n }是等积数列,且a 1=1,a 2=2,公积为8,则a 1+a 2+a 3+…+a 12=________.解析:依题意得数列{a n }是周期为3的数列,且a 1=1,a 2=2,a 3=4,因此a 1+a 2+a 3+…+a 12=4(a 1+a 2+a 3)=4×(1+2+4)=28.答案:28B 级——中档题目练通抓牢1.若a 1=12,a n =4a n -1+1(n ≥2),则a n >100时,n 的最小值为( )A .3B .4C .5D .6解析:选C 由a 1=12,a n =4a n -1+1(n ≥2)得,a 2=4a 1+1=4×12+1=3,a 3=4a 2+1=4×3+1=13,a 4=4a 3+1=4×13+1=53,a 5=4a 4+1=4×53+1=213>100.2.(2018·咸阳模拟)已知正项数列{a n }中,a 1+a 2+…+a n =n (n +1)2(n ∈N *),则数列{a n }的通项公式为( )A .a n =nB .a n =n 2C .a n =n2D .a n =n 22解析:选B ∵a 1+a 2+…+a n =n (n +1)2, ∴a 1+a 2+…+a n -1=n (n -1)2(n ≥2), 两式相减得a n =n (n +1)2-n (n -1)2=n (n ≥2), ∴a n =n 2(n ≥2).又当n =1时,a 1=1×22=1,a 1=1,适合上式,∴a n =n 2,n ∈N *.故选B.3.若数列{a n }满足:a 1=19,a n +1=a n -3(n ∈N *),则数列{a n }的前n 项和数值最大时,n 的值为( )A .6B .7C .8D .9解析:选B ∵a 1=19,a n +1-a n =-3,∴数列{a n }是以19为首项,-3为公差的等差数列, ∴a n =19+(n -1)×(-3)=22-3n . 设{a n }的前k 项和数值最大,则有⎩⎪⎨⎪⎧ a k ≥0,a k +1≤0k ∈N *,∴⎩⎪⎨⎪⎧22-3k ≥0,22-3(k +1)≤0,∴193≤k ≤223, ∵k ∈N *,∴k =7.∴满足条件的n 的值为7.4.在数列{a n }中,a n >0,且前n 项和S n 满足4S n =(a n +1)2(n ∈N *),则数列{a n }的通项公式为________.解析:当n =1时,4S 1=(a 1+1)2,解得a 1=1; 当n ≥2时,由4S n =(a n +1)2=a 2n +2a n +1, 得4S n -1=a 2n -1+2a n -1+1,两式相减得4S n -4S n -1=a 2n -a 2n -1+2a n -2a n -1=4a n ,整理得(a n +a n -1)(a n -a n -1-2)=0,因为a n >0,所以a n -a n -1-2=0,即a n -a n -1=2, 又a 1=1,故数列{a n }是首项为1,公差为2的等差数列, 所以a n =1+2(n -1)=2n -1. 答案:a n =2n -15.已知数列{a n }的通项公式为a n =(-1)n ·2n +1,该数列的项排成一个数阵(如图),则该数阵中的第10行第3个数为________.a 1 a 2 a 3 a 4 a 5 a 6 ……解析:由题意可得该数阵中的第10行第3个数为数列{a n }的第1+2+3+…+9+3=9×102+3=48项,而a 48=(-1)48×96+1=97,故该数阵中的第10行第3个数为97. 答案:976.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值; (2)对于n ∈N *,都有a n +1>a n ,求实数k 的取值范围. 解:(1)由n 2-5n +4<0,解得1<n <4. 因为n ∈N *,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3. 因为a n =n 2-5n +4=⎝⎛⎭⎫n -522-94, 由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2. (2)由a n +1>a n ,知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,解得k >-3.所以实数k 的取值范围为(-3,+∞).7.已知二次函数f (x )=x 2-ax +a (a >0,x ∈R),有且只有一个零点,数列{a n }的前n 项和S n =f (n )(n ∈N *).(1)求数列{a n }的通项公式;(2)设c n =1-4a n(n ∈N *),定义所有满足c m ·c m +1<0的正整数m 的个数,称为这个数列{c n }的变号数,求数列{c n }的变号数.解:(1)依题意,Δ=a 2-4a =0, 所以a =0或a =4. 又由a >0得a =4,所以f (x )=x 2-4x +4. 所以S n =n 2-4n +4.当n =1时,a 1=S 1=1-4+4=1; 当n ≥2时,a n =S n -S n -1=2n -5.所以a n =⎩⎪⎨⎪⎧1,n =1,2n -5,n ≥2.(2)由题意得c n =⎩⎪⎨⎪⎧-3,n =1,1-42n -5,n ≥2. 由c n =1-42n -5可知,当n ≥5时,恒有c n >0. 又c 1=-3,c 2=5,c 3=-3,c 4=-13,c 5=15,c 6=37,即c 1·c 2<0,c 2·c 3<0,c 4·c 5<0, 所以数列{c n }的变号数为3. C 级——重难题目自主选做1.已知数列{a n }的通项公式为a n =(n +2)⎝⎛⎭⎫910n (n ∈N *),则数列{a n }的最大项是( ) A .a 6或a 7 B .a 7或a 8 C .a 8或a 9D .a 7解析:选B 因为a n +1-a n =(n +3)⎝⎛⎭⎫910n +1-(n +2)⎝⎛⎭⎫910n =⎝⎛⎭⎫910n ·7-n 10,当n <7时,a n+1-a n >0,即a n +1>a n ;当n =7时,a n +1-a n =0,即a n +1=a n ;当n >7时,a n +1-a n <0,即a n +1<a n ,则a 1<a 2<…<a 7=a 8>a 9>a 10>…,所以此数列的最大项是第7项或第8项,即a 7或a 8.故选B.2.(2018·成都诊断)在数列{a n }中,a 1=1,a n =n 2n 2-1a n -1(n ≥2,n ∈N *),则a n =________.解析:由题意知a n a n -1=n 2n 2-1=n 2(n -1)(n +1),所以a n =a 1×a 2a 1×a 3a 2×…×a na n -1=1×2222-1×3232-1×…×n 2n 2-1=22×32×42×…×n 2(2-1)×(2+1)×(3-1)×(3+1)×(4-1)×(4+1)×…×(n -1)×(n +1) =22×32×42×…×n 21×3×2×4×3×5×…×(n -1)×(n +1)=2nn +1.答案:2nn +1(二)重点高中适用作业A 级——保分题目巧做快做1.已知数列1,2,7,10,13,…,则219在这个数列中的项数是( ) A .16 B .24 C .26D .28解析:选C 因为a 1=1=1,a 2=2=4,a 3=7,a 4=10,a 5=13,…,所以a n=3n -2.令a n =3n -2=219=76,解得n =26.2.(2018·郑州模拟)已知数列{a n }满足a 1=1,a n +2-a n =6,则a 11的值为( ) A .31 B .32 C .61D .62解析:选A ∵数列{a n }满足a 1=1,a n +2-a n =6, ∴a 3=6+1=7,a 5=6+7=13,a 7=6+13=19, a 9=6+19=25,a 11=6+25=31.3.数列{a n }的前n 项和S n =2n 2-3n (n ∈N *),若p -q =5,则a p -a q =( ) A .10 B .15 C .-5D .20解析:选D 当n ≥2时,a n =S n -S n -1=2n 2-3n -[2(n -1)2-3(n -1)]=4n -5,当n =1时,a 1=S 1=-1,符合上式,所以a n =4n -5,所以a p -a q =4(p -q )=20.4.(2018·湖南湘潭一中、长沙一中等六校联考)已知数列{a n }满足:∀m ,n ∈N *,都有a n ·a m =a n +m ,且a 1=12,那么a 5=( )A.132B.116C.14D.12解析:选A ∵数列{a n }满足:∀m ,n ∈N *,都有a n ·a m =a n +m ,且a 1=12,∴a 2=a 1a 1=14,a 3=a 1·a 2=18,∴a 5=a 3·a 2=132. 5.若数列{a n }满足:a 1=19,a n +1=a n -3(n ∈N *),则数列{a n }的前n 项和最大时,n 的值为( )A .6B .7C .8D .9解析:选B ∵a 1=19,a n +1-a n =-3,∴数列{a n }是以19为首项,-3为公差的等差数列, ∴a n =19+(n -1)×(-3)=22-3n . 设{a n }的前k 项和最大,则有⎩⎪⎨⎪⎧ a k ≥0,a k +1≤0k ∈N *,∴⎩⎪⎨⎪⎧22-3k ≥0,22-3(k +1)≤0, ∴193≤k ≤223, ∵k ∈N *,∴k =7. ∴满足条件的n 的值为7.6.(2018·河北唐山一模)设数列{a n }的前n 项和为S n ,且S n =a 1(4n -1)3,若a 4=32,则a 1=________.解析:∵S n =a 1(4n -1)3,a 4=32,∴S 4-S 3=255a 13-63a 13=32,∴a 1=12. 答案:127.已知数列{a n }为12,14,-58,1316,-2932,6164,…,则数列{a n }的一个通项公式是________.解析:各项的分母分别为21,22,23,24,…,易看出从第2项起,每一项的分子都比分母少3,且第1项可变为-2-32,故原数列可变为-21-321,22-322,-23-323,24-324,…故其通项公式为a n =(-1)n·2n -32n ,n ∈N *.答案:a n =(-1)n·2n -32n ,n ∈N *8.在一个数列中,如果∀n ∈N *,都有a n a n +1a n +2=k (k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{a n }是等积数列,且a 1=1,a 2=2,公积为8,则a 1+a 2+a 3+…+a 12=________.解析:依题意得数列{a n }是周期为3的数列,且a 1=1,a 2=2,a 3=4,因此a 1+a 2+a 3+…+a 12=4(a 1+a 2+a 3)=4×(1+2+4)=28.答案:289.已知数列{a n }的前n 项和S n =-12n 2+kn ,k ∈N *,且S n 的最大值为8.试确定常数k ,并求数列{a n }的通项公式.解:因为S n =-12n 2+kn =-12(n -k )2+12k 2,其中k 是常数,且k ∈N *,所以当n =k时,S n 取最大值12k 2,故12k 2=8,k 2=16,因此k =4,从而S n =-12n 2+4n .当n =1时,a 1=S 1=-12+4=72;当n ≥2时,a n =S n -S n -1=⎝⎛⎭⎫-12n 2+4n --12(n -1)2+4(n -1)=92-n . 当n =1时,92-1=72=a 1,所以a n =92-n .10.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值; (2)对于n ∈N *,都有a n +1>a n ,求实数k 的取值范围. 解:(1)由n 2-5n +4<0,解得1<n <4. 因为n ∈N *,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3. 因为a n =n 2-5n +4=⎝⎛⎭⎫n -522-94, 由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2. (2)由a n +1>a n ,知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,解得k >-3.所以实数k 的取值范围为(-3,+∞). B 级——拔高题目稳做准做1.(2018·云南检测)设数列{a n }的通项公式为a n =n 2-bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为( )A .(-∞,-1]B .(-∞,2]C .(-∞,3)D.⎝⎛⎦⎤-∞,92 解析:选C 因为数列{a n }是单调递增数列,所以a n +1-a n =2n +1-b >0(n ∈N *),所以b <2n +1(n ∈N *),所以b <(2n +1)min =3,即b <3.2.已知数列{a n }满足a n +1=a n +2n ,且a 1=33,则a nn 的最小值为( ) A .21 B .10 C.212D.172解析:选C 由已知条件可知,当n ≥2时, a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=33+2+4+…+2(n -1)=n 2-n +33,又n =1时,a 1=33满足此式. 所以a n n =n +33n -1.令f (n )=a n n =n +33n -1,则f (n )在[1,5]上为减函数,在[6,+∞)上为增函数. 又f (5)=535,f (6)=212,则f (5)>f (6), 故f (n )=a n n 的最小值为212.3.(2018·成都质检)在数列{a n }中,a 1=1,a n =n 2n 2-1a n -1(n ≥2,n ∈N *),则a n =________.解析:由题意知a n a n -1=n 2n 2-1=n 2(n -1)(n +1),所以a n =a 1×a 2a 1×a 3a 2×…×a na n -1=1×2222-1×3232-1×…×n 2n 2-1=22×32×42×…×n 2(2-1)×(2+1)×(3-1)×(3+1)×(4-1)×(4+1)×…×(n -1)×(n +1) =22×32×42×…×n 21×3×2×4×3×5×…×(n -1)×(n +1)=2nn +1. 答案:2nn +14.已知数列{a n }的通项公式为a n =(-1)n ·2n +1,该数列的项排成一个数阵(如图),则该数阵中的第10行第3个数为________.a 1 a 2 a 3 a 4 a 5 a 6 ……解析:由题意可得该数阵中的第10行第3个数为数列{a n }的第1+2+3+…+9+3=9×102+3=48项,而a 48=(-1)48×96+1=97,故该数阵中的第10行第3个数为97. 答案:975.已知二次函数f (x )=x 2-ax +a (a >0,x ∈R),有且只有一个零点,数列{a n }的前n 项和S n =f (n )(n ∈N *).(1)求数列{a n }的通项公式;(2)设c n =1-4a n(n ∈N *),定义所有满足c m ·c m +1<0的正整数m 的个数,称为这个数列{c n }的变号数,求数列{c n }的变号数.解:(1)依题意,Δ=a 2-4a =0,所以a =0或a =4. 又由a >0得a =4, 所以f (x )=x 2-4x +4. 所以S n =n 2-4n +4.当n =1时,a 1=S 1=1-4+4=1; 当n ≥2时,a n =S n -S n -1=2n -5.所以a n =⎩⎪⎨⎪⎧1,n =1,2n -5,n ≥2.(2)由题意得c n =⎩⎪⎨⎪⎧-3,n =1,1-42n -5,n ≥2. 由c n =1-42n -5可知,当n ≥5时,恒有c n >0. 又c 1=-3,c 2=5,c 3=-3,c 4=-13,c 5=15,c 6=37,即c 1·c 2<0,c 2·c 3<0,c 4·c 5<0, 所以数列{c n }的变号数为3.6.已知{a n }是公差为d 的等差数列,它的前n 项和为S n ,S 4=2S 2+4,在数列{b n }中,b n =1+a na n.(1)求公差d 的值;(2)若a 1=-52,求数列{b n }中的最大项和最小项的值;(3)若对任意的n ∈N *,都有b n ≤b 8成立,求a 1的取值范围. 解:(1)∵S 4=2S 2+4,∴4a 1+3×42d =2(2a 1+d )+4,解得d =1. (2)∵a 1=-52,∴数列{a n }的通项公式为a n =-52+(n -1)×1=n -72,∴b n =1+a n a n =1+1a n=1+1n -72.∵函数f (x )=1+1x -72在⎝⎛⎭⎫-∞,72和⎝⎛⎭⎫72,+∞上分别是单调减函数,∴b 3<b 2<b 1<1,当n ≥4时,1<b n ≤b 4,∴数列{b n }中的最大项是b 4=3,最小项是b 3=-1. (3)由b n =1+1a n,得b n =1+1n +a 1-1.又函数f (x )=1+1x +a 1-1在(-∞,1-a 1)和(1-a 1,+∞)上分别是单调减函数,且x <1-a 1时,y <1;当x >1-a 1时,y >1.∵对任意的n ∈N *,都有b n ≤b 8, ∴7<1-a 1<8,∴-7<a 1<-6, ∴a 1的取值范围是(-7,-6).第二节等差数列及其前n 项和1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.这个常数叫做等差数列的公差,符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.4.与等差数列各项的和有关的性质(1)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也成等差数列,其首项与{a n }首项相同,公差是{a n }公差的12. (2)若{a n }是等差数列,S m ,S 2m ,S 3m 分别为{a n }的前m 项,前2m 项,前3m 项的和,则S m ,S 2m -S m ,S 3m -S 2m 成等差数列.(3)关于等差数列奇数项和与偶数项和的性质. ①若项数为2n ,则S 偶-S 奇=nd ,S 奇S 偶=a na n +1. ②若项数为2n -1,则S 偶=(n -1)a n ,S 奇=na n ,S 奇-S 偶=a n ,S 奇S 偶=n n -1. (4)两个等差数列{a n },{b n }的前n 项和S n ,T n 之间的关系为a n b n=S 2n -1T 2n -1.1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)等差数列{a n }的单调性是由公差d 决定的.( )(3)等差数列的前n 项和公式是常数项为0的二次函数.( ) (4)已知等差数列{a n }的通项公式a n =3-2n ,则它的公差为-2.( ) 答案:(1)× (2)√ (3)× (4)√2.在等差数列{}a n 中,若a 2=4,a 4=2,则a 6=( ) A .-1 B .0 C .1D .6解析:选B ∵{}a n 为等差数列,∴2a 4=a 2+a 6,∴a 6=2a 4-a 2=2×2-4=0.3.(2017·全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8 解析:选A 设等差数列{a n }的公差为d , 因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23, 即(a 1+d )(a 1+5d )=(a 1+2d )2. 又a 1=1,所以d 2+2d =0. 又d ≠0,则d =-2,所以{a n }前6项的和S 6=6×1+6×52×(-2)=-24.4.已知数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,且a 1=1,a 4=4,则a 10=( )A .-45B .-54C.413D.134解析:选A 设等差数列⎩⎨⎧⎭⎬⎫1a n 的公差为d ,由题意可知,1a 4=1a 1+3d =14,解得d =-14,所以1a 10=1a 1+9d =-54,所以a 10=-45. 5.已知等差数列{a n }的公差d ≠0,且a 3+a 9=a 10-a 8,若a n =0,则n =________. 解析:因为a 3+a 9=a 10-a 8,所以a 1+2d +a 1+8d =a 1+9d -(a 1+7d ), 解得a 1=-4d ,所以a n =-4d +(n -1)d =(n -5)d , 令(n -5)d =0(d ≠0),可解得n =5. 答案:56.在等差数列{a n }中,a n >0,a 7=12a 4+4,S n 为数列{a n }的前n 项和,则S 19=________.解析:设等差数列{a n }的公差为d ,由a 7=12a 4+4,得a 1+6d =12(a 1+3d )+4,即a 1+9d =8,所以a 10=8,因此S 19=19(a 1+a 19)2=19×a 10=19×8=152. 答案:152考点一 等差数列的基本运算 (基础送分型考点——自主练透)[考什么·怎么考]n 527A .12 B .13 C .14D .15解析:选B 设等差数列{a n }的公差为d , 由S 5=5(a 2+a 4)2,得5(3+a 4)2=25,解得a 4=7,所以7=3+2d ,解得d =2,所以a 7=a 4+3d =7+3×2=13.2.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8解析:选C 设等差数列{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,即⎩⎪⎨⎪⎧2a 1+7d =24,2a 1+5d =16,解得d =4. 3.(2018·福州质检)设等差数列{a n }的公差d ≠0,且a 2=-d ,若a k 是a 6与a k +6的等比中项,则k =( )A .5B .6C .9D .11解析:选C 因为a k 是a 6与a k +6的等比中项, 所以a 2k =a 6a k +6.又等差数列{a n }的公差d ≠0,且a 2=-d , 所以[a 2+(k -2)d ]2=(a 2+4d )[a 2+(k +4)d ], 所以(k -3)2=3(k +3),解得k =9,或k =0(舍去),故选C.4.设S n 为等差数列{a n }的前n 项和,若a 12=-8,S 9=-9,则S 16=________. 解析:设等差数列{a n }的首项为a 1,公差为d , 由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9×82d =-9,解得⎩⎪⎨⎪⎧a 1=3,d =-1. ∴S 16=16×3+16×152×(-1)=-72.答案:-72[怎样快解·准解]1.等差数列运算中方程思想的应用(1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.[易错提醒] 在求解数列基本量运算中,要注意公式使用时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意整体代换思想的运用,使运算更加便捷.2.等差数列前n 项和公式的应用方法根据不同的已知条件选用两个求和公式,若已知首项和公差,则使用公式S n =na 1+n (n -1)2d ;若已知通项公式,则使用公式S n =n (a 1+a n )2,同时注意与性质“a 1+a n =a 2+a n -1=a 3+a n -2=…”的结合使用.考点二 等差数列的判定与证明 (重点保分型考点——师生共研)(2018·贵州适应性考试)已知数列{a n }满足a 1=1,且na n +1-(n +1)a n =2n 2+2n . (1)求a 2,a 3;(2)证明数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,并求{a n }的通项公式.[思维路径](1)要求数列的项,可根据已知首项和递推关系式,令n =1,2可解得.(2)证明⎩⎨⎧⎭⎬⎫a n n 是等差数列,其关键应推出a n +1n +1-a n n 为常数,对所给条件进行必要的变形即可.解:(1)由已知,得a 2-2a 1=4, 则a 2=2a 1+4,又a 1=1,所以a 2=6. 由2a 3-3a 2=12,得2a 3=12+3a 2,所以a 3=15.(2)证明:由已知na n +1-(n +1)a n =2n 2+2n , 得na n +1-(n +1)a n n (n +1)=2,即a n +1n +1-a nn=2,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项a 11=1,公差d =2的等差数列.则a nn =1+2(n -1)=2n -1,所以a n =2n 2-n .[解题师说]等差数列的判定与证明方法用定义证明等差数列时,容易漏掉对起始项的检验,从而产生错解.比如,对于满足a n-a n-1=1(n≥3)的数列{a n}而言并不能判定其为等差数列,因为不能确定起始项a2-a1是否等于1.[冲关演练]1.(2018·陕西质检)已知数列{a n}的前n项和S n=an2+bn(a,b∈R)且a2=3,a6=11,则S7等于()A.13B.49C.35 D.63解析:选B由S n=an2+bn(a,b∈R)可知数列{a n}是等差数列,所以S7=7(a1+a7)2=7(a2+a6)2=49.2.已知数列{a n}中,a1=2,a n=2-1a n-1(n≥2,n∈N*),设b n=1a n-1(n∈N*).求证:数列{b n}是等差数列.证明:∵a n=2-1a n-1(n≥2),∴a n+1=2-1a n.∴b n+1-b n=1a n+1-1-1a n-1=12-1a n-1-1a n-1=a n-1a n-1=1,∴{b n}是首项为b1=12-1=1,公差为1的等差数列.考点三等差数列的性质及前n项和的最值(重点保分型考点——师生共研)1.在等差数列{a n}中,a1=29,S10=S20,则数列{a n}的前n项和S n的最大值为() A.S15B.S16C.S15或S16D.S17解析:选A∵a1=29,S10=S20,∴10a1+10×92d=20a1+20×192d,解得d=-2,∴S n=29n+n(n-1)2×(-2)=-n2+30n=-(n-15)2+225.∴当n=15时,S n取得最大值.2.(2018·石家庄一模)已知函数f(x)的图象关于直线x=-1对称,且f(x)在(-1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则数列{a n}的前100项的和为❶❷() A.-200 B.-100C.-50 D.0[学审题]①由函数的对称性及单调性知f(x)在(-∞,-1)上也单调;②结合函数的性质知a50+a51=-2.解析:选B因为函数f(x)的图象关于直线x=-1对称,又函数f(x)在(-1,+∞)上单调,所以f(x)在(-∞,-1)上也单调,且数列{a n}是公差不为0的等差数列.又f(a50)=f(a51),所以a50+a51=-2,所以S100=100(a1+a100)2=50(a50+a51)=-100.[解题师说]1.应用等差数列的性质解题的2个注意点(1)如果{a n}为等差数列,m+n=p+q,则a m+a n=a p+a q(m,n,p,q∈N*).因此,若出现a m-n,a m,a m+n等项时,可以利用此性质将已知条件转化为与a m(或其他项)有关的条件;若求a m项,可由a m=12(a m-n+a m+n)转化为求a m-n,a m+n或a m+n+a m-n的值.(2)要注意等差数列通项公式及前n项和公式的灵活应用,如a n=a m+(n-m)d,d=a n -a m n -m,S 2n -1=(2n -1)a n ,S n =n (a 1+a n )2=n (a 2+a n -1)2(n ,m ∈N *)等.2.求等差数列前n 项和S n 最值的2种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)邻项变号法:①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .3.理清等差数列的前n 项和与函数的关系 等差数列的前n 项和公式为S n =na 1+n (n -1)2d 可变形为S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n ,令A =d2,B =a 1-d2,则S n =An 2+Bn .当A ≠0,即d ≠0时,S n 是关于n 的二次函数,(n ,S n )在二次函数y =Ax 2+Bx 的图象上,即为抛物线y =Ax 2+Bx 上一群孤立的点.利用此性质可解决前n 项和S n 的最值问题.[冲关演练]1.(2018·岳阳模拟)在等差数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( ) A .95 B .100 C .135D .80解析:选B 由等差数列的性质可知,a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8构成新的等差数列,于是a 7+a 8=(a 1+a 2)+(4-1)[(a 3+a 4)-(a 1+a 2)]=40+3×20=100.2.设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( )A .6B .7C .12D .13解析:选C 因为a 1>0,a 6a 7<0,所以a 6>0,a 7<0,等差数列的公差小于零,又a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0,所以S 12>0,S 13<0,所以满足S n >0的最大自然数n 的值为12.3.设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项的和为180,S n =324(n >6),则数列{a n }的项数为________.解析:由题意知a 1+a 2+…+a 6=36,① a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216,∴a 1+a n =36, 又S n =n (a 1+a n )2=324, ∴18n =324,∴n =18. 答案:18(一)普通高中适用作业A 级——基础小题练熟练快1.(2018·兰州诊断考试)已知等差数列{a n }的前n 项和为S n ,若a 1=2,a 8+a 10=28,则S 9=( )A .36B .72C .144D .288解析:选B 法一:∵a 8+a 10=2a 1+16d =28,a 1=2, ∴d =32,∴S 9=9×2+9×82×32=72.法二:∵a 8+a 10=2a 9=28,∴a 9=14, ∴S 9=9(a 1+a 9)2=72. 2.(2018·安徽两校阶段性测试)若等差数列{a n }的前n 项和为S n ,且满足a 2+S 3=4,a 3+S 5=12,则a 4+S 7的值是( )A .20B .36C .24D .72解析:选C 由a 2+S 3=4及a 3+S 5=12,得⎩⎪⎨⎪⎧ 4a 1+4d =4,6a 1+12d =12,解得⎩⎪⎨⎪⎧a 1=0,d =1,∴a 4+S 7=8a 1+24d =24.3.(2018·西安质检)已知数列{a n }满足a 1=15,且3a n +1=3a n -2.若a k ·a k +1<0,则正整数k =( )A .21B .22C .23D .24解析:选C 由3a n +1=3a n -2⇒a n +1-a n =-23⇒{a n }是等差数列,则a n =473-23n .∵a k ·a k+1<0,∴⎝⎛⎭⎫473-23k ⎝⎛⎭⎫453-23k <0,∴452<k <472,又∵k ∈N *,∴k =23.4.(2018·东北三校联考)已知数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *),若b 3=-2,b 2=12,则a 8=( )A .0B .-109C .-181D .121解析:选B 设等差数列{b n }的公差为d ,则d =b 3-b 2=-14,因为a n +1-a n =b n ,所以a 8-a 1=b 1+b 2+…+b 7=7(b 1+b 7)2=7b 4=7×(-2-14)=-112,又a 1=3,所以a 8=-109.5.(2018·云南11校跨区调研)在数列{a n }中,a 1=3,a n +1=3a n a n +3,则a 4=( )A.34 B .1 C.43D.32解析:选A 依题意得1a n +1=a n +33a n =1a n +13,1a n +1-1a n =13,故数列⎩⎨⎧⎭⎬⎫1a n 是以1a 1=13为首项、13为公差的等差数列,则1a n =13+n -13=n 3,a n =3n ,a 4=34.6.(2018·东北四市高考模拟)已知数列{a n }满足a n +1-a n =2,a 1=-5,则|a 1|+|a 2|+…+|a 6|=( )A .9B .15C .18D .30解析:选C 由a n +1-a n =2可得数列{a n }是等差数列,公差d =2,又a 1=-5,所以a n =2n -7,所以|a 1|+|a 2|+|a 3|+|a 4|+|a 5|+|a 6|=5+3+1+1+3+5=18.7.(2016·北京高考)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.解析:∵a 3+a 5=2a 4,∴a 4=0. ∵a 1=6,a 4=a 1+3d ,∴d =-2. ∴S 6=6a 1+6×(6-1)2d =6×6-30=6.答案:68.等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为________.解析:∵⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎪⎨⎪⎧a 5>0,a 6<0,∴S n 的最大值为S 5. 答案:S 59.若等差数列{a n }的前17项和S 17=51,则a 5-a 7+a 9-a 11+a 13=________. 解析:因为S 17=a 1+a 172×17=17a 9=51,所以a 9=3. 根据等差数列的性质知a 5+a 13=a 7+a 11, 所以a 5-a 7+a 9-a 11+a 13=a 9=3. 答案:310.在等差数列{a n }中,公差d =12,前100项的和S 100=45,则a 1+a 3+a 5+…+a 99=________.解析:因为S 100=1002(a 1+a 100)=45,所以a 1+a 100=910, a 1+a 99=a 1+a 100-d =25,则a 1+a 3+a 5+…+a 99=502(a 1+a 99)=502×25=10. 答案:10B 级——中档题目练通抓牢1.(2018·湖南五市十校联考)已知S n 是数列{a n }的前n 项和,且S n +1=S n +a n +3,a 4+a 5=23,则S 8=( )A .72B .88C .92D .98解析:选C 法一:由S n +1=S n +a n +3,得a n +1-a n =3,故数列{a n }是公差为3的等差数列,又a 4+a 5=23=2a 1+7d =2a 1+21,∴a 1=1,S 8=8a 1+8×72d =92.法二:由S n +1=S n +a n +3,得a n +1-a n =3,故数列{a n }是公差为3的等差数列,S 8=8(a 1+a 8)2=8(a 4+a 5)2=92. 2.(2018·广东潮州二模)在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增一十三里;驽马初日行九十七里,日减半里,良马先至齐,复还迎驽马,二马相逢,问:几日相逢( )A .8日B .9日C .12日D .16日解析:选B 设n 日相逢,则依题意得103n +n (n -1)2×13+97n +n (n -1)2×⎝⎛⎭⎫-12=1125×2,整理得n 2+31n -360=0,解得n =9(负值舍去),故选B.3.等差数列{a n }的前n 项和为S n ,其中n ∈N *,则下列命题错误的是( ) A .若a n >0,则S n >0 B .若S n >0,则a n >0C .若a n >0,则{S n }是单调递增数列D .若{S n }是单调递增数列,则a n >0解析:选D 由等差数列的性质可得:∀n ∈N *,a n >0,则S n >0,反之也成立.a n >0,d >0,则{S n }是单调递增数列.因此A 、B 、C 正确.对于D ,{S n }是单调递增数列,则d >0,而a n >0不一定成立.4.在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由题意,当且仅当n =8时S n 有最大值, 可得⎩⎪⎨⎪⎧d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧d <0,7+7d >0,7+8d <0,解得-1<d <-78.答案:⎝⎛⎭⎫-1,-78 5.设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m =________. 解析:因为等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,所以a m =S m -S m -1=2,a m +1=S m +1-S m =3,数列的公差d =1,a m +a m +1=S m +1-S m-1=5,即2a 1+2m -1=5, 所以a 1=3-m . 由S m =(3-m )m +m (m -1)2×1=0, 解得m =5. 答案:56.(2018·广西三市第一次联考)已知数列{a n }的前n 项和为S n ,且S n =2n -1(n ∈N *). (1)求数列{a n }的通项公式;(2)设b n =log 4a n +1,求{b n }的前n 项和T n . 解:(1)当n ≥2时,a n =S n -S n -1=2n -1,当n =1时,a 1=2-1=1,满足a n =2n -1,∴数列{a n }的通项公式为a n =2n -1(n ∈N *).(2)由(1)得,b n =log 4a n +1=n +12,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 数 列第1课时 数列的概念及其简单表示法一、 填空题1. 数列23,-45,67,-89,…的第10项是________.答案:-2021解析:所给数列呈现分数形式,且正负相间,求通项公式时,我们可以把符号、分母、分子每一部分进行分解,就很容易归纳出数列{a n }的通项公式为a n =(-1)n +1·2n 2n +1,故a 10=-2021.2. 已知数列{a n }满足a n +2=a n +1-a n ,且a 1=2,a 2=3,则a 2 016的值为________. 答案:-1解析:由题意,得a 3=a 2-a 1=1,a 4=a 3-a 2=-2,a 5=a 4-a 3=-3,a 6=a 5-a 4=-1,a 7=a 6-a 5=2,∴ 数列{a n }是周期为6的周期数列.而2 016=6×336,∴ a 2 016=a 6=-1.3. 数列7,9,11,…,2n -1的项数是_________. 答案:n -3解析:易知a 1=7,d =2,设项数为m ,则2n -1=7+(m -1)×2,m =n -3.4. 已知数列{a n }的前n 项和为S n ,且a n ≠0(n∈N *),又a n a n +1=S n ,则a 3-a 1=________. 答案:1解析:因为a n a n +1=S n ,所以令n =1得a 1a 2=S 1=a 1,即a 2=1.令n =2,得a 2a 3=S 2=a 1+a 2,即a 3=1+a 1,所以a 3-a 1=1.5. 已知数列{a n }的前n 项和S n =n 2+2n +1,则{a n }的通项公式为__________.答案:a n =⎩⎪⎨⎪⎧4(n =1),2n +1(n≥2)解析:当n =1时,a 1=S 1=4;当n≥2时,a n =S n -S n -1=2n +1,∴ a n =⎩⎪⎨⎪⎧4(n =1),2n +1(n≥2).6. 已知数列{a n }的前n 项和为S n ,且S n =2a n -1(n ∈N *),则a 5=__________. 答案:16解析:当n =1时,S 1=2a 1-1,∴ a 1=1;当n≥2时,S n =2a n -1,S n -1=2a n -1-1,则有 a n =2a n -2a n -1,∴ a n =2a n -1.∴ {a n }是等比数列,且a 1=1,q =2,故a 5=a 1×q 4=24=16.7. 若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式a n =________.答案:(-2)n -1解析:当n =1时,a 1=1;当n≥2时,a n =S n -S n -1=23a n -23a n -1,则a na n -1=-2,得a n=(-2)n -1.8. 设数列{a n }满足a 1=a ,a n +1=a 2n -2a n +1(n∈N *).若数列{a n }是常数列,则a =________.答案:-2解析:因为数列{a n }是常数列,所以a =a 2=a 21-2a 1+1=a 2-2a +1,即a(a +1)=a 2-2,解得a=-2.9. 数列{a n }的前n 项积为n 2,那么当n≥2时,a n =________.答案:n2(n -1)2解析:设数列{a n }的前n 项积为T n ,则T n =n 2,当n≥2时,a n =T n T n -1=n2(n -1)2.10. 数列{a n }满足:a 1=1,且对任意的m ,n ∈N *都有a n +m =a n +a m +nm ,则a 100=________. 答案:5 050解析:令m =1,则a n +1=a n +1+n ⇒a n +1-a n =n +1⇒a 100=(a 100-a 99)+(a 99-a 98)+…+(a 3-a 2)+(a 2-a 1)+a 1=100+99+…+2+1=5 050.二、 解答题11. 数列{a n }的通项公式是a n =n 2-7n +6. (1) 这个数列的第4项是多少?(2) 150是不是这个数列的项?若是这个数列的项,它是第几项? (3) 该数列从第几项开始各项都是正数?解:(1) 当n =4时,a 4=42-4×7+6=-6.(2) 令a n =150,即n 2-7n +6=150,解得n =16或n =-9(舍去),即150是数列的第16项.(3) 令a n =n 2-7n +6>0,解得n >6或n <1(舍),∴ 从第7项起各项都是正数.12. 已知数列{a n }满足前n 项和S n =n 2+1,数列{b n }满足b n =2a n +1,且前n 项和为T n .设c n =T 2n +1-T n .(1) 求数列{b n }的通项公式; (2) 判断数列{c n }的增减性.解:(1) a 1=2,a n =S n -S n -1=2n -1(n≥2),∴ b n =⎩⎪⎨⎪⎧23(n =1),1n(n≥2).(2) ∵ c n =b n +1+b n +2+…+b 2n +1=1n +1+1n +2+…+12n +1, ∴ c n +1-c n =12n +2+12n +3-1n +1=12n +3-12n +2=-1(2n +3)(2n +2)<0, ∴ c n +1<c n .∴ 数列{c n }为递减数列.13. 已知数列{a n }中,a n =1+1a +2(n -1)(n∈N *,a ∈R ,且a≠0).(1) 若a =-7,求数列{a n }中的最大项和最小项的值;(2) 若对任意的n∈N *,都有a n ≤a 6成立,求a 的取值范围.解:(1) ∵ a n =1+1a +2(n -1)(n∈N *,a ∈R ,且a≠0),又a =-7,∴ a n =1+12n -9(n∈N *).结合函数f(x)=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n∈N *),∴ 数列{a n }中的最大项为a 5=2,最小项为a 4=0.(2) a n =1+1a +2(n -1)=1+12n -2-a2,对任意的n∈N *,都有a n ≤a 6成立,结合函数f(x)=1+12x -2-a 2的单调性,可知5<2-a2<6,即-10<a<-8,即a 的取值范围是(-10,-8).第2课时 等 差 数 列一、 填空题1. 在等差数列{a n }中,a 5=33,公差d =3,则201是该数列的第________项. 答案:61解析:∵ a n =a 5+(n -5)d ,∴ 201=33+3(n -5),n =61.2. 已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,则a 20=________. 答案:1 解析:∵ a 1+a 3+a 5=105,即3a 3=105,解得a 3=35,同理a 2+a 4+a 6=99,得a 4=33.∵ d =a 4-a 3=33-35=-2,∴ a 20=a 4+(20-4)d =33+16×(-2)=1.3. 在等差数列{a n }中,已知a 2+a 8=11,则3a 3+a 11的值为__________. 答案:22解析:3a 3+a 11=a 3+a 3+a 3+a 11=a 3+a 2+a 4+a 11=a 3+a 2+a 7+a 8=2(a 2+a 8)=11×2=22.4. 若等差数列{a n }的前5项和S 5=25,且a 4=3,则a 7=________. 答案:-3解析:S 5=25⇒5(a 1+a 5)2=25⇒a 3=5,所以d =a 4-a 3=-2,a 7=a 4+(7-4)d =3-6=-3.5. 在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时,S n 取最大值,则d 的取值范围是________.答案:-1<d<-78解析:由题意得,a 8>0,a 9<0,所以7+7d>0,7+8d<0,即-1<d<-78.6. 若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.答案:8解析:由等差数列的性质,得a 7+a 8+a 9=3a 8,a 8>0,又a 7+a 10<0,所以a 8+a 9<0,所以a 9<0,所以S 8>S 7,S 8>S 9,故数列{a n }的前8项和最大.7. 若一个等差数列{a n }的前3项和为34,最后3项的和为146,且所有项的和为390,则这个数列有________项.答案:13 解析:a 1+a 2+a 3+a n -2+a n -1+a n =34+146=180,所以3(a 1+a n )=180,即a 1+a n =60.由S n =390,知n (a 1+a n )2=390,所以n×602=390,解得n =13.8. 记等差数列{a n }的前n 项和为S n .已知a 1=2,且数列{S n }也为等差数列,则a 13的值为________.答案:50 解析:数列{S n }为等差数列,得S 1+S 3=2S 2,即2+6+3d =24+d ,则d =4,a 13 =a 1+12d =50.9. 已知等差数列{a n }的前n 项和为S n ,若S 3S 6=13,则S 6S 12=________.答案:310解析: 由等差数列的求和公式可得S 3S 6=3a 1+3d 6a 1+15d =13,可得a 1=2d ,且d≠0,所以S 6S 12=6a 1+15d 12a 1+66d =27d 90d =310.10. 在等差数列{a n }中,a 2=5,a 6=21,记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,若S 2n +1-S n ≤m15对n∈N *恒成立,则正整数m 的最小值为________.答案:5解析:由a 2=5,a 6=21易得等差数列{a n }的通项公式为a n =4n -3,所以1a n =14n -3.故S 2n +1-S n =1a 2n +1+1a 2n +1a 2n -1+…+1a n +2+1a n +1.设T n =S 2n +1-S n ,则T n +1=S 2(n +1)+1-S n +1=S 2n +3-S n +1,所以T n +1-T n =(S 2n +3-S n +1)-(S 2n +1-S n )=(S 2n +3-S 2n +1)-(S n +1-S n )=1a 2n +3+1a 2n +2-1a n +1=14(2n +3)-3+14(2n +2)-3-14(n +1)-3 =18n +9+18n +5-14n +1<18n +2+18n +2-14n +1=28n +2-14n +1=0. 所以T n +1-T n <0,即T n +1<T n .故T n =S 2n +1-S n 随n 的增大而减小,所以若S 2n +1-S n ≤m15对n∈N *恒成立,即(S 2n +1-S n )max =S 3-S 1=1a 3+1a 2=19+15=1445≤m 15.由1445≤m 15得m≥143,所以正整数m 的最小值为5.二、 解答题11. 在等差数列{a n }中,a 1=1,a 3=-3. (1) 求数列{a n }的通项公式;(2) 若数列{a n }的前k 项和S k =-35,求k 的值. 解:(1) 设等差数列{a n }的公差为d ,由a 1=1,a 3=-3,可得1+2d =-3,解得d =-2. 从而a n =1+(n -1)×(-2)=3-2n. (2) 由(1)可知a n =3-2n.所以S n =n[1+(3-2n )]2=2n -n 2.由S k =-35,可得2k -k 2=-35,即k 2-2k -35=0,解得k =7或k =-5.又k∈N *,故k =7.12. 设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足S 5S 6+15=0.(1) 若S 5=5,求S 6及a 1; (2) 求d 的取值范围.解:(1) 由题意知S 6=-15S 5=-3,a 6=S 6-S 5=-8,所以⎩⎪⎨⎪⎧5a 1+10d =5,a 1+5d =-8,解得⎩⎪⎨⎪⎧a 1=7,d =-3,因此S 6=-3,a 1=7.(2) 因为S 5S 6+15=0,所以(5a 1+10d)(6a 1+15d)+15=0,即2a 21+9da 1+10d 2+1=0.故(4a 1+9d)2=d 2-8,所以d 2≥8.故d 的取值范围是d≤-22或d≥2 2. 13. 在等差数列{a n }中,公差d >0,前n 项和为S n ,a 2·a 3=45,a 1+a 5=18. (1) 求数列{a n }的通项公式.(2) 令b n =S n n +c(n∈N *),是否存在一个非零常数c ,使数列{b n }也为等差数列?若存在,求出c 的值;若不存在,请说明理由.解:(1) 由题设,知{a n }是等差数列,且公差d >0,则由⎩⎪⎨⎪⎧a 2a 3=45,a 1+a 5=18,得⎩⎪⎨⎪⎧(a 1+d )(a 1+2d )=45,a 1+(a 1+4d )=18,解得⎩⎪⎨⎪⎧a 1=1,d =4.∴ a n =4n -3(n∈N *).(2) 由b n =S n n +c =n (1+4n -3)2n +c =2n ⎝ ⎛⎭⎪⎫n -12n +c.∵ c ≠0,∴ 可令c =-12,得到b n =2n.∵ b n +1-b n =2(n +1)-2n =2(n∈N *), ∴ 数列{b n }是公差为2的等差数列.即存在一个非零常数c =-12,使数列{b n }也为等差数列.第3课时 等 比 数 列一、 填空题1. 等比数列{a n }的公比大于1,a 5-a 1=15,a 4-a 2=6,则a 3=________. 答案:4解析:由a 5-a 1=15,a 4-a 2=6(q>1),得q =2,a 1=1,则a 3=4.2. 设等比数列{a n }的公比q =12,前n 项和为S n ,则S 4a 4=________.答案:15解析:S 4=a 1(1-q 4)1-q ,a 4=a 1q 3,所以S 4a 4=1-q 4q 3(1-q )=15.3. 在各项均为正数的等比数列{a n }中,若log 2a 2+log 2a 8=1,则a 3a 7=________. 答案:2解析:由log 2a 2+log 2a 8=1得log 2(a 2a 8)=1,所以a 2a 8=2,由等比数列性质可得a 3a 7=a 2a 8=2.4. 已知等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3依次成等差数列,若a 1=1,则S 5=________ .答案:31解析:因为4a 1,2a 2,a 3依次成等差数列,4a 2=4a 1+a 3,所以4a 1q =4a 1+a 1q 2,所以q=2.又a 1=1,所以S 5=a 1(1-q 5)1-q=31.5. 设S n 是等比数列{a n }的前n 项和,若a 5+2a 10=0,则S 20S 10的值是________.答案:54解析:当q =1时,a 5=a 10=0不合题意,∴ 公比q≠1.∴ q 5=a 10a 5=-12,因而S 20S 10=1-q 201-q 10=1+q 10=1+14=54.6. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯________盏.答案:3 解析:设塔的顶层共有灯x 盏,则各层的灯数构成一个首项为x ,公比为2的等比数列,结合等比数列的求和公式有:x×(1-27)1-2=381,解得x =3,即塔的顶层共有灯3盏.7. 设等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则a 7+a 8+a 9=__________. 答案:448解析:由S 3=7,S 6=63,得a 1+a 2+a 3=7,7+a 4+a 5+a 6=63,则a 4+a 5+a 6=(a 1+a 2+a 3)q 3=56,q 3=8,a 7+a 8+a 9=(a 4+a 5+a 6)q 3=56×8=448.8. 已知等比数列{a n }的前n 项和为S n ,若S 2=2a 2+3,S 3=2a 3+3,则公比q 的值为________.答案:2解析:∵ S 2=2a 2+3,S 3=2a 3+3,∴ a 1=a 1q +3,a 1(1+q)=a 1q 2+3,∴ q 2-2q =0,q ≠0,则公比q =2.9. 在等比数列{a n }中,已知a 1=1,a 4=8,设S 3n 为该数列的前3n 项和,T n 为数列{a 3n }的前n 项和.若S 3n =tT n ,则实数t 的值为________.答案:7解析: ∵a 4=a 1q 3=q 3=8,∴ q =2,S 3n =1-23n1-2=8n -1.由题意知,数列{a 3n }是首项为1,公比为8的等比数列,∴T n =1-8n1-8=17(8n-1).由S 3n =tT n ,得t =7.10. 在正项等比数列{a n }中,若a 4+a 3-2a 2-2a 1=6,则a 5+a 6的最小值为________. 答案:48解析:设 a 2+a 1=x ,等比数列的公比为q ,则a 4+a 3 =xq 2,a 5+a 6 =xq 4.再由a 4+a 3-2a 2-2a 1=6,得 xq 2=6+2x ,∴ x =6q 2-2>0,q >1.∴ a 5+a 6 =xq 4=6q 4q 2-2=6⎝⎛⎭⎪⎫q 2-2+4q 2-2+4≥6×(4+4)=48,当且仅当q 2-2=2时,等号成立,故a 5+a 6的最小值为48.二、 解答题11. 已知{a n }是首项为a 1,公比q 为正数(q≠1)的等比数列,其前n 项和为S n ,且5S 2=4S 4.(1) 求q 的值.(2) 设b n =q +S n ,请判断数列{b n }能否为等比数列?若能,请求出a 1的值;若不能,请说明理由.解:(1) 由题意知,5S 2=4S 4,∴ 5a 1(1-q 2)1-q =4a 1(1-q 4)1-q.∵ a 1≠0,q>0,且q≠1,∴ 4q 4-5q 2+1=0,解得q =12.(2) ∵ S n =a 1(1-q n)1-q =2a 1-a 1⎝ ⎛⎭⎪⎫12n -1,∴ b n =q +S n =12+2a 1-a 1⎝ ⎛⎭⎪⎫12n -1.∴ 当且仅当12+2a 1=0,即a 1=-14时,b n =⎝ ⎛⎭⎪⎫12n +1为等比数列,∴ {b n }能为等比数列,此时a 1=-14.12. 已知等差数列{a n }的公差d 不为0,且ak 1,ak 2,…,ak n ,…(k 1<k 2<…<k n <…)成等比数列,公比为q.(1) 若k 1=1,k 2=3,k 3=8,求a 1d的值;(2) 当a 1d为何值时,数列{k n }为等比数列.解:(1) 由已知可得a 1,a 3,a 8成等比数列,所以(a 1+2d)2=a 1(a 1+7d),整理可得,4d 2=3a 1d.因为d≠0,所以a 1d =43.(2) 设数列{k n }为等比数列,则k 22=k 1k 3.又ak 1,ak 2,ak 3成等比数列,所以[a 1+(k 1-1)d][a 1+(k 3-1)d]=[a 1+(k 2-1)d]2.整理,得a 1(2k 2-k 1-k 3)=d(k 1k 3-k 22-k 1-k 3+2k 2).因为k 22=k 1k 3,所以a 1(2k 2-k 1-k 3)=d(2k 2-k 1-k 3).因为2k 2≠k 1+k 3,所以a 1=d ,即a 1d=1.当a 1d=1时,a n =a 1+(n -1)d =nd ,所以ak n =k n d. 因为ak n =ak 1q n -1=k 1dq n -1,所以k n =k 1q n -1.所以k n +1k n =k 1q nk 1qn -1=q ,数列{k n }为等比数列.综上,当a 1d=1时,数列{k n }为等比数列.13. (2017·苏州期中)已知等比数列{a n }的公比q>1,且满足a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项.(1) 求数列{a n }的通项公式;(2) 若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,求使S n +n·2n +1>62成立的正整数n 的最小值.解:(1) ∵ a 3+2是a 2,a 4的等差中项, ∴ 2(a 3+2)=a 2+a 4,代入a 2+a 3+a 4=28,可得a 3=8, ∴ a 2+a 4=20,∴ ⎩⎪⎨⎪⎧a 1q 2=8,a 1q +a 1q 3=20,解得⎩⎪⎨⎪⎧a 1=2,q =2或⎩⎪⎨⎪⎧a 1=32,q =12. ∵ q>1,∴ ⎩⎪⎨⎪⎧a 1=2,q =2,∴ 数列{a n }的通项公式为a n =2n.(2) ∵ b n =a n log 12a n =2n log 122n =-n·2n,∴ S n =-(1×2+2×22+…+n·2n) ①,2S n =-(1×22+2×23+…+(n -1)·2n +n ·2n +1) ②,②-①得,S n =2+22+23+…+2n -n·2n +1=2(1-2n)1-2-n·2n +1=2n +1-2-n·2n +1.∵ S n +n·2n +1>62,∴ 2n +1-2>62,∴ n +1>6,n>5,∴ 使S n +n·2n +1>62成立的正整数n 的最小值为6.第4课时 数列的求和 一、 填空题1. 在数列{a n }中,若a 1=-2,且对任意的n∈N *有2a n +1=1+2a n ,则数列{a n }前10项的和为________.答案:52解析:由2a n +1=1+2a n 得a n +1-a n =12,所以数列{a n }是首项为-2,公差为12的等差数列,所以S 10=10×(-2)+10×(10-1)2×12=52.2. 已知数列{a n }的通项公式是a n =2n-12n ,其前n 项和S n =32164,则项数n =________.答案:6解析:∵ a n =1-12n ,∴ S n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫1-18+…+⎝ ⎛⎭⎪⎫1-12n =n -(12+14+18+…+12n )=n -12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=n -1+12n .由S n =32164=n -1+12n ,可得出n =6. 3. 数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n =________.答案:n 2+1-12n解析:该数列的通项公式为a n =(2n -1)+12n ,则S n =[1+3+5+…+(2n -1)]+(12+122+…+12n )=n 2+1-12n .4. 已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为________.答案:100101解析:∵ a 5=5,S 5=15,∴ 5(a 1+a 5)2=15,则a 1=1,∴ d =a 5-a 14=1,∴ a n =n ,∴ 1a n a n +1=1n (n +1)=1n -1n +1.设数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和为T n ,则 T 100=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1100-1101=1-1101=100101.5. 已知数列{a n }的前n 项和S n =n 2-6n ,则{|a n |}的前n 项和T n =__________.答案:⎩⎪⎨⎪⎧6n -n 2(1≤n≤3),n 2-6n +18(n>3)解析:由S n =n 2-6n 得{a n }是等差数列,且首项为-5,公差为2,∴ a n =-5+(n -1)×2=2n -7,∴ 当n≤3时,a n <0;当n>3时,a n >0,∴ T n =⎩⎪⎨⎪⎧6n -n 2(1≤n≤3),n 2-6n +18(n>3).6. 数列{a n }的前n 项和为S n ,已知S n =1-2+3-4+…+(-1)n -1·n ,则S 17=________. 答案:9解析:S 17=1-2+3-4+5-6+…+15-16+17=1+(-2+3)+(-4+5)+(-6+7)+…+(-14+15)+(-16+17)=1+1+1+…+1=9.7. 已知数列{a n }:12,13+23,14+24+34,…,110+210+310+…+910,….若b n =1a n a n +1,那么数列{b n }的前n 项和S n =________.答案:4nn +1解析:∵ a n =1+2+3+…+n n +1=n2,∴ b n =1a n a n +1=4n (n +1)=4⎝ ⎛⎭⎪⎫1n -1n +1,∴ S n =4[⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1]=4⎝ ⎛⎭⎪⎫1-1n +1=4n n +1. 8. 已知数列{a n }满足a n +2=-a n (n∈N +),且a 1=1,a 2=2,则数列{a n }的前2 014项的和为________.答案:3解析:∵ a n +2=-a n =-(-a n -2),n >2,∴ 数列{a n }是以4为周期的周期数列.S 2 014=503(a 1+a 2+a 3+a 4)+a 2 013+a 2 014=503(a 1+a 2-a 1-a 2)+a 503×4+1+a 503×4+2=a 1+a 2=3.9. 设数列{a n }满足a 1=1,且a n +1-a n =n +1(n∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.答案:2011解析:∵ a 1=1,a n +1-a n =n +1,∴ a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n.将以上n-1个式子相加得a n -a 1=2+3+…+n =n (n +1)-22,即a n =n (n +1)2.令b n =1a n,故b n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1,故S 10=b 1+b 2+…+b 10=2×(1-12+12-13+…+110-111)=2011. 二、 解答题10. 已知数列{a n }的通项a n =⎩⎪⎨⎪⎧6n -5(n 为奇数),2n (n 为偶数),求其前n 项和S n .解:奇数项组成以a 1=1为首项,公差为12的等差数列,偶数项组成以a 2=4为首项,公比为4的等比数列;当n 为奇数时,奇数项有n +12项,偶数项有n -12项,∴ S n =n +12(1+6n -5)2+4(1-4n -12)1-4=(n +1)(3n -2)2+4(2n -1-1)3;当n 为偶数时,奇数项和偶数项分别有n2项,∴ S n =n 2(1+6n -5)2+4(1-4n 2)1-4=n (3n -2)2+4(2n -1)3,∴ S n =⎩⎪⎨⎪⎧(n +1)(3n -2)2+4(2n -1-1)3(n 为奇数),n (3n -2)2+4(2n-1)3(n 为偶数). 11. 设等差数列{a n }的前n 项和为S n ,且S 3=2S 2+4,a 5=36. (1) 求a n ,S n ;(2) 设b n =S n -1(n∈N *),T n =1b 1+1b 2+1b 3+…+1b n,求T n .解:(1) 因为S 3=2S 2+4,所以a 1-d =-4.因为a 5=36,所以a 1+4d =36,解得d =8,a 1=4,所以a n =4+8(n -1)=8n -4,S n =n (4+8n -4)2=4n 2.(2) 因为b n =4n 2-1=(2n -1)(2n +1),所以1b n =1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,T n =1b 1+1b 2+1b 3+…+1b n=12⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1=12⎝⎛⎭⎪⎫1-12n +1=n2n +1.12. 已知数列{a n }是首项为a 1=14,公比为q =14的等比数列,设b n +2=3log 14a n (n∈N *),数列{c n }满足c n =a n ·b n .(1) 求数列{b n }的通项公式; (2) 求数列{c n }的前n 项和S n .解:(1) 由题意,知a n =⎝ ⎛⎭⎪⎫14n (n∈N *).又b n =3log 14a n -2,故b n =3n -2(n∈N *).(2) 由(1)知a n =⎝ ⎛⎭⎪⎫14n ,b n =3n -2(n∈N *),所以c n =(3n -2)×⎝ ⎛⎭⎪⎫14n (n∈N *),所以S n =1×14+4×⎝ ⎛⎭⎪⎫142+7×⎝ ⎛⎭⎪⎫143+…+(3n -5)×⎝ ⎛⎭⎪⎫14n -1+(3n -2)×⎝ ⎛⎭⎪⎫14n ,于是14S n =1×⎝ ⎛⎭⎪⎫142+4×⎝ ⎛⎭⎪⎫143+7×⎝ ⎛⎭⎪⎫144+…+(3n -5)×⎝ ⎛⎭⎪⎫14n +(3n -2)×(14)n +1,两式相减,得34S n =14+3[(14)2+(14)3+…+(14)n ]-(3n -2)×⎝ ⎛⎭⎪⎫14n +1=12-(3n +2)×(14)n +1,所以S n =23-3n +23×⎝ ⎛⎭⎪⎫14n (n∈N *).13. 在等差数列{a n }中,已知公差d =2,a 2是a 1与a 4的等比中项. (1) 求数列{a n }的通项公式;(2) 设b n =a n (n +1)2,记T n =-b 1+b 2-b 3+b 4-…+(-1)nb n ,求T n .解:(1) 由题意知(a 1+d)2=a 1(a 1+3d),即(a 1+2)2=a 1(a 1+6),解得a 1=2, 所以数列{a n }的通项公式为a n =2n.(2) 由题意知b n =a n (n +1)2=n(n +1),则b n +1-b n =2(n +1),所以T n =-1×2+2×3-3×4+…+(-1)nn ×(n +1). 当n 为偶数时,T n =(-b 1+b 2)+(-b 3+b 4)+…+(-b n -1+b n )=4+8+12+…+2n =n2(4+2n )2=n (n +2)2,当n 为奇数时,T n =T n -1+(-b n )=(n -1)(n +1)2-n(n +1)=-(n +1)22,所以T n =⎩⎪⎨⎪⎧-(n +1)22,n 为奇数,n (n +2)2,n 为偶数.第5课时 数列的综合应用一、 填空题1. 在等差数列{a n }中,满足3a 4=7a 7,且a 1>0,S n 是数列{a n }的前n 项和,若S n 取得最大值,则n =________.答案:9解析:设公差d ,由题设知3(a 1+3d)=7(a 1+6d),得d =-433a 1<0,解不等式a n >0,即a 1+(n -1)⎝ ⎛⎭⎪⎫-433a 1>0,解得n <374,则n≤9时,a n >0,同理可得n≥10时,a n <0,故当n =9时,S n 取得最大值.2. 在等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 9+a 10a 7+a 8=________.答案:3+2 2解析:∵ a 1,12a 3,2a 2成等差数列,∴ 2×12a 3=a 1+2a 2,即a 3=a 1+2a 2.设等比数列{a n }的公比为q 且q >0,则a 3=a 1q 2,a 2=a 1q ,∴ a 1q 2=a 1+2a 1q ,∴ q 2=1+2q ,解得q =1+2或1-2(舍),∴a 9+a 10a 7+a 8=a 9(1+q )a 7(1+q )=q 2=(2+1)2=3+2 2.3. 在数列{a n }中,S n 是其前n 项和,且S n =2a n +1,则数列的通项公式a n =________.答案:a n =-2n -1解析:依题意得S n +1=2a n +1+1,S n =2a n +1,两式相减得S n +1-S n =2a n +1-2a n ,即a n +1=2a n .又S 1=2a 1+1=a 1,所以a 1=-1,所以数列{a n }是以a 1=-1为首项,2为公比的等比数列,所以a n =-2n -1.4. 等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为________.答案:-24解析:设等差数列的公差为d ,由a 2,a 3,a 6成等比数列可得a 23=a 2a 6,即(1+2d)2=(1+d)(1+5d),整理可得d 2+2d =0.因为公差不为0,所以d =-2,数列的前6项和为S 6=6a 1+6×(6-1)2d =6×1+6×(6-1)2×(-2)=-24.5. 设等比数列{a n }的前n 项和为S n ,若S 3,S 9,S 6成等差数列,且a 2+a 5=4,则a 8的值为________.答案:2解析:∵ 等比数列{a n }的前n 项和为S n ,若S 3,S 9,S 6成等差数列,且a 2+a 5=4,∴ q ≠1,⎩⎪⎨⎪⎧2×a 1(1-q 9)1-q =a 1(1-q 3)1-q +a 1(1-q 6)1-q ,a 1q +a 1q 4=4,解得a 1q =8,q 3=-12,∴ a 8=a 1q 7=(a 1q)(q 3)2=8×14=2.6. 在等差数列{a n }中,已知首项a 1>0,公差d >0.若a 1+a 2≤60,a 2+a 3≤100,则5a 1+a 5的最大值为________.答案:200解析:由a 1+a 2≤60,a 2+a 3≤100得2a 1+d≤60,2a 1+3d≤100,a 1>0,d >0.由线性规划的知识得5a 1+a 5=6a 1+4d ,过点(20,20)时,取最大值为200.7. 设正项数列{a n }的前n 项和是S n ,{a n }和{S n }都是等差数列,则S n +10a n的最小值是____________.答案:21解析:由题设知S n =⎝⎛⎭⎪⎫a 1-d 2n +d 2n 2.又S n 为等差数列,从而a 1=d 2,从而a n =a 1+(n -1)d =d ⎝ ⎛⎭⎪⎫n -12,S n =d 2n 2,∴ S n +10a n =d 2(n +10)2d ⎝ ⎛⎭⎪⎫n -12=(n +10)22⎝ ⎛⎭⎪⎫n -12=(n +10)22n -1.令2n -1=t(t≥1),原式=⎝ ⎛⎭⎪⎫t +12+102t =14·⎝ ⎛⎭⎪⎫t +441t +42≥14·⎝ ⎛⎭⎪⎫2t·441t +42=21,从而当t =21,即n =11时,原式取到最小值21.8. 中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走了378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”问此人第4天和第5天共走了________里.答案:36解析:由题意知,此人每天走的里数构成公比为12的等比数列,设等比数列的首项为a 1,则有a 1⎝ ⎛⎭⎪⎫1-1261-12=378,解得a 1=192,所以a 4=192×18=24,a 5=24×12=12,a 4+a 5=24+12=36,所以此人第4天和第5天共走了36里.9. 已知{a n },{b n }均为等比数列,其前n 项和分别为S n ,T n ,若对任意的n∈N *,总有S n T n=3n+14,则a 3b 3=________.答案:9解析:设{a n },{b n }的公比分别为q ,q ′,∵ S n T n =3n+14,∴ 当n =1时,a 1=b 1.当n =2时,a 1+a 1q b 1+b 1q ′=52.当n =3时,a 1+a 1q +a 1q2b 1+b 1q ′+b 1q ′2=7,∴ 2q -5q′=3,7q ′2+7q′-q 2-q +6=0,解得q =9,q ′=3,∴ a 3b 3=a 1q 2b 1q ′2=9.10. 现有一根n 节的竹竿,自上而下每节的长度依次构成等差数列,最上面一节长为10 cm ,最下面的三节长度之和为114 cm ,第6节的长度是首节与末节长度的等比中项,则n =________.答案:16解析:设每节竹竿的长度对应的数列为{a n },公差为d(d >0).由题意知a 1=10,a n +a n -1+a n -2=114,a 26=a 1a n .由a n +a n -1+a n -2=114,得3a n -1=114,解得a n -1=38,∴ (a 1+5d)2=a 1(a n -1+d),即(10+5d)2=10(38+d),解得d =2,∴a n -1=a 1+(n -2)d =38,即10+2(n -2)=38,解得n =16.二、 解答题11. 设数列{a n }的前n 项和为S n ,满足2S n =a n +1-2n +1+1,且a 1,a 2+5,a 3成等差数列. (1) 求a 1,a 2的值;(2) 求证:数列{a n +2n}是等比数列,并求数列{a n }的通项公式. (1) 解:由已知,得2a 1=a 2-3 ①, 2(a 1+a 2)=a 3-7 ②,又a 1,a 2+5,a 3成等差数列, 所以a 1+a 3=2a 2+10 ③, 解①②③,得a 1=1,a 2=5.(2) 证明:由已知,n ∈N *时,2(S n +1-S n )=a n +2-a n +1-2n +2+2n +1,即a n +2=3a n +1+2n +1,即a n +1=3a n +2n(n≥2),由(1)得,a 2=3a 1+2,∴ a n +1=3a n +2n (n∈N *),从而有a n +1+2n +1=3a n +2n +2n +1=3a n +3×2n =3(a n +2n).又a 1+2>0,∴ a n +2n>0,∴ a n +1+2n +1a n +2n =3,∴ 数列{a n +2n}是等比数列,且公比为3,∴ a n +2n =(a 1+2)×3n -1=3n ,即a n =3n -2n. 12. 商学院为推进后勤社会化改革,与桃园新区商定,由该区向建设银行贷款500万元在桃园新区为学院建一栋可容纳一千人的学生公寓,工程于2017年初动工,年底竣工并交付使用,公寓管理处采用收费偿还建行贷款形式(年利率5%,按复利计算),公寓所收费用除去物业管理费和水电费18万元,其余部分全部用于年底还建行贷款.(1) 若公寓收费标准定为每生每年800元,问到哪一年可偿还建行全部贷款?(2) 若公寓管理处要在2025年年底把贷款全部还清,则每生每年的最低收费标准是多少元(精确到元)?(参考数据:lg 1.734 3≈0.239 1,lg 1.05≈0.021 2,1.058≈1.477 4)解:(1) 设公寓投入使用后n 年可偿还全部贷款,则公寓每年收费总额为1 000×800=800 000(元)=80万元,扣除18万元,可偿还贷款62万元.依题意有62[1+(1+5%)+(1+5%)2+…+(1+5%)n -1]≥500(1+5%)n +1,化简得62(1.05n-1)≥25×1.05n +1,∴ 1.05n≥1.734 3.两边取对数并整理得 n ≥lg 1.734 3lg 1.05≈0.239 10.021 2≈11.28,∴ 当取n =12时,即到2029年底可全部还清贷款.(2) 设每生每年的最低收费标准为x 元,因到2025年底公寓共使用了8年,依题意有⎝ ⎛⎭⎪⎫1 000x 10 000-18[1+(1+5%)+(1+5%)2+…+(1+5%)7]≥500(1+5%)9.化简得(0.1x -18)×1.058-11.05-1≥500×1.059,解得x≥992,∴ 每生每年的最低收费标准为992元.13. 已知数列{a n },{b n }满足2S n =(a n +2)b n ,其中S n 是数列{a n }的前n 项和.(1) 若数列{a n }是首项为23,公比为-13的等比数列,求数列{b n }的通项公式;(2) 若b n =n ,a 2=3,求数列{a n }的通项公式;(3) 在(2)的条件下,设c n =a nb n,求证:数列{c n }中的任意一项总可以表示成该数列其他两项之积.(1) 解:因为a n =23⎝ ⎛⎭⎪⎫-13n -1=-2⎝ ⎛⎭⎪⎫-13n ,S n =23⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-13n 1-⎝ ⎛⎭⎪⎫-13=12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-13n ,所以b n =2S n a n +2=1-⎝ ⎛⎭⎪⎫-13n -2⎝ ⎛⎭⎪⎫-13n +2=12.(2) 解:若b n =n ,则2S n =na n +2n , 所以2S n +1=(n +1)a n +1+2(n +1),两式相减得2a n +1=(n +1)a n +1-na n +2,即na n =(n -1)a n +1+2.当n≥2时,(n -1)a n -1=(n -2)a n +2,两式相减得(n -1)a n -1+(n -1)a n +1=2(n -1)a n , 即a n -1+a n +1=2a n .由2S 1=a 1+2,得a 1=2,又a 2=3,所以数列{a n }是首项为2,公差为3-2=1的等差数列, 故数列{a n }的通项公式是a n =n +1.(3) 证明:由(2)得c n =n +1n,对于给定的n∈N *,若存在k ,t ≠n ,k ,t ∈N *,使得c n=c k ·c t ,只需n +1n =k +1k ·t +1t ,即1+1n =⎝⎛⎭⎪⎫1+1k ·⎝ ⎛⎭⎪⎫1+1t ,即1n =1k +1t +1kt ,则t =n (k +1)k -n , 取k =n +1,则t =n(n +2),所以对数列{c n }中的任意一项c n =n +1n ,都存在c n +1=n +2n +1和c n2+2n =n 2+2n +1n 2+2n,使得c n =c n +1·c n2+2n .。