最新中考数学复习课一次函数与反比例函数综合
2024年中考复习-重难点05 反比例函数与一次函数的综合(解析版)

重难点05反比例函数与一次函数的综合考点一:一次函数一次函数在中考数学中主要考察其图象、性质以及其简单应用,考察题型较为灵活。
但是一张中考数学与试卷中,单独考察一次函数的题目占比并不是很大,更多的是考察一次函数与其他几何知识的结合。
占比也比较大,需要对该考点掌握的更为熟练。
题型01一次函数图象上点的坐标特征解题大招01:一次函数解析求法是待定系数法,即:①设,②代,③解,④写;解题大招02:当说明“点在函数图象上”时,立刻想“点的坐标符合其解析式”;解题大招03:一次函数的k决定直线的增减性,b决定直线与y轴的交点纵坐标;解题大招04:一次函数图象平移规律:左加右减(x),上加下减(整体);【中考真题练】1.(2023•临沂)对于某个一次函数y=kx+b(k≠0),根据两位同学的对话得出的结论,错误的是()A.k>0B.kb<0C.k+b>0D.k=﹣b【分析】根据一次函数的性质以及一次函数图象上点的坐标特征判断即可.【解答】解:∵一次函数y=kx+b(k≠0)的图象不经过第二象限,∴b≤0,又∵函数图象经过点(2,0),∴图象经过第一、三、四象限,∴k>0,k=﹣b,∴kb<0,∴k+b=b<0,∴错误的是k+b>0.故选:C.2.(2023•雅安)在平面直角坐标系中,将函数y=x的图象绕坐标原点逆时针旋转90°,再向上平移1个单位长度,所得直线的函数表达式为()A.y=﹣x+1B.y=x+1C.y=﹣x﹣1D.y=x﹣1【分析】找出y=x上一个点坐标,进而旋转90°后对应点的坐标,即可得到旋转后一次函数解析式,再根据上加下减的平移规则即可求得直线的函数表达式为y=﹣x+1.【解答】解:在函数y=x的图象上取点A(1,1),绕原点逆时针方向旋转90°后得到对应的点的坐标A′(﹣1,1),则旋转后的直线的解析式为y=﹣x,再向上平移1个单位长度,得到y=﹣x+1.故选:A.3.(2023•荆州)如图,直线y=﹣x+3分别与x轴,y轴交于点A,B,将△OAB绕着点A顺时针旋转90°得到△CAD,则点B的对应点D的坐标是()A.(2,5)B.(3,5)C.(5,2)D.(,2)【分析】先根据坐标轴上点的坐标特征求出B点坐标为(0,3),A点坐标为(2,0),则OA=2,OB =3,再根据旋转的性质得∠OAC=90°,∠ACD=∠AOB=90°,AC=AO=2,CD=OB=3,然后根据点的坐标的确定方法即可得到点D的坐标.【解答】解:当x=0时,y=﹣x+3=3,则B点坐标为(0,3);当y=0时,﹣x+3=0,解得x=2,则A点坐标为(2,0),则OA=2,OB=3,∵△AOB绕点A顺时针旋转90°后得到△ACD,∴∠OAC=90°,∠ACD=∠AOB=90°,AC=AO=2,CD=OB=3,即AC⊥x轴,CD∥x轴,∴点D的坐标为(5,2).故选:C.4.(2023•无锡)一次函数y=x﹣2的图象与坐标轴围成的三角形的面积是2.【分析】利用一次函数图象上点的坐标特征,可求出一次函数y=x﹣2的图象与两坐标轴的交点坐标,再利用三角形的面积公式,即可求出一次函数y=x﹣2的图象与坐标轴围成的三角形的面积.【解答】解:当x=0时,y=1×0﹣2=﹣2,∴一次函数y=x﹣2的图象与y轴交于点(0,﹣2);当y=0时,x﹣2=0,解得:x=2,∴一次函数y=x﹣2的图象与x轴交于点(2,0).∴一次函数y=x﹣2的图象与坐标轴围成的三角形的面积是×|﹣2|×2=2.故答案为:2.5.(2023•苏州)已知一次函数y=kx+b的图象经过点(1,3)和(﹣1,2),则k2﹣b2=﹣6.【分析】利用待定系数法即可解得.【解答】解:由题意得,将点(1,3)和(﹣1,2)代入y=kx+b得:,解得:,∴,另一种解法:由题意得,将点(1,3)和(﹣1,2)代入y=kx+b得:,∴k2﹣b2=(k+b)(k﹣b)=﹣(k+b)(﹣k+b)=﹣3×2=﹣6.故答案为:﹣6.6.(2023•南充)如图,直线y=kx﹣2k+3(k为常数,k<0)与x,y轴分别交于点A,B,则+的值是1.【分析】根据一次函数的解析式,可以求得点A和点B的坐标,然后即可计算出+的值.【解答】解:∵直线y=kx﹣2k+3,∴当x=0时,y=﹣2k+3;当y=0时,x=;∴点A的坐标为(,0),点B的坐标为(0,﹣2k+3),∴OA=,OB=﹣2k+3,∴+=+=﹣==1,故答案为:1.7.(2023•青海)如图是平面直角坐标系中的一组直线,按此规律推断,第5条直线与x轴交点的横坐标是10.【分析】根据每条直线与x轴交点的横坐标解答即可.【解答】解:由题知,这组直线是平行直线,每条直线与x轴交点的横坐标依次是2,4,6...,∴第5条直线与x轴的交点的横坐标是10.故答案为:10.8.(2023•黑龙江)如图,在平面直角坐标系中,△ABC的顶点A在直线l1:y=x上,顶点B在x轴上,AB垂直x轴,且OB=2,顶点C在直线l2:y=x上,BC⊥l2;过点A作直线l2的垂线,垂足为C1,交x轴于B1,过点B1作A1B1垂直x轴,交l1于点A1,连接A1C1,得到第一个△A1B1C1;过点A1作直线l2的垂线,垂足为C2,交x轴于B2,过点B2作A2B2垂直x轴,交l1于点A2,连接A2C2,得到第二个△A2B2C2;如此下去,…,则△A2023B2023C2023的面积是24046.=,证明△ABC∽△A1B1C1,【分析】解直角三角形得出∠AOB=30°,∠BOC=60°,求出S△ABC△ABC∽△A 2B2C2,得出=4S△ABC,=42•S△ABC=(22)2•S△ABC,总结得出=(2n)2S △ABC=22n S△ABC,从而得出=22×2023×=24046.【解答】解:∵OB=2,∴B(2,0),∵AB⊥x轴,∴点A的横坐标为2,∵直线l1:y=x,∴点A的纵坐标为=,∴∠AOB=,∴∠AOB=30°,∵直线l2:y=x,∴C(x C,),∴=,∴∠BOC=60°,∴OC=,∴C点的横坐标为:=,==,∴S△ABC∵BC⊥l2,B1C1⊥l2,B2C2⊥l2,∴BC∥B1C1∥B2C2,∴∠C1B1O=∠C2B2O=∠CBO=30°,∴∠C1B1O=∠C2B2O=∠CBO=∠AOB,∴AO=AB1,A1O=A1B2,∵AB⊥x轴,A1B1⊥x轴,∴OB=,OB1=,∵AB⊥x轴,A1B1⊥x轴,A2B2⊥x轴,∴AB∥A1B1∥A2B2,∴,,∵BC∥B1C1∥B2C2,∴,,∴,∵∠ABC=∠A1B1C1=90°﹣30°=60°,∴△ABC∽△A1B1C1,同理△ABC∽△A2B2C2,,=42•S△ABC=(22)2•S△ABC,∴=4S△ABC∴=(2n)2S △ABC=22n S△ABC,=22×2023×=24046.故答案为:24046.9.(2023•西宁)一次函数y=2x﹣4的图象与x轴交于点A,且经过点B(m,4).(1)求点A和点B的坐标;(2)直接在图的平面直角坐标系中画出一次函数y=2x﹣4的图象;(3)点P在x轴的正半轴上,若△ABP是以AB为腰的等腰三角形,请直接写出所有符合条件的P点坐标.【分析】(1)把y=0和4分别代入函数解析式,即可求得相应的x和m的值,即可得点A、B的坐标;(2)利用描点法画图象即可;(3)根据等腰三角形的性质即可得出答案.【解答】解:(1)∵一次函数y=2x﹣4的图象与x轴交于点A,∴令y=0,2x﹣4=0,解得x=2,∴点A的坐标是(2,0),∵点B(m,4)在一次函数y=2x﹣4的图象上,把B(m,4)代入y=2x﹣4,得2m﹣4=4,∴m=4,∴点B的坐标是(4,4);(2)图象过点A的坐标是(2,0),点B的坐标是(4,4),如图:(3)∵A(2,0),B(4,4),∴AB==2,∵点P在x轴的正半轴上,△ABP是以AB为腰的等腰三角形,∴P的坐标为(6,0)或(2+2,0).【中考模拟练】1.(2024•长丰县模拟)如图,直线与坐标轴交于点A、B,过点B作AB的垂线交x轴于点C,则点C的坐标为()A.B.(﹣6,0)C.D.【分析】直线与坐标轴交于点A、B,得到,结合CB⊥AB,得到∠ACB=∠ABO,利用正切函数计算OC即可.【解答】解:∵直线与坐标轴交于点A、B,∴,∴,∴,∵CB⊥AB,CO⊥OB,∴∠ACB=90°﹣∠BAO=∠ABO,∴,解得,∴,故选:A.2.(2024•静安区二模)一次函数y=kx+b中,如果k<0,b≥0,那么该函数的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数图象与系数的关系进行判断即可.【解答】解:当一次函数y=kx+b中k<0,b≥0,该函数的图象一定不经过第三象限,故选:C.3.(2024•太白县一模)在平面直角坐标系中,一次函数y=﹣5x+m(m是常数)的图象上有两点A(x1,y1),B(x2,y2),若x1>x2,则y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.y1≥y2【分析】由k=﹣5<0,利用一次函数的性质,可得出y随x的增大而减小,再结合x1>x2,即可得出y1<y2.【解答】解:∵k=﹣5<0,∴y随x的增大而减小,又∵点A(x1,y1),B(x2,y2)都在一次函数y=﹣5x+m(m是常数)的图象上,且x1>x2,∴y1<y2.故选:B.4.(2024•衡南县模拟)已知:如图,直线y=﹣2x+4分别与x轴,y轴交于A、B两点,点P(1,0),若在直线AB上取一点M,在y轴上取一点N,连接MN、MP、NP,则MN+MP+NP的最小值是()A.3B.C.D.【分析】作点P关于y轴的对称点E,点P关于AB的对称点F,连接EN,EM,EF,FM,FP,设FP 交AB于C,过点F作FD⊥x轴于D,则EN=NP,FM=MP,FP⊥AB,OE=OP,FC=PC,MN+MP+NP =MN+FM+EN,根据“两点之间线段最短”得MN+FM+EN≥EF,则MN+MP+NP≥EF,因此MN+MP+NP 的最小值为线段EF的长;先求出点A(2,0),点B(0,4),则OA=2,OB=4,再由点P(1,0)得OP=1,则OE=OP=1,PA=OA﹣OP=1,再求出AB=,证△PAC∽△BAO得PC:OB=PA:AB,由此得PC=,则PF=,再证△PFD∽△BAO得FD:OA=PD:OB=PF:AB,由此可得FD=,PD=,则ED=OE+OP+PD=,然后在Rt△EFD中由勾股定理求出EF即可得MN+MP+NP的最小值.【解答】解:作点P关于y轴的对称点E,点P关于AB的对称点F,连接EN,EM,EF,FM,FP,设FP交AB于C,过点F作FD⊥x轴于D,如图所示:则EN=NP,FM=MP,FP⊥AB,OE=OP,FC=PC,∴MN+MP+NP=MN+FM+EN,根据“两点之间线段最短”得MN+FM+EN≥EF,∴MN+MP+NP≥EF,∴MN+MP+NP的最小值为线段EF的长,对于y=﹣2x+4,当x=0时,y=4,当x=0时,x=2,∴点A(2,0),点B(0,4),∴OA=2,OB=4,又∵点P(1,0),∴OP=1,∴OE=OP=1,PA=OA﹣OP=2﹣1=1,在Rt△OAB中,OA=2,OB=4,由勾股定理得:AB==,∵FP⊥AB,FD⊥x轴,∠BOA=90°,∴∠PCA=∠BOA=∠PDF=90°,又∵∠PAC=∠BAO,∴△PAC∽△BAO,∴PC:OB=PA:AB,∠APC=∠ABO,即,∴PC=,∴FC=PC=,∴PF=FC+PC=,∵∠APC=∠ABO,∠BOA=∠PDF=90°,∵△PFD∽△BAO,∴FD:OA=PD:OB=PF:AB,即,∴FD=,PD=,∴ED=OE+OP+PD=1+1+=,在Rt△EFD中,ED=,FD=,由勾股定理得:EF==.故选:C.5.(2024•普陀区二模)已知直线y=2x+4与直线y=1相交于点A,那么点A的横坐标是﹣.【分析】代入y=1,求出x的值即可.【解答】解:将y=1代入y=2x+4得:1=2x+4,解得:x=﹣,∴点A的横坐标是﹣.故答案为:﹣.6.(2023•郸城县三模)某班数学兴趣小组对函数y=﹣2|x﹣1|+3的图象与性质进行了探究,探究过程如下:(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如表:x…﹣3﹣2﹣1012345…y=﹣2|x﹣…﹣5m﹣1131n﹣3﹣5…1|+3填空:m=﹣3,n=﹣1;(2)根据上表数据,在如图所示的平面直角坐标系中画出该函数的图象;(3)观察函数图象,写出该函数的两条性质:①该函数图象是轴对称图形;②该函数有最大值3(答案不唯一);(4)点A(a,b)是该函数图象上一点,现已知点A在直线y=2的下方,且b>﹣2,那么a的取值范围是﹣1.5<a<0.5或1.5<a<3.5.【分析】(1)分别求出x=﹣2和x=3时对应的y值即可;(2)根据表中数据,描点后画出函数图象即可;(3)根据函数图象,结合增减性和最值写出性质;(4)分别求得y=2与y=﹣2时的自变量的值,进而根据函数图象即可求解.【解答】解:(1)当x=﹣2时,m=﹣2|﹣2﹣1|+3=﹣3,当x=3时,n=﹣2|3﹣1|+3=﹣1,故答案为:﹣3,﹣1;(2)根据描点连线,如图所示.(3)观察函数图象,写出该函数的两条性质:①该函数图象是轴对称图形;②该函数有最大值3(答案不唯一).故答案为:①该函数图象是轴对称图形;②该函数有最大值3(答案不唯一);(4)当y=2时,即﹣2|x﹣1|+3=2,解得:x=0.5或x=1.5,当y=﹣2时,﹣2|x﹣1|+3=﹣2解得x=﹣1.5或x=3.5,根据函数图象可得,点A在直线y=2的下方,且b>﹣2,∴﹣1.5<a<0.5或1.5<a<3.5.7.(2023•太平区二模)小明在学习一次函数后,对形如y=k(x﹣m)+n(其中k,m,n为常数,且k≠0)的一次函数图象和性质进行了探究,过程如下:【特例探究】(1)如图所示,小明分别画出了函数y=(x﹣2)+1,y=﹣(x﹣2)+1,y=2(x﹣2)+1的图象(网格中每个小方格边长为1),请你根据列表、描点、连线的步骤在图中画出函数y=﹣2(x﹣2)+1的图象.【深入探究】(2)通过对上述几个函数图象的观察、思考,你发现y=k(x﹣2)+1(k为常数,且k≠0)的图象一定会经过的点的坐标是(2,1).归纳:函数y=k(x﹣m)+n(其中k、m、n为常数,且k≠0)的图象一定会经过的点的坐标是(m,n).【实践运用】(3)已知一次函数y=k(x+2)+3(k为常数,且k≠0)的图象一定过点N,且与y轴相交于点A,若△OAN的面积为4,求k的值.【分析】(1)根据列表、描点、连线作图.(2)将x=2代入解析式求解.(3)将x=m代入解析式求解.(4)根据一次函数解析式求出点N及点A坐标,进而求解.【解答】解:(1)列表:x﹣10123 y﹣5﹣3﹣113如图:(2)将x=2代入y=k(x﹣2)+1得y=1,∴函数y=k(x﹣2)+1的图象一定经过(2,1).故答案为:(2,1).(3)将x =m 代入y =k (x ﹣m )+n 得y =n ,∴函数y =k (x ﹣m )+n 的图象一定经过(m ,n ),故答案为:(m ,n ).(4)将x =﹣2代入y =k (x +2)+3得y =3,∴点N 坐标为(﹣2,3),将x =0代入y =k (x +2)+3得y =2k +3,∴点A 坐标为(0,2k +3),∴OA =|2k +3|,∴S △OAN =OA •|x N |=OA =|2k +3|=4,解得k =﹣或k =.8.(2023•花都区一模)在平面直角坐标系中,直线y =kx +4(k ≠0)交x 轴于点A (8,0),交y 轴于点B .(1)k 的值是﹣;(2)点C 是直线AB 上的一个动点,点D 和点E 分别在x 轴和y 轴上.①如图,点D 的坐标为(6,0),点E 的坐标为(0,1),若四边形OECD 的面积是9,求点C 的坐标;②当CE 平行于x 轴,CD 平行于y 轴时,若四边形OECD 的周长是10,请直接写出点C 的坐标.【分析】(1)根据点A 的坐标,利用待定系数法可求出k 值;(2)①利用一次函数图象上点的坐标特征可得出点C 的坐标,由四边形OECD 的面积是9,得出S 梯形CEOM +S △CDM =(1﹣m +4)•m +(﹣m +4)•(6﹣m )=9,解方程求得m 的值,即可求得C 的坐标;②由题意可知2(m ﹣m +4)=10,解方程求得m 的值,即可求得C 的坐标【解答】解:(1)将A(8,0)代入y=kx+4,得:0=8k+4,解得:k=﹣,故答案为:﹣;(2)①如图1,由(1)可知直线AB的解析式为y=﹣x+4.∴设C(m,﹣m+4)(0<m<8),∵点D的坐标为(6,0),点E的坐标为(0,1),∴OD=6,OE=1,∴OM=m,CM=﹣m+4,∵四边形OECD的面积是9,+S△CDM=(1﹣m+4)•m+(﹣m+4)•(6﹣m)=9,∴S梯形CEOM整理得2m=6,解得m=3,∴点C的坐标为(3,);②∵CE平行于x轴,CD平行于y轴,∴四边形CEOD是矩形,∵四边形OECD的周长是10,∴2(m﹣m+4)=10或2(﹣m+4﹣m)=10,解得m=2或m=6,点C的坐标为(2,3)或(﹣,).题型02一次函数的应用解题大招01:常用等量关系:总利润=单件利润×数量解题大招02:利用函数的增减性得到最大利润解题大招03:和函数图象结合时,注意图象对应的“起点”、“拐点”、“终点”的意义【中考真题练】1.(2023•山西)一种弹簧秤最大能称不超过10kg的物体,不挂物体时弹簧的长为12cm,每挂重1kg物体,弹簧伸长0.5cm,在弹性限度内,挂重后弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系式为()A.y=12﹣0.5x B.y=12+0.5x C.y=10+0.5x D.y=0.5x【分析】根据不挂物体时弹簧的长为12cm,每挂重1kg物体,弹簧伸长0.5cm,可得在弹性限度内,y 与x的函数关系式.【解答】解:根据题意,得y=12+0.5x(0≤x≤10),故选:B.2.(2023•聊城)甲乙两地相距a千米,小亮8:00乘慢车从甲地去乙地,10分钟后小莹乘快车从乙地赶往甲地.两人分别距甲地的距离y(千米)与两人行驶时刻t(×时×分)的函数图象如图所示,则小亮与小莹相遇的时刻为()A.8:28B.8:30C.8:32D.8:35【分析】设小亮与小莹相遇时,小亮乘车行驶了x小时,因为小亮、小莹乘车行驶的速度分别是a千米/时,2a千米/时,即可得到方程:ax+2a(x﹣)=a,求出x的值,即可解决问题.【解答】解:设小亮与小莹相遇时,小亮乘车行驶了x小时,∵小亮、小莹乘车行驶完全程用的时间分别是小时,小时,∴小亮、小莹乘车行驶的速度分别是a千米/时,2a千米/时,由题意得:ax+2a(x﹣)=a,∴x=,小时=28分钟,∴小亮与小莹相遇的时刻为8:28.故选:A.3.(2023•郴州)第11届中国(湖南)矿物宝石国际博览会在我市举行,小方一家上午9:00开车前往会展中心参观.途中汽车发生故障,原地修车花了一段时间.车修好后,他们继续开车赶往会展中心.以下是他们家出发后离家的距离s与时间的函数图象.分析图中信息,下列说法正确的是()A.途中修车花了30minB.修车之前的平均速度是500m/minC.车修好后的平均速度是80m/minD.车修好后的平均速度是修车之前的平均速度的1.5倍【分析】根据图象即可判断A选项,根据“路程÷时间=速度”即可判断B和C选项,进一步可判断D 选项.【解答】解:由图象可知,途中修车时间是9:10到9:30共花了20min,故A不符合题意;修车之前的平均速度是6000÷10=600(m/min),故B不符合题意;车修好后的平均速度是(13200﹣6000)÷8=900(m/min),故C不符合题意;900÷600=1.5,∴车修好后的平均速度是修车之前的平均速度的1.5倍,故D符合题意,故选:D.4.(2023•朝阳)甲乙两人骑自行车分别从A,B两地同时出发相向而行,甲匀速骑行到B地,乙匀速骑行到A地,甲的速度大于乙的速度,两人分别到达目的地后停止骑行.两人之间的距离y(米)和骑行的时间x(秒)之间的函数关系图象如图所示,现给出下列结论:①a=450;②b=150;③甲的速度为10米/秒;④当甲、乙相距50米时,甲出发了55秒或65秒.其中正确的结论有()A.①②B.①③C.②④D.③④【分析】根据函数图象中的数据,可以计算出甲和乙的速度,从而可以判断③;然后根据甲的速度可以计算出a的值,即可判断①;根据乙的速度,可以计算出b的值,可以判断②;根据甲和乙相遇前和相遇后相距50米,可以计算出甲出发的时间,即可判断④.【解答】解:由图可得,甲的速度为:600÷100=6(米/秒),故③错误,不符合题意;乙的速度为:600÷60﹣6=4(米/秒),a=4×100=400,故①错误,不符合题意;b=600÷4=150,故②正确,符合题意;设当甲、乙相距50米时,甲出发了m秒,两人相遇前:(600﹣50)=m(6+4),解得m=55;两人相遇后:(600+50)=m(6+4),解得m=65;故④正确,符合题意;故选:C.5.(2023•镇江)小明从家出发到商场购物后返回,如图表示的是小明离家的路程s(m)与时间t(min)之间的函数关系,已知小明购物用时30min,返回速度是去商场的速度的1.2倍,则a的值为()A.46B.48C.50D.52【分析】设小明家距离商场为s m,先根据题意求出小明去商场的所用时间,再根据速度=得出小明去商场时的速度速度,,再根据返回速度是去商场的速度的1.2倍,求出小明返回时所用时间即可.【解答】解:设小明家距离商场为s m,∵小明购物用时30min,∴小明从家到商场所用时间为42﹣30=12(min),∴小明从家到商场的速度为(m/min),∵小明返回速度是去商场的速度的1.2倍,∴小明返回所用时间为=10(min),∴a=42+10=52,故选:D.6.(2023•威海)一辆汽车在行驶过程中,其行驶路程y(千米)与行驶时间x(小时)之间的函数关系如图所示.当0≤x≤0.5时,y与x之间的函数表达式为y=60x;当0.5≤x≤2时,y与x之间的函数表达式为y=80x﹣10.【分析】根据当0≤x≤0.5时,y与x之间的函数表达式为y=60x,可得当x=0.5时,y=30,设当0.5≤x≤2时,y与x之间的函数表达式为y=kx+b,用待定系数法可得答案.【解答】解:∵当0≤x≤0.5时,y与x之间的函数表达式为y=60x,∴当x=0.5时,y=30,设当0.5≤x≤2时,y与x之间的函数表达式为y=kx+b,把(0.5,30),(2,150)代入得:,解得,故答案为:y=80x﹣10.7.(2023•恩施州)为积极响应州政府“悦享成长•书香恩施”的号召,学校组织150名学生参加朗诵比赛,因活动需要,计划给每个学生购买一套服装.经市场调查得知,购买1套男装和1套女装共需220元;购买6套男装与购买5套女装的费用相同.(1)男装、女装的单价各是多少?(2)如果参加活动的男生人数不超过女生人数的,购买服装的总费用不超过17000元,那么学校有几种购买方案?怎样购买才能使费用最低,最低费用是多少?【分析】(1)设男装单价为x元,女装单价为y元,根据题意列方程组求解即可;(2)设参加活动的女生有a人,则男生有(150﹣a)人,列不等式组找到a的取值范围,再设总费用为w元,得到w与a的关系,根据一次函数的性质可得当a取最小值时w有最小值,据此求解即可.【解答】解:(1)设男装单价为x元,女装单价为y元,根据题意得:,解得:,答:男装单价为100元,女装单价为120元.(2)设参加活动的女生有a人,则男生有(150﹣a)人,根据题意可得,解得:90≤a≤100,∵a为整数,∴a可取90,91,92,93,94,95,96,97,98,99,100,一共11个数,故一共有11种方案,设总费用为w元,则w=120a+100(150﹣a)=15000+20a,∵20>0,∴当a=90时,w有最小值,最小值为15000+20×90=16800(元),此时,150﹣a=60(套),答:当女装购买90套,男装购买60套时,所需费用最少,最少费用为16800元.8.(2023•青岛)某服装店经销A,B两种T恤衫,进价和售价如下表所示:品名A B进价(元/件)4560售价(元/件)6690(1)第一次进货时,服装店用6000元购进A,B两种T恤衫共120件,全部售完获利多少元?(2)受市场因素影响,第二次进货时,A种T恤衫进价每件上涨了5元,B种T恤衫进价每件上涨了10元,但两种T恤衫的售价不变.服装店计划购进A,B两种T恤衫共150件,且B种T恤衫的购进量不超过A种T恤衫购进量的2倍.设此次购进A种T恤衫m件,两种T恤衫全部售完可获利W元.①请求出W与m的函数关系式;②服装店第二次获利能否超过第一次获利?请说明理由.【分析】(1)根据条件,购进AT恤衫x件,购进BT恤衫y件,列出方程组解出x、y值,最后求出获利数;(2)①根据条件,可列W=(66﹣45﹣5)m+(90﹣60﹣10)(150﹣m),整理即可;②由①可知,W=﹣4m+3000(150≥m≥50),一次函数W随m的增大而减小,当m=50时,W取最大值计算出来和第一次获利比较即可.【解答】解:(1)设购进AT恤衫x件,购进BT恤衫y件,根据题意列出方程组为:,解得,∴全部售完获利=(66﹣45)×80+(90﹣60)×40=1680+1200=2880(元).(2)①设第二次购进A种T恤衫m件,则购进B种T恤衫(150﹣m)件,根据题意150﹣m≤2m,即m≥50,∴W=(66﹣45﹣5)m+(90﹣60﹣10)(150﹣m)=﹣4m+3000(150≥m≥50),②服装店第二次获利不能超过第一次获利,理由如下:由①可知,W=﹣4m+3000(150≥m≥50),∵﹣4<0,一次函数W随m的增大而减小,=﹣4×50+3000=2800(元),∴当m=50时,W取最大值,W大∵2800<2880,∴服装店第二次获利不能超过第一次获利.9.(2023•黑龙江)已知甲,乙两地相距480km,一辆出租车从甲地出发往返于甲乙两地,一辆货车沿同一条公路从乙地前往甲地,两车同时出发,货车途经服务区时,停下来装完货物后,发现此时与出租车相距120km,货车继续出发h后与出租车相遇.出租车到达乙地后立即按原路返回,结果比货车早15分钟到达甲地.如图是两车距各自出发地的距离y(km)与货车行驶时间x(h)之间的函数图象,结合图象回答下列问题:(1)图中a的值是120;(2)求货车装完货物后驶往甲地的过程中,距其出发地的距离y(km)与行驶时间x(h)之间的函数关系式;(3)直接写出在出租车返回的行驶过程中,货车出发多长时间与出租车相距12km.【分析】(1)由图象知,C(4,480),设直线OC的解析式为y=kx,把C(4,480)代入,解方程即可得到结论;(2)由停下来装完货物后,发现此时与出租车相距120km,可得此时出租车距离乙地为120+120=240(km),把y=240代入y=120x求得货车装完货物时,x=2,B(2,120),根据货车继续出发h后与出租车相遇,可得×*出租车的速度+货车的速度)=120,根据直线OC的解析式为y=120x,可得出租车的速度为120km/h,于是得到相遇时,货车的速度为120﹣120=60(km/h)故可设直线BG 的解析式为y=60x+b,将B(2,120)代入求得b=0,于是得到直线BG的解析式为y=60x,故货车装完货物后驶往甲地的过程中,于是得到结论;(3)把y=480代入y=60x,得到G(8,480),求得F(8,0),根据出租车到达乙地后立即按原路返回,经过比货车早15分钟到达甲地,可得EF=,设在出租车返回的行驶过程中,货车出发t 小时,与出租车相距12km,此时货车距离乙地为60t km,出租车距离乙地为128(t﹣4)=(128t﹣512)km,①出租车和货车第二次相遇前,相距12km时,②出租车和货车第二次相遇后,相距12km时,列方程即可得到结论.【解答】解:(1)由图象知,C(4,480),设直线OC的解析式为y=kx,把C(4,480)代入得,480=4k,解得k=120,∴直线OC的解析式为y=120x;把(1,a)代入y=120x,得a=120,故答案为:120;(2)由停下来装完货物后,发现此时与出租车相距120km,货车行驶时间为小时,∵a=120(km),∴货车卸货时与乙地相距120km,∴出租车距离乙地为120+120=240(km),∴出租车距离甲地为480﹣240=240(km),把y=240代入y=120x得,240=120x,解得x=2,∴货车装完货物时,x=2,B(2,120),根据货车继续出发h后与出租车相遇,可得×(出租车的速度+货车的速度)=120,根据直线OC的解析式为y=120x(0≤x≤4),可得出租车的速度为120km/h,∴相遇时,货车的速度为120﹣120=60(km/h),故可设直线BG的解析式为y=60x+b,将B(2,120)代入y=60x+b,可得120=120+b,解得b=0,∴直线BG的解析式为y=60x(2≤x≤8),故货车装完货物后驶往甲地的过程中,距其出发地的距离y(km)与行驶时间x(h)之间的函数关系式为y=60x,(3)把y=480代入y=60x,可得480=60x,解得x=8,∴G(8,480),∴F(8,0),根据出租车到达乙地后立即按原路返回,经过比货车早15分钟到达甲地,可得EF=,∴,∴出租车返回后的速度为480÷()=128km/h,设在出租车返回的行驶过程中,货车出发t小时,与出租车相距12km,此时货车距离乙地为60t km,出租车距离乙地为128(t﹣4)=(128t﹣512)km,①出租车和货车第二次相遇前,相距12km时,可得60t1﹣(128t1﹣512)=12,解得t1=;②出租车和货车第二次相遇后,相距12km时,可得(128t2﹣512)﹣60t2=12,解得t2=,故在出租车返回的行驶过程中,货车出发h或h与出租车相距12km.【中考模拟练】1.(2024•兰山区校级模拟)甲、乙两家商场平时以同样的价格出售相同的商品.端午节期间两家商场都让利酬宾,两家商场的购物金额y甲、y乙(单位:元)与商品原价x(单位:元)之间的关系如图所示,张阿姨计划在其中一家商场购原价为620元的商品,从省钱的角度你建议选择()A.甲B.乙C.甲、乙均可D.不确定【分析】利用待定系数法即可求出y甲,y乙关于x的函数关系式,将x=620代入计算即可作出判断.【解答】解:设y甲=kx,把(1200,960)代入,得1200k=960,解得k=0.8,所以y甲=0.8x,当0<x<200时,设y乙=ax,把(200,200)代入,得200a=200,解得a=1,所以y乙=x;当x≥200时,设y乙=mx+n,把(1200,900),(200,200)代入,得,解得.所以y乙=,x=620时,y甲=0.8×620=496,y乙=0.7×620+60=494,494<496,∴从省钱的角度建议选择乙商场,故选:B.2.(2024•锡山区一模)明明和亮亮都在同一直道A、B两地间做匀速往返走锻炼.明明的速度小于亮亮的速度(忽略掉头等时间).明明从A地出发,同时亮亮从B地出发.图中的折线段表示从开始到第二次相遇止,两人之间的距离y(米)与行走时间x(分)的函数关系的图象,则下列结论错误的是()A.a=2100B.b=2000C.c=20D.【分析】由两次相遇知两人共走了(3×2800)米,且速度不变,得c=60÷3=20(分).故C选项不符合题意;由拐点得此时亮亮到达A地,故亮亮的速度为2800÷35=80(米/分),由速度和为2800÷20=140(米/分),得明明的速度为60米/分,因此a=(80+60)×(35﹣20)=2100,故A选项不符合题意;在35~d时,两人相向而行,速度之差为80﹣60=20(米/分),最后一段两人相对而行,速度之和为80+60=140(米/分),第二次相遇时距离A地距离为60×80﹣2800=2000(米),因此b=2000,故B 选项符合题意;最后一段两人相对而行,140(60﹣d)=2000,解得d=,故D选项符合题意.【解答】解:∵第一次相遇两人共走了2800米,第二次相遇两人共走了(3×2800)米,且二者速度不变,∴c=60÷3=20(分).故C选项不符合题意;∵x=35时,出现拐点,∴此时亮亮到达A地,路程为2800米,亮亮的速度为2800÷35=80(米/分),两人的速度和为2800÷20=140(米/分),明明的速度为140﹣80=60(米/分),∴a=(80+60)×(35﹣20)=2100;故A选项不符合题意;在35~d时,两人相向而行,速度之差为80﹣60=20(米/分),最后一段两人相对而行,速度之和为80+60=140(米/分),第二次相遇时距离A地距离为60×80﹣2800=2000(米),所以b=2000.故B选项不符合题意;最后一段两人相对而行,140(60﹣d)=2000,解得d=,故D选项符合题意;故选:D.3.(2024•中山市校级模拟)我市供暖改造工程,现甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖两天后,每天挖50米;③当x=4时,甲、乙两队所挖管道长度相同;④甲队比乙队提前2天完成任务.正确的个数有()A.1个B.2个C.3个D.4个【分析】先建立函数关系式,再根据题意逐个判断即可.【解答】解:设y=kx,代入点(6,600)得:600=6k,甲∴k=100.∴y=100x,=kx,代入点(2,300)得:300=2k.当0≤x≤2时,设y乙∴k=150,=150x,∴y乙当x≥2时,设y=kx+b,代入点(2,300),(6,500)得:乙解得:k=50,b=200.=50x+200.∴y乙∵600÷6=100米/天,∴①正确.∵(500﹣300)÷(6﹣2)=50,∴②正确.=100x=400(米).∵当x=4时,y甲y乙=50×4+200=400(米).∴③正确.=100x=600时,x=6.当y甲=50x+200=600时,x=8,当y乙8﹣6=2,∴④正确.故选:D.4.(2024•市中区一模)A,B两地相距60km,甲、乙两人骑车分别从A,B两地同时出发,相向而行,匀速行驶.乙在途中休息了0.5h后按原速度继续前进.两人到A地的距离s(km)和时间t(h)的关系如图所示,则出发 2.1h后,两人相遇.【分析】根据图形求出两人的速度,设出发x小时后两人相遇,再根据两人相遇时路程之和等于60即可求解.【解答】解:根据图像:乙的速度为:(60﹣40)÷1=20(km/h),甲的速度为:(20﹣0)÷1.5=(km/h),设出发x小时后两人相遇,根据题意得20(x﹣0.5)+x=60,解得x=2.1,。
一次函数和反比例函数综合问题(3易错7题型)—2024年中考数学(全国通用)(解析版)

一次函数和反比例函数综合问题目录【中考预测】预测考向,总结常考点及应对的策略 【误区点拨】点拨常见的易错点【抢分通关】精选名校模拟题,讲解通关策略(含新考法、新情境等)一次函数和反比例函数是全国中考的热点内容,更是全国中考的必考内容.每年都有一些考生因为知识残缺、基础不牢、技能不熟、答欠规范等原因导致失分.1.从考点频率看,一次函数和反比例函数的图象和性质是考查的基础,也是高频考点、必考点,所以对一次函数和反比例函数的图象和性质必须熟记.2.从题型角度看,以解答题的第三题或第四题为主,分值8分左右,着实不少!易错点一 一次函数与反比例函数中由面积求点坐标【例1】(2024·广东珠海·模拟预测)如图,在平面直角坐标系xOy 中,一次函数图象5y x =−+与y 轴交于点A ,与反比例函数ky x=的图象的一个交点为(),4B a ,过点B 作AB 的垂线l .(1)求点A 的坐标及反比例函数的表达式;(2)若点C 在直线l 上,且ABC 的面积为5,求点C 的坐标;S=ABCABCS=【例2】(2024·甘肃陇南·一模)如图,在平面直角坐标系xOy 中,一次函数4y x =−与反比例函数ky x=的图象交于A ,B 两点,与x 轴相交于点C ,已知点A ,B 的坐标分别为()5,n n 和(),5m −.(1)求反比例函数的解析式; (2)点P 为反比例函数ky x=图象上任意一点,若2POC AOC S S =△△,求点P 的坐标.【例3】(2024·山东济宁·一模)如图,点()3,6A ,()6,B a 是反比例函数y x=的图象上的两点,连接OA 、OB .(1)求a 的值; (2)求AOB 的面积;(3)若点C 的坐标为()9,0,点P 是反比例函数图象上的点,若POC △的面积等于AOB 面积的3倍,求点P的坐标. )AOB 的面积为AODBOES S=,由BOEAODAOEB S SS S=−四边形,可得AOBS=1273322POCAOBSOC PE S =⨯⨯==⨯,即可求解,【详解】(1)解:∵点()3,6A ,()6,B a 是反比例函数y x=的图象上的两点, ∴63m=,解得:18m =, ∴反比例函数解析式为:18y x=, ∴186a =,解得:3a =, 故答案为:3a =,(2)解:过点A ,B ,作AC x ⊥轴,BD x ⊥轴,垂足分别为D ,E ,由(1)可知,点()3,6A ,()6,3B 是反比例函数18y x=的图象上的两点, ∴6AC =,3OD =,3BD =,6OE =,AODBOES S=,∵BOEAODAOEB AOEB S SS S−=−四边形四边形,∴()()()()()1112763632222AOBADEB SS AD BE DE AD BE OE OD ==+⋅=+⋅−=+−=梯形, 故答案为:AOB 的面积为272, (3)解:设点P 坐标为18,p p ⎛⎫⎪⎝⎭,过点P ,作PE x ⊥轴,垂足为E ,∴18180PE p p=−=,9OC =, ∴1273322POCAOBSOC PE S =⨯⨯==⨯, 即:118279322p ⨯⨯=⨯,解得:2p =或2p =−, ∴()2,9P 或()2,9P −−,故答案为:点P 的坐标为()2,9或()2,9−−.一次函数中平移问题【例1】(2024·河北邯郸·二模)如图,直线1:4l y x =+与y 轴,x 轴交于点A ,点B ,直线2l 与y 轴,x 轴交于点A ,点,2C OC OA =.(1)求点A 的坐标及直线2l 的解析式;(2)点13,22D m m ⎛⎫+ ⎪⎝⎭在直线3l 上.①直接写出直线3l 的解析式;②若点D 在ABC 内部(含边界),求m 的取值范围;③横纵坐标都为整数的点为整点,将直线3l 向上平移n 个单位长度(n 为整数),直线3l 在第二象限恰有4个整点,直接写出n的值.=OC OA2①点在ABC 内部(含边界)【例2】(2024·河北石家庄·一模)如图,平面直角坐标系中,线段AB 的端点为(2,2)A ,(4,1)B .直线:2l y x =+与x 轴,y 轴分别交于C ,D 两点,动点P 从点D 出发,沿y 轴以每秒1个单位长度的速度向下移动,设移动时间为t 秒.某同学设计了一个动画:线段AB 为蓝色光带,当有动点或动直线经过线段AB 时,蓝色光带会变成红色.(1)求直线AB 的解析式;(2)①若直线l 随点P 向下平移,当2t =时,蓝色光带是否变红?②点M 是直线l 上的一点,若点M 向下平移4个单位长度的过程中,能使蓝色光带变红,求点M 的横坐标M x 的取值范围;Q m n三点共线时,直接写出m与t的函数关系式.(3)当点C,点P与蓝色光带上的点(,)直线过直线又直线②点A)()20C −,易错点三 一次函数与反比例函数中求线段和的最小值问题【例1】(2024·甘肃兰州·模拟预测)如图,一次函数8y x =+的图象与反比例函数()0ky x x=<的图象交于(),6A a ,B 两点.(1)求此反比例函数的表达式及点B 的坐标;(2)在y 轴上存在点P ,使得AP BP +的值最小,求AP BP +的最小值.则AP BP +的最小值A =【例2】(2023·辽宁盘锦·二模)如图,一次函数4y x =+的图象与反比例函数ky x=(k 为常数且0k ≠)的图象交于()1,A a −,B 两点.(1)求此反比例函数的表达式及点B 的坐标;(2)当反比例函数值大于一次函数值时,直接写出x 的取值范围;(3)在y 轴上存在点P ,使得APB △的周长最小,求点P 的坐标并直接写出APB △的周长. )解:点点点A题型一 一次函数的图象和性质【例1】(2024·浙江·模拟预测)已知点()11,A m n ,()22,B m n ()12m m <在一次函数y kx b =+的图像上. (1)用含有1m ,1n ,2m ,2n 的代数式表示k 的值.(2)若123m m b +=,124n n kb +=+,2b >.试比较1n 和2n 的大小,并说明理由.【例2】(2024·浙江杭州·一模)设一次函数31y ax a =++(a 是常数,0a ≠). (1)无论a 取何值,该一次函数图象始终过一个定点,直接写出这个定点坐标: (2)若24x ≤≤时,该一次函数的最大值是6,求a 的值. 【详解】(1)解:一次函数1, 当3x =−时,11y =,∴无论a 取何值,该一次函数图象始终过定点(3,1)−;(2)解:当0a >时,当4x =时,一次函数14316y a a =++=,1.(2024·北京·一模)在平面直角坐标系xOy 中,一次函数y kx b =+(0k ≠)的图象经过点()0,1,()2,2−,与x 轴交于点A .(1)求该一次函数的表达式及点A 的坐标;(2)当2x >时,对于x 的每一个值,函数2y x m =+的值大于一次函数y kx b =+(0k ≠)的值,直接写出m 的取值范围.解:一次函数2.(2024·浙江宁波·模拟预测)已知一次函数10y mx n mn =+≠.(1)已知关于x 的一元二次方程20x mx n +−=必有两个不相等的实数根,试说明一次函数1y mx n =+的图象过第一和第二象限.(2)在(1)的条件下,已知另一函数2y nx m =+的图象与y 1图象的交点在第四象限,求不等式12y y >的解. 【答案】(1)见解析解:∵关于x 的一元二次方程20x mx n +−=的解,可看作抛物线2y x =与直线y mx n =−+的交点, 根据题意得,抛物线2y x =与直线y mx n =−+必有两个不同的交点, ∴0n >,∴一次函数1y mx n =+的图象过第一和第二象限; (2)解:∵2y nx m =+,0n >,∴直线2y nx m =+一定经过第一、三象限, ∵直线2y nx m =+与y 1图象的交点在第四象限,∴直线2y nx m =+一定经过第一、三、四象限, ∴0m <, ∴0m n −<, ∵12y y >, ∴mx n nx m +>+, 整理得()m n x m n −>−, ∴1x <,即不等式12y y >的解集为1x <.题型二 反比例函数的图象和性质【例1】(2024·陕西西安·一模)已知反比例函数3my x−=. (1)若该反比例函数图象在每一个象限内,y 都随着x 的增大而减小,求m 的取值范围; (2)若点()2,3A 在此反比例函数图象上,求反比例函数的解析式.1.(2024·福建南平·一模)反比例函数ky x=图象经过点(1,6)A ,(,3)B a . (1)求a 的值;(2)若点(,)C m n 在反比例函数ky x=图象上,其中3n <,求m 的取值范围. 题型三 一次函数和反比例函数与不等式综合问题【例1】(2024·贵州毕节·一模)如图,一次函数()0y ax b a =+≠与反比例函数()0ky k x=≠的图象在第一象限交于()2,3A 和()3,B m 两点,与x 轴交于点C .(1)求反比例函数和一次函数的表达式; (2)直接写出关于x 的不等式(0)kax b x x+>>的解集. )解:点又B【例2】(2024·陕西宝鸡·一模)如图所示,一次函数1y x m =−+图象与反比例函数2ky x=图象相交于点(,3)A n 和点(3,1)B −.(1)求反比例函数解析式; (2)当12y y >时,求x 的取值范围.1.(2024·山西朔州·一模)如图,反比例函数()1110,0k y k x x=>>与一次函数()2220y k x b k =+≠的图象交于()2,3A ,3,2B m ⎛⎫⎪⎝⎭两点.(1)求m 的值及一次函数的表达式. (2)直接写出当12y y >时,x 的取值范围.)解:反比例函数与一次函数的图象交于当24x <<时,12y y <,所以,当12y y >时, x 的取值范围为02x <<或4x >.2.(2024·江西九江·一模)如图一次函数y kx b =+的图象与反比例函数4y x=−的图象相交于点()1,A m −,(),1B n −.(1)求一次函数的解析式;(2)结合图象,直接写出不等式4kx b x+>−的解集.3.(2024·河南安阳·模拟预测)如图,一次函数12y x =−的图象与反比例函数(0)y k x=≠的图象交于()(),12,A a B b −,两点,与x 轴相交于点C .(1)求反比例函数的表达式;(2)观察图象,直接写出不等式112kx x−<的解集;(3)若(),0P m 为x 轴上的一动点,连接AP ,当APC △的面积为52时,求点P 的坐标. )解:函数)函数在112y x =−中, 当y =解得:2x =,()2,0C ∴, ()0,P m ,APC S =△题型四 一次函数和反比例函数中求三角形面积问题【例1】(2024·山西大同·一模)如图,一次函数y ax b =+的图象与反比例函数()0ky k x=>的图象相交于点()6,32A n −−,点(),3B n −,与y 轴交于点C .(1)求一次函数和反比例函数的解析式;(2)点D 是点C 关于x 轴的对称点,连接AD BD 、,求ABD △的面积.S=ABD【例2】(2024·吉林白山·一模)如图,在平面直角坐标系中,一次函数5y x =−+的图象与反比例函数(0)ky k x=>的图象相交于()1,A m 、()4,B n 两点,与x 轴相交于点C ,连接OA 、OB .(1)求反比例函数的解析式; (2)求AOB 的面积. AOBS=1.(2024·湖南长沙·三模)如图,在平面直角坐标系中,一次函数32y x b =−+与反比例函数()0ky k x=≠交于()(),6,4,3A m B −两点,与y 轴交于点C ,连接,OA OB .(1)求反比例函数和一次函数的表达式; (2)求AOB 的面积.解:点解:点AOBAOCBOCS SS=+与反比例函数(0)ky x x=>的图象交于点()1,C a ,D 是反比例函数图象上的一个动点,过点D 向y 轴作垂线与一次函数图象交于点E ,其中点A 的坐标为(3,0)−.(1)求反比例函数的表达式;(2)连接,DB DC ,当DCE △的面积等于DBC △面积的2倍时,求点E 的坐标;(3)若P 是x 轴上的一个动点,连接,EP DP ,当DPE 与AOB 相似时,求点D 的纵坐标. 坐标,根据DPE 与AOB 相似计算即可,注意分情况讨论.()033b =⨯−+∵过点D向y轴作垂线与一次函数图象交于点∴设12D mm⎛⎫⎪⎝⎭,,则点E纵坐标为∴1239y xm=+=,解得x412⎛⎫当AOB PED∽时,当时,AOB PED ∽,此时时,P AOB DE ∽,此时∴12PD m =,DE m ⎛=− ⎝∴1243PD m DE m m m ==⎛⎫−− ⎪⎝⎭时,E AOB PD ∽,此时时,P AOB ED ∽,此时,则N EPM PD ∽∴EM MP PEPN DN PD== 此时12EM DN m==,DE 当D AOB EP ∽时,PE PD 同理当AOB DPE ∽时,PD综上所述,当DPE 与AOB 相似时,求点题型五 一次函数和反比例函数中求证问题【例1】(新考法,拓视野)(2024·河南周口·一模)如图,反比例函数ky x=与正比例函数y ax =交于点()3,2A 和点C ,与正比例函数6y x =交于点B 和点D .(1)求k 与a 的值,并求点B ,C ,D 的坐标; (2)求证:CBD ADB ∠=∠.1.(2024·湖南怀化·一模)在平面直角坐标系中,点O 为坐标原点.如图,一次函数y ax b =+(a 为常数,0a ≠)与反比例函数ky x=(k 为常数,0k ≠)的图象相交于点()25A ,和点()4B m −,.(1)求反比例函数与一次函数的解析式;(2)过点A 作y 轴的垂线,过点B 作x 轴的垂线,相交于点C ;过点A 作x 轴的垂线,过点B 作y 轴的垂线,相交于点D .求证:C ,O ,D 三点在同一条直线上.2.(2024·河南平顶山·一模)如图,一次函数y ax b =+的图象与反比例函数y x=的图象交于第一象限(1,4)C ,D(4,m)两点,与坐标轴交于A 、B 两点,连接OC ,OD (O 是坐标原点).(1)求一次函数与反比例函数的解析式;(2)当kax bx+<时,直接写出x的取值范围;(3)将直线AB向下平移多少个单位长度,直线与反比例函数图象只有一个交点?题型六一次函数和反比例函数中求线段长问题【例1】(2024·广东珠海·一模)如图1.直线21y x =+与y 轴交于点B ,与反比例函数()0ky x x=>的图象交于点()1,A a .图2将线段AB 向右平移m 个单位长度()0m >,得到对应线段CD ,连接AC ,BD .当点D 恰好落在反比例函数图象上时,过点C 作CF x ⊥轴于点F ,交反比函数图象于点E .(1)求反比例函数表达式; (2)求EF 的长度.1.(2024·河南·模拟预测)如图所示,在平面直角坐标系中,一次函数1y ()0kx b k =+≠的图象与反比例函数2y ()0mm x=≠的图象相交于第二、四象限内的()1,3A −,(),1B a −两点,与y 轴交于点C .(1)求该反比例函数和一次函数的解析式;(2)在x 轴上找一点P ,使PA PC −最大,求PA PC −的最大值及点P 的坐标.一次函数的解析式为Rt ADC中,由勾股定理可得题型七利用反比例函数的图象和性质探究平移问题【例1】(新考法,拓视野)(2024·广东深圳·模拟预测)小明在学习了反比例函数的图象与性质后,进一步研究了函数1yx=−的图象与性质.其探究过程如下:(1)绘制函数图象,如图,列表:下表是x与y的几组对应值,其中m=;描点:根据表中各组对应值,x y,在平面直角坐标系中描出各点;连线:用平滑的曲线顺次连接各点,画出了部分图象,请你把图象补充完整;(2)通过观察函数图象,写出该函数的一条性质:.(3)利用函数图象,解不等式1230xx−+<.观察图形得出函数的性质:图象关于y轴对称;故答案为:图象关于y轴对称;(3)【例2】(2024·陕西西安·一模)乐乐同学在学习了反比例函数的基础上,进一步探究函数21y x =-的性质.以下是他的研究过程,请补充完整.(1)如表是y 与x 的几组对应值.(2)在平面直角坐标系xOy 中,描出了以表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(3)观察图象,发现这个函数图象为中心对称图形,则它的对称中心为______;(4)若直线2y x =与函数21y x =-的图象交于第一象限内一点(),P x y ,则下面关于x 的取值范围描述正确的是( )A .1 1.25x <<B .1.25 1.5x <<C .1.5 1.75x <<D .1.752x <<【详解】(1)解:①4x =时,413y ==−, 23m ∴=, 故答案为:23; (2)解:如图:(3)解:观察图象,发现这个函数图象为中心对称图形,则它的对称中心为(1,0);故答案为:(1,0);(4)解:作出直线2y x =如图:把3y =代入2y x =求得 1.5x =,把3y =代入21y x =-,求得53x =, 观察图象,若直线2y x =与函数21y x =-的图象交于第一象限内一点(,)P x y ,则x 的取值范围是51.53x <<, ∴关于x 的取值范围描述正确的是C ,故答案为:C .1.(2024·山西大同·一模)中考新考法:注重过程性学习,某数学小组在研究函数221x y −+=+时,对函数的图象进行了探究,探究过程如下:(1)①x 与y 的几组对应值如下表,请补全表格;②在上图平面直角坐标系中,描出上表中各组对应值为坐标的点,并根据描出的点画出该函数的图象;(2)我们知道,函数()()20,0,0y a x h k a h k =−+≠>>的图象是由二次函数2y ax =的图象向右平移h 个单位,再向上平移k 个单位得到的.类似地,请直接写出将2y x =−的图象经过怎样的平移可以得到221x y −+=+的图象;(3)若一次函数123y x =−+的图象与函数221x y −+=+的图象交于A B 、两点,连接OA OB 、,求AOB 的面积. 【答案】(1)见解析,(2)向左平移1个单位,向上平移2个单位(3)5(2)2y x=−的图象向左平移1(3)一次函数123y x =−+的图象,如图,可知∴AOB 的面积为()12232⨯⨯+=。
一次函数与反比例函数的综合复习课件

3
典型例题分析
通过典型例题分析,巩固一次函数和反比例函数的组合应用。
IX. 常见问题及解答
回顾本课程中提到的常见问题,并为大家提供详细解答。
比例问题
探索反比例函数在比例问题中的应用,如时间与速度的关系。
实际问题中的应用
研究反比例函数在实际生活中的应用,如工作时间与产量的关系。
与其他函数的关系
比较反比例函数与其他函数类型之间的差异与联系。
VII. 一次函数与反比例函数的比较
1 基本概念的比较
对比一次函数与反比例函 数的定义和特点。
2 性质的比较
解析式与图像
学习如何通过解析式和图像表示一次函数。
截距
了解一次函数截距的含义和计算方法。
II. 一次函数的性质
1
单调性
探索一次函数的单调递增和单调递减的特点。
2
零点
研究一次函数中的零点和根的相关概念。
3
最大值与最小值
学习如何确定一次函数的最大值和最小值。
III. 一次函数的应用
直线方程
了解如何使用一次函数表示直线 方程。
一次函数与反比例函数的 综合复习课件
欢迎大家参加一次函数与反比例函数的综合复习课程!在这个课件中,我们 将了解一次函数和反比例函数的基本概念、性质和应用,并比较它们之间的 异同。准备好了吗?让我们开始吧!
I. 一次函数的基本概念
定义
了解一次函数的基本定义和性质。
斜率
探索一次函数中斜率的概念和计算方法。
实际问题中的应用
探索一次函数在实际生活中的应 用,例如速度、距离和价格等问 题。
与其他函数的关系
研究一次函数与其他函数类型 (如二次函数和指数函数)之间 的关系。
中考数学复习课一次函数与反比例函数综合

反比例函数与一次函数综合复习课一、知识梳理:1、反比例函数:2、一次函数:3、求交点坐标:(1)联立解析式,得方程组(2)解方程组,(3)得交点坐标。
4、确定函数解析式:(1)一般设问形式:给出一次函数与反比例函数图像上的两个交点,期中一个交点A 的坐标已知,灵一个交点B 的坐标只给出 或治给出纵坐标值。
(2)确定解析式的一般步骤:a.求反比例函数;b.确定另一个交点;c.确定一次函数;d.作答5、一、知识回顾 1.若反比例函数xky =与一次函数y =3x +b 都经过点(1,4),则kb =________. 2.反比例函数xy 6-=的图象一定经过点(-2,________). 3.若点A (7,y 1),B (5,y 2)在双曲线xy 3-=上,则y 1、y 2中较小的是________. 4.如图,反比例函数的图象在第一象限内经过点A ,过点A 分别向x 轴、y 轴作垂线,垂足分别P 、Q ,若矩形APOQ 的面积为8,则这个反比例函数的解析式为________. 二、学习新知:1.如图,已知A(n ,-2),B(1,4)是一次函数y=kx+b 的图象和反比例函数y=xm的图象的两个交点,直线AB 与y 轴交于点C .(1)求反比例函数和一次函数的关系式; (2)求△AOC 的面积; (3)求不等式kx+b-xm<0的解集(直接写出答案).2.已知:如图,一次函数的图像经过第一、二、三象限,且与反比例函数的图像交于A 、B 两点,与y 轴交于点C ,与x 轴交于点D .OB =10,tan ∠DOB =31. (1)求反比例函数的解析式:(2)设点A 的横坐标为m ,△ABO 的面积为S ,求S 与m 的函数关系式,并写出自变量m 的取值范围; (3)当△OCD 的面积等于2S时,试判断过A 、B 两点的抛物线在x 轴上截得的线段能否等于3.如果能,求此时抛物线的解析式;如果不能,请说明理由. 三、感受中考第4题20.(本题满分9分)(2009年)如图,已知反比例函数y = mx的图象经过点A (-1,3),一次函数y =kx +b 的图象经过点A 和点C (0,4),且与反比例函数的图象相交于另一点B . (1)求这两个函数的解析式; (2)求点B 的坐标. 23、(本题满分9分)(2008年)如图所示,一次函数y x m =+和反比例函数1(1)m y m x+=≠-的图象在第一象限内的交点为(,3)P a . ⑴求a 的值及这两个函数的解析式;⑵根据图象,直接写出在第一象限内,使反 比例函数的值大于一次函数的值的x 的取值范围.20.(本题满分8分)(2010年)已知点P (1,2)在反比例函数y =xk(0≠k )的图象上.(1)当x 2-=时,求y 的值;(2)当1<x <4时,求y 的取值范围.(2011年)20、如图所示,反比例函数y=的图象与一次函数y=kx-3的图象在第一象限内相交于点A (4,m ). (1)求m 的值及一次函数的解析式;(2)若直线x=2与反比例和一次函数的图象分别交于点B 、C ,求线段BC 的长. 五、课后练习1.若正比例函数x k y 1=的图象与反比例函数xk y 2=的图象相交于A 、B 两点,其中点A 的坐标为(32,3),则k 1k 2=____________.2、已知反比例函数ky x=的图象与直线y =2x 和y =x +1的图象过同一点,则k = . 3、如图,是一次函数y=kx+b 与反比例函数y=2x 的图象,则关于x 的方程kx+b=2x的解为( )A .x l =1,x 2= 2 ;B .x l = -2,x 2= -1 ;C .x l =1,x 2= -2D .x l =2,x 2= -14、 如图,一次函数与反比例函数的图像相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是( ).A .x <-1B .x >2C .-1<x <0,或x >2D .x <-1,或0<x <25、已知120k k <<,则函数1y k x =和2ky x=的图象大致是( )xxxx(D )(,3)P aOxy第4题6、.已知关于x 的一次函数y =-2x +m 和反比例函数xn y 1+=的图象都经过A (-2,1),则m =__,n =___. 7、.直线y =2x 与双曲线xy 8=有一交点(2,4),则它们的另一交点为________. 8、已知y =(a -1)x a 是反比例函数,则它的图象在( ). (A)第一、三象限 (B)第二、四象限 (C)第一、二象限 (D)第三、四象限9、观察函数xy 2-=的图象,当x =2时,y =________;当x <2时,y 的取值范围是________;当y ≥-1时,x 的取值范围是________. 10、.函数xy 2=在第一象限内的图象如图所示,在同一直角坐标系中,将直线y =-x +1沿y 轴向上平移2个单位,所得直线与函数xy 2=的图象的交点共有________个.11、如图,一次函数y =kx +b 的图象与反比例函数xmy =的图象相交于A 、B 两点, (1)利用图中条件,求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围. 12、已知一次函数x y 2=的图象与反比例函数xky =的图象交于M 、N 两点,且52=MN .(l )求反比例函数的解析式;(2)若抛物线c bx ax y ++=2经过M 、N 两点,证明:这条抛物线与x 轴一定有两个交点; (3)设(2)中的抛物线与x 轴的两个交点为A 、B (点A 在点B 左侧),与y 轴交于点C ,连结AC 、BC.若3tan tan =∠+∠CBA CAB ,求抛物线的解析式.。
数学人教版九年级下册一次函数与反比例函数的综合复习

y
B
y
P(m,n)
P(m,n) o A x
o A
x
1 1 1 OA AP | m | | n | | k | 则 S矩形 OA AP| m| | n|| k | . S OAP OAPB 2 2 2
考点一:一次函数与反比例函数的图像
例1.已知a<0,则函数y=ax,y=a/x图象大致是 (C )
(1)两个函数交点的坐标满足这两个函数关系式 分析:
,因此将交点的坐标分别代入反比例函数关系式 和一次函数关系式即可求得待定的系数;
(2)函数的图象没有交点,即无解,用一元二次 方程根的判别式可解.
考点二:一次函数与反比例函数的交点问题:
k 例2.(2013•广安)已知反比例函数y= x (k≠0)和一次函数y=x﹣6.
考点四:一次函数与反比例函数图象所涉及的常 见面积计算问题
例4.(2012•广安)如图,已知双曲线y=k/x和直线y=mx+n交于点 A和B,B点的坐标是(2,-3),AC垂直y轴于点C,AC=3/2。 (1)求双曲线和直线的解析式;(2)求△AOB的面积。 解: (1)∵点B(2,﹣3)在双曲线上,
考点一:一次函数与反比例函数的图像
变式:函数y=k/x与y=kx+k在同一坐标系内的 图象大致是( B )
考点二:一次函数与反比例函数的交点问题:
k 例2.(2013•广安)已知反比例函数y= x (k≠0)和一次函数y=x﹣6.
(1)若一次函数与反比例函数的图象交于点P(2,m),求m 和k的值. (2)当k满足什么条件时,两函数的图象没有交点?
例4.(2012•广安)如图,已知双曲线y=k/x和直线y=mx+n交于点 A和B,B点的坐标是(2,-3),AC垂直y轴于点C,AC=3/2。 (1)求双曲线和直线的解析式;(2)求△AOB的面积。
2024年中考数学专题讲解:反比例函数与一次函数的综合+课件

(2)连接OA,OB,求△AOB的面积;
∵直线 AC:y=-23x+83与曲线 y=2x(x>0)相交于 A(1,2),B 两点,
∴y=-23x+38, y=2x,
解得xy11= =12, ,
x2=3, y2=23,
∴点 B 的坐标为3,23,
∴S△AOB=S△AOC-S△OBC
=12×4×2-12×4×23=83.
9.如图,点 A 在反比例函数 y=kx(x>0)的图象上,AB⊥x 轴,垂足为 B(3,0), 过 C(5,0)作 CD⊥x 轴,交过点 B 的一次函数 y=32x+b 的图象于点 D,交 反比例函数的图象于点 E,S△AOB=3.
(1)求反比例函数 y=kx(x>0)和一次函数 y=32x+b 的表达式;
(3)直接写出当 x>0 时,关于 x 的不等式 kx+b>mx 的解集.
观察图象, ∵A(1,2),B3,23, ∴当 x>0 时,关于 x 的不等式 kx+b>mx 的解集是 1<x<3.
13.如图,正比例函数 y=x 与反比例函数 y=4x的图象交于 A,B 两点. (1)求A,B两点的坐标;
4.如图,一次函数y1=k1x+b(k1>0)的图象与反比例函数y2=
k2 x
(k2>0)的
图象相交于A,B两点,点A的横坐标为1,点B的横坐标为-2,当y1<y2 时,x的取值范围是
A.x<-2或x>1
√B.x<-2或0<x<1
C.-2<x<0或x>1
D.-2<x<0或0<x<1
由图象可知,当y1<y2时,x的取值范围是x<-2或0<x<1.
7.如图,正比例函数 y=-23x 的图象与反比例函数 y=kx(k≠0)的图象都 经过点 A(a,2).
中考数学专题复习《一次函数与反比例函数的综合》经典题型讲解

中考数学专题复习《一次函数与反比例函数的综合》经典题型讲解【经典母题】如图Z6-1是一个光学仪器上用的曲面横截面示意图,图中的曲线是一段反比例函数的图象,端点A的纵坐标为80,另一端点B的坐标为B(80,10).求这段图象的函数表达式和自变量的取值范围.【解析】利用待定系数法设出反比例函数的表达式后,代入点B的坐标即可求得反比例函数的表达式.解:设反比例函数的表达式为y=k x ,∵一个端点B的坐标为(80,10),∴k=80×10=800,∴反比例函数的表达式为y=800x.∵端点A的纵坐标为80,∴80=800x,x=10,∴点A的横坐标为10,∴自变量的取值范围为10≤x≤80.【思想方法】求反比例函数的表达式宜用待定系数法,设y=kx,把已知一点代入函数表达式求出k的值即可.【中考变形】1.已知正比例函数y=ax与反比例函数y=bx的图象有一个公共点A(1,2).(1)求这两个函数的表达式;图Z6-1(2)在图Z6-2中画出草图,根据图象写出正比例函数值大于反比例函数值时x 的取值范围.图Z6-2中考变形1答图解:(1)把A (1,2)代入y =ax ,得2=a , 即y =2x ;把A (1,2)代入y =b x ,得b =2,即y =2x ; (2)画草图如答图所示.由图象可知,当x >1或-1<x <0时,正比例函数值大于反比例函数值. 2.如图Z6-3,已知一次函数y =k 1x +b 与反比例函数y =k 2x 的图象交于第一象限内P ⎝ ⎛⎭⎪⎫12,8,Q (4,m )两点,与x 轴交于A 点.(1)分别求出这两个函数的表达式; (2)写出点P 关于原点的对称点P ′的坐标; (3)求∠P ′AO 的正弦值.图Z6-3【解析】①将P 点坐标代入反比例函数关系式,即可求出反比例函数表达式;将Q 点代入反比例函数关系式,即可求出m 的值;将P ,Q 两个点的坐标分别代入一次函数关系式,即可求出一次函数的表达式.②根据平面直角坐标系中,两点关于原点对称,则横、纵坐标互为相反数,可以直接写出点P ′的坐标;③过点P ′作P ′D ⊥x 轴,垂足为D ,可构造出′AD ,又∵点A 在一次函数的图象上,∴可求出点A 坐标,得到OA 长度,利用P ′ 点坐标,可以求出P ′D ,P ′A ,即可得到∠P ′AO 的正弦值. 解:(1)∵点P 在反比例函数的图象上,∴把点P ⎝ ⎛⎭⎪⎫12,8代入y =k 2x ,得k 2=4,∴反比例函数的表达式为y =4x ,∴Q 点坐标为(4,1).把P ⎝ ⎛⎭⎪⎫12,8,Q (4,1)分别代入y =k 1x +b 中,得⎩⎨⎧8=12k 1+b ,1=4k 1+b ,解得⎩⎪⎨⎪⎧k 1=-2,b =9.∴一次函数的表达式为y =-2x +9; (2)P ′⎝ ⎛⎭⎪⎫-12,-8;(3)如答图,过点P ′作P ′D ⊥x 轴,垂足为D . ∵P ′⎝ ⎛⎭⎪⎫-12,-8,中考变形2答图∴OD =12,P ′D =8.∵点A 在y =-2x +9的图象上,∴点A 坐标为⎝ ⎛⎭⎪⎫92,0,即OA =92,∴DA =5,∴P ′A =P ′D 2+DA 2=89. ∴sin ∠P ′AD =P ′D P ′A =889=88989.∴sin ∠P ′AO =88989.3.[2017·成都]如图Z6-4,在平面直角坐标系xOy 中,已知正比例函数y =12x与反比例函数y =kx 的图象交于A (a ,-2),B 两点. (1)求反比例函数表达式和点B 的坐标;(2)P 是第一象限内反比例函数图象上一点,过点P 作y 轴的平行线,交直线AB 于点C ,连结PO ,若△POC 的面积为3,求点P 的坐标.图Z6-4 中考变形3答图解:(1)∵点A (a ,-2)在正比例函数y =12x 图象上, ∴-2=12a ,∴a =-4, ∴点A 坐标为(-4,-2).又∵点A 在反比例函数y =kx 的图象上, ∴k =xy =-4×(-2)=8, ∴反比例函数的表达式为y =8x .∵A ,B 既在正比例函数图象上,又在反比例函数图象上, ∴A ,B 两点关于原点O 中心对称, ∴点B 的坐标为(4,2);(2)如答图,设点P 坐标为⎝ ⎛⎭⎪⎫a ,8a (a >0),∵PC ∥y 轴,点C 在直线y =12x 上,∴点C 的坐标为⎝ ⎛⎭⎪⎫a ,12a ,∴PC =⎪⎪⎪⎪⎪⎪12a -8a =⎪⎪⎪⎪⎪⎪a 2-162a , ∴S △POC =12PC ·a =12⎪⎪⎪⎪⎪⎪a 2-162a ·a =⎪⎪⎪⎪⎪⎪a 2-164=3, 当a 2-164=3时,解得a =28=27, ∴P ⎝⎛⎭⎪⎫27,477. 当a 2-164=-3时,解得a =2,∴P (2,4).综上所述,符合条件的点P 的坐标为⎝⎛⎭⎪⎫27,477,(2,4). 4.如图Z6-5,一次函数y =kx +b 与反比例函数y =mx 的图象交于A (1,4),B (4,n )两点.(1)求反比例函数的表达式; (2)求一次函数的表达式;(3)P 是x 轴上的一个动点,试确定点P 并求出它的坐标,使得P A +PB 最小.图Z6-5解:(1)∵点A (1,4)在函数y =mx 上, ∴m =xy =4,∴反比例函数的表达式为y =4x ; (2)把B (4,n )代入y =4x ,4=xy =4n ,得n =1, ∴B (4,1),∵直线y =kx +b 经过A ,B , ∴⎩⎪⎨⎪⎧4=k +b ,1=4k +b ,解得⎩⎪⎨⎪⎧k =-1,b =5, ∴一次函数的表达式为y =-x +5; (3)点B 关于x 轴的对称点为B ′(4,-1), 设直线AB ′的表达式为y =ax +q , ∴⎩⎪⎨⎪⎧4=a +q ,-1=4a +q ,解得⎩⎪⎨⎪⎧a =-53,q =173,∴直线AB ′的表达式为y =-53x +173, 令y =0,解得x =175,∴当点P 的坐标为⎝ ⎛⎭⎪⎫175,0时,P A +PB 最小.5.[2017·广安]如图Z6-6,一次函数y =kx +b 的图象与反比例函数y =mx 的图象在第一象限交于点A (4,2),与y 轴的负半轴交于点B ,图Z6-6且OB =6.(1)求函数y =mx 和y =kx +b 的表达式.(2)已知直线AB 与x 轴相交于点C .在第一象限内,求反比例函数y =mx 的图象上一点P ,使得S △POC =9.解:(1)∵点A (4,2)在反比例函数y =mx 的图象上, ∴m =4×2=8,∴反比例函数的表达式为y =8x . ∵点B 在y 轴的负半轴上,且OB =6, ∴点B 的坐标为(0,-6),把点A (4,2)和点B (0,-6)代入y =kx +b 中, 得⎩⎪⎨⎪⎧4k +b =2,b =-6,解得⎩⎪⎨⎪⎧k =2,b =-6. ∴一次函数的表达式为y =2x -6; (2)设点P 的坐标为⎝ ⎛⎭⎪⎫n ,8n (n >0).在直线y =2x -6上,当y =0时,x =3, ∴点C 的坐标为(3,0),即OC =3, ∴S △POC =12×3×8n =9,解得n =43. ∴点P 的坐标为⎝ ⎛⎭⎪⎫43,6.6.[2017·黄冈]如图Z6-7,一次函数y =-2x +1与反比例函数y =kx 的图象有两个交点A (-1,m )和B ,过点A 作AE ⊥x 轴,垂足为E ;过点B 作BD ⊥y 轴,垂足为D ,且点D 的坐标为(0,-2),连结DE . (1)求k 的值;(2)求四边形AEDB 的面积.图Z6-7 中考变形6答图解:(1)将点A (-1,m )代入一次函数y =-2x +1, 得-2×(-1)+1=m ,解得m =3.∴A 点的坐标为(-1,3).将A (-1,3)代入y =kx ,得k =(-1)×3=-3;(2)如答图,设直线AB 与y 轴相交于点M ,则点M 的坐标为(0,1), ∵D (0,-2),则点B 的纵坐标为-2,代入反比例函数,得DB =32, ∴MD =3.又∵A (-1,3),AE ∥y 轴, ∴E (-1,0),AE =3. ∴AE ∥MD ,AE =MD .∴四边形AEDM 为平行四边形. ∴S 四边形AEDB =S ▱AEDM +S △MDB =3×1+12×32×3=214.7.[2016·金华]如图Z6-8,直线y =33x -3与x ,y 轴分别交于点A ,B ,与反比例函数y =kx (k >0)的图象交于点C ,D ,过点A 作x 轴的垂线交该反比例函数图象于点E . (1)求点A 的坐标;(2)若AE =AC ,①求k 的值;②试判断点E 与点D 是否关于原点O 成中心对称?并说明理由.图Z6-8中考变形7答图解:(1)当y =0时,得0=33x -3,解得x =3. ∴点A 的坐标为(3,0);(2)①如答图,过点C 作CF ⊥x 轴于点F .设AE =AC =t ,点E 的坐标是(3,t ),则反比例函数y =k x 可表示为y =3tx . ∵直线y =33x -3交y 轴于点B , ∴B (0,-3).在Rt △AOB 中,tan ∠OAB =OB OA =33, ∴∠OAB =30°.在Rt △ACF 中,∠CAF =30°, ∴CF =12t ,AF =AC ·cos30°=32t ,∴点C 的坐标是⎝⎛⎭⎪⎫3+32t ,12t .∴⎝⎛⎭⎪⎫3+32t ×12t =3t ,解得t 1=0(舍去),t 2=2 3. ∴k =3t =6 3.②点E 的坐标为()3,23,设点D 的坐标是⎝ ⎛⎭⎪⎫x ,33x -3,∴x ⎝ ⎛⎭⎪⎫33x -3=63,解得x 1=6(舍去),x 2=-3, ∴点D 的坐标是()-3,-23, ∴点E 与点D 关于原点O 成中心对称. 【中考预测】如图Z6-9,一次函数y =kx +b (k ,b 为常数,k ≠0)的图象与x 轴,y 轴分别交于A ,B 两点,且与反比例函数y =nx (n 为常数且n ≠0)的图象在第二象限交于点C ,CD ⊥x 轴,垂足为D ,若OB =2OA =3OD =6. (1)求一次函数与反比例函数的表达式; (2)求两函数图象的另一个交点的坐标;(3)直接写出不等式kx +b ≤nx 的解集.图Z6-9解:(1)∵OB =2OA =3OD =6, ∴OB =6,OA =3,OD =2, ∵CD ⊥DA ,∴DC ∥OB , ∴OB DC =AO AD ,∴6DC =35, ∴DC =10,∴C (-2,10),B (0,6),A (3,0), 代入一次函数y =kx +b , 得⎩⎪⎨⎪⎧b =6,3k +b =0,解得⎩⎪⎨⎪⎧k =-2,b =6, ∴一次函数的表达式为y =-2x +6. ∵反比例函数y =nx 经过点C (-2,10), ∴n =-20,∴反比例函数的表达式为y =-20x ;(2)由⎩⎨⎧y =-2x +6,y =-20x ,解得⎩⎪⎨⎪⎧x =-2,y =10或⎩⎪⎨⎪⎧x =5,y =-4, ∴另一个交点坐标为(5,-4);(3)由图象可知kx +b ≤nx 的解集为-2≤x <0或x ≥5.。
2022年中考数学复习《一次函数与反比例函数综合》(2)

专题51 一次函数与反比例函数综合(2)【典例分析】例1、一次函数y 1=k 1x +b 和反比例函数y 2=k 2x (k 1⋅k 2≠0)的图象如图所示,若y 1>y 2,则x 的取值范围是( ) A. −2<x <0或x >1B. −2<x <1C. x <−2或x >1D. x <−2或0<x <1【答案】D【解析】解:如图所示:若y 1>y 2,则x 的取值范围是:x <−2或0<x <1.故选:D .直接利用两函数图象的交点横坐标得出y 1>y 2时,x 的取值范围.此题主要考查了反比例函数与一次函数的交点,正确利用函数图象分析是解题关键.例2、点A(a,b)是一次函数y =−x +3与反比例函数y =2x 的交点,则1a +1b 的值________.【答案】32【解析】【分析】本题考查反比例函数与由此函数的交点坐标,解题的关键是学会利用方程组求两个函数的交点坐标,属于基础题.由{y =2x y =−x +3解得{x =1y =2或{x =2y =1,可得A(1,2)或(2,1),由此即可解决问题. 【解答】解:由{y =2x y =−x +3解得{x =1y =2或{x =2y =1, ∴A(1,2)或(2,1),∴1a +1b =32,故答案为:32.例3、如图,正比例函数y 1=−3x 的图象与反比例函数y 2=k x 的图象交于A 、B 两点.点C 在x 轴负半轴上,AC =AO ,△ACO 的面积为12.(1)求k 的值;(2)根据图象,当y 1>y 2时,写出x 的取值范围.【答案】解:(1)如图,过点A 作AD ⊥OC ,∵AC =AO ,∴CD =DO ,∴S △ADO =S △ACD =6,∴k =−12;(2)联立得:{y =−12x y =−3x, 解得:{x =2y =−6或{x =−2y =6,即A(−2,6),B(2,−6), 根据图象得:当y 1>y 2时,x 的范围为x <−2或0<x <2.【解析】本题考查了反比例函数与正比例函数的交点问题,考查了反比函数系数k 的几何意义,利用了数形结合的思想,熟练掌握各函数的性质是解本题的关键,属于中档题.(1)过点A作AD垂直于OC,由AC=AO,得到CD=DO,确定出三角形ADO与三角形ACD面积,即可求出k的值;(2)根据函数图象,找出满足题意x的范围即可.【好题演练】一、选择题(k>0)有以下四个结论:1.对于函数y=3x+kx①这是y关于x的反比例函数;②当x>0时,y的值随着x的增大而减小;③函数图象与x轴有且只有一个交点;④函数图象关于点(0,3)成中心对称.其中正确的是().A. ①②B. ③④C. ①②③D. ②③④(k>0)的图象交于A,B两点,2.如图,一次函数y=2x与反比例函数y=kx点P在以C(−2,0)为圆心,1为半径的⊙C上,Q是AP的中点,已知OQ,则k的值为()长的最大值为32A. 4932B. 2518C. 3225D. 98(m≠0)的图象相交于点A(2,3),3.如图,在平面直角坐标系xOy中,函数y=kx+b(k≠0)与y=mxB(−6,−1),则不等式kx+b>m的解集为()xA. x<−6B. −6<x<0或x>2C. x>2D. x<−6或0<x<2(k≠0)图象上的两点,延长线段AB4.如图,点A、B是反比例函数y=kx交y轴于点C,且点B为线段AC中点,过点A作AD⊥x轴于点D,点E为线段OD的三等分点,且OE<DE.连接AE、BE,若S△ABE=7,则k的值为()A. −12B. −10C. −9D. −65.如图,正比例函数y1=mx,一次函数y2=ax+b和反比例函数y3=k的图象在同一直角坐标系中,x若y3>y1>y2,则自变量x的取值范围是()A. x<−1B. −0.5<x<0或x>1C. 0<x<1D. x<−1或0<x<1二、填空题6.如图,一次函数y=k1x+b与反比例函数y=k2的图象交于A、B两点,x<0的解集是其横坐标分别为1和5,则关于x的不等式k1x+b−k2x______.7.如图,正比例函数y1=k1x的图象与反比例函数y2=k2x(x>0)的图象相交于点A(√3,2√3),点B是反比例函数图象上一点,它的横坐标是3,连接OB,AB,则△AOB的面积是______.8.如图,一次函数y1=kx+b的图象与反比例函数y2=4x的图象交于A(1,m),B(4,n)两点.则不等式kx+b−4x≥0的解集为______.9.如图,直线y=x+2与反比例函数y=kx的图象在第一象限交于点P,若OP=√10,则k的值为______.10.如图,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数y=1x 和y=9x在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交y=1x的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是______.三、解答题11.如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于点A﹙−2,−5﹚,C﹙5,n﹚,交y轴于点B,交x轴于点D.(1)求反比例函数y=m和一次函数y=kx+b的表达式;x(2)连接OA,OC.求△AOC的面积.(3)当kx+b>m时,请写出自变量x的取值范围.x(a为常数)的图象经过点B(−4,2).12.已知反比例函数y=a+4x(1)求a的值;(2)如图,过点B作直线AB与函数y=a+4的图象交于点A,与x轴交于点C,且AB=3BC,过点Ax作直线AF⊥AB,交x轴于点F,求线段AF的长.(x>0)的图象交于A、13.如图,在平面直角坐标系中,一次函数y=−x+m的图象与反比例函数y=kxB两点,已知A(2,4).(1)求一次函数和反比例函数的解析式;(2)求B点的坐标;(3)连接AO、BO,求△AOB的面积.14.如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例(k≠0)的图象交于A、B两点,与x轴交于点C,过点A作AH⊥x函数y=kx,点B的轴于点H,点O是线段CH的中点,AC=4√5,cos∠ACH=√55坐标为(4,n).(1)求该反比例函数和一次函数的解析式;(2)求△BCH的面积.15.如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别(n为常数,且n≠0)的图象在第交于A、B两点,且与反比例函数y=nx二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤n的解集.x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数与一次函数综合复习课学习目标: 能够应用一次函数与反比例函数的图象与性质分析解决一次函数与反比例函数的综合题。
重点:熟练应用一次函数与反比例函数的图象与性质进行解题 难点:进一步利用数形结合的思想方法进行解题 考点透视:考查反比例函数的基本性质在几何中的应用。
适当设双曲线上的点的坐标,用坐标转化题中的几何条件及几何结论,利用双曲线上的点的代数、几何性质,建立方程进行求解及利用坐标糸解决不规则三角形面积计算问题。
注意勾股定理、完全平方式、整体代入、图形变换等结合及点坐标的应用。
要求学生熟练掌握反比例函数代数性质:函数图像上任意点的横、纵坐标的积为k 。
一、知识回顾 1.若反比例函数xky =与一次函数y =3x +b 都经过点(1,4),则kb =________. 2.反比例函数xy 6-=的图象一定经过点(-2,________). 3.若点A (7,y 1),B (5,y 2)在双曲线xy 3-=上,则y 1、y 2中较小的是________. 4.如图,反比例函数的图象在第一象限内经过点A ,过点A 分别向x 轴、y 轴作垂线,垂足分别P 、Q ,若矩形APOQ 的面积为8,则这个反比例函数的解析式为________. 二、学习新知:1.如图,已知A(n ,-2),B(1,4)是一次函数y=kx+b 的图象和反比例函数y=xm的图象的两个交点,直线AB 与y 轴交于点C .(1)求反比例函数和一次函数的关系式; (2)求△AOC 的面积; (3)求不等式kx+b-xm<0的解集(直接写出答案).2.已知:如图,一次函数的图像经过第一、二、三象限,且与反比例函数的图像交于A 、B 两点,与y 轴交于点C ,与x 轴交于点D .OB =10,tan ∠DOB =31. (1)求反比例函数的解析式:(2)设点A 的横坐标为m ,△ABO 的面积为S ,求S 与m 的函数关系式,并写出自变量m 的取值范围; (3)当△OCD 的面积等于2S时,试判断过A 、B 两点的抛物线在x 轴上截得的线段能否等于3.如果能,求此时抛物线的解析式;如果不能,请说明理由. 解:(1)过点B 作BH ⊥x 轴于点H . ………1分在Rt △OHB 中, HO =3BH . ………………2分第4题由勾股定理,得 BH 2+HO 2=OB 2. 又∵ OB =10.∴ BH 2+(3BH )2=(10)2. ∵ BH >0, ∴ BH =1,HO =3. ∴ 点B (-3,-1). ………………………3分 设反比例函数的解析式为xk y 1=(k ≠0). ∵ 点B 在反比例函数的图象上, ∴ 反比例函数的解析式为xy 3=. ……4分 (2)设直线AB 的解析式为y =k 2x +b (k ≠0). 由点A 在第一象限,得m >0.又由点A 在函数x y 3=的图像上,可求得点A 的纵坐标为m3. ∵ 点B (-3,-1),点A (m ,m3),∴ ⎪⎩⎪⎨⎧=+-=+-.,m b mk b k 31322 解关于k 2、b 的方程组,得⎪⎪⎩⎪⎪⎨⎧-==.,m m b mk 312 ∴ 直线AB 的解析式为 mmx m y -+=31. ………………………5分 令 y =0, 求得点D 的横坐标为 x =m -3. 过点A 作A G ⊥x 轴于点 G . S =S △BDO +S △ADO =21DO ·BH +21DO ·G A =21DO (BH +G A )=⎪⎪⎭⎫⎝⎛+-m m 31321. 由已知,直线经过第一、三、四象限, ∴ b >0时,即03>-mm. ∵ m >0, ∴ 3-m >0.由此得 0<m <3. ………………………6分∴ S =21(3-m )(1+m3). 即 S =m m 292-(0<m <3) ………7分(3)过A 、B 两点的抛物点线在x 轴上截得的线段长不能等于3.证明如下:S △OCD =21DO ·OC =21︱m -3︱·m m -3=()m m 232-.由 S △OCD =2S, 得 ()m m m m 29212322-⋅=-. 解得 m 1=1,m 2=3. 经检验,m 1=1,m 2=3都是这个方程的根. ∵ 0<m <3,∴ m =3不合题意,舍去, ∴ A (1,3). ……………………………8分 设过A (1,3)、B (-3,-1)两点的抛物线的解析式y =ax 2+bx +c (a ≠0).∴ ⎩⎨⎧-=+-=++.,1393c b a c b a 由此得⎩⎨⎧-=+=.,a c ab 3221即 y =ax 2+(1+2a )x+2-3a . …………………………………9分 设抛物线与x 轴两交点的横坐标为x 1,x 2. 则 x 1+x 2=a a 21+-,x 1·x 2=aa32-. 令 ︱x 1-x 2︱=3. 则 (x 1-x 2)-4x 1x 2=9. 即 9324212=-⋅-⎪⎭⎫⎝⎛+-a a a a . 整理,得 7a 2-4a +1=0. ∵ Δ=(-4)2-4×7×1=-12<0, ∴ 方程7a 2-4a +1=0无实数根.因此过A 、B 两点的抛物线在x 轴上截得的线段长不能等于3. ………………10分三、巩固知识中考宝典P40-41 18、19题 四、感受中考 20.(本题满分9分)(2009年)如图,已知反比例函数y = mx的图象经过点A (-1,3),一次函数y =kx +b 的图象经过点A 和点C (0,4),且与反比例函数的图象相交于另一点B .(1)求这两个函数的解析式; (2)求点B 的坐标. 23、(本题满分9分)(2008年)如图所示,一次函数y x m =+和反比例函数1(1)m y m x+=≠-的图象在第一象限内的交点为(,3)P a . ⑴求a 的值及这两个函数的解析式;⑵根据图象,直接写出在第一象限内,使反 比例函数的值大于一次函数的值的x 的取值范围.20.(本题满分8分)(2010年) 已知点P (1,2)在反比例函数y =xk(0≠k )的图象上. (1)当x 2-=时,求y 的值;(2)当1<x <4时,求y 的取值范围.(2011年)20、如图所示,反比例函数y=的图象与一次函数y=kx-3的图象在第一象限内相交于点A (4,m ). (1)求m 的值及一次函数的解析式;(2)若直线x=2与反比例和一次函数的图象分别交于点B 、C ,求线段BC 的长.五、今年中考预测与以往类同,都是利用交点坐标解题 六、课后练习(,3)P aO xy1.若正比例函数x k y 1=的图象与反比例函数xk y 2=的图象相交于A 、B 两点,其中点A 的坐标为(32,3),则k 1k 2=____________.2、已知反比例函数ky x=的图象与直线y =2x 和y =x +1的图象过同一点,则k = . 3、如图,是一次函数y=kx+b 与反比例函数y=2x 的图象,则关于x 的方程kx+b=2x的解为( )A .x l =1,x 2= 2 ;B .x l = -2,x 2= -1 ;C .x l =1,x 2= -2D .x l =2,x 2= -1 4、 如图,一次函数与反比例函数的图像相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是( ).A .x <-1B .x >2C .-1<x <0,或x >2D .x <-1,或0<x <2 5、已知120k k <<,则函数1y k x =和2k y x=的图象大致是( )6、.已知关于x 的一次函数y =-2x +m 和反比例函数xn y 1+=的图象都经过A (-2,1),则m =__,n =___.7、.直线y =2x 与双曲线xy 8=有一交点(2,4),则它们的另一交点为________.8、已知y =(a -1)x a 是反比例函数,则它的图象在( ).(A)第一、三象限 (B)第二、四象限 (C)第一、二象限 (D)第三、四象限9、观察函数xy 2-=的图象,当x =2时,y =________;当x <2时,y 的取值范围是________;当y ≥-1时,x 的取值范围是________.10、.函数xy 2=在第一象限内的图象如图所示,在同一直角坐标系中,将直线y =-x +1沿y 轴向上平移2个单位,所得直线与函数xy 2=的图象的交点共有________个. 11、如图,一次函数y =kx +b 的图象与反比例函数xmy =的图象相交于A 、B 两点, (1)利用图中条件,求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围.xxxx(D )第4题12、已知一次函数x y 2=的图象与反比例函数xky =的图象交于M 、N 两点,且52=MN .(l )求反比例函数的解析式;(2)若抛物线c bx ax y ++=2经过M 、N 两点,证明:这条抛物线与x 轴一定有两个交点; (3)设(2)中的抛物线与x 轴的两个交点为A 、B (点A 在点B 左侧),与y 轴交于点C ,连结AC 、BC.若3tan tan =∠+∠CBA CAB ,求抛物线的解析式.。