01 管理运筹学问题01
管理运筹学解决实际问题的步骤及内容

第三章 线性规划问题的计算机求解
教学要求
本章学习如何使用计算机软件包求解线性规划问题,并通过上机操作训练掌握较简单的线性规划问题使用计算机软件包求解的方法。
课时分配
6学时(含计算机上机操作训练)
教学内容
一、管理运筹学计算机软件包的使用说明和结构内容。
二、线性规划问题的菜单界面和输入要点。
简要介绍管理运筹学所涉及的应用领域,如生产计划、库存管理、运输问题、人事管理、市场营销、财务会计、项目评价等;介绍管理运筹学在国内外的应用和发展状况。
四、管理运筹学使用计算机软件的原则
思考题
1、简述运筹学的发展历史和发展前景。
2、管理运筹学的主要分支和应用领域有哪些?
3、使用管理运筹学计算机软件有哪些基本原则?
第十二章 排队论
教学要求
本章学习研究排队现象,主要了解和掌握在不增加固定资产投资前提下,如何把排队时间控制到一定限度内,在服务质量的提高和成本降低之间取得平衡,寻找最恰当的解。
课时分配
3学时
教学内容
一、排队过程的组成部分
二、单服务台泊松到达、负指数服务时间的排队模型
通过图解法作图过程,直观地讲解目标函数中系数的灵敏度分析、约束条件右边常数的灵敏度分析的基本原理。
思考题
1、试述可行域、目标函数等值线、松驰变量和剩余变量的含义。
2、试述线性规划图解法的基本特点、适用范围、图解法求解的基本程序,步骤和方法
3、线性规划问题是如何化为标准形式的?
三、多服务台泊松到达、负指数服务时间的排队模型
四、单服务台泊松到达、任意服务时间的排队模型
五、多服务台泊松到达、任意服务时间、损失制排队模型
管理运筹学 易错判断题整理

2 网络图的线路与关键路线。 3 最早时间,最迟时间,作业的最早开始,最早结束,最迟开始, 最迟结束时间,作业的总时差,自由时差的概念及计算方法。
判断题: 1 在任一图G中,当点集V确定后,树图是G中边数最少的连通图。 √ 2 一个具有多个发点和多个收点的求网络最大流问题一定可以转化为 求具有单个发点和单个收点的求网络最大流问题。
√ 6. 任何线性规划总可用大M单纯形法求解。
√ 7. 凡能用大M法求解也一定可用两阶段法求解。
√ 8. 两阶段法中第一阶段问题必有最优解。
√ 9. 两阶段法中第一阶段问题最优解中基变量全部非人工变量,则原问题有最优 解。
× 10. 人工变量一旦出基就不会再进基。
√ 11. 当最优解中存在为零的基变量时,则线性规划具有多重最优解。 ×
× 5 如果运输问题或者转运问题模型中,Cij 都是产地i到销地j的最小 运输费用,则运输问题同转运问题将得到相同的最优解。
√
第三章:目标规划
主要内容: 1 描述目标规划建模的思路以及他的数学模型同一般线性 数学模型的相同和不同点。 2 解释下列变量:1正负偏差变量 2绝对约束和目标约束 3 优先因子与权系数。 3 目标规划图解法的步骤。 4 目标规划 目标函数特点。 判断题: 1 目标规划模型中,可以不含有绝对约束但是必须含有目 标约束。
1 最优对策中,如果最优解要求一个人呢采取纯策略,则另一个人也必须采取纯策 ×
2 在两人零和对策支付矩阵的某一行或某一列上加上常数k 将不影响双方各自的最优 ×
3 博弈的纳什均衡是博弈双方达到均势平衡的解,也是使博弈双方得到最好结果的 ×
《管理运筹学》期中复习题答案

《管理运筹学》期中复习题答案标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-《管理运筹学》期中测试题 第一部分 线性规划 一、填空题 1.线性规划问题是求一个 目标函数 在一组 约束条件 下的最值问题。
2.图解法适用于含有 两个 _ 变量的线性规划问题。
3.线性规划问题的可行解是指满足 所有约束条件_ 的解。
4.在线性规划问题的基本解中,所有的非基变量等于 零 。
5.在线性规划问题中,基本可行解的非零分量所对应的列向量线性 无 关 6.若线性规划问题有最优解,则最优解一定可以在可行域的 顶点_ 达到。
7.若线性规划问题有可行解,则 一定 _ 有基本可行解。
8.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其 可行解 的集合中进行搜索即可得到最优解。
9.满足 非负 _ 条件的基本解称为基本可行解。
10.在将线性规划问题的一般形式转化为标准形式时,引入的松驰变量在目标函数中的系数为 正 。
11.将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入 松弛 _ 变量。
12.线性规划模型包括 决策变量 、目标函数 、约束条件 三个要素。
13.线性规划问题可分为目标函数求 最大 _ 值和 最小 _值两类。
14.线性规划问题的标准形式中,约束条件取 等 _ 式,目标函数求 最大 _值,而所有决策变量必须 非负 。
15.线性规划问题的基本可行解与基本解的关系是 基本可行解一定是基本解,反之不然16.在用图解法求解线性规划问题时,如果取得最值的等值线与可行域的一段边界重合,则 _ 最优解不唯一 。
17.求解线性规划问题可能的结果有 唯一最优解,无穷多最优解,无界解,无可行解 。
18.如果某个约束条件是“ ”情形,若化为标准形式,需要引入一个 剩余 _ 变量。
19.如果某个变量X j 为自由变量,则应引进两个非负变量X j ′ , X j 〞, 同时令X j = X j ′ - X j 〞 j 。
《管理运筹学》试题及答案

中国矿业大学2010~2011学年第二学期《 管理运筹学 》模拟试卷一考试时间:120 分钟 考试方式:闭 卷1212121212max 334262180,0z x x x x x x x x x x =+⎧⎪+≤⎪⎪-+≤⎨⎪+≤⎪≥≥⎪⎩2. 用表上作业法求下表中给出的运输问题的最优解。
答案: 1.解:加入人工变量,化问题为标准型式如下:1234512312412512345max 3300042.6218,,,,0z x x x x x x x x x x x s t x x x x x x x x =++++++=⎧⎪-++=⎪⎨++=⎪⎪≥⎩(3分)下面用单纯形表进行计算得终表为:所以原最优解为 *(3,0,1,5,0)T X =2、解: 因为销量:3+5+6+4+3=21;产量:9+4+8=21;为产销平衡的运输问题。
(1分)由最小元素法求初始解:(5分)用位势法检验得:(7分)所有非基变量的检验数都大于零,所以上述即为最优解且该问题有唯一最优解。
此时的总运费:min 45594103112011034150z =⨯+⨯+⨯+⨯+⨯+⨯+⨯=。
3、解:系数矩阵为:1279798966671712149151466104107109⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(3分)从系数矩阵的每行元素减去该行的最小元素,得:50202 23000 010572 98004 06365⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦经变换之后最后得到矩阵:70202 43000 08350 118004 04143⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦相应的解矩阵:01000 00010 00001 00100 10000⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(13分)由解矩阵得最有指派方案:甲—B,乙—D,丙—E,丁—C,戊—A 或者甲—B,乙—C,丙—E,丁—D,戊—A (2分)所需总时间为:Minz=32 (2分)中国矿业大学2010~2011学年第二学期《管理运筹学》模拟试卷二考试时间:120 分钟考试方式:闭卷1.求解下面运输问题。
管理运筹学运输问题

管理运筹学运输问题引言运筹学是管理学的一个分支,旨在研究和开发决策支持工具和技术,以优化各种问题的决策过程。
其中,运输问题是运筹学领域中一个重要的问题之一,它涉及到如何有效地分配有限的资源,以实现最佳的运输方案。
本文将介绍管理运筹学中的运输问题,并探讨其解决方法。
运输问题概述运输问题是在给定供应地和需求地之间寻找最佳运输方案的数学模型。
一般来说,这个问题可以分为两个主要的组成部分:供应地和需求地。
•供应地:这是物品或产品的来源地,例如工厂或仓库。
每个供应地都有一定数量的可供应物品,同时还有一个运输成本与不同需求地之间的运输。
•需求地:这是物品或产品的目的地,例如商店或客户。
每个需求地都有一定数量的需求,同时还有一个运输成本与不同供应地之间的运输。
运输问题的目标是找到一种分配方案,以最小化总运输成本,并满足供应地和需求地的限制。
运输问题可以用数学模型描述,其中包括以下变量和约束条件:•变量:–xi:从第i个供应地运输的物品数量–yj:向第j个需求地运输的物品数量•约束条件:–供应地约束:∑xi ≤ si,其中si为第i个供应地可供应的物品数量–需求地约束:∑yj ≥ dj,其中dj为第j个需求地的需求物品数量–非负约束:xi ≥ 0,yj ≥ 0,物品数量不能为负数•目标函数:–最小化总运输成本:Minimize ∑(cij * xi * yj),其中cij为从供应地i到需求地j的单位运输成本这个数学模型可以通过线性规划方法进行求解,其中运输问题可以转化为标准线性规划问题,并使用相应的算法和技术进行求解。
求解运输问题的方法可以分为以下几种:1.传统方法:传统的方法包括北西角法、最小元素法、Vogel法等。
这些方法通过逐步分配物品数量,计算运输成本,并根据不同的策略进行调整,直到找到最优解。
2.网络流方法:网络流方法将运输问题转化为最小成本流问题,并利用网络流算法进行求解。
这些算法可以有效地处理大规模的运输问题,并提供较快的求解速度。
管理运筹学参考习题

一、单项选择题(2分/小题×10小题=20分)1. 线性规划模型三个要素中不包括()。
A决策变量B目标函数C约束条件D基2. 能够采用图解法进行求解的线性规划问题的变量个数为()。
A1个B2个C3个D4个3. 求目标函数为极大的线性规划问题时,若全部非基变量的检验数≤O,且基变量中有人工变量时该问题有()。
A无界解B无可行解C 唯一最优解D无穷多最优解4.若某个b k≤0, 化为标准形式时原约束条件()。
A 不变B左端乘负1C 右端乘负1 D两边乘负15. 线性规划问题是针对()求极值问题。
A约束B决策变量C秩D目标函数6.一般讲,对于某一求目标最大化的整数规划问题的目标最优值()该问题对应的线性规划问题的目标最优值。
A不高于B不低于C二者相等D二者无关7.表上作业法的基本思想和步骤与单纯形法类似,那么基变量所在格为()。
A有单位运费格B无单位运费格C填入数字格D空格8.在表上作业法求解运输问题过程中,非基变量的检验数()。
A大于0 B小于0C等于0 D以上三种都可能9.对于供过于求的不平衡运输问题,下列说法错误的是()。
A仍然可以应用表上作业法求解B在应用表上作业法之前,应将其转化为平衡的运输问题C可以虚设一个需求地点,令其需求量为供应量与需求量之差。
D令虚设的需求地点与各供应地之间运价为M(M为极大的正数)1. 线性规划可行域的顶点一定是()。
A非基本解B可行解C非可行解D是最优解2.为化为标准形式而引入的松弛变量在目标函数中的系数应为()。
A 0B 1C 2D 33. 线性规划模型中增加一个约束条件,可行域的范围一般将()。
A增大B缩小C不变D不定4. 用单纯形法求解极大化线性规划问题中,若某非基变量检验数为零,而其他非基变量检验数全部小于零,则说明本问题()。
A有惟一最优解B有多重最优解C无界D无解5. 在产销平衡运输问题中,设产地为m个,销地为n个,那么基可行解中基变量的个数()。
管理运筹学讲义运输问题

管理运筹学讲义运输问题引言在现代社会,运输问题是管理运筹学中的一个重要问题。
无论是物流行业还是供应链管理,运输问题都是必不可少的一环。
运输问题的解决可以帮助企业有效地规划和管理物流流程,降低运输成本,提高运输效率。
本文将介绍管理运筹学中的运输问题,包括问题的定义、数学模型、常用的解决方法以及在实际应用中的案例分析。
运输问题的定义在管理运筹学中,运输问题是指在给定的供应点和需求点之间,如何分配物品的问题。
通常,问题的目标是找到一种分配方案,使得总运输成本最小。
运输问题可以抽象成一个图模型,其中供应点和需求点之间的路径表示运输线路,路径上的边表示运输的数量和成本。
每个供应点和需求点都有一个需求量或供应量。
问题的目标是找到一种分配方案,使得满足所有需求量的同时最小化总运输成本。
数学模型运输问题可以用线性规划来建模。
假设有m个供应点和n个需求点,每个供应点的供应量为si,每个需求点的需求量为dj。
定义xij为从供应点i到需求点j 的运输量,则运输问题的数学模型可以形式化表示为如下线性规划问题:minimize ∑(i=1 to m)∑(j=1 to n) cij * xijsubject to∑(j=1 to n) xij = si, for all i = 1,2,...,m∑(i=1 to m) xij = dj, for all j = 1,2,...,nxij >= 0, for all i = 1,2,...,m and j = 1,2,...,n其中cij表示从供应点i到需求点j的运输成本。
解决方法针对运输问题,常用的解决方法有以下几种:1. 单纯形法单纯形法是一种用于解决线性规划问题的常用方法。
对于运输问题,可以通过将其转化为标准的线性规划问题,然后使用单纯形法来求解最优解。
2. 匈牙利算法匈牙利算法是一种经典的图论算法,可以用于解决运输问题。
算法的核心思想是通过不断寻找增广路径来寻找最大匹配。
管理运筹学 复习题

复习题一、问答题1、线性规划最优解的存在有哪几种情况?简述各种情况在单纯形法求解过程中的表现?1(1)、在遇到退化的基可行解时、单纯形法求解出现循环时如何处理? 2、什么是影子价格?影子价格有什么作用?3、什么是平衡运输问题?该类问题数学模型上有什么样的特征?4、分支定界法包含两个重要概念,即“分支”和“定界”。
试述这两个概念的基本含义!5、什么是增广链?如何确定调整量?如何确定新的流?6、试阐述具有不同等级目标规划求解的基本过程。
7、试述目标规划问题的解决思路。
8、在图论中什么是最小生成树,试述破圈法求最小生成树的方法。
9、图论中的图的涵义是什么? 10、在图论中什么是生成子图? 11、在图论中网络的含义是什么?12、如何识别线性规划问题有多重最优解? 13、如何识别运输问题有多重最优解? 一、问答题1、答:线性规划问题的最优解主要存在四种情况:1)唯一最优解。
判断条件:单纯形最终表中所有非基变量的检验数均小于零 2)多重最优解:判断条件:单纯形最终表中存在至少一个非基变量的检验数等于零。
3)无界解。
判断条件:单纯形法迭代中某一变量的检验数大于零,同时它所在系数矩阵列中的所有元素均小于等于零4)无可行解。
判断条件:在辅助问题的最优解中,至少有一个人工变量大于零2、答:把在一定条件下的最优生产方案中,某种资源增加或减少一个单位给总收益带来的改变量,称为此种资源在一定条件的影子价格。
作用:a.能为经理的经营决策提供重要的指导(可举例说明)b.为重新分配一个组织内的资源提供依据。
3、答:平衡运输问题指的是总供给等于总需求的运输问题。
其特点如下: 1)系数矩阵全部由0和1两种元素值组成,前m 行每行有n 个1,后n 行每行有m 个1。
每列又且只有2个1,P ij 向量的1分别在第i 行和第m+j 行。
2)共有m*n 个决策变量,m+n 个约束方程,基变量却只有m+n-1个。
3)任何一个平衡运输问题至少有一个最优解4、答:“分支”:若x k 不为整数,将对应的线性规划问题分别加入两个不等式,即[]k k b x ≤和[]1+≥k k b x 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【解】这是一个条材下料问题 ,设切口宽度为零。 设一根圆钢切割成甲、 乙、丙三种轴的根数分别为y1,y2,y3,则切割方式可用不等式 1.5y1+y2+0.7y3≤4 也就是有10种下料方式,如表1.3所示。
2013年11月24日星期日 8
表示,
求这个不等式关于y1,y2,y3的非负整数解。象这样的非负整数解共有10组,
3 2 4 2 40
5 50
3
Chapter 1 线性规划 Linear Programming
Page 4
【解】设x1、x2、x3 分别为甲、乙、丙三种产品的产量数学模型 为:
max Z 40 x1 30 x2 50 x3
3 x1 x2 2 x3 200 2 x 2 x 4 x 200 2 3 1 4 x1 5 x2 x3 360 2 x 3 x 5 x 300 2 3 1 x1 0,x2 0,x3 0
最优解:
1 X1 2 X2 3 X3 0 C1 67 C2 146 C3 404 >= 301 >= 350 >= 300 300 350 104 1 0
4 X4
5 X5 6 X6
170 C4
97 C5 120 C6
400 >=
480 >= 600 >=
400
480 600
0
0 0
7 X7
17 C7
最优解X=(50,30,10);Z=3400
2013年11月24日星期日
产品 资源 设备A 设备B
甲 乙 3 2 1 2
丙
现有资 源 200 200
2 4
材料C
材料D 利润(元/ 件)
4
2 40
5
3 30
1
5 50
360
300
4
Chapter 1 线性规划 Linear Programming
Page 5
方 1 2 3 4 5 6 7 8 9 10 需求量
案 规格
y1 2 2 1 1 1 0 0 0 0 0 1000
y2
y
1
0 0
0
1 0.3
2
0 0.5
1
2 0.1
0
3 o.4
4
0 0
3
1 0.3
2
2 0.6
1
4 0.2
0
5 0.5
1000
1000
10
3 2013年11月24日星期日
余料(m)
Chapter 1 线性规划 Linear Programming
Chapter 1 线性规划 Linear Programming
Page 9
表1.3 下料方 案
方案 规格
1
2
1 0
2
2
0 1
3
1
2 0
4
1
1 2 0.1
5
1
0 3 o.4
6
0
4 0 0
7
0
3 1
8
0
2 2
9
0
1 4 0.2
10 需求量
0
0 5 0.5
y1(1.5m)
1000
1000 1000
y2 (1m) y3 (0.7m)
费用(元/ t )
340 260 180 230
13
5
190
Chapter 1 线性规划 Linear Programming
Page 14
解: 设生产一单位合金需要第j 种矿石数量为xj(j=1,2,…,5), 则得到下列线性规划模型
min Z 340 x1 260 x2 180 x3 230 x4 190 x5 0.25 x1 0.4 x2 0.2 x4 0.08 x5 0.28 0.1x 0.15 x 0.2 x 0.05 x 0.15 1 3 4 5 0.1x1 0.05 x3 0.15 x5 0.1 0.25 x1 0.3 x2 0.2 x3 0.4 x4 0.17 x5 0.55 0.25 x 0.3 x 0.2 x 0.4 x 0.17 x 0.35 1 2 3 4 5 0.7 x1 0.7 x2 0.4 x3 0.8 x4 0.45 x5 1 x 0, j 1, 2, , 5 j
运筹学
管理决策问题
Chapter 1 线性规划 Linear Programming
Page 2
一、生产计划的问题
【例1.1】最优生产计划问题。某企业在计划期内计划生产甲、
乙、丙三种产品。这些产品分别需要要在设备A、B上加工,需 要消耗材料C、D,按工艺资料规定,单件产品在不同设备上加 工及所需要的资源如表1.1所示。已知在计划期内设备的加工能 力各为200台时,可供材料分别为360、300公斤;每生产一件甲、 乙、丙三种产品,企业可获得利润分别为40、30、50元,假定 市场需求无限制。 企业决策者应如何安排生产计划,使企业在计划期内总的
2013年11月24日星期日
17
Chapter 1 线性规划 Linear Programming
Page 18
第一年:x1+x2=200(万元) 第二年:(x1/2 +x3)+x4=x2 第三年: (x3/2+x5)+x6=x4+2x1 第四年:(x5 / 2+x7)+x8=x6+2x3
第五年:(x7 /2+x9)=x8+2x5
2013年11月24日星期日 5
Chapter 1 线性规划 Linear Programming
Page 6
【解】 设xj(j=1,2,…,7)为休息2天后星期一到星期日开始上班 的营业员,则这个问题的线性规划模型为
min Z x1 x 2 x3 x 4 x5 x 6 x 7 x1 x 4 x5 x 6 x 7 x x x x x 2 5 6 7 1 x1 x 2 x3 x 6 x 7 x1 x 2 x3 x 4 x 7 x1 x 2 x3 x 4 x5 x 2 x3 x 4 x5 x 6 x3 x 4 x5 x 6 x 7 x 0, j 1,2, ,7 j
Page 11
注意
求下料方案时应注意,余料不能超过最短毛 坯的长度;最好将毛坯长度按降的次序排 列,即先切割长度最长的毛坯,再切割次 长的,最后切割最短的,不能遗漏了方案 。 如果方案较多,用计算机编程排方案,去 掉余料较长的方案,进行初选。
2013年11月24日星期日
11
Chapter 1 线性规划 Linear Programming
550 >=
550
0
Z=617(人)
2013年11月24日星期日
7
Chapter 1 线性规划 Linear Programming
Page 8
三、合理用料问题
【例1.3】某汽车需要用甲、乙、丙三种规格的轴各一根,这些轴的规格分别 是1.5,1,0.7(m),这些轴需要用同一种圆钢来做,圆钢长度为4 m。现在 要制造1000辆汽车,最少要用多少圆钢来生产这些轴?
2013年11月24日星期日
300 300 350 400 480 600 550
星 期 一 二 三 四 需要 人数 300 300 350 400
6
星 期 五 六 日
需要 人数 480 600 550
Chapter 1 线性规划 Linear Programming
Page 7
余料(m) 0
0.3 0.5
0.3 0.6
2013年11月24日星期日
9
Chapter 1 线性规划 Linear Programming
Page 10
设xj(j=1,2…,10)为第j种下料方案所用圆钢的根数。则用料最少 数学模型为:
min Z x j
j 1 10
2 x1 2 x 2 x3 x 4 x5 1000 x 2 x3 x 4 4 x6 3x7 2 x8 x9 1000 1 x2 2 x 4 3 x5 x7 2 x8 4 x9 5 x10 1000 x j 0, j 1,2, 10
15
Chapter 1 线性规划 Linear Programming
Page 16
最优解:
1 X1 2 X2 3 X3 4 X4 5 X5 0 0.3333 0 0.5833 0.6667
Z=347.5
2013年11月24日星期日
16
Chapter 1 线性规划 Linear Programming
利润收入最大?
2013年11月24日星期日 2
Chapter 1 线性规划 Linear Programming
Page 3
表1.1 产品资源消耗
产品 甲 资源 设备A 设备B 材料C 材料D 利润(元/件)
2013年11月24日星期日
乙 1 2 5 3 30 2 4 1
丙
现有资源 200 200 360 300
二、人力资源分配的问题 【例1.2】某商场决定:营业员每周连续工作5天后连续休息2天, 轮流休息。根据统计,商场每天需要的营业员如表1.2所示。
表1.2 营业员需要量统计表
星期 一 二 三 四
需要人数 300 300 350 400
星期 五 六 日
需要人数 480 600 550
商场人力资源部应如何安排每天的上班人数,使商场总的营业员 最少。