含字母系数的二元一次方程组专题练习 (4)

合集下载

专题21 含字母的二元一次方程组(含答案)

专题21 含字母的二元一次方程组(含答案)

专题21 含字母的二元一次方程组知识解读培优学案典例示范1.求方程组中的字母的值(1)方程组的解与另一个方程(组)的解相同 例1 若方程组⎩⎨⎧=-=+4732by ax y x 与方程组3546=⎩⎨⎧-=+y x by ax 有相同的解,求a ,b 的值. 【提示】根据方程组的解的意义,可知这两个方程组的解满足⎩⎨⎧=-=+354732y x y x ,求出这个解,再带入另外两个方程,求出a ,b. 【解答】1.求方程组中的字母的值(1)方程组的解与另一个方程(组)的解相同一般先将方程组中的字母看成已知数,把方程组的解用含这个字母的式子来表示,再根据题意列出新方程(组)来求解. (2)看错方程组中字母的值方程组的解适合方程组中每一个方程,如果看错了其中一个非常的系数,那么这个解就不是这个方程的解,但是还是其他方程的解. (3)方程组有整数解方程组有整数解的问题,一般情况下可先用字母表示出方程的解,再根据整除的性质联合确定使得几个未知数的值都是整数的字母的取值 2.含字母系数的方程组的解的情况含字母系数方程组解的情况可用两种方法来解决:一是通过消元,将方程组转化为只含一个未知数的方程,然后讨论这个方程解的情况;二是直接根据方程组中字母的系数考虑方程组的解:一般地,若关于x ,y 的二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a (其中212211,,,,,c c b a b a 是常数),(1)当x与y 的系数不成比例即2121b b a a ≠时,方程组有唯一解;(2)当x 与y 的系数成比例但与常数项不成比例即212121c c b b a a ≠=时,方程组无解;(3)当x 与y 的系数及常数项成比例即212121c cb b a a ==时,方【技巧点评】方程组的解满足方程组中的每一个方程,因此将不含字母的方程联立成方程组可先求出方程组的解,进而再将解带入含字母的方程求字母. 跟踪训练1 已知方程组⎩⎨⎧=+=+4535y ax y x 与⎩⎨⎧=-=+5235y x by x 有相同的解,求a ,b 的值.【解答】例2 已知方程组⎩⎨⎧=-=+m y x my x 5231323的解适合10=+y x ,求m 的值.【提示】先将方程组中的字母m 看成已知数,通过解方程组用含m 的式子表示方程组的解,再带入10=+y x 来求m 的值.【解答】【技巧点评】当无法直接求出方程组的解时,一般先将方程组中的字母看成已知数,把方程组的解用含这个字母的式子来表示,再根据体验列出新方程(组)来求解. 跟踪训练2若使方程组⎩⎨⎧--=+-=+43522a y x y x 的解满足a y x =-,求a 的值.【解答】(2)看错方程组中字母的值 例3 已知方程组515,42,ax y x by +=⎧⎨-=-⎩①②的由于甲看错了方程①中的a 得到方程组的解为⎩⎨⎧-=-=13y x ,乙看错了方程②中的b 得到方程组的解为⎩⎨⎧==45y x ,请按正确的a ,b 求出原方程组的解. 【提示】甲看错了方程①中的a 得到的解为⎩⎨⎧-=-=13y x 是方程②的解,同理⎩⎨⎧==45y x 是方程①的解. 【解答】【技巧点评】方程组的解适合方程组中每一个方程,如果看错了其中的一个方程中的系数,那么这个解就不是这个方程的解,但是还是其它方程的解. 跟踪训练3若关于x ,y 的方程组⎩⎨⎧=-=+872y cx by ax 甲正确解出⎩⎨⎧-==23y x ,乙因为看错了c 解得⎩⎨⎧=-=22y x ,求a ,b ,c的值 【解答】(3)方程组有整数解例4 (华杯赛试题)已知m 是整数,方程组⎩⎨⎧=+=-266634my x y x 有整数解,求m 的值.【提示】先求出y (用含m 的式子表示),运用整除的性质求出m 的值,特别需要注意的是所求的整数m 也要使得x 为整数. 【解答】【技巧点评】方程组有整数解问题,一般情况下可先用字母表示出方程的解,再根据整除的性质联合确定使得几个未知数的值都是整数的字母的取值.m 为正整数,已知二元一次方程组210320mx y x y 有整数解,则2m =________.【解答】2、含字母系数的方程组的的解的情况 例5 k ,b 为何值时,方程组312y kx b y k x(1)有唯一一组解;(2)无解;(3)有无穷多组解?【提示】通过消元,将方程组的解的情况的讨论转化为只含一个未知数的方程的解的情况讨论。

中考数学专项练习解二元一次方程组(含解析)

中考数学专项练习解二元一次方程组(含解析)

中考数学专项练习解二元一次方程组(含解析)【一】单项选择题1.方程﹣x+4y=﹣15用含y的代数式表示x是〔〕A.﹣x=4y﹣15B.x=﹣15+4yC.x=4 y+15D.x=﹣4y+152.方程3x+y=7的正整数解的个数是〔〕A.1个B.2个C.3个D.4个3.关于的二元一次方程的正整数解的个数有〔〕个A.1B.2C.3D.44.将方程中的x的系数化为整数,那么以下结果正确的选项是〔〕A.B.C.D.5.在二元一次方程x+3y=1的解中,当x=4时,对应的y的值是〔〕A.﹣B.C.﹣1D.46.在方程2(x+y)-3(y-x)=3中,用含x的代数式表示y,那么〔〕A.y=5x-3 B.y=-x-3 C.y=5x+3 D.y=-5x-37.方程2x﹣3y=7,用含x的代数式表示y为〔〕A.y=B.y=C.x=D.x=8.方程组将②×3-①×2得〔〕A.-3y=2B.4y+1=C.y=D.7y=-89.二元一次方程3x﹣y=1,当x=2时,y﹣8等于〔〕A.5B.-3C.-7D.710.方程2x﹣y=3和2x+y=9的公共解是〔〕A.B.C.D.11.二元一次方程x+2y=3的解的个数是〔〕A.1B.2C.3D.无数12.二元一次方程x+2y=3的解的个数是〔〕A.1B.2C.3D.无数13.二元一次方程3x+y=9的正整数解的组数是〔〕A.1B.2C.3D.不确定14.关于x,y的二元一次方程2x+3y=18的正整数解的个数为〔〕A.1B.2C.3D.415.假设方程2x+3y=﹣7,那么假设x=2,那么y值为〔〕A.﹣1B.﹣C.1D.【二】填空题16.二元一次方程3x+2y=11的所有正整数解是________.17. ,用含x的代数式表示y为:________.18.方程2x+3y﹣4=0,用含x的代数式表示y为:y=________;用含y的代数式表示x为:x=________19.在2x﹣y=5中,用y的代数式表示x,那么x=________20.在方程2x﹣y=1中,假设x=﹣4,那么y=________.21.在x+3y=3中,用含x的代数式表示y,那么y=________.22.在二元一次方程2y+x=8中,假设x=0,那么y=________;假设x= 2,那么y=________.23.在方程7x﹣2y=8中用含x的代数式表示y=________.【三】计算题24.解方程组25.解方程:x2+4x﹣2=0.26.解方程组:【四】解答题27.〔开放题〕是否存在整数m,使关于x的方程2x+9=2﹣〔m﹣2〕x 在整数范围内有解,你能找到几个m的值?你能求出相应的x的解吗?28.怎样运用一个字母代数式表示另一个字母呢?如:4x﹣3y=20,用含y的式子表示x.解:4x﹣3y=20.〔把常数项,含y的式子放在方程等式右边〕移项,得4x=20﹣3y.两边除以4,得x=﹣y+5.以上过程对吗?为什么?【五】综合题29.有理数x、y满足等式:2x+y=3.〔1〕假设x=,求y的值.〔2〕假设x≥,求y的取值范围30.先用一个未知数的代数式表示另一个未知数,然后再求出以下每个方程的三组解:〔1〕2〔x﹣y〕=5〔2〕4x+2y=x﹣y+1【一】单项选择题1.方程﹣x+4y=﹣15用含y的代数式表示x是〔〕A.﹣x=4y﹣15B.x=﹣15+4yC.x=4 y+15D.x=﹣4y+15【考点】解二元一次方程【解析】【解答】解:移项,得﹣x=﹣15﹣4y,系数化为1,得x=4y +15.应选C、【分析】将原方程进行移项、系数化为1,变换成x=ay+b的形式.2.方程3x+y=7的正整数解的个数是〔〕A.1个B.2个C.3个D.4个【考点】解二元一次方程【解析】【解答】由得:y=7﹣3x,要使x,y都是正整数,∴x=1,2时,相应的y=4,1.∴正整数解为.应选B、【分析】要先把其中一个未知数用另一个未知数表示出来.然后根据解为正整数分析它的解的情况.3.关于的二元一次方程的正整数解的个数有〔〕个A.1B.2C.3D.4【考点】解二元一次方程4.将方程中的x的系数化为整数,那么以下结果正确的选项是〔〕A.B.C.D.【考点】解二元一次方程【解析】【分析】由题意把原方程两边同时乘以-2即可得到结果.【解答】方程两边同时乘以-2可得,应选B.【点评】此题属于基础应用题,只需学生熟练掌握解二元一次方程的方法,即可完成.5.在二元一次方程x+3y=1的解中,当x=4时,对应的y的值是〔〕A.﹣B.C.﹣1D.4【考点】解二元一次方程【解析】【解答】解:把x=4代入方程x+3y=1得:4+3y=1,y=﹣1.应选C、【分析】把x=4代入方程x+3y=1求出y即可.6.在方程2(x+y)-3(y-x)=3中,用含x的代数式表示y,那么〔〕A.y=5x-3 B.y=-x-3 C.y=5x+3 D.y=-5x-3【考点】解二元一次方程【解析】【解答】去括号,得2x+2y-3y+3x=3,化简,得5x-y=3,移项,得y=5x-3.应选A、【点评】此题考查方程的基本变形,能够熟练运用等式的性质进行变形.7.方程2x﹣3y=7,用含x的代数式表示y为〔〕A.y=B.y=C.x=D.x=【考点】解二元一次方程【解析】【解答】解:移项,得﹣3y=7﹣2x,系数化为1,得y=,即y=.应选:B、【分析】此题是将二元一次方程变形,先移项、再系数化为1即可.8.方程组将②×3-①×2得〔〕A.-3y=2B.4y+1=C.y=D.7y=-8【考点】解二元一次方程【解析】【分析】此题考查的是解二元一次方程组时的加减消元法,只要把原方程中每一项都和3或2相乘,然后进行加减即可.【解答】(2)×3得:6x-9y=12(3),(1)×2得:6x-10y=12(4),(3)-(4)得:y=0.应选C、【点评】此题应注意:-9y-〔-10y)=y.9.二元一次方程3x﹣y=1,当x=2时,y﹣8等于〔〕A.5B.-3C.-7D.7【考点】解二元一次方程10.方程2x﹣y=3和2x+y=9的公共解是〔〕A.B.C.D.【考点】解二元一次方程【解析】【解答】解:联立得:,①+②得:4x=12,解得:x=3,把x=3代入①得:y=3,那么方程组的解为,应选D【分析】联立两方程组成方程组,求出方程组的解即可.11.二元一次方程x+2y=3的解的个数是〔〕A.1B.2C.3D.无数【考点】解二元一次方程【解析】【解答】由二元一次方程的解的定义知,任意一个二元一次方程都有无数个解.应选:D、【分析】由于二元一次方程x+2y=3是不定方程,所以有无数组解.12.二元一次方程x+2y=3的解的个数是〔〕A.1B.2C.3D.无数【考点】解二元一次方程【解析】【解答】解:由二元一次方程的解的定义知,任意一个二元一次方程都有无数个解.应选:D、【分析】由于二元一次方程x+2y=3是不定方程,所以有无数组解.13.二元一次方程3x+y=9的正整数解的组数是〔〕A.1B.2C.3D.不确定【解析】【解答】解:方程3x+y=9变形得y=9﹣3x.要使x,y都是正整数,那么,,所以原方程的正整数解有2组,应选B、【分析】此题是求不定方程的整数解,先将方程做适当变形,确定其中一个未知数的值,然后再求出另一个未知数的值.14.关于x,y的二元一次方程2x+3y=18的正整数解的个数为〔〕A.1B.2C.3D.4【考点】解二元一次方程【解析】【解答】解:2x+3y=18,解得:x=,当y=2时,x=6;当y=4时,x=3,那么方程的正整数解有2对.应选B、【分析】将y看做数求出x,即可确定出方程的正整数解.15.假设方程2x+3y=﹣7,那么假设x=2,那么y值为〔〕A.﹣1B.﹣C.1D.【解析】【解答】解:方程2x+3y=﹣7,把x=2代入得:4+3y=﹣7,解得:y=﹣,应选B【分析】把x的值代入方程计算即可求出y的值.【二】填空题16.二元一次方程3x+2y=11的所有正整数解是________.【考点】解二元一次方程17. ,用含x的代数式表示y为:________.【考点】解二元一次方程18.方程2x+3y﹣4=0,用含x的代数式表示y为:y=________;用含y的代数式表示x为:x=________【考点】解二元一次方程【解析】【解答】解:〔1〕移项得:3y=4﹣2x,系数化为1得:y=;〔2〕移项得:2x=4﹣3y,系数化为1得:x=.【分析】把方程2x+3y﹣4=0写成用含x的式子表示y的形式,需要把含有y的项移到等号一边,其他的项移到另一边,然后系数化1就可用含x的式子表示y的形式:y=;写成用含y的式子表示x的形式,需要把含有x 的项移到等号一边,其他的项移到另一边,然后系数化1就可用y的式子表示x的形式:x=.19.在2x﹣y=5中,用y的代数式表示x,那么x=________【考点】解二元一次方程20.在方程2x﹣y=1中,假设x=﹣4,那么y=________.【考点】解二元一次方程21.在x+3y=3中,用含x的代数式表示y,那么y=________.【考点】解二元一次方程22.在二元一次方程2y+x=8中,假设x=0,那么y=________;假设x= 2,那么y=________.【考点】解二元一次方程23.在方程7x﹣2y=8中用含x的代数式表示y=________.【考点】解二元一次方程【三】计算题24.解方程组【考点】解二元一次方程【解析】【分析】运用加减消元法解方程组。

专题04 解二元一次方程组【2022春人教版七下数学压轴题突破专练】(解析版)

专题04  解二元一次方程组【2022春人教版七下数学压轴题突破专练】(解析版)

【2022春人教版七下数学压轴题突破专练】专题04 解二元一次方程组一.选择题1.(2020春•南丹县期末)解方程组,用加减法消去y,需要()A.①×2﹣②B.①×3﹣②×2 C.①×2+②D.①×3+②×2 【思路引导】先把的系数化成绝对值相等的方程,再相加即可.【完整解答】解:①×2得:4x+6y=2③,③+②得:7x=9,即用减法消去y,需要①×2+②,故选:C.【考察注意点】本题考查了解二元一次方程组的应用,主要考查学生的理解能力和计算能力.2.(2018秋•乐清市校级月考)已知x,y是整数,满足x﹣y+3=0,ax﹣y﹣a=0,则整数a的所有可能值有()个.A.4 B.5 C.6 D.8【思路引导】用含x的代数式表示出y,得到关于x的一次方程,再用含a的代数式表示出x,根据x、a都是整数,得结论.【完整解答】解:∵x﹣y+3=0,∴y=x+3∴ax﹣x﹣3﹣a=0,整理,得(a﹣1)x=a+3∴x===1+由于x、a都是整数,所以a﹣1=±1或±2或±4即a所有可能的值有:0、2、3、﹣1、5、﹣3.故选:C.【考察注意点】本题考查了方程、整数解等知识点.解决本题的关键是用含a的代数式表示出x后变形代数式为整数+分式的形式.3.(2012春•黄州区校级期末)如果方程组有唯一的一组解,那么a,b,c的值应当满足()A.a=1,c=1 B.a≠b C.a=b=1,c≠1 D.a=1,c≠1 【思路引导】此题的解法在于将两式的y用x来代替然后列出y关于x的方程,因为有唯一解,根据方程可得出a,b,c的值的条件.【完整解答】解:根据题意得:,∴1﹣x=,∴(a﹣b)x=c﹣b,∴x=,要使方程有唯一解,则a≠b,故选:B.【考察注意点】该题考查的是对题意的理解和对方程组的解法的认识,结合了对分式性质的理解,考查了考生对方程、分式的理解.4.(2011春•三亚校级月考)代数式x2+ax+b,当x=2时,其值是3,当x=﹣3时,其值是4,则代数式a﹣b的值是()A.﹣1B.﹣3C.8D.3【思路引导】将x=2,其值是3,x=﹣3,其值是4分别代入代数式中,得到关于a与b的方程组,求出方程组的解即可得到a与b的值,即可求出a﹣b的值.【完整解答】解:根据题意得:,解得:,则a﹣b=+=3.故选:D.【考察注意点】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.如果,则2x:3y等于()A.﹣2 B.C.2 D.【思路引导】因为求2x:3y,所以必须通过解方程组求出x和y的值,然后进行解答.【完整解答】解:在中,①×4﹣②,得3x=9,x=3.代入①,得y=1.∴2x:3y=2×3:3×1=2.故选:C.【考察注意点】这类题目的解题关键是掌握方程组解法中的加减消元法和代入消元法.6.(2021秋•榆林期末)用代入消元法解关于x、y的方程组时,代入正确的是()A.2(4y﹣3)﹣3y=﹣1 B.4y﹣3﹣3y=﹣1C.4y﹣3﹣3y=1 D.2(4y﹣3)﹣3y=1【思路引导】把第一个方程的x代入第二个方程整理得到结果,即可作出判断.【完整解答】解:,把①代入②得:2(4y﹣3)﹣3y=﹣1.故选:A.【考察注意点】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.7.(2021春•黄埔区校级期中)二元一次方程组的解是()A.B.C.D.【思路引导】方程组利用加减消元法求解即可.【完整解答】解:,①×2+②,得2.7x=5.4,解得x=2,把x=2代入①,得0.6﹣0.5y=﹣0.9,解得y=3,所以方程组的解为.故选:D.【考察注意点】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.二.填空题8.(2021春•铜梁区期末)方程组的解是.【思路引导】根据解二元一次方程组的方法可以解答此方程组.【完整解答】解:,由①,得x=3,将x=3代入②,得y=﹣1,故原方程组的解是,故答案为:.【考察注意点】本题考查解二元一次方程组,解答本题的关键是明确解二元一次方程组的方法.9.(2020春•密山市期末)单项式3x2m+3n y8与﹣2x2y3m+2n是同类项,则m+n= 2 .【思路引导】根据同类项定义可得,再①+②得:5m+5n=10,进而可得答案.【完整解答】解:由题意得:,①+②得:5m+5n=10,m+n=2,故答案为:2.【考察注意点】此题主要考查了同类项的定义,关键是掌握所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.10.(2018春•岳阳期末)若方程组,则x﹣y=10 .【思路引导】两方程相减即可得出2x﹣2y=20,两边除以2即可求出答案.【完整解答】解:①﹣②得:2x﹣2y=20,x﹣y=10,故答案为:10.【考察注意点】本题考查了解二元一次方程组和求代数式的值,能选择适当的方法解方程组是解此题的关键.11.(2016•广饶县开学)方程组的解一定是方程5x﹣3y=8 与3x+8y=9 的公共解.【思路引导】利用方程组解的定义判断即可.【完整解答】解:方程组的解一定是方程5x﹣3y=8与3x+8y=9的公共解.故答案为:5x﹣3y=8;3x+8y=9.【考察注意点】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.12.(2015春•通化校级期中)若的解是方程ax﹣3y=2的一组解,则a的值是﹣8 .【思路引导】先求出方程组的解,再代入方程,即可求出a.【完整解答】解:解方程组得:,把代入方程ax﹣3y=2得:﹣a﹣6=2,解得:a=﹣8,故答案为:﹣8.【考察注意点】本题考查了解二元一次方程组的解,解一元一次方程的应用,能得出关于a的一元一次方程是解此题的关键.13.(2021春•长兴县月考)已知二元一次方程组,则8x+7y=25 .【思路引导】方程组中两方程左右两边相加即可求出所求式子的值.【完整解答】解:,①+②得:8x+7y=25,故答案为:25.【考察注意点】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.14.(2018春•杭州期中)已知方程组,则代数式的值为﹣.【思路引导】先将原式化简,再由方程组得出4x+3y=5,代入计算可得.【完整解答】解:原式=+==4x+3y﹣,解方程组,∴4x+3y=5,则原式=5﹣=﹣.【考察注意点】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.15.(2017秋•抚州期末)对于实数x,y,定义新运算x*y=ax+by+1,其中a,b为常数,等式右边为通常的加法和乘法运算,若3*5=14,4*7=19,则5*9=24 .【思路引导】按照定义新运算x*y=ax+by+1,用已知的两个式子建立方程组,求得a,b 的值后,再求5*9的值【完整解答】解:根据题意知,解得:,则x*y=x+2y+1,所以5*9=5+2×9+1=24,故答案为:24.【考察注意点】本题是新定义题,考查了定义新运算,解方程组.要注意运算顺序与运算符号.16.(2018春•汶上县期末)对于有理数x,y定义新运算:x*y=ax+by﹣5,其中a,b为常数,已知1*2=﹣9,(﹣3)*3=﹣2,则2a﹣b=﹣3 .【思路引导】首先根据1*2=﹣9,(﹣3)*3=﹣2,可得,据此求出a、b的值各是多少;然后应用代入法,求出2a﹣b的值是多少即可.【完整解答】解:∵1*2=﹣9,(﹣3)*3=﹣2,∴①×3+②,可得:9b﹣20=﹣29解得b=﹣1,把b=﹣1代入①,解得a=﹣2,∴2a﹣b=2×(﹣2)﹣(﹣1)=﹣3.故答案为:﹣3.【考察注意点】此题主要考查了解二元一次方程的方法和应用,以及有理数的混合运算的运算方法,要熟练掌握,注意加减法在解二元一次方程组中的应用.17.(2017秋•沙坪坝区校级月考)小文同学在求解关于x、y的二元一次方程组时,解得,由于不小心滴上了两滴墨水,刚好遮住了两个数⊗、⊙,请你帮忙找回这两个数⊗=23 ,⊙=8 .【思路引导】把x的值代入方程组第二个方程求出y的值,再将x与y的值代入计算即可求出值所求.【完整解答】解:把x=5代入2x﹣y=2得:10﹣y=2,解得:y=8,把x=5,y=8代入得:15+8=23,则⊗=23,⊙=8,故答案为:23;8【考察注意点】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.18.(2017春•临淄区校级期中)解方程组时,甲正确解得,乙因把c写错解得,求a、b的值是a=﹣4,b=﹣5 .【思路引导】直接把,,分别代入ax+by=﹣2中可得关于a、b的方程,然后再解方程组即可.【完整解答】解:把代入ax+by=﹣2可得:3a﹣2b=﹣2①,把代入ax+by=﹣2可得:﹣2a+2b=﹣2②,①+②得:a=﹣4,把a=﹣4代入①得:﹣12﹣2b=﹣2,b=﹣5,故答案为:a=﹣4,b=﹣5.【考察注意点】此题主要考查了二元一次方程组的解法,熟练掌握解方程组的方法是解题关键.三.解答题19.(2020秋•宣城期末)解方程(组):(1);(2).【思路引导】(1)方程去分母,去括号,移项,合并同类项,系数化为1即可;(2)方程组利用加减消元法求解即可.【完整解答】解:(1),去分母,得﹣2(2x﹣1)+(x﹣2)=4,去括号,得﹣4x+2+x﹣2=4,移项,得﹣4x+x=4+2﹣2,合并同类项,得﹣3x=4,系数化为1,得x=﹣;(2),①×2+②,得,解得x=2,把x=2代入②,得8﹣2y=10,解得x=﹣1,故方程组的解为.【考察注意点】此题主要考查了解一元一次方程以及解二元一次方程组,解方程组的基本思想是消元,基本方法是代入消元和加减消元.20.(2016春•万州区期末)我们用f(x)表示不大于x的最大整数,例如:f(2.3)=2,f (4)=4,f(﹣1.5)=﹣2;用g(y)表示不小于y的最小整数.例如:g(2.5)=3,g(5)=5,g(﹣3.5)=﹣3.解决下列问题:(1)根据以上运算规律:f(﹣5.4)=,g(4.5)=.(2)若f(x)=3,则x的取值范围是;若g(y)=﹣2,则y的取值范围是.(3)已知x,y满足,求x,y的取值范围.【思路引导】(1)直接根据定义即可得;(2)由定义可得x、y的范围;(3)先解方程组求得f(x)、g(y)的值,再根据定义可得答案.【完整解答】解:(1)由题意,得:f(﹣5.4)=﹣6、g(4.5)=5,故答案为:﹣6、5;(2)∵f(x)=3,∴x的取值范围是3≤x<4;∵g(y)=﹣2,∴y的取值范围是﹣3<y≤﹣2,故答案为:3≤x<4,﹣3<y≤﹣2.(3)解方程组得,∴x的取值范围为﹣1≤x<0、y的取值范围为1<y≤2.【考察注意点】本题主要考查解二元一次方程组的能力,理解新定义得出x、y的范围,并熟练掌握解二元一次方程组是解题的关键.21.(2021春•通许县期末)对于任意的有理数a、b、c、d,我们规定,如.若x、y同时满足.求x,y的值.【思路引导】根据,得3y﹣2x=﹣2①,2x﹣(﹣y)=8②,进而解决此题.【完整解答】解:∵,∴3y﹣2x=﹣2①,2x﹣(﹣y)=8②.∴①+②,得4y=6.∴y=.把y=代入②,得x=.∴x=,y=.【考察注意点】本题主要考查解二元一次方程组,根据新定义得出关于x,y的二元一次方程组并熟练掌握解二元一次方程组的步骤是解决本题的关键.22.(2020春•莘县期末)甲、乙两名同学在解方程组时,甲解题时看错了m,解得;乙解题时看错了n,解得.请你根据以上两种结果,求出原方程组的正确解.【思路引导】把甲的结果代入第二个方程,乙的结果代入第一个方程,联立求出m与n 的值,即可确定出原方程组的解.【完整解答】解:把代入得:7+2n=13,把代入得:3m﹣7=5,解得:n=3,m=4,∴原方程组为,解得:.【考察注意点】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.(2018春•新罗区校级期中)对于实数,规定新运算:x*y=ax+by,其中a、b是常数.已知2*1=7,﹣1*3=1.(1)求a、b的值;(2)求1*5的值.【思路引导】(1)利用新定义和两组对应值得到,然后利用加减法解方程组即可;(2)由(1)得新运算为:x*y=2x+3y,然后把x=1,y=5代入计算即可.【完整解答】解:(1)根据题意得,解得a=,b=;(2)由(1)得x*y=x+y,所以1*5=×1+×5=.【考察注意点】本题考查了解二元一次方程组:利用代入消元法或加减消元法解二元一次方程组.24.(2018春•泌阳县期末)善于思考的小军在解方程组时,采用了一种“整体代换”的解法:解:将方程②变形:4x+10y+y=5,即2(2x+5y)+y=5,③把方程①代入③,得2×3+y=5.∴y=﹣1.把y=﹣1代入①,得x=4.∴原方程组的解为.请你解决以下问题:(1)模仿小军的“整体代换法”解方程组:(2)已知x,y满足方程组,求x2+4y2的值.【思路引导】(1)仿照小军的方法将方程②变形,把方程①代入求出y的值,即可确定出x的值;(2)方程组两方程变形后,利用加减消元法求出所求即可.【完整解答】解:(1)由②得:3(3x﹣2y)+2y=19③,把①代入③得:15+2y=19,解得:y=2,把y=2代入①得:x=3,则方程组的解为;(2)由①得:3(x2+4y2)﹣2xy=47③,由②得:2(x2+4y2)+xy=36④,③+④×2得:7(x2+4y2)=119,解得:x2+4y2=17.【考察注意点】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.25.(2017春•鼓楼区校级期末)先阅读,然后解方程组.解方程组时,可由①得x﹣y=1,③然后再将③代入②得4×1﹣y=5,求得y=﹣1,从而进一步求得这种方法被称为“整体代入法”,请用这样的方法解下列方程组.【思路引导】仿照所给的题例先把①变形,再代入②中求出y的值,进一步求出方程组的解即可.【完整解答】解:,由①得,2x﹣3y=2③,代入②得+2y=9,解得y=4,把y=4代入③得,2x﹣3×4=2,解得x=7.故原方程组的解为.【考察注意点】本题考查的是在解二元一次方程组时整体思想的应用,利用整体思想可简化计算.26.(2017春•高平市期中)阅读理解:善于思考的小淇在解方程组时,发现方程①和方程②之间存在一定的关系,他的解法如下:解:将方程②变形为2x﹣3y﹣2y=5③,把方程①代入方程③,得3﹣2y=5,解得y=﹣1.把y=﹣1代入方程①,得x=0.所以原方程组的解为小淇的这种解法叫“整体换元”法,请用“整体换元”法完成下列问题:(1)解方程组:i.把方程①代入方程②,则方程②变为4x+3﹣2x=5 ;ii.原方程组的解为.(2)解方程组:.【思路引导】根据换元法,可得答案.【完整解答】解:(1)解方程组:i.把方程①代入方程②,则方程②变为 4x+3﹣2x=5;ii.原方程组的解为;故答案为:4x+3﹣2x=5;;(2),由①得2y=3x﹣5③,把③代入②,得7x﹣2(3x﹣5)=14,解得x=4,将x=4代入①,得12﹣2y=5,解得y=,原方程组的解为.【考察注意点】本题考查了解二元一次方程组,利用代入消元法是解题关键。

二元一次方程组含字母系数

二元一次方程组含字母系数

二元一次方程组含字母系数二元一次方程组是初中数学内容中的一个重要知识点,在我们的日常生活中也有着广泛的应用,我们可以通过解二元一次方程组来求解很多实际问题。

二元一次方程组含字母系数的概念在解二元一次方程组时,系数往往都是常数,但在实际应用中,很多情况下系数却含有字母,这就是所谓的二元一次方程组含字母系数。

举个例子,如下所示的方程组:2x + 3y = a4x - y = b其中a和b都是字母,此时我们就需要通过一些特殊的方法来解决这类问题。

解二元一次方程组的通常方法解二元一次方程组的方法有多种,比如代入法、消元法、用公式解、图像法等等。

在这里,我们以代入法和消元法为例来进行讲解。

代入法代入法又称直接代入法,其基本思路是将一个方程的一项用另一个方程的未知数表示出来,然后代入另一个方程中,得到只含有一个未知数的一元一次方程,进而求出该未知数,再代入任意一个方程,得到另一个未知数的值。

我们以上面的方程组为例进行演示。

化简出y:y = 4x - b带入第一式:2x + 3(4x - b) = a化简得:14x - 3b = a化简出x:x = (a + 3b)/14再带入第一个式子,化简出y得:y = (2a - 9b)/14至此,我们就求得了这个方程组中的x和y的值,其中含有未知字母。

这就是用代入法解决二元一次方程组含字母系数的方法。

消元法消元法又称加减消元法,它的基本思路是将两个方程的某一个系数相加或相减得到一个新方程,使得这个新方程中含有一个未知数的项系数是相反数,从而通过消元求解。

还是以上面的方程组为例进行演示。

通过第二个方程,化简出y:y = 4x - b代入第一个方程:2x + 3(4x - b) = a化简得:14x - 3b = a将第二个方程变形:y = 4x - b 可得: 4x = y + b 代入第一个方程:2x + 3y + 3b = a再将第二个方程中的4x替换为上式得:2(y + b) + 3y + 3b = a化简得:5y + 7b = a用此式将b消元:3b = (a - 5y)/7将其代入12x = 4y + 4b中得:x = (a + 3y)/14最终可求出y和x的值,其中还是包含有未知字母。

2022年最新人教版初中数学七年级下册第八章二元一次方程组单元测试试卷(含答案解析)

2022年最新人教版初中数学七年级下册第八章二元一次方程组单元测试试卷(含答案解析)

初中数学七年级下册第八章二元一次方程组单元测试(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、在一个3×3的方格中填写9个数字,使得每行每列每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.如图所示的方格中填写了一些数和字母,为使该方格构成一个三阶幻方,则x +2y 的值是( )A .15B .17C .19D .21 2、下列各方程中,是二元一次方程的是( )A .23xy -=y +5x B .3x +1=2xy C .15x =y 2+1 D .x +y =13、用加减消元法解二元一次方程组3421x y x y +=⎧⎨-=⎩①②时,下列方法中无法消元的是( ) A .2⨯-①② B .()3⨯--②① C .()2⨯-+①② D .3-⨯①②4、下列方程中,①x +y =6;②x (x +y )=2;③3x -y =z +1;④m +1n =7是二元一次方程的有( )A .1个B .2个C .3个D .4个5、已知方程370x y --=,231x y +=,9y kx =-有公共解,则k 的值为( ).A .3B .4C .0D .-16、如图,AB ⊥BC ,∠ABC 的度数比∠DBC 的度数的两倍少15°,设∠ABD 和∠DBC 的度数分别为x °,y °,那么下面可以求出这两个角的度数的方程组是( ).A .9015x y x y +=⎧⎨=-⎩B .90215x y x y +=⎧⎨=+⎩C .90152x y x y +=⎧⎨=-⎩D .90215x y x y +=⎧⎨=-⎩ 7、如果关于x 和y 的二元一次方程组3252(2)4x y ax a y +=⎧⎨--=⎩的解中的x 与y 的值相等,则a 的值为( )A .-2B .-1C .2D .18、已知关于x 、y 的方程组262223x y k x y k +=-⎧⎨+=-⎩的解满足2x ﹣y =2k ,则k 的值为( ) A .k 74= B .k 32= C .k 47= D .k 23= 9、已知方程组242x y x y k+=⎧⎨+=⎩的解满足1x y +=,则k 的值为( ) A .7 B .7- C .1 D .1-10、下列方程组中,不是二元一次方程组的是( ).A .23031x y y x -=⎧⎨=+⎩ B .112x y z +=⎧⎨-=⎩ C .22236x x x y x y ⎧+=-⎨+=⎩D .2536y x x =+⎧⎨=-⎩二、填空题(5小题,每小题4分,共计20分)1、如图,把8个大小相同的长方形(如图1)放入一个较大的长方形中(如图2),则ab 的值为_____.2、已知231m n -=,用含m 的代数式表示n ,则n =______.3、如图所示,矩形ABCD 被分成一些正方形,已知AB =32cm ,则矩形的另一边AD =________cm .4、若42m a b -与225n m n a b ++可以合并成一项,则m +n 的值_____.5、小张以两种形式储蓄了500元,第一种储蓄的年利率为3.7%,第二种储蓄的年利率为2.25%,一年后得到利息和为15.6元,那么小张以这两种形式储蓄的钱数分别是____元和___元.三、解答题(5小题,每小题10分,共计50分)1、解方程组0.10.3 1.3123x y x y +=⎧⎪⎨-=⎪⎩①② 2、已知:2x +3y =7,用关于y 的代数式表示x ,用关于x 的代数式表示y .3、根据题意列方程组:(1)某班共有学生45人,其中男生比女生的2倍少9人,该班的男生、女生各有多少人?(2)将一摞笔记本分给若干同学.每个同学5本,则剩下8本;每个同学8本,又差了7本.共有多少本笔记本、多少个同学?4、解方程(组):(1)212124x x --+=; (2)31424210x y x y ⎧+=⎪⎨⎪-=⎩. 5、已知关于x ,y 的方程组353312x y a x y +=⎧⎨--=⎩,若该方程组的解x ,y 的值互为相反数,求a 的值和方程组的解.---------参考答案-----------一、单选题1、D【解析】【分析】根据题意列出两条等式,求出x ,y 的值即可.【详解】根据题意可得:31414y y x-+=+⎧⎨+=+⎩ , 解得85y x =⎧⎨=⎩, x +2y =5+2×8=5+16=21,故答案为:D .【点睛】本题考查了方程组的实际应用,与代数式求值,掌握列方程组的方法是解题的关键.2、D【解析】【分析】根据二元一次方程的定义逐一排除即可.【详解】解:A 、23xy-=y +5x 不是二元一次方程,因为不是整式方程; B 、3x +1=2xy 不是二元一次方程,因为未知数的最高项的次数为2;C 、15x =y 2+1不是二元一次方程,因为未知数的最高项的次数为2;D 、x +y =1是二元一次方程.故选:D .【点睛】此题主要考查了二元一次方程定义关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.3、D【解析】【分析】利用加减消元法逐项判断即可.【详解】A. 2⨯-①②,可以消去x ,不符合题意;B. ()3⨯--②①,可以消去y ,不符合题意;C. ()2⨯-+①②,可以消去x ,不符合题意;D. 3-⨯①②,无法消元,符合题意;故选:D【点睛】本题考查了加减消元法,解题关键是明确加减消元的方法,把相同未知数的系数变成相同或互为相反数,然后准确进行判断.4、A【解析】【分析】含有两个未知数,且含未知数的项的最高次数是1,这样的整式方程是二元一次方程,根据定义逐一分析即可.【详解】解:①x +y =6是二元一次方程;②x (x +y )=2,即22x xy +=不是二元一次方程;③3x -y =z +1是三元一次方程;④m +1n=7不是二元一次方程;故符合题意的有:①,故选A【点睛】本题考查的是二元一次方程的定义,掌握定义,根据定义判断方程是否是二元一次方程是解本题的关键.5、B【解析】【分析】联立370x y --=,231x y +=,可得:2x =,1y =-,将其代入9y kx =-,得k 值.【详解】370231x y x y --=⎧⎨+=⎩,解得21x y =⎧⎨=-⎩, 把21x y =⎧⎨=-⎩代入9y kx =-中得:129k -=-, 解得:4k =.故选:B .【点睛】本题考查二元一次方程组,掌握公共解是三个方程都满足的解是解题的关键.6、A【解析】【分析】此题中的等量关系有:90ABD DBC ∠+∠=︒,215ABC DBC ∠=∠-︒ ,根据等量关系列出方程即可.【详解】设∠ABD 和∠DBC 的度数分别为x °,y °,则有90215x y x y y +=⎧⎨+=-⎩ 整理得:9015x y x y +=⎧⎨=-⎩, 故选:A .【点睛】本题考查了二元一次方程组的应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.7、C 【解析】【分析】先根据x=y,把原方程变成3252(2)4x xax a x+=⎧⎨--=⎩,然后求出x的值,代入求出a的值即可.【详解】解∵x=y,∴原方程组可变形为3252(2)4x xax a x+=⎧⎨--=⎩①②,解方程①得x=1,将1x=代入②得224a a-+=,解得2a=,故选C.【点睛】本题主要考查了根据二元一次方程组的解集情况求参数,解题的关键在于能够根据题意把x=y代入到原方程中求出x的值.8、A【解析】【分析】根据262223x y kx y k+=-⎧⎨+=-⎩得出52x k=-,24y k=-,然后代入22x y k-=中即可求解.【详解】解:262223x y k x y k +=-⎧⎨+=-⎩①②, ①+②得333x y +=,∴1x y +=③,①﹣③得:52x k =-,②﹣③得:24y k =-,∵22x y k -=,∴2(52)(24)2k k k ---=, 解得:74k =.故选:A .【点睛】本题考查了解三元一次方程组,根据题意得出,x y 的代数式是解题的关键.9、D【解析】【分析】①+②得出x +y 的值,代入x +y =1中即可求出k 的值.【详解】解:242x y x y k +=⎧⎨+=⎩①② ①+②得:3x +3y =4+k , ∴43k x y ++=, ∵1x y +=,∴413k+=,∴43k+=,解得:1k=-,故选:D【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.10、B【解析】【分析】依据二元一次方程组的定义求解即可.【详解】利用二元一次方程组的定义一一进行判断,A和D符合二元一次方程组的定义;方程组22236x x x yx y⎧+=-⎨+=⎩中,2223x x x y+=-可以整理为23x y=-所以C也符合;B中含有三个未知数不符合二元一次方程组的定义.故答案选B【点睛】本题主要考查的是二元一次方程组的定义,掌握二元一次方程组的定义是解题的关键.二、填空题1、16【分析】根据图1和图2分析可得10a b+=,510a=,即可,a b的值,进而可得ab的值【详解】由图1可得长方形的长为b ,宽为a ,根据图2可知大长方形的宽可以表示为5,a a b +510,10a a b ∴=+=解得2,8a b ==16ab ∴=故答案为:16【点睛】本题考查了二元一次方程组,根据图中信息求得,a b 的值是解题的关键.2、2133m -【分析】先移项,然后将n 的系数化为1,即可求解.【详解】解:231m n -=321n m =-2133n m =- 故答案为:2133m -【点睛】此题考查了解二元一次方程,解题的关键是将其中一个数看做已知数,另一个数看做未知数. 3、29【分析】可以设最小的正方形的边长为x,第二小的正方形的边长为y,根据已知AB=CD=32cm,可得到两个关于x、y的方程,求方程组即可得解,然后求矩形另一边AD的长即可,仍可用xy表示出来.【详解】解:设最小的正方形的边长为x,第二小的正方形的边长为y,将各个正方形的边长都用x和y表示出来(如图),根据AB=CD=32cm,可得()()()()22232 23332x y x yy y x y x⎧+++=⎪⎨+-+-=⎪⎩,解得:45xy=⎧⎨=⎩,矩形的另一边AD=x+2y+y+2y=x+5y=29cm.故答案为:29.【点睛】本题考查了整式乘法运算的应用,二元一次方程组的应用,解题的关键是读懂图意根据矩形的性质列出方程组并求解.4、2【分析】先根据同类项的定义(如果两个单项式,它们所含字母相同,并且相同字母的指数也分别相同,那么这两个单项式是同类项)可得一个关于,m n二元一次方程组,解方程组求出,m n的值,再代入计算即可得.【详解】解:由题意得:42m a b-与225n m na b++是同类项,则224m n m n =+⎧⎨+=⎩, 解得20m n =⎧⎨=⎩, 所以202m n +=+=,故答案为:2.【点睛】本题考查了同类项、二元一次方程组的应用,熟记同类项的定义是解题关键.5、300 200【分析】根据题意设小张以这两种形式储蓄的钱数分别是,x y 元,根据题意列出二元一次方程组,解方程组即可求得答案.【详解】设小张以这两种形式储蓄的钱数分别是,x y 元,根据题意得,5003.7% 2.25%15.6x y x y +=⎧⎨+=⎩ 解得300200x y =⎧⎨=⎩ 小张以这两种形式储蓄的钱数分别是300元和200元.故答案为:300,200.【点睛】本题考查了二元一次方程组的应用,根据题意列出二元一次方程组是解题的关键.三、解答题1、43x y =⎧⎨=⎩. 【分析】将①×10,②×6,进而根据加减消元法解二元一次方程组即可【详解】解:①×10,②×6,得313,326,x y x y +=⎧⎨-=⎩③④ ③×3-④,得11y =33,解得y =3.将y =3代入③,解得x =4.所以原方程组的解为4,3.x y =⎧⎨=⎩ 【点睛】本题考查了解二元一次方程,先将方程组中未知数的系数化为整数是解题的关键.2、732y x -=,723x y -= 【分析】先移项,得到273x y =- ,然后等式两边同时除以2,即可求解.【详解】解:∵2x +3y =7,∴273x y =- ,372y x =- , ∴732y x -=,723x y -= . 【点睛】本题主要考查了解二元一次方程,熟练掌握二元一次方程的解法是解题的关键.3、(1)4529x yx y+=⎧⎨=-⎩;(2)5887x yx y+=⎧⎨-=⎩【分析】(1)设该班有男生x名,女生y名,根据题意列二元一次方程组即可;(2)设有x个同学,y个笔记本,根据题意列二元一次方程组即可.【详解】(1)设该班有男生x名,女生y名,则可列方程组45,29. x yx y+=⎧⎨=-⎩(2)设有x个同学,y个笔记本,则可列方程组5887x y x y+=⎧⎨-=⎩【点睛】此题考查了二元一次方程组的应用,解题的关键是根据题意,找到等量关系,列出方程组.4、(1)x=85;(2)21xy=⎧⎨=-⎩【分析】(1)方程去分母,去括号,移项,合并同类项,系数化为1即可;(2)方程组利用加减消元法求解即可.【详解】解:(1)2121 24x x--+=,去分母,得2(2x﹣1)+(x﹣2)=4,去括号,得4x -2+x ﹣2=4,移项,得4x +x =4+2+2,合并同类项,得5x =8,系数化为1,得x =85;(2)31424210x y x y ⎧+=⎪⎨⎪-=⎩①②, ①×2+②,得11112x =, 解得x =2, 把x =2代入②,得8﹣2y =10,解得x =﹣1,故方程组的解为21x y =⎧⎨=-⎩. 【点睛】此题主要考查一元一次方程与二元一次方程组的求解,解题的关键是熟知其解法的运用.5、4a =-,66x y =⎧⎨=-⎩ 【分析】根据x 、y 互为相反数得出y =-x ,代入方程组中的两个方程求解即可.【详解】解:因为x ,y 的值互为相反数,所以y x =-.将y x =-代入312x y --=中,得312x x -+=,解得6x =,所以6y =-,所以原方程组的解是66x y =⎧⎨=-⎩, 将66x y =⎧⎨=-⎩,代入353x y a +=中,得:4a =-. 【点睛】本题考查相反数、解二元一次方程组,理解相反数的意义以及二元一次方程组的解,正确求出方程组的解是解答的关键.。

七年级数学下册期末复习(四) 二元一次方程组(含答案)

七年级数学下册期末复习(四)  二元一次方程组(含答案)

期末复习(四) 二元一次方程组考点一 二元一次方程(组)的解的概念【例1】已知2,1x y ==⎧⎨⎩是二元一次方程组8,1mx ny nx my +=-=⎧⎨⎩的解,则2m-n 的算术平方根为( ) A.4 B.2D.±2【解析】把2,1x y ==⎧⎨⎩代入方程组8,1mx ny nx my +=-=⎧⎨⎩得28,2 1.m n n m +=-=⎧⎨⎩解得3,2.m n ==⎧⎨⎩ 所以2m-n=4,4的算术平方根为2.故选B.【方法归纳】方程(组)的解一定满足原方程(组),所以将已知解代入含有字母的原方程(组),得到的等式一定成立,从而转化为一个关于所求字母的新方程(组),解这个方程(组)即可求得待求字母的值.1.若方程组,ax y b x by a+=-=⎧⎨⎩的解是1,1.x y ==⎧⎨⎩求(a+b)2-(a-b)(a+b)的值.考点二 二元一次方程组的解法【例2】解方程组:128.x y x y =++=⎧⎨⎩,①② 【分析】可以直接把①代入②,消去未知数x ,转化成一元一次方程求解.也可以由①变形为x-y=1,再用加减消元法求解.【解答】方法一:将①代入到②中,得2(y+1)+y=8.解得y=2.所以x=3.因此原方程组的解为3,2.x y ==⎧⎨⎩方法二:1,28.x y x y =++=⎧⎨⎩①②对①进行移项,得x-y=1.③②+③得3x=9.解得x=3.将x=3代入①中,得y=2.所以原方程组的解为3,2.x y ==⎧⎨⎩【方法归纳】二元一次方程组有两种解法,我们可以根据具体的情况来选择简便的解法.如果方程中有未知数的系数是1时,一般采用代入消元法;如果两个方程的相同未知数的系数相同或互为相反数时,一般采用加减消元法;如果方程组中的系数没有特殊规律,通常用加减消元法.2.方程组 25,7213x y x y +=--=⎧⎨⎩的解是__________. 3.解方程组:3419,4.x y x y +=-=⎧⎨⎩①②考点三 由解的关系求方程组中字母的取值范围【例3】若关于x 、y 的二元一次方程组31,33x y a x y +=++=⎧⎨⎩①②的解满足x+y<2,则a 的取值范围为( )A.a<4B.a>4C.a<-4D.a>-4【分析】本题运用整体思想,把二元一次方程组中两个方程相加,得到x 、y 的关系,再根据x+y<2,求得本题答案;也可以按常规方法求出二元一次方程组的解,再由x+y<2求出a 的取值范围,但计算量大.【解答】由①+②,得4x+4y=4+a,x+y=1+4a ,由x+y<2,得1+4a <2,解得a<4.故选A. 【方法归纳】通过观察两个方程,运用整体思想解题,这是中考中常用的解题方法.4.已知x 、y 满足方程组25,24,x y x y +=+=⎧⎨⎩则x-y 的值为__________.考点四 二元一次方程组的应用【例4】某中学拟组织九年级师生去黄山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话:李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”小芳:“我们学校八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到韶山参观,一天的租金共计5 000元.”小明:“我们九年级师生租用5辆60座和1辆45座的客车正好坐满.”根据以上对话,解答下列问题:(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元?(2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元?【分析】(1)根据题目给出的条件得出的等量关系是60座客车每辆每天的租金-45座客车每辆每天的租金=200元,4辆60座一天的租金+2辆45座的一天的租金=5 000元;由此可列出方程组求解;(2)可根据“我们九年级师生租用5辆60座和1辆45座的客车正好坐满”以及(1)的结果来求出答案.【解答】(1)设平安公司60座和45座客车每辆每天的租金分别为x 元,y 元.由题意,得200,425000.x y x y -=+=⎧⎨⎩解得900,700.x y ==⎧⎨⎩答:平安客运公司60座和45座的客车每辆每天的租金分别为900元和700元.(2)5×900+1×700=5 200(元).答:九年级师生租车一天共需资金5 200元.【方法归纳】列方程解决实际问题的解题步骤是:1.审题:弄清已知量和未知量;2.列未知数,并根据相等关系列出符合题意的方程;3.解这个方程;4.验根并作答:检验方程的根是否符合题意,并写出完整的答.5.如图是一个正方体的展开图,标注了字母“a ”的面是正方体的正面.如果正方体相对两个面上的代数式的值相等,求x,y 的值.6.在某次亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1 800条或者脖子的丝巾1 200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?复习测试一、选择题(每小题3分,共30分)1.下列方程组中,是二元一次方程组的是( )A.212x y y z +=-+=⎧⎨⎩B.53323x y y x -==+⎧⎨⎩C.512x y xy -==⎧⎨⎩D.2371x y x y -=+=⎧⎨⎩2.方程2x+y=9的正整数解有( )A.1组B.2组C.3组D.4组3.方程组32,3211x y x y -=+=⎧⎨⎩①②的最优解法是( )A.由①得y=3x-2,再代入②B.由②得3x=11-2y ,再代入①C.由②-①,消去xD.由①×2+②,消去y4.已知21x y ==⎧⎨⎩,是方程组4,0ax by ax by +=--=⎧⎨⎩的解,那么a ,b 的值分别为( )A.1,2B.1,-2C.-1,2D.-1,-25.A 、B 两地相距6 km ,甲、乙两人从A 、B 两地同时出发,若同向而行,甲3 h 可追上乙;若相向而行,1 h 相遇,求甲、乙两人的速度各是多少?若设甲的速度为x km/h ,乙的速度为y km/h ,则得方程组为( )A.6336x y x y +=+=⎧⎨⎩B.636x y x y +=-=⎧⎨⎩C.6336x y x y -=+=⎧⎨⎩D.6336x y x y +=-=⎧⎨⎩6.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( )A.3场B.4场C.5场D.6场7.已知a 、b 满足方程组22,26,a b a b -=+=⎧⎨⎩则3a+b 的值为( ) A.8 B.4 C.-4 D.-88.方程组24,31,7x y x z x y z +=+=++=⎧⎪⎨⎪⎩的解是( )A.221x y z ===⎧⎪⎨⎪⎩B.211x y z ===⎧⎪⎨⎪⎩C.281x y z ⎧=-==⎪⎨⎪⎩D.222 xyz===⎧⎪⎨⎪⎩9.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( )A.50人,40人B.30人,60人C.40人,50人D.60人,30人10.甲、乙二人收入之比为4∶3,支出之比为8∶5,一年间两人各存5 000元(设两人剩余的钱都存入银行),则甲、乙两人年收入分别为( )A.15 000元,12 000元B.12 000元,15 000元C.15 000元,11 250元D.11 250元,15 000元二、填空题(每小题4分,共20分)11.已知a、b12.已知2,1xy==⎧⎨⎩是二元一次方程组7,1mx nynx my+=-=⎧⎨⎩的解,则m+3n的立方根为__________.13.孔明同学在解方程组,2y kx by x=+=-⎧⎨⎩的过程中,错把b看成了6,他其余的解题过程没有出错,解得此方程组的解为1,2,xy=-=⎧⎨⎩又已知3k+b=1,则b的正确值应该是__________.14.已知|x-8y|+2(4y-1)2+|8z-3x|=0,则x=__________,y=__________,z=__________.15.一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为__________.三、解答题(共50分)16.(10分)解方程组:(1)251x yx y+=-⎧=⎨⎩,①;②(2)1151.x y zy z xz x y+-=+-=+-⎪⎨=⎧⎪⎩,①,②③17.(8分)(2013·吉林)吉林人参是保健佳品.某特产商店销售甲、乙两种保鲜人参,甲种人参每棵100元,乙种人参每棵70元.王叔叔用1 200元在此特产商店购买这两种人参共15棵,求王叔叔购买每种人参的棵数.18.(9分)已知方程组53,54x yax y+=+=⎧⎨⎩与方程组25,51x yx by-=+=⎧⎨⎩有相同的解,求a,b的值.19.(11分)食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?20.(12分)某商场计划拨款9万元从厂家购进50台电冰箱,已知该厂家生产三种不同型号的电冰箱,出厂价分别为:甲种每台1 500元,乙种每台2 100元,丙种每台2 500元.(1)某商场同时购进其中两种不同型号电冰箱共50台,用去9万元,请你研究一下商场的进货方案;(2)该商场销售一台甲种电冰箱可获利150元,销售一台乙种电冰箱可获利200元,销售一台丙种电冰箱可获利250元,在同时购进两种不同型号的方案中,为使销售时获利最多,你选择哪种进货方案?参考答案变式练习1.把1,1x y ==⎧⎨⎩代入方程组,ax y b x by a +=-=⎧⎨⎩,得1,1.a b b a +=-=⎧⎨⎩整理,得1,1.a b a b -=-+=⎧⎨⎩ ∴(a+b)2-(a-b)(a+b)=12-(-1)×1=2.2.13x y ==-⎧⎨⎩, 3.由②,得x=4+y.③把③代入①,得3(4+y)+4y=19.解得y=1.把y=1代入③,得x=4+1=5.∴原方程组的解为51.x y ==⎧⎨⎩, 4.15.根据题意,得25,5 1.x y x y -=-=+⎧⎨⎩解得3,1.x y ==⎧⎨⎩ 6.设应分配x 名工人生产脖子上的丝巾,y 名工人生产手上的丝巾,由题意得 70,120021800.x y x y +=⨯=⎧⎨⎩解得30,40.x y ==⎧⎨⎩答:应分配30名工人生产脖子上的丝巾,40名工人生产手上的丝巾. 复习测试1.B2.D3.C4.D5.D6.C7.A8.C9.C 10.C11.6 12.2 13.-11 14.2 14 3415.35 16.(1)①+②,得3x=6.解得x=2.把x=2代入②,得y=1.所以原方程组的解为21.x y ==⎧⎨⎩, (2)①+②+③,得x+y+z=17.④④-①,得2z=6,即z=3.④-②,得2x=12,即x=6.④-③,得2y=16,即y=8.所以原方程组的解是683.x y z ⎧⎪=⎩==⎪⎨,,17.设王叔叔购买甲种人参x 棵,乙种人参y 棵.根据题意,得151********.x y x y +=+=⎧⎨⎩,解得510.x y =⎩=⎧⎨, 答:王叔叔购买甲种人参5棵,乙种人参10棵.18.解方程组53,25x y x y +=-=⎧⎨⎩,得1,2.x y ==-⎧⎨⎩ 将x=1,y=-2代入ax+5y=4,得a=14.将x=1,y=-2代入5x+by=1,得b=2.19.设A 饮料生产了x 瓶,B 饮料生产了y 瓶,依题意得100,23270.x y x y +=+=⎧⎨⎩解得30,70.x y ==⎧⎨⎩ 答:A 饮料生产了30瓶,B 饮料生产了70瓶.20.(1)①设购进甲种电冰箱x 台,购进乙种电冰箱y 台,根据题意,得50,1500210090000.x y x y +=+=⎧⎨⎩解得25,25.x y ==⎧⎨⎩ 故第一种进货方案是购甲、乙两种型号的电冰箱各25台.②设购进甲种电冰箱x 台,购进丙种电冰箱z 台,根据题意,得50,1500250090000.x z x z +=+=⎧⎨⎩解得35,15.x z ==⎧⎨⎩ 故第二种进货方案是购进甲种电冰箱35台,丙种电冰箱15台. ③设购进乙种电冰箱y 台,购进丙种电冰箱z 台,根据题意,得 50,2100250090000.y z y z +=+=⎧⎨⎩解得87.5,37.5.y z ==-⎧⎨⎩不合题意,舍去. 故此种方案不可行.(2)上述的第一种方案可获利:150×25+200×25=8 750(元),第二种方案可获利:150×35+250×15=9 000(元),因为8 750<9 000,故应选择第二种进货方案,即购进甲种电冰箱35台,乙种电冰箱15台.。

最新京改版七年级数学下册第五章二元一次方程组专题练习试题(含详细解析)

最新京改版七年级数学下册第五章二元一次方程组专题练习试题(含详细解析)

京改版七年级数学下册第五章二元一次方程组专题练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,9个大小、形状完全相同的小长方形,组成了一个周长为46的大长方形ABCD ,若设小长方形的长为x ,宽为y ,则可列方程为( )A .()27,2746x y y x y =⎧⎨++=⎩B .27,746x y y x y =⎧⎨++=⎩C .()27,2746x y x x y =⎧⎨++=⎩D .72,746x y x x y =⎧⎨++=⎩2、某宾馆准备正好用200元购买价格分别为50元和25元的两种换气扇(两种都要买),则可供宾馆选择的方案有( )A .3种B .4种C .5种D .6种 3、关于x ,y 的方程y kx b =+,k 比b 大1,且当12x =时,12y =-,则k ,b 的值分别是( ).A .13,23- B .2,1 C .-2,1 D .-1,04、下列方程中,①6x y +=;②()16x y +=;③31x y z +=+;④7mn m +=,是二元一次方程的有( )A .1个B .2个C .3个D .4个5、为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么甲种钢笔可能购买( ).A .11支B .9支C .7支D .5支6、下列各组数值是二元次方程2x ﹣y =5的解是( )A .21x y =-⎧⎨=⎩B .05x y =⎧⎨=⎩C .13x y =⎧⎨=⎩D .31x y =⎧⎨=⎩7、关于x ,y 的方程组03x my x y +=⎧⎨+=⎩的解是1•x y =⎧⎨=⎩,其中y 的值被盖住了,不过仍能求出m ,则m 的值是( )A .12- B .12 C .14- D .148、下列方程是二元一次方程的是( )A .x ﹣xy =1B .x 2﹣y ﹣2x =1C .3x ﹣y =1D .1x﹣2y =1 9、小明在解关于x 、y 的二元一次方程组331x y x y +⊗=⎧⎨-⊗=⎩时得到了正确结果1x y =⊕⎧⎨=⎩.后来发现⊗、⊕处被墨水污损了,请你帮他计算出⊗、⊕处的值分别是( ).A .1、1B .2、1C .1、2D .2、210、解方程组347910250m n m n -=⎧⎨-+=⎩①②的最好方法是( ) A .由①得743n m +=再代入② B .由②得25109n m +=再代入① C .由①得347m n =+再代入② D .由②得91025m n =-再代入①第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若42m a b -与225n m n a b ++可以合并成一项,则m +n 的值_____.2、已知关于x ,y 的二元一次方程3mx -y =-1有一组解是12x y =⎧⎨=-⎩,则m 的值是 ___. 3、如图,为某三岔路口交通环岛的简化模型,在某高峰时刻,单位时间进出路口A ,B ,C 的机动车辆数如图所示.图中123x x x ,,分别表示该时段单位时间通过路段AB ,BC ,CA 的机动车辆数.(假设单位时间内在上述路段中同一路段上驶入与驶出的车辆数相等),试比较123x x x ,,的大小关系_________.4、已知实数x ,y 满足x +y =3,且x >﹣3,y ≥1,则x ﹣y 的取值范围____.5、若x 2a ﹣3+yb +2=3是二元一次方程,则a ﹣b =__.三、解答题(5小题,每小题10分,共计50分)1、解下列方程组:(1)3 236x yx y+=⎧⎨-=⎩;(2)569 745x yx y-=⎧⎨-=-⎩.2、已知关于x,y的方程组353312x y ax y+=⎧⎨--=⎩,若该方程组的解x,y的值互为相反数,求a的值和方程组的解.3、定义数对(x,y)经过一种运算φ可以得到数对(x',y'),并把该运算记作φ(x,y)=(x',y'),其中x ax byy ax by=+⎧⎨=-''⎩(a,b为常数).例如,当a=1,且b=1时,φ(﹣2,3)=(1,﹣5).(1)当a=1且b=1时,φ(0,1)=;(2)若φ(1,2)=(0,4),则a=,b=;(3)如果组成数对(x,y)的两个数x,y满足二元一次方程2x﹣y=0,并且对任意数对(x,y)经过运算φ又得到数对(x,y),求a和b的值.4、一辆汽车从A地驶向B地,前13路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A到B地一共行驶了2.2h.那么汽车在高速公路上行驶了多少千米?5、解下列方程组:(1)54 76 x yx y-=⎧⎨-=⎩(2)111 522x yx y+-⎧-=-⎪⎨⎪+=⎩---------参考答案-----------一、单选题1、A【分析】根据图形可知,大长方形的长=7个小长方形的宽=2小长方形的长,大长方形的宽=小长方形的长+小长方形的宽,由此即可列出方程.【详解】解:设小长方形的长为x ,宽为y ,由题意得:()272746x y y x y =⎧⎨++=⎩ 或()272246x y x x y =⎧⎨++=⎩, 故选A .【点睛】本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够正确理解题意和掌握长方形周长公式.2、A【分析】设购买50元和25元的两种换气扇的数量分别为x ,y ,然后根据用200元购买价格分别为50元和25元的两种换气扇,列出方程求解即可.【详解】解:设购买50元和25元的两种换气扇的数量分别为x ,y由题意得:5025200x y +=,即28x y +=,∵x 、y 都是正整数,∴当x =1时,y =6,当x =2时,y =4,当x =3时,y =2,∴一共有3种方案,故选A.【点睛】本题主要考查了二元一次方程的应用,解题的关键在于能够准确理解题意,列出方程求解.3、A【分析】将12x=时,12y=-代入y kx b=+,得1122k b-=+①,再由k比b大1得1k b-=②,将两个方程联立解之即可【详解】将12x=时,12y=-代入y kx b=+,得1122k b-=+①,再由k比b大1得1k b-=②,①②联立11221k bk b⎧-=+⎪⎨⎪-=⎩,解得13k=,23b=-.故选:A.【点睛】此题考查解二元一次方程组的实际应用,正确掌握k、b之间的关系列得方程组是解题的关键.4、A【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程,即可判断出答案.【详解】解:①根据二元一次方程定义可知6x y +=是二元一次方程,此项正确;②()16x y +=化简后为6xy x +=,不符合定义,此项错误;③31x y z +=+含有三个未知数不符合定义,此项错误;④7mn m +=不符合定义,此项错误;所以只有①是二元一次方程,故选:A .【点睛】本题考二元一次方程,解题的关键是熟练运用二元一次方程的定义,本题属于基础题型.5、D【分析】根据题意列出三元一次方程组消元,再求解即可.【详解】解:设购买甲、乙、丙三种钢笔分别为x 、y 、z 支,由题意,得4566034548x y z x y z ++=⎧⎨++=⎩①② ①×4-②×5得0x z -=,所以x z =,将z x =代入①,得45660x y x ++=.即212y x +=.∵0y >,∴6x <,∴x 为小于6的正整数,四个选项中只有D 符合题意;【点睛】本题考查了三元一次方程组,一元一次不等式,熟练掌握列方程组,解不等式的基本步骤是解题的关键.6、D【分析】将选项中的解分别代入方程2x﹣y=5,使方程成立的即为所求.【详解】解:A. 把21xy=-⎧⎨=⎩代入方程2x﹣y=5,-4-1=-5≠5,不满足题意;B. 把5xy=⎧⎨=⎩代入方程2x﹣y=5,0-5=-5≠5,不满足题意;C. 把13xy=⎧⎨=⎩代入方程2x﹣y=5,2-3=-1≠5,不满足题意;D. 把31xy=⎧⎨=⎩代入方程2x﹣y=5,6-1=5,满足题意;故选:D.【点睛】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.能正确掌握方程的解得概念是解答此题的关键.7、A【分析】把x=1代入方程组,求出y,再将y的值代入1+my=0中,得到m的值.解:把x=1代入方程组,可得1013myy+=⎧⎨+=⎩,解得y=2,将y=2代入1+my=0中,得m=12 -,故选:A.【点睛】此题考查了利用二元一次方程组的解求方程中的字母值,正确理解方程组的解的定义是解题的关键.8、C【分析】根据二元一次方程的定义逐个判断即可.含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.【详解】解:A、x﹣xy=1含有两个未知数,但未知数的最高次数是2次,∴x﹣xy=1不是二元一次方程;B、x2﹣y﹣2x=1含有两个未知数.未知数的最高次数是2次,∴x2﹣y﹣2x=1不是二元一次方程;C、3x﹣y=1含有两个未知数,未知数的最大次数是1次,∴3x﹣y=1是二元一次方程;D、1x﹣2y=1含有两个未知数,但分母上含有未知数,不是整式方程,∴1x﹣2y=1不是二元一次方程.故选:C.【点睛】此题主要考查了二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.9、B【分析】将方程组的解代入方程求解即可.【详解】将1x y =⊕⎧⎨=⎩代入331x y x y +⊗=⎧⎨-⊗=⎩,得331⊕+⊗=⎧⎨⊕-⊗=⎩, 解之得12⊕=⎧⎨⊗=⎩. 故选:B .【点睛】此题考查解二元一次方程组,掌握解二元一次方程组的方法:代入法和加减法,并根据方程组的特点选择恰当的解法是解题的关键.10、C【分析】观察两方程中m 系数关系,即可得到最好的解法.【详解】解:解方程组347910250m n m n -=⎧⎨-+=⎩①②的最好方法是由①得347m n =+,再代入②. 故选:C .【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.二、填空题1、2【解析】【分析】先根据同类项的定义(如果两个单项式,它们所含字母相同,并且相同字母的指数也分别相同,那么这两个单项式是同类项)可得一个关于,m n二元一次方程组,解方程组求出,m n的值,再代入计算即可得.【详解】解:由题意得:42m a b-与225n m na b++是同类项,则224m nm n=+⎧⎨+=⎩,解得2mn=⎧⎨=⎩,所以202m n+=+=,故答案为:2.【点睛】本题考查了同类项、二元一次方程组的应用,熟记同类项的定义是解题关键.2、-1【解析】【分析】把x与y的值代入方程计算即可求出m的值.【详解】解:把12x y =⎧⎨=-⎩代入方程3mx -y =-1中得:3m +2=-1, 解得:m =-1.故答案为:-1.【点睛】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3、x 2>x 3>x 1【解析】【分析】先对图表数据进行分析处理得:132132555020303530x x x x x x =-+⎧⎪=-+⎨⎪=-+⎩,再结合数据进行简单的合情推理得:132355x x x x =-⎧⎨=+⎩,所以得到x 2>x 3>x 1.【详解】解:由图可知:132132555020303530x x x x x x =-+⎧⎪=-+⎨⎪=-+⎩, 即132355x x x x =-⎧⎨=+⎩, 所以x 2>x 3>x 1,故答案为:x 2>x 3>x 1.【点睛】本题考查了对图表数据的分析处理能力及进行简单的合情推理,属中档题.4、91x y --≤<【解析】【分析】先设x ﹣y =m ,利用x +y =3,构造方程组,求出用m 表示x 、y 的代数式,再根据x >﹣3,y ≥1,列不等式求出m 的范围即可.【详解】解:设x ﹣y =m ,∴3x y m x y -=⎧⎨+=⎩①②, ②+①得32m x +=, ②-①得32m y -=, ∵y ≥1, ∴312m -≥, 解得1m ,∵x >﹣3, ∴332m +>-, 解得9m >-,∴91m ≤-<,x ﹣y 的取值范围91x y --≤<.故答案为91x y --≤<.【点睛】本题考查方程与不等式综合问题,解题关键是设出x ﹣y =m ,与x +y =3,构造方程组从中求出3 2mx+=,32my-=,再出列不等式.5、3【解析】【分析】先根据二元一次方程的定义求出a、b的值,然后代入a﹣b计算即可.【详解】解:∵x2a﹣3+yb+2=3是二元一次方程,∴2a﹣3=1,b+2=1,∴a=2,b=﹣1,则a﹣b=2﹣(﹣1)=2+1=3.故答案为:3.【点睛】本题考查了二元一次方程的定义,熟练掌握二元一次方程组的定义是解答本题的关键.方程的两边都是整式,含有两个未知数,并且未知数的项的次数都是1次的方程叫做二元一次方程.三、解答题1、(1)3xy=⎧⎨=⎩;(2)34xy=-⎧⎨=-⎩.【分析】利用加减法解二元一次方程组即可求解.【详解】解:(1)3 236 x yx y+=⎧⎨-=⎩①②①×3得 339x y +=③,②+③得 5x =15,解得x =3,把x =3代入①得 3+y =3,解得y =0,∴二元一次方程组的解是30x y =⎧⎨=⎩; (2)569745x y x y -=⎧⎨-=-⎩①②①×2得 10x -12y =18③,②×3得 21x -12y =-15④,④-③得 11x =-33,解得 x =-3,把x =-3代入①得 -15-6y =9,解得y =-4,∴二元一次方程组的解是34x y =-⎧⎨=-⎩. 【点睛】本题考查了二元一次方程组的解法,熟练掌握加减法解二元一次方程组的步骤是解题关键,此题也可以用代入法解二元一次方程组.2、4a =-,66x y =⎧⎨=-⎩ 【分析】根据x 、y 互为相反数得出y =-x ,代入方程组中的两个方程求解即可.【详解】解:因为x ,y 的值互为相反数,所以y x =-.将y x =-代入312x y --=中,得312x x -+=,解得6x =,所以6y =-,所以原方程组的解是66x y =⎧⎨=-⎩, 将66x y =⎧⎨=-⎩,代入353x y a +=中,得:4a =-. 【点睛】本题考查相反数、解二元一次方程组,理解相反数的意义以及二元一次方程组的解,正确求出方程组的解是解答的关键.3、(1)(1,﹣1);(2)2,﹣1;(3)3214a b ⎧=⎪⎪⎨⎪=-⎪⎩【分析】(1)当a =1且b =1时,分别求出x ′和y ′即可得出答案;(2)根据条件列出方程组即可求出a ,b 的值;(3)根据对任意数对(x ,y )经过运算φ又得到数对(x ,y ),得到ax by x ax by y+=⎧⎨-=⎩,根据2x -y =0,得到y =2x ,代入方程组即可得到答案.【详解】解:(1)当a =1且b =1时,x ′=1×0+1×1=1,y ′=1×0﹣1×1=﹣1,故答案为:(1,﹣1);(2)根据题意得:2024a b a b +=⎧⎨-=⎩, 解得:21a b =⎧⎨=-⎩, 故答案为:2,﹣1;(3)∵对任意数对(x ,y )经过运算φ又得到数对(x ,y ),∴ax by x ax by y +=⎧⎨-=⎩, ∵2x ﹣y =0,∴y =2x ,代入方程组解得:222ax bx x ax bx x+=⎧⎨-=⎩, ∴222ax bx x ax bx x+=⎧⎨-=⎩, 解得3214a b ⎧=⎪⎪⎨⎪=-⎪⎩. 【点睛】本题考查了解二元一次方程组,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.4、120km【分析】根据题意,设出未知数,由等量关系:高速公路=2×普通公路,普通公路上的时间+高速公路的时间=总时间,列方程组求解即可.【详解】解:设普通公路长为x (km ),高速公路长为y (km ). 根据题意,得2 2.260100y x x y =⎧⎪⎨+=⎪⎩, 将2y x =代入 2.260100x y +=得: 2 2.260100x x +=,解得:60x =, ∴2120y x ==,∴方程组的解为60120x y =⎧⎨=⎩, 答:汽车在高速公路上行驶了120km .【点睛】此题考查了二元一次方程组的应用,关键是设出未知数,表示出每段行驶所花费的时间,得出方程组,难度一般.5、(1)11x y =⎧⎨=⎩;(2)13x y =-⎧⎨=⎩ 【分析】(1)用加减消元法解二元一次方程组即可;(2)先化简方程组,再用加减消元解方程组即可.【详解】解:(1)5476x y x y -=⎧⎨-=⎩①②, ②-①得:22x =,解得1x =,把1x =代入①得:54y -=,解得:1y =,∴方程组的解为11x y =⎧⎨=⎩; (2)111522x y x y +-⎧-=-⎪⎨⎪+=⎩①②, 由②可得y =2-x ,把y =2-x 代入①,可得x =-1,把x =-1代入y =2-x ,可得y =3,∴方程组的解为13x y =-⎧⎨=⎩. 【点睛】本题考查解二元一次方程组,熟练掌握代入法与消元法解方程组,并能准确计算是解题的关键.。

专题含字母系数的二元一次方程组的解法

专题含字母系数的二元一次方程组的解法

专题含字母系数的二元一次方程组的解法初中数学竞赛辅导专题讲座含字母系数的二元一次方程组的解法例题1 已知关于,x y 的方程组()21,2213,ax y a x a y +=+??+-=?分别求a 出为何值时,⑴有唯一一组解;⑵无解;⑶有无穷多解。

同步演练1.关于方程组1,1ax y x ay +=??+=?的解的结论错误的是()(A)当21a ≠时,11x y a ==+ (B)当1a =时,有无穷多解(C)当1a =-时,无解(D)无论a 取何值时,都有解2.k 取何值时,方程组21,.x y x k y k +=??+=? ⑴有唯一解,并写出这个解;⑵有无数多个解;⑶无解。

3.正整数m 为何值时,方程组1311700,1x y y mx +=??=-?有整数解。

例题2 要使关于x 的方程()241b x -=有唯一解,并且关于,x y 的方程组1,32ax y x b y -=-??=-?有唯一解的条件是()(A)3,22a b ≠≠ (B)2,23a b ≠-≠ (C)2,23a b ≠≠ (D)3,22a b ≠-≠ 同步演练1.在关于,x y 的方程组353,4287mx y m x x y x+-=-??+=-?中,当m 时,此方程组有唯一解。

2.,m n 取哪些值时,方程组(),214y nx m y n x =+??=-+?有一个解。

3.若方程组()0,2140kx y m k x y -+=??--+=?至少有一组解,求m 和k 取值范围。

例题3 已知关于,x y 的二元一次方程()()22420m x m y m -+++-=,求证:无论m 取何值方程都有一公共解,并求出这个公共解。

同步演练1.⑴当1m =时,方程组()11,551m x y x y ?-+=?+=?有个解;⑵当1m =时,方程组1,555mx y x y +=??+=?有个解。

2.若方程组22,3ax y x y b+=??-=-?有无穷多解,则33ax b +=的解是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3月3日:参数专题练习姓名:1.若方程组中的x,y互为相反数,求n的值。

2.方程组的解适合方程x+y=2,求k值
3.已知方程组的解适合方程x+y=6,求n的值4. 若关于x,y的方程组的解中x的值比y的值的相反数大2,求k。

5.已知关于x,y的二元一次方程组的解满足x+y=3m,求m.
6. 二元一次方程组的解是,求b﹣a的值.
7. 关于x、y的二元一次方程组的解满足x+2y=11﹣3m,求m的值
8 .若abk ≠0,且a、b、k满足方程组,求的值9.在解方程组时,甲看错了方程组中的a,得到方程组的解为;乙看错了方程组中的b,得到方程组的解为,求方程组的正确解.
10.若关于x,y的二元一次方程组与方程组有相同的解.(1)求这个相同的解;
(2)求m﹣n的值.。

相关文档
最新文档