含字母系数的方程的解法.doc
帮你解含字母系数的方程组

帮你解含字母系数的方程组在解与二元一次方程组有关问题时,经常会遇到含字母系数的方程组,解此类题的一般思路是根据条件采用代入求值的方法求得最后结果.常见的有以下几种类型: 一、代入求值型一、代入求值型例1.已知关于x 、y 的二元一次方程组{35ax by ax by +=-=,的解是{21x y ==,.求a b +的值。
值。
解析:由二元一次方程组解的定义,将{21x y ==,代入方程组得代入方程组得{2325a b a b +=-=,,再解关于a 和b 的二元一次方程组,得{21a b ==-,。
所以a b +=1. 二、添加(赋予)条件型二、添加(赋予)条件型例 2.若关于x 、y 的二元一次方程组{2527x y k x y k +=-=,①,②的解满足方程1253x y -=,那么k 的值为的值为 。
解析:观察方程组发现可利用加减消元法把其中的一个字母消去,观察方程组发现可利用加减消元法把其中的一个字母消去, 由①+②得,412x k =,即3x k =③;由①-②得,22y k =-,即y k =-④,将③④分别代入方程1253x y -=,得132()53k k ´-´-=,解得53k =。
例3.如果方程组{35223x y k x y k +==+,①+②的解x ,y 的和为2,求k 的值及方程组的解。
组的解。
解析:由①-②得22x y +=③,③,将2x y +=与③联立方程组{2,22x y x y +=+=,解得{2,0x y ==,将x ,y 的值代入②得k =4. 解此类题首先要观察方程组的特征,解此类题首先要观察方程组的特征,采取加减或代入的方法进行消元,采取加减或代入的方法进行消元,采取加减或代入的方法进行消元,使之使之变形为二元一次方程组,从而求得最后结果。
三、同解型三、同解型例4.已知关于x 、y 的二元一次方程组{5,27ax by ax by +=+=与方程组{237324x y x y +=-=,的解相同,求a 和b 的值。
数学人教版七年级上册含字母系数的方程的解法

4 x 2 10 x 1 6
4 x 10 x 6 2 1
合并同类项,得 系数化为1,得
6x 5
5 x 6
知识巩固
1.判断下列说法的正误. (1)关于 x 的方程 3x-a=0,若a=0 ,则方程无解.
( × ) ( √ ) (√ )
(4)关于 x 的方程 ax=a 的解为x=1 .
2. 当 a ,b 满足什么条件时,关于x的方程 2a(x+1)-2=3(2x+b)-1 有解? 解:将原方程化简,得 (2a-6)x=3b-2a+1 ∵原方程有解 1.原方程有唯一解 2.原方程有无数解 ∴2a-6≠0,3b-2a+1为任意数 ∴a≠3,b为任意实数 ∴2a-6=0( ×)
2.填空.
x x a 例1.解关于的 x方程 a ( x 12) 3 2 6
解下列关于 x 的方程. (1) ax b bx
随堂演练
(2)x 3( x 1)
kx k
例2.已知关于x 的方程a(3x-2)+b(2x-3)=8x-3b+4有无数解, 求b的值. 解:将原方程化简,得 (3x+2b-8)x=2a+4 ∵原方程有无数解 ∴ 3a+2b-8=0 , 2a+4=0 ∴a=-2 , b=7
含字母系数的方程 的解法
武汉实验外国语学校 余聪焕
复习回顾
1.概念 方程: 含有未知数的等式叫做方程. 方程的解: 使方程中等号左右两边相等的未知数的值叫 做方程的解.
回顾解一元一次方程的过程
解:去分母,得
去括号,得 移项,得
2 x 1 10 x 1 1 3 6
22 x 1 10 x 1 6
含字母系数的一元一次方程初中数学教案

1.使学生正确认识含有字母系数的一元一次方程.2.使学生掌握含有字母系数的一元一次方程的解法.3.使学生会进行简单的公式变形.4.培养学生由特殊到一般、由一般到特殊的逻辑思维能力.5.通过公式变形例题,培养学生解决实际问题的能力,激发学生的求知欲望和学习兴趣.教学重点:(1)含有字母系数的一元一次方程的解法.(2)公式变形.教学难点:(1)对字母函数的理解,并能准确区分字母系数与数字系数的区别与联系.(2)在公式中会准确区分未知数与字母系数,并进行正确的公式变形.教学方法启发式教学和讨论式教学相结合教学手段多媒体教学过程(一)复习提问提出问题:1.什么是一元一次方程?在学生答的基础上强调:(1)“一元”——一个未知数;“一次”——未知数的次数是1.2.解一元一次方程的步骤是什么?答:(1)去分母、去括号.(2)移项——未知项移到等号一边常数项移到等号另一边.注意:移项要变号.(3)合并同类项——提未知数.(4)未知项系数化为1——方程两边同除以未知项系数,从而解得方程.(二)引入新课提出问题:一个数的a倍(a≠0)等于b,求这个数.引导学生列出方程:ax=b(a≠0).让学生讨论:(1)这个方程中的未知数是什么?已知数是什么?(a、b是已知数,x是未知数)(2)这个方程是不是一元一次方程?它与我们以前所见过的一元一次方程有什么区别与联系?(这个方程满足一元一次方程的定义,所以它是一元一次方程.)强调指出:ax=b(a≠0)这个一元一次方程与我们以前所见过的一元一次方程最大的区别在于已知数是a、b(字母).a是x的系数,b是常数项.(三)新课1.含有字母系数的一元一次方程的定义ax=b(a≠0)中对于未知数x来说a是x的系数,叫做字母系数,字母b是常数项,这个方程就是一个含有字母系数的一元一次方程,今天我们就主要研究这样的方程.2.含有字母系数的一元一次方程的解法教师提问:ax=b(a≠0)是一元一次方程,而a、b是已知数,就可以当成数看,就像解一般的一元一次方程一样,如下解出方程:ax=b(a≠0).由学生讨论这个解法的思路对不对,解的过程对不对?在学生讨论的基础上,教师归纳总结出含有字母函数的一元一次方程和过去学过的一元一次方程的解法的区别和联系.含有字母系数的一元一次方程的解法和学过的含有数字系数的一元一次方程的解法相同.(即仍需要采用去分母、去括号、移项、合并同类项、方程两边同除以未知数的系数等步骤.)特别注意:用含有字母的式子去乘或者除方程的两边,这个式子的值不能为零.3.讲解例题例1 解方程ax+b2=bx+a2(a≠b).解:移项,得 ax-bx=a2-b2,合并同类项,得(a-b)x=a2-b2.∵a≠b,∴a-b≠0.x=a+b.注意:1.在没有特别说明的情况下,一般x、y、z表示未知数,a、b、c表示已知数.2.在未知项系数化为1这一步是最易出错的一步,一定要说明未知项系数(式)不为零之后才可以方程两边同除以未知项系数(式).3.方程的解是分式形式时,一般要化成最简分式或整式.。
含字母系数的一元一次方程

含字母系数的一元一次方程引言一元一次方程是代数中最基本的方程类型之一。
在解一元一次方程时,我们通常会遇到含有字母系数的情况。
这种方程的解法与常规的一元一次方程类似,但需要特别注意字母系数的处理。
本文将介绍如何解含有字母系数的一元一次方程的步骤和技巧。
步骤解含有字母系数的一元一次方程的一般步骤如下:1.整理方程,将字母系数与常数项分开;2.使用移项原则,将含有字母的项移至方程的一边,将常数项移至另一边;3.化简方程,通过合并同类项简化方程;4.根据字母系数的类型,分别处理解方程的情况。
解字母系数为正数的一元一次方程当方程中的字母系数为正数时,解方程的步骤如下:1.整理方程,保证字母系数与常数项分开;2.使用移项原则,将含有字母的项移至方程的一边,将常数项移至另一边;3.化简方程,通过合并同类项简化方程;4.将常数项除以字母系数,得到方程的根。
例如,考虑方程 2x + 5 = 15,我们可以按照上述步骤解方程:1.整理方程,将字母系数与常数项分开:2x = 15 - 5;2.使用移项原则,将含有字母的项移至方程的一边,将常数项移至另一边:2x = 10;3.化简方程,通过合并同类项简化方程:x = 10/2;4.计算常数项除以字母系数,得到方程的解:x = 5。
因此,方程 2x + 5 = 15 的解为 x = 5。
解字母系数为负数的一元一次方程当方程中的字母系数为负数时,解方程的步骤与解字母系数为正数的方程类似,只需要注意符号的处理。
例如,考虑方程 -3x - 8 = 4,我们可以按照以下步骤解方程:1.整理方程,将字母系数与常数项分开:-3x = 4 + 8;2.使用移项原则,将含有字母的项移至方程的一边,将常数项移至另一边:-3x = 12;3.化简方程,通过合并同类项简化方程:x = 12/-3;4.计算常数项除以字母系数,得到方程的解:x = -4。
因此,方程 -3x - 8 = 4 的解为 x = -4。
关于含有字母系数方程的解法

关于含有字母系数方程的解法知识总结归纳:含有字母系数的方程和只含有数字系数的一元一次方程的解法是一样的,但用含有字母的式子去乘以或除以方程的两边,这个式子的值不能为零。
公式变形本质上是解含有字母系数的方程对于含字母系数的方程,通过化简,一般归结为解方程ax b =型,讨论如下:〔1〕当a ≠0时,此时方程ax b =为关于x 的一元一次方程,解为:x b a= 〔2〕当a =0时,分以下两种情况:<1>假设b =0,原方程变为00x =,为恒等时,此时x 可取任意数,故原方程有无数个解;<2>假设b ≠0,原方程变为00x b b =≠(),这是个矛盾等式,故原方程无解。
含字母系数的分式方程主要有两类问题:〔一〕求方程的解,其中包括:字母给出条件和未给出条件:〔二〕方程解的情况,确定字母的条件。
下面我们一起来学习公式变形与字母系数方程1. 求含有字母系数的一元一次方程的解例1. 解关于x 的方程2362ax b bx ac a b -=+≠c () 分析:将x 以外字母看作数字,类似解一元一次方程,但注意除数不为零的条件。
解:去分母得:1226ax bc bx ac -=+移项,得1262ax bx bc ac -=+2. 求含字母系数的分式方程的解例2. 解关于x 的方程a ax b b bx a x-++=2 分析:字母未给出条件,首先挖掘隐含的条件,分情况讨论。
解:假设a 、b 全不为0,去分母整理,得对b a 22-是否为0分类讨论:〔1〕当b a 220-=,即a b =±时,有02⋅=-x ab ,方程无解。
〔2〕当b a 220-≠,即a b ≠±时,解之,得x ab a b =-2 假设a 、b 有一个为0,方程为12x x=,无解 假设a 、b 全为0,分母为0,方程无意义检验:当x ab a b =-2时,公分母()()ax b bx a -+≠0,所以当ab a b ≠≠±0,时,x ab a b =-2是原方程的解。
初中数学含字母系数的方程

含字母系数的方程【典型例题】例1.解下列关于x 的方程:①ax+b=bx+a;(a ≠b); ②)53(3)4(4)13(-≠-=+m x m x m .例2.已知关于x 的方程21ax+5=237-x 的解x 与字母a 都是正整数,求a 。
例3.已知方程x =ax+1有一个负根而没有正根,求a 的取值范围.例4.选择一组a,c 值使方程组⎩⎨⎧=+=+cy ax y x 275① 有无数多解, ②无解, ③有唯一的解例5.a 取什么值时,方程组⎩⎨⎧=+=+3135y x ay x 的解是正数?例6.m 取何整数值时,方程组⎩⎨⎧=+=+1442y x my x 的解x 和y 都是整数?例7.已知关于x ,y 的二元一次方程(a-1)x+(a+2)y+5-2a=0,当a 每取一个值时就有一个方程,而这些方程有一个公共解,你能求出这个公共解,并证明对任何a 值它都能使方程成立吗?一、填空1.若2(3-a )x-4=5是关于x 的一元一次方程,则a ≠ . 2.关于x 的方程ax=3的解是自然数,则整数a 的值为: .3.x=2是方程2x-3=m-x 21的解,则m=. 4.若-2x2-5m+1=0 是关于x 的一元一次方程,则m=.5.当m=时,方程65312215--=--x m x 的解为0. 6.已知a ≠0.则关于x 的方程3ab-(a+b)x=(a-b)x 的解为.7.若23234+x a 与43152+x a 是同类项,则x=.8.当a=时,方程14523-+=-ax a x 的解是x=0. 9.若a ≥0,且方程a+3x=10的解是自然数,则a= .10.若(1-3x )2+mx -4=0,,则6+m 2=.11.已知方程2+-=-axb b a x 是关于x 的一元一次方程,则a,b 之间的关系是.二、1.要使方程组⎩⎨⎧=-=+12y x kky x 的解都是整数, k 应取哪些整数值?2.如果方程35425x m xm +=-与方程4103365+=-x x +1的解相同,求m 的值.一、选择1.方程ax=b 的解是( ). A .有一个解x=ab B .有无数个解 C .没有解D .当a ≠0时,x=ab 2.若关于x 的方程3(x-1)+a=b(x+1)是一元一次方程,则( ). A .a,b 为任意有理数 B .a ≠0 C .b ≠0D .b ≠33.若关于x 的方程10-4)2(35)3(--=+x k x x k 与方程8-2x=3x-2的解相同,则k 的值为( ) A.0 B.2C.3D.4二、解答题1.a 取什么值时方程组⎪⎩⎪⎨⎧+-=--+=+229691322a a y x a a y x 的解是正数?2.a 取哪些正整数值,方程组⎩⎨⎧=--=+a y x ay x 24352的解x 和y 都是正整数?。
关于含有字母系数方程的解法

关于含有字母系数方程的解法知识总结归纳:含有字母系数的方程和只含有数字系数的一元一次方程的解法是相同的,但用含有字母的式子去乘以或除以方程的两边,这个式子的值不能为零。
公式变形实质上是解含有字母系数的方程对于含字母系数的方程,通过化简,一般归结为解方程ax b =型,讨论如下: (1)当a ≠0时,此时方程ax b =为关于x 的一元一次方程,解为:x b a=(2)当a =0时,分以下两种情况:<1>若b =0,原方程变为00x =,为恒等时,此时x 可取任意数,故原方程有无数个解;<2>若b ≠0,原方程变为00x b b =≠(),这是个矛盾等式,故原方程无解。
含字母系数的分式方程主要有两类问题:(一)求方程的解,其中包括:字母给出条件和未给出条件:(二)已知方程解的情况,确定字母的条件。
下面我们一起来学习公式变形与字母系数方程 1. 求含有字母系数的一元一次方程的解 例1. 解关于x 的方程2362ax b bx ac a b -=+≠c ()分析:将x 以外字母看作数字,类似解一元一次方程,但注意除数不为零的条件。
解:去分母得:1226ax bc bx ac -=+ 移项,得1262ax bx bc ac -=+()1262212602126a b x bc aca ba b x bc ac a b-=+≠∴-≠∴=+-2. 求含字母系数的分式方程的解 例2. 解关于x 的方程aax bb bx ax-++=2分析:字母未给出条件,首先挖掘隐含的条件,分情况讨论。
解:若a 、b 全不为0,去分母整理,得 ()b a x ab 222-=-对b a 22-是否为0分类讨论:(1)当b a 220-=,即a b =±时,有02⋅=-x ab ,方程无解。
(2)当b a 220-≠,即a b ≠±时,解之,得x ab a b=-2若a 、b 有一个为0,方程为12xx=,无解若a 、b 全为0,分母为0,方程无意义 检验:当x ab a b=-2时,公分母()()ax b bx a -+≠0,所以当ab a b ≠≠±0,时,x ab a b=-2是原方程的解。
第8讲_绝对值方程

第八讲 含字母系数的方程、绝对值方程一、知识要点1. 关于x 的方程ax b =有:(1)当0a ≠时,方程有唯一解b x a =;(2)当0,0a b =≠时,方程无解; (3)当0,0a b ==时,方程有无数多个解,且解为任意数。
以上结论,反过也是正确的。
2.含有绝对值符号的方程,应去掉绝对值符号而转化为一个或几个一元一次方程。
含绝对值方程的解法:含绝对值方程指的是绝对值符号内含有未知数的方程,最简单的绝对值方程是x a =,它的解的情况是:(1)当a >0时,方程的解为x a =或x a =-;(2)当0a =时,方程的解为0x =;(3)当a <0时,方程无解。
二、知识运用典型例题例1:当1b =时,关于x 的方程(32)(23)87a x b x x -+-=-有无数多个解,则a 等于( ).2A .2B - 2.3C - .D 不存在例2:方程5665x x +=-的解是_______________。
例3:解关于x 的方程 (1)11()(2)34m x n x m -=+ (2)22mnx n mn m x -=-例4:若a b c x b c a c a b ===+++,试求x 的值。
例5:解方程:421x x x +--=+。
例6: 是否存在整数x ,使322411?x x x x ++++-+-=如果存在,求出所有整数x ;如果不存在,请说明理由。
例7:有12个方格,每个方格都有一个数字,已知任何相邻三个数的和都第八讲 知识运用课后训练 等级1.已知关于x 的方程2(1)(5)3a x a x b -=-+有无数多个解,那么___,a = ____b =。
2.方程214x x -+=的解是______________.3. 已知关于x 的方程(38)70a b x ++=无解,则ab 是( ).A 正数 .B 非正数 .C 负数 .D 非负数4.已知2220012c a b +=-==,且2001a b c k ++=,那么k 的值为( ) 1.4A .4B 1.4C - .4D - 5.方程550x x -+-=的解的个数为( ).A 不确定 .B 无数个 .C 2个 .D 3个6.(1)解关于x 的方程2(1)1a x ax -=+ (2)解方程: 31x x x ++-=7.若1abc =,试解关于x 的方程2001111x x x a ab b bc c ac++=++++++。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
含字母系数的方程的解法
复习方程及方程的解的概念;
方程:
方程的解:
回顾解一元一次方程的过程
(1)2x 1 10x
3 6
1
1
如果将第(1)题中的10 换成了字母m ,如何解这道关于x 的方程
(2 )2x 1 mx
3 6
1
1
总结:关于x的方程ax b的解与a ,b 之间的关系.
知识巩固
1.判断下列说法的正误.
(1)关于x 的方程3x a 0,若a0,则方程无解. ()
(2)关于x 的方程( a 1) x3有唯一解. ()
(3)若a 0,b为任意数,关于x 的方程ax b 0有无数个解. ()
(4)关于x 的方程ax a 的解为x 1 ()(5)若关于x的方程ax b 有唯一解,则a 0且b 0. ()
2.填空.
(1)已知关于x 的方程ax 3,当a ______ 0时,方程的解是正数,当 a ______ 0时,方程的解是负数,当a ______ 0时,方程无解.
(2)当m ______,n ______时,关于x 的方程2m n x 3n 3有无数解.
.
x x a
例1.解关于x的方程12
a x
3 2 6
随堂演练
解下列关于x的方程.
(1) ax b bx (2) x 3(x 1) kx k 例2.已知关于x的方程a 3x 2 b 2x 3 8x 3b 4有无数解,求 b 的值.
思考题
1.当a , b满足什么条件时,关于x 的方程2a(x 1) 2 3(2 x b) 1 有解?
2.已知关于x 的方程9x 3 kx 14有整数解,求满足条件的整数k 的值.
3. x 1是关于x 的方程ax b 2x 2a 的解,则a ,b满足的条件是什么?。