含字母系数的方程(组)的解法
第五章二元一次方程(组)及其解法(解析版)

第五章二元一次方程组考点类型大总结【知识点及考点类型梳理】知识点一、二元一次方程(组)考点类型一、二元一次方程(组)考点类型二、用字母表示数考点类型三、二元一次方程(组)的解知识点二、二元一次方程组的求解考点类型一、代入法考点类型二、消元法考点类型三、含参数类型考点类型四、整体思想、换元思想考点类型五、新定义风向知识点一、二元一次方程(组)考点类型一、二元一次方程(组)1.已知关于x ,y 的方程22146m n m n x y --+++=是二元一次方程,则m ,n 的值为()A .,11m n ==-B .1,1m n =-=C .14,33m n ==-D .14,33m n =-=【答案】A根据二元一次方程的定义,得出关于m ,n 的方程组,求出答案.【详解】∵关于x 、y 的方程x 2m﹣n ﹣2+y m +n +1=6是二元一次方程,∴22111m n m n --=⎧⎨++=⎩,解得11m n =⎧⎨=-⎩.故选:A .【点睛】此题考查了二元一次方程的定义和二元一次方程组的解法,熟练掌握二元一次方程的定义是解本题的关键.2.若1335m n m x y --+=是二元一次方程,那么m 、n 的值分别为()A .2m =,3n =B .2m =,1n =C .1m =-,2n =D .3m =,4n =【答案】B【分析】利用二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1的整式方程判断即可.【详解】解:∵1335m n m x y --+=是二元一次方程,∴m -1=1,3n -m =1,解得:m =2,n =1,故选:B .此题考查了二元一次方程的定义,熟练掌握二元一次方程的定义是解本题的关键.3.方程23235,3,3,320,6x y xy x x y z x y y -==+=-+=+=中是二元一次方程的有___个.【答案】1【分析】二元一次方程满足的条件:整式方程;含有2个未知数;未知数的最高次项的次数是1.【详解】解:符合二元一次方程的定义的方程只有2x −3y =5;xy =3,x 2+y =6的未知数的最高次项的次数为2,不符合二元一次方程的定义;x +3y=1不是整式方程,不符合二元一次方程的定义;3x −y +2z =0含有3个未知数,不符合二元一次方程的定义;由上可知是二元一次方程的有1个.故答案为:1.【点睛】主要考查二元一次方程的概念.要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的最高次项的次数是1的整式方程.4.如果2120a b x y -++=是二元一次方程,则a =____,b =_____.【答案】3【分析】根据二元一次方程的定义可知21a -=,11b +=,据此可解出a 、b .解:依题意,得:2111a b -=⎧⎨+=⎩,解得:30a b =⎧⎨=⎩.故答案为:3,0.【点睛】此题考查的是对二元一次方程的定义理解,根据未知数的次数为1,可以列出方程组求解.5.下列方程组中,是二元一次方程组的是()A .35233x y x z +=⎧⎨-=⎩B .12163m n m n +=⎧⎪⎨+=⎪⎩C .56m n mn n +=⎧⎨+=⎩D .321026x y x y +=⎧⎪⎨+=⎪⎩【答案】B【分析】本题根据二元一次方程组的基本形式及特点进行求解即可,即①含有两个二元一次方程,②方程都为整式方程,③未知数的最高次数都为一次.【详解】解:A :含有三个未知数,不是;B :符合条件,是;C :mn 项的次数为2,不是;D :存在不是整式的式子,不是.故选:B .本题主要考查二元一次方程组的判定,解题的关键是熟练掌握二元一次方程组的基本形式及特点.6.下列方程组中是二元一次方程组的是()A .141y x x v ⎧+=⎪⎨⎪-=⎩B .43624x y y z +=⎧⎨+=⎩C .41x y x y +=⎧⎨-=⎩D .22513x y x y +=⎧⎨+=⎩【答案】C【分析】二元一次方程组是由两个未知数且未知数最高次数为一次的两个方程组成;根据二元一次方程组的定义逐项判断即得答案.【详解】解:A 、方程组141y x x v ⎧+=⎪⎨⎪-=⎩中第一个方程不是整式方程,不是二元一次方程组,所以本选项不符合题意;B 、方程组中有三个未知数,不是二元一次方程组,所以本选项不符合题意;C 、该方程组是二元一次方程组,所以本选项符合题意;D 、方程组中第二个方程未知数x 、y 的次数是2,不是二元一次方程组,所以本选项不符合题意.故选:C .【点睛】本题考查了二元一次方程组的定义,属于基础概念题型,熟知二元一次方程组的概念是关键.7.已知方程组2(2)13(3)40m m x x m y -+=⎧⎪⎨--+=⎪⎩是关于x ,y 的二元一次方程组,则()A .2m ≠±B .3m =C .3m =-D .3m ≠【分析】二元一次方程组:由两个整式方程组成,两个方程一共含有两个未知数,且含未知数的项的最高次数是1,这样的方程组是二元一次方程组,根据定义列方程或不等式,从而可得答案.【详解】解: 方程组2(2)13(3)40m m x x m y -+=⎧⎪⎨--+=⎪⎩是关于x ,y 的二元一次方程组,203021m m m ⎧+≠⎪∴-≠⎨⎪-=⎩解得:233m m m ≠-⎧⎪≠⎨⎪=±⎩3.m ∴=-故选:.C 【点睛】本题考查的是二元一次方程组的定义,掌握二元一次方程组的定义是解题的关键.考点类型二、用字母表示数8.由132x y -=可以得到用x 表示y 的式子为()A .223x y -=B .223x y =-C .2133x y =-D .223x y =-【分析】先移项,后系数化为1,即可得.【详解】解:132x y -=移项,得123y x =-,系数化为1,得223x y =-,故选B .【点睛】本题考查了方程的基本运算技能,解题的关键是熟练掌握方程的基本运算技能.9.在二元一次方程142653x y -=中,用含x 的代数式表示y ,则下面结论正确的是()A .20524xy -=B .52024x y -=C .52024x y +=D .52024x y +=-【答案】B【分析】先把二元一次方程142653x y -=去分母得:52420x y -=,再通过移项合并同类项可得结果.【详解】解:由二元一次方程142653x y -=去分母,得:52420x y -=,移项合并同类项得:52024x y -=,系数化为1得:52024x y -=,故选:B .【点睛】本题考查了二元一次方程的变形,解题的关键是熟练掌握解二元一次方程的基本步骤.10.把方程635x y -=改成用含x 的代数式表示y 为y =__________.【答案】2x -53【分析】把x 看作已知数求出y 即可.【详解】解:6x -3y =5,3y =6x -5,解得:y =2x -53故答案为:y =2x -53【点睛】此题考查了解二元一次方程,解题的关键是将x 看作已知数求出y .考点类型三、二元一次方程(组)的解11.已知14x y =-⎧⎨=⎩是方程mx ﹣y =3的解,则m 的值是()A .﹣1B .1C .﹣7D .7【答案】C【分析】把14xy=-⎧⎨=⎩代入mx﹣y=3,得到关于m的方程,进而即可求解.【详解】解:14xy=-⎧⎨=⎩是方程mx﹣y=3的解,∴-m﹣4=3,解得:m=-7,故选C.【点睛】本题主要考查二元一次方程的解,掌握方程的解的定义,是解题的关键.12.如果方程组23759x yx y+=⎧⎨-=⎩的解是方程716x my+=的一个解,则m的值为()A.0B.1C.2D.3【答案】C【分析】求出方程组的解得到x与y的值,代入方程计算即可求出m的值.【详解】解:23759x yx y+=⎧⎨-=⎩①②{,①+②×3得:17x=34,即x=2,把x=2代入①得:y=1,把x=2,y=1代入方程7x+my=16得:14+m=16,解得:m =2,故选:C .【点睛】此题考查了解二元一次方程组和二元一次方程解的概念,解出二元一次方程组的解代入另一个方程是解决此题的关键.13.二元一次方程210x y +=有______个解,有________个正整数解,它们是___________.【答案】无穷多412348642x x x x y y y y ====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩;;;【分析】将x 看做已知数求出y ,即可确定出正整数解的个数.【详解】解:由方程210x y +=,得到102y x =-,当x =1时,y =8;当x =2时,y =6;当x =3时,y =4;当x =4时,y =2.则正整数解有4个,故答案为:无穷多;4;12348642x x x x y y y y ====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩;;;.【点睛】本题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .14.若二元一次方程组51cx ay x y -=⎧⎨+=⎩和23151x y ax by -=⎧⎨+=⎩解相同,则可通过解方程组()求得这个解.A .151cx ay x y -=⎧⎨+=⎩B .51cx ay ax by -=⎧⎨+=⎩C .23151x y x y -=⎧⎨+=⎩D .23151x y ax by -=⎧⎨+=⎩【答案】C【分析】根据方程组同解,可知方程组的解同时满足四个方程,将两个已知方程组成方程组即可.【详解】解:∵二元一次方程组51cx ayx y-=⎧⎨+=⎩和23151x yax by-=⎧⎨+=⎩解相同,方程组的解同时满足这四个方程;∴解方程组23151x yx y-=⎧⎨+=⎩即可求出方程组的解,故选:C.【点睛】本题考查了方程组同解问题,解题关键是明确方程组的解的意义,把已知方程组成方程组.15.若关于x,y的方程组48ax byax by-=-⎧⎨+=⎩的解是23xy=⎧⎨=⎩,则方程组(3)(1)4(3)(1)8a xb ya xb y+--=-⎧⎨++-=⎩的解是()A.14xy=-⎧⎨=⎩B.23xy=⎧⎨=⎩C.14xy=⎧⎨=-⎩D.52xy=⎧⎨=⎩【答案】A 【分析】通过观察所给方程组的关系可得3213xy+=⎧⎨-=⎩,求出x、y即可.【详解】解:∵关于x,y的方程组48ax byax by-=-⎧⎨+=⎩的解是23xy=⎧⎨=⎩,∴234 238a ba b-=-⎧⎨+=⎩,又∵(3)(1)4(3)(1)8a x b y a x b y +--=-⎧⎨++-=⎩,∴3213x y +=⎧⎨-=⎩,解得14x y =-⎧⎨=⎩,∴方程组(3)(1)4(3)(1)8a x b y a x b y +--=-⎧⎨++-=⎩的解为14x y =-⎧⎨=⎩,故选:A .【点睛】本题考查二元一次方程组的解,解题的关键是要知道两个方程组之间的关系.16.已知关于x 、y 的方程组242x y a x y a -=-⎧⎨-=⎩的解x 与y 互为相反数,则a =__________.【答案】2【分析】直接①-②可得42x y a +=-,由题意可得0x y +=,进而可得420a -=,再解即可.【详解】242x y a x y a-=-⎧⎨-=⎩①②,①-②得:42x y a +=-,x y 、互为相反数,0x y ∴+=,420a∴-=,解得:2a=故答案为:2.【点睛】本题主要考查了加减消元法解二元一次方程组,解题的关键是挖掘出内含在题干中的已知条件x=−y.知识点二、二元一次方程组的求解考点类型一、代入法17.用代入法解下列方程组:(1)3 759 y xx y=+⎧⎨+=⎩;(2)35 5215 s ts t-=⎧⎨+=⎩;(3)3416 5633 x yx y+=⎧⎨-=⎩;(4)4(1)3(1)2223x y yx y--=--⎧⎪⎨+=⎪⎩.【答案】(1)1252xy⎧=-⎪⎪⎨⎪=⎪⎩;(2)25112011st⎧=⎪⎪⎨⎪=⎪⎩;(3)612xy=⎧⎪⎨=-⎪⎩;(4)23xy=⎧⎨=⎩.【分析】根据代入法解二元一次方程组即可,代入消元法是将方程组中的一个方程的未知数用含有另一个未知数的代数式表示,并代入到另一个方程中去,这就消去了一个未知数,代入消元法简称代入法.【详解】(1)3759y x x y =+⎧⎨+=⎩①②将①代入②得:75(3)9x x ++=,解得12x =-,将12x =-代入①得,52y =,∴原方程组的解为:1252x y ⎧=-⎪⎪⎨⎪=⎪⎩;(2)355215s t s t -=⎧⎨+=⎩①②由①得,35t s =-③,将③代入②得,52(35)15s s +-=,解得2511s =,将2511s =代入③,得,2011t =,∴原方程组的解为:25112011s t ⎧=⎪⎪⎨⎪=⎪⎩;(3)34165633x y x y +=⎧⎨-=⎩①②由①得344y x =-③,将③代入②得,56(4)334x x 3--=,解得6x =,将6x =代入③,得,12y =-,∴原方程组的解为:612x y =⎧⎪⎨=-⎪⎩;(4)4(1)3(1)2223x y y x y --=--⎧⎪⎨+=⎪⎩①②由①得444332x y y --=--,即45y x =-③,由②可得3212x y +=④,将③代入④得32(45)12x x +-=,解得2x =,将2x =代入③,得,3y =,∴原方程组的解为:23x y =⎧⎨=⎩;【点睛】本题考查了代入法解二元一次方程组,掌握代入法是解题的关键.考点类型二、消元法18.用加减法解下列方程组:(1)29321x y x y +=⎧⎨-=-⎩;(2)52253415x y x y +=⎧⎨+=⎩;(3)258325x y x y +=⎧⎨+=⎩;(4)236322x y x y +=⎧⎨-=-⎩.【答案】(1)272x y =⎧⎪⎨=⎪⎩;(2)50x y =⎧⎨=⎩;(3)9111411x y ⎧=⎪⎪⎨⎪=⎪⎩;(4)6132213x y ⎧=⎪⎪⎨⎪=⎪⎩.【分析】(1)根据加减消元可直接进行求解方程组;(2)根据加减消元法可直接进行求解方程组;(3)根据加减消元法可直接进行求解方程组;(4)根据加减消元法可直接进行求解方程组.【详解】解:(1)29321x y x y +=⎧⎨-=-⎩①②①+②得:48x =,解得:2x =,把2x =代入①式得:229y +=,解得:72y =,∴原方程组的解为272x y =⎧⎪⎨=⎪⎩;(2)52253415x y x y +=⎧⎨+=⎩①②①×2-②得:735x =,解得:5x =,把5x =代入①得:55225y ⨯+=,解得:0y =,∴原方程组的解为50x y =⎧⎨=⎩;(3)258325x y x y +=⎧⎨+=⎩①②①×3-②×2得:1114=y ,解得:1411y =,把1411y =代入①得:1425811x +⨯=,解得:911x =;∴原方程组的解为9111411x y ⎧=⎪⎪⎨⎪=⎪⎩;(4)236322x y x y +=⎧⎨-=-⎩①②①×2+②×3得:136x =,解得:613x =,把613x =代入①得:623613y ⨯+=,解得:2213y =,∴原方程组的解为6132213x y ⎧=⎪⎪⎨⎪=⎪⎩.【点睛】本题主要考查二元一次方程组的解法,熟练掌握加减消元法是解题的关键.考点类型三、含参数类型19.甲、乙两人同解方程组515411ax y x by +=⎧⎨-=-⎩①②时,甲看错了方程①中的a ,解得31x y =-⎧⎨=-⎩,乙看错了②中的b ,解得54x y =⎧⎨=⎩,试求20202021()a b +-的值.【答案】0【分析】将31x y =-⎧⎨=-⎩代入第二个方程可得b 的值,将54x y =⎧⎨=⎩代入第一个方程得a 的值,即可求出所求式子的值.【详解】解:将31x y =-⎧⎨=-⎩代入411x by -=-得:1211-+=-b ,解得1b =将54x y =⎧⎨=⎩代入方程组中的515ax y +=得:52015a +=,即1a =-20202021()ab ∴+-20202021(1)(1)110=-+-=-=.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.20.若关于x 、y 的二元一次方程组13x y x y -=⎧⎨+=⎩与方程组4213mx ny ny mx ⎧+=⎪⎪⎨⎪-=⎪⎩有相同的解.求m 、n 的值.【答案】m =1,n =3【分析】根据题意列不含m 、n 的方程组求解,求出x ,y 值,代入4213mx ny ny mx ⎧+=⎪⎪⎨⎪-=⎪⎩中即可解得m ,n .【详解】解:解方程组13x y x y -=⎧⎨+=⎩得:21x y =⎧⎨=⎩,代入4213mx ny ny mx ⎧+=⎪⎪⎨⎪-=⎪⎩中得:21314m n m n +=⎧⎪⎨-=⎪⎩,解得:13m n =⎧⎨=⎩.【点睛】本题考查了二元一次方程组的解,解决本题的关键是根据题意重新联立方程组.21.已知关于x 、y 的方程组2331x y ax by -=⎧⎨+=-⎩的解和2333211ax by x y +=⎧⎨+=⎩的解相同,求代数式2a +b 的平方根.【答案】代数式2a +b 的平方根是±1.【分析】由已知解方程组2333211x y x y -=⎧⎨+=⎩,解得31x y =⎧⎨=⎩,将31x y =⎧⎨=⎩代入233ax by +=中,得21a b +=,即可求解.【详解】解: 方程组2331x y ax by -=⎧⎨+=-⎩的解和2333211ax by x y +=⎧⎨+=⎩的解相同,∴2333211x y x y -=⎧⎨+=⎩与2331ax by ax by +=⎧⎨+=-⎩的解相同,∴2333211x y x y -=⎧⎨+=⎩①②,①2⨯得,466x y -=③,②3⨯得,9633x y +=④,③+④得,3x =,将3x =代入①得,1y =,∴方程组的解为31x y =⎧⎨=⎩,将31x y =⎧⎨=⎩代入233ax by +=中,得21a b +=,2a b ∴+的平方根为±1.【点睛】本题考查二元一次方程组的解,理解同解二元一次方程组的含义,将所给方程组重新组合新的方程组,灵活运用加减消元法和代入消元法求方程组的解是解题的关键,也考查了平方根的性质.考点类型四、整体思想、换元思想22.材料:解方程组()1045x y x y y --=⎧⎨--=⎩时,可由①得1x y -=③,然后再将③代入②得415y ⨯-=,求得1y =-,从而进一步求得01x y =⎧⎨=-⎩这种方法被称为“整体代入法”请用这样的方法解方程组()()423324x y x y x y -=⎧⎨--=⎩【答案】7656x y ⎧=⎪⎪⎨⎪=⎪⎩【分析】观察方程组的特点,把2x y -看作一个整体,得到322x y -=,将之代入②,进行消元,得到33422x ⎛⎫+= ⎪⎝⎭,解得76x =,进一步解得56y =,从而得解.【详解】解:()()423324x y x y x y -=⎧⎪⎨--=⎪⎩①②由①得322x y -=③,把③代入②得33422x ⎛⎫+⨯= ⎪⎝⎭,解得76x =,把76x =代入③,得73262y ⨯-=,解得56y =,故原方程组的解为7656x y ⎧=⎪⎪⎨⎪=⎪⎩.【点睛】本题考查了二元一次方程组的特殊解法:整体代入法.解方程(组)要根据方程组的特点灵活运用选择合适的解法.23.阅读材料在解方程组253 4115 x y x y +=⎧⎨+=⎩①②时,明明采用了一种“整体代换”的解法.解:将方程②变形:4x +10y +y =5,即2(2x +5y )+y =5③;把方程①代入③得2×3+y =5,∴y =﹣1,把y =﹣1代入①,得x =4,∴方程组的解为41x y =⎧⎨=-⎩.请你解决以下问题;模仿明明的“整体代换”法解方程组436 8718 x y x y -=⎧⎨-=⎩①②.【答案】36x y =-⎧⎨=-⎩【分析】将方程②变形为()24318x y y --=,再将436x y -=整体代入即可求方程组.【详解】解:4368718x yx y-=⎧⎨-=⎩①②中将②变形,得()24318x y y--=③,将①代入③得,2×6﹣y=18,∴y=﹣6,将y=﹣6代入①得,x=﹣3,∴方程组的解为36 xy=-⎧⎨=-⎩.【点睛】本题考查了整体代换法解二元一次方程组的解法,解题的关键是读懂题意,明确整体思想.24.阅读下列材料:小明同学遇到下列问题:解方程组23237432323832x y x yx y x y+-⎧+=⎪⎪⎨+-⎪+=⎪⎩小明发现如果用代入消元法或加减消元法求解,运算量比较大,容易出错.如果把方程组中的(2x+3y)看成一个整体,把(2x﹣3y)看成一个整体,通过换元,可以解决问题.以下是他的解题过程:令m=2x+3y,n=2x﹣3y.原方程组化为743832m nm n⎧+=⎪⎪⎨⎪+=⎪⎩,解的6024mn=⎧⎨=-⎩,把6024mn=⎧⎨=-⎩代入m=2x+3y,n=2x﹣3y,得23602324x yx y+=⎧⎨-=-⎩解得914xy=⎧⎨=⎩所以,原方程组的解为914xy=⎧⎨=⎩.请你参考小明同学的做法解方程组:(1)3 6101 610x y x yx y x y+-⎧+=⎪⎪⎨+-⎪-=-⎪⎩;(2)52113213x y x y⎧+=⎪⎪⎨⎪-=⎪⎩.【答案】(1)137x y =⎧⎨=-⎩;(2)1312x y ⎧=⎪⎪⎨⎪=-⎪⎩【分析】认真理解题目中给定的整体代换思路,按照所给的方法求出方程组的解即可.【详解】解:(1)令6x y m +=,10x y n -=,原方程组化为31m n m n +=⎧⎨-=-⎩,解得:12m n =⎧⎨=⎩,∴16210x y x y +⎧=⎪⎪⎨-⎪=⎪⎩,解得:137x y =⎧⎨=-⎩.∴原方程组的解为137x y =⎧⎨=-⎩.(2)令1m x =,1n y=,原方程组可化为:52113213m n m n +=⎧⎨-=⎩,解得:32m n =⎧⎨=-⎩,∴1312x y ⎧=⎪⎪⎨⎪=-⎪⎩,经检验,1312x y ⎧=⎪⎪⎨⎪=-⎪⎩是原方程的解.∴原方程组的解为1312x y ⎧=⎪⎪⎨⎪=-⎪⎩.【点睛】本题考查了解二元一次方程组,整体代换是解题的关键.考点类型五、新定义风向25.在平面直角坐标系中,已知点(),A x y ,点()2,2B x my mx y --(其中m 为常数,且0m ≠),则称B 是点A 的“m 系置换点”.例如:点()1,2A 的“3系置换点”B 的坐标为()1232,2312-⨯⨯⨯⨯-,即()11,4B -.(1)点(2,0)的“2系置换点”的坐标为________;(2)若点A 的“3系置换点”B 的坐标是(-4,11),求点A 的坐标.(3)若点(),0A x (其中0x ≠),点A 的“m 系置换点”为点B ,且2AB OA =,求m 的值;【答案】(1)()28,;(2)()21,;(3)1m =±.【分析】(1)根据题中新定义直接将m 的值代入即可得出答案;(2)根据题中新定义列出关于x 、y 的二元一次方程组求解即可得出答案;(3)根据题中新定义可得出点B 的坐标,再根据2AB OA =列方程求解即可得出答案.【详解】解:(1)点(2,0)的“2系置换点”的坐标为()22202220-⨯⨯⨯⨯-,,即()28,;(2)由题意得:2342311x y x y -⨯⨯=-⎧⎨⨯⨯-=⎩解得:21x y =⎧⎨=⎩∴点A 的坐标为:()21,;(3) (),0A x ∴点()2,2B x my mx y --为()20,20x m mx -⨯-即点B 坐标为(),2x mx ∴2AB mx =,OA x= 2AB OA =22mx x∴= m 为常数,且0m ≠∴1m =±.【点睛】本题考查了二元一次方程组的解法、绝对值方程,理解“m 系置换点”的定义并能运用是本题的关键.26.对x ,y 定义一种新的运算A ,规定:()()(),ax by x y A x y ay bx x y ⎧+≥⎪=⎨+<⎪⎩(其中0ab ≠).(1)若已知1a =,2b =-,则()4,3A =_________.(2)已知()1,13A =,()1,20A -=.求a ,b 的值;(3)在(2)问的基础上,若关于正数p 的不等式组()()3,21413,2A p p A p p m ⎧->⎪⎨---≥⎪⎩恰好有2个整数解,求m 的取值范围.【答案】(1)2-;(2)12a b =⎧⎨=⎩;(3)2618m -<-≤【分析】(1)根据新定义就是即可;(2)根据题中的新定义列出方程组,求出方程组的解即可得到a 与b 的值;(3)由(2)化简得A (x ,y )的关系式,先判断括号内数的大小,再转化成不等式求解即可.【详解】解:(1)根据题中的新定义得:1×4+3×(-2)=-2,故答案为-2;(2)根据题中的新定义得:320a b a b +=⎧⎨-=⎩,解得:12a b =⎧⎨=⎩;(3)由(2)化简得:A (x ,y )=()()22x y x y y x x y ⎧+≥⎪⎨+<⎪⎩,∴在关于正数p 的不等式组()()3214132A p p A p p m ⎧->⎪⎨---≥⎪⎩,,中,∴A (3p ,2p -1)=7p -2>4,A (-1-3p ,-2p )=-2p +2(-1-3p )=-8p -2≥m ,∴p >67,p ≤m 28+-∵恰好有2个整数解,∴2个整数解为1,2.∴2≤m28+-<3,∴-26<m≤-18.【点睛】本题主要考查新定义的运算,解决本题的关键是要按照定义式子中列出算式进行解方程和不等式组.。
帮你解含字母系数的方程组

帮你解含字母系数的方程组在解与二元一次方程组有关问题时,经常会遇到含字母系数的方程组,解此类题的一般思路是根据条件采用代入求值的方法求得最后结果.常见的有以下几种类型: 一、代入求值型一、代入求值型例1.已知关于x 、y 的二元一次方程组{35ax by ax by +=-=,的解是{21x y ==,.求a b +的值。
值。
解析:由二元一次方程组解的定义,将{21x y ==,代入方程组得代入方程组得{2325a b a b +=-=,,再解关于a 和b 的二元一次方程组,得{21a b ==-,。
所以a b +=1. 二、添加(赋予)条件型二、添加(赋予)条件型例 2.若关于x 、y 的二元一次方程组{2527x y k x y k +=-=,①,②的解满足方程1253x y -=,那么k 的值为的值为 。
解析:观察方程组发现可利用加减消元法把其中的一个字母消去,观察方程组发现可利用加减消元法把其中的一个字母消去, 由①+②得,412x k =,即3x k =③;由①-②得,22y k =-,即y k =-④,将③④分别代入方程1253x y -=,得132()53k k ´-´-=,解得53k =。
例3.如果方程组{35223x y k x y k +==+,①+②的解x ,y 的和为2,求k 的值及方程组的解。
组的解。
解析:由①-②得22x y +=③,③,将2x y +=与③联立方程组{2,22x y x y +=+=,解得{2,0x y ==,将x ,y 的值代入②得k =4. 解此类题首先要观察方程组的特征,解此类题首先要观察方程组的特征,采取加减或代入的方法进行消元,采取加减或代入的方法进行消元,采取加减或代入的方法进行消元,使之使之变形为二元一次方程组,从而求得最后结果。
三、同解型三、同解型例4.已知关于x 、y 的二元一次方程组{5,27ax by ax by +=+=与方程组{237324x y x y +=-=,的解相同,求a 和b 的值。
部编数学七年级下册专题12含“字母系数”(含参)的二元一次方程组的解题思路(解析版)含答案

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!专题12 含“字母系数”(含参)的二元一次方程组的解题思路(解析版)第一部分典例剖析类型一利用二元一次方程的定义构造一元一次方程或二元一次方程组1.(2020春•博兴县期中)若方程3x|m|﹣2=3y n+1+4是二元一次方程,则m,n的值分别为( )A.2,﹣1B.﹣3,0C.3,0D.±3,0思路引领:根据二元一次方程的定义得出|m|﹣2=1,n+1=1,解之可得答案.解:∵方程3x|m|﹣2=3y n+1+4是二元一次方程,∴|m|﹣2=1,n+1=1,解得m=3或m=﹣3,n=0,故选:D.总结提升:本题主要考查二元一次方程的定义,解题的关键是掌握含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.2.(2022春•开州区期中)若关于x,y的方程(n﹣1)x|n|+3y m﹣2=0是二元一次方程,则m+n的值( )A.1B.2C.4D.2或4思路引领:由二元一次方程的定义可知x,y的次数为1,据此可列出方程,并求解.解:∵关于x,y的方程(n﹣1)x|n|+3y m﹣2=0是二元一次方程,∴|n|=1且n﹣1≠0,m﹣2=1,解得m=3,n=﹣1,∴m+n=3﹣1=2.故选:B.总结提升:此题考查二元一次方程定义,二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的次数都为一次;(3)方程是整式方程.3.(2017春•分宜县校级期中)方程(m2﹣9)x2+x﹣(m+3)y=0是关于x、y的二元一次方程,则m的值为( )A.±3B.3C.﹣3D.9思路引领:根据二元一次方程的定义可得m2﹣9=0,且m+3≠0,再解即可.解:由题意得:m2﹣9=0,且m+3≠0,解得:m=3,总结提升:此题主要考查了二元一次方程的定义,关键是掌握含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.类型二利用二元一次方程(组)的解的定义构造一元一次方程或二元一次方程组4.若关于x、y的二元一次方程组x+y=2tx−y=4t的解也是二元一次方程2x+3y=9的解,求t的值和这个方程组的解.思路引领:将t看作已知数求出方程组的解表示出x与y,代入二元一次方程中即可求出t的值,进而确定出方程组的解.解:x+y=2t①x−y=4t②,①+②得:2x=6t,解得:x=3t,①﹣②得:2y=﹣2t,解得:y=﹣t,将x=3t,y=﹣t代入2x+3y=9中得:6t﹣3t=9,解得:t=3,则方程组的解为x=9y=−3.总结提升:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.5.(2020春•天津期末)已知方程组ax+by=7ax−by=5的解为x=2y=1,则a,b的值为( )A.a=3,b=2B.a=2,b=3C.a=3,b=1D.a=1,b=3思路引领:把x与y的值代入方程组求出a与b的值即可.解:把x=2y=1代入方程组得:2a+b=7①2a−b=5②,①+②,得4a=12,∴a=3,把a=3代入①,得6+b=7,∴a =3,b =1,故选:C .总结提升:此题考查了二元一次方程组的解.解题的关键是掌握二元一次方程组的解的定义,方程组的解即为能使方程组中两方程成立的未知数的值.6.已知方程2x +(1+m )y =﹣1与方程nx ﹣y =1有一个相同的解x =−2y =1,你能求出(m +n )2020的值吗?思路引领:把x 与y 的值代入方程求出m 与n 的值,即可确定出所求式子的值.解:把x =−2y =1代入2x +(1+m )y =﹣1,得﹣4+1+m =﹣1,解得m =2;把x =−2y =1代入程nx ﹣y =1,得﹣2n ﹣1=1,解得n =﹣1.∴(m +n )2020=(2﹣1)2020=1.总结提升:此题考查了有理数的乘方以及二元一次方程的解,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.类型三 已知方程组的错解构造一元一次方程求解7.(2021春•青神县期中)甲、乙两人同时解方程组mx +y =5①2x−ny =13②甲解题看错了①中的m ,解得x =72y =−2,乙解题时看错②中的n ,解得x =3y =−7.试求:(1)原方程组m ,n 的正确值;(2)原方程组的解.思路引领:(1)把甲的解代入②中求出n 的值,把乙的解代入①中求出m 的值即可;(2)把m 与n 的值代入方程组求出解即可.解:(1)把x =72y =−2代入②得:7+2n =13,解得n =3,把x =3y =−7代入①得:3m ﹣7=5,解得m =4.所以m =4,n =3;(2)把m =4,n =3代入方程组得:4x +y =5①2x−3y =13②,①×3+②得:14x =28,即x =2,把x=2代入①得:y=﹣3,则方程组的解为x=2y=−3.总结提升:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.类型四利用方程同解构造二元一次方程组8.(2021春•上思县期末)若方程组2x+4y=−68x−4y=16和方程组ax−by=11bx−ay=13的解相同,试求(3b﹣2a)2021的值.思路引领:求出第一个方程组的解,代入第二个方程组求出a与b的值,代入原式计算即可求出值.解:2x+4y=−6①8x−4y=16②,①+②得:10x=10,解得:x=1,把x=1代入①得:2+4y=﹣6,解得:y=﹣2,∴方程组的解为x=1y=−2,把x=1y=−2代入方程组ax−by=11bx−ay=13得:a+2b=11b+2a=13,解得:a=5 b=3,则(3b﹣2a)2021=(3×3﹣2×5)2021=(﹣1)2021=﹣1.总结提升:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.9.已知关于x,y的方程组3x−y=54ax+5by=−22与2x−3y+4=0ax−by−8=0有相同的解,求a,b的值.思路引领:因为关于x,y的方程组有相同的解,根据二元一次方程组的解的定义,只需把两个方程组中不含未知数和含未知数的方程分别组成方程组,求出未知数的值,再代入另一组方程组即可.解:由题意,关于x,y的方程组3x−y=52x−3y+4=0和4ax+5by=−22ax−by−8=0的解也相同.解方程组3x−y=5①2x−3y+4=0②,得x=197y=227.把x=197y=227代入4ax+5by=−22ax−by−8=0,a+1107b=−22a−227b=8解得a=1419b=−2111.总结提升:本题考查了二元一次方程组的解法及方程组解的意义,由于数比较大,计算较复杂,理解方程组公共解的意义和掌握解二元一次方程组的解法是解决本题的关键.10.(2019春•大丰区期末)已知关于x、y的方程组4x+ay=162x+y=4b+2和3x+ay=132x−3y=−6的解相同,求a、b值.思路引领:先把方程4x+ay=16和3x+ay=13相减,可得x的值,再代入方程2x﹣3y=﹣6,求出y的值,再把x,y的值代入第一个方程组即可求得a,b的值.解:方程4x+ay=16和3x+ay=13相减,得x=3,把x=3代入方程2x﹣3y=﹣6,得y=4.把x=3,y=4代入方程组4x+ay=162x+y=4b+2,得12+4a=166+4=4b+2解这个方程组,得a=1,b=2.总结提升:利用方程组的解相同,可以重新组合方程组,求得未知数的值.类型五利用二元一次方程组的解适合第3个方程,构造一元一次方程或者用整体思想求解11.已知方程组2x+3y=7,5x−y=3m+1的解能使等式x﹣7y=2成立,求m的值.思路引领:观察方程组中两方程的x与y的系数,发现方程①减去方程②×2后恰好直接得到(x﹣7y)的值.解:2x+3y=7①,5x−y=3m+1②,由②﹣①×2,得x﹣7y=3m﹣13,∴3m﹣13=2,解得m=5.总结提升:本题主要考查的是解二元一次方程组,求得x、y的值是解题的关键.12.(2022春•沙坪坝区期末)已知关于x,y的方程组3x+4y=a+22x+3y=2a的解满足x+y=1,求a的值及方程组的解.思路引领:根据题意,①﹣②得x+y=﹣a+2,再根据已知条件可得a的值,根据加减消元法解二元一次方程组即可.解:3x+4y=a+2①2x+3y=2a②,①﹣②得x+y=﹣a+2,∵x+y=1,∴﹣a+2=1,解得a=1,∴原方程组化为3x+4y=3①2x+3y=2②,①×2﹣②×3得﹣y=0,解得y=0,将y=0代入3x+4y=3,得3x=3,解得x=1,∴原方程组的解为x=1 y=0.总结提升:本题考查了二元一次方程组的解以及解二元一次方程组,熟练掌握解二元一次方程组的方法是解题的关键.13.(2019春•西湖区校级月考)已知关于x,y的二元一次方程组3x+2y=m+32x−y=2m−1的解x与y的值互为相反数,试求m的值和方程组的解.思路引领:由已知方程组,利用加减消元法求出x=5m17,y=9−4m7,再由x与y的值互为相反数,即可求出m的值,再将m的值代入所求x、y的表达式,即可求方程组的解.解:方程组3x+2y=m+3①2x−y=2m−1②,②×2+①得7x=5m+1,∴x=5m17,将x=5m17代入②,得y=9−4m7,∵x与y的值互为相反数,∴5m17+9−4m7=0∴m=﹣10,∴x=﹣7,y=7,∴原方程组的解为x=−7 y=7.总结提升:本题考查二元一次方程组的解;熟练掌握加减消元法解二元一次方程组,同时结合相反数的性质灵活解题是关键.14.当m,n都是实数,且满足2m﹣n=8时,我们称Q(m﹣1,n+1)为巧妙点.(1)若A(m﹣1,5)是巧妙点,则m= ,巧妙点A( ,5);(2)判断点P(3,1)是否为巧妙点,并说明理由.(3)已知关于x,y的方程组x+y=4x−y=2a,当a为何值时,以方程组的解为坐标的点B(x,y)是巧妙点?思路引领:(1)利用题中的新定义列式计算即可;(2)利用题中的新定义判断即可;(3)表示出方程组的解,根据题中的新定义判断即可.解:(1)由题意得:2(m﹣1+1)﹣(5﹣1)=8,解得:m=6,∴m﹣1=5,∴巧妙点A(5,5),故答案为:6,5;(2)点P(3,1)是巧妙点,理由如下:根据题意得m−1=3n+1=1,解得:m=4 n=0,代入得:2m﹣n=8﹣0=8,∴点P(3,1)是巧妙点;(2)x+y=4①x−y=2a②,①+②得:2x=2a+4,解得:x=a+2,把x=a+2代入①得:y=2﹣a,根据题意得:m−1=a+2 n+1=2−a,解得:m=a+3 n=1−a,代入得:2m﹣n=2a+6﹣1+a=3a+5,当3a+5=8,即a=1时,满足2m﹣n=8,即以方程组的解为坐标的点B(x,y)是巧妙点.总结提升:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.第二部分专题提优训练1.(2022春•滨海县月考)若方程(a﹣6)x|a|﹣5+5y=1是关于x,y的二元一次方程,则a的值为( )A.±6B.﹣6C.±5D.5思路引领:根据二元一次方程的定义解答即可.解:∵(a﹣6)x﹣y|a|﹣5=1是关于x,y的二元一次方程,∴a−6≠0|a|−5=1,解得a=﹣6.故选:B.总结提升:本题考查解二元一次方程的定义,解题关键是熟知二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.2.(2021春•银海区期中)若(R﹣2)x|R|﹣1﹣3y=2是关于x,y的二元一次方程,那么3R﹣2的值为( )A.4B.﹣8C.8D.4或﹣8思路引领:二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.解:根据题意得:R−2≠0|R|−1=1,解得R=﹣2,∴3R﹣2=﹣6﹣2=﹣8,故选:B.总结提升:此题考查了二元一次方程的定义,含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.3.(2021春•平凉期末)如果x=3y=−2是方程组ax+by=1ax−by=5的解,则a2008+2b2008的值为( )A .1B .2C .3D .4思路引领:将方程组的解代入方程组可得关于a 、b 的二元一次方程组3a−2b =13a +2b =5,再求解方程组即可求解.解:∵x =3y =−2是方程组ax +by =1ax−by =5的解,∴3a−2b =1①3a +2b =5②,①+②得,a =1,将a =1代入①得,b =1,∴a 2008+2b 2008=1+2=3,故选:C .总结提升:本题考查二元一次方程组的解,熟练掌握加减消元法和代入消元法解二元一次方程组是解题的关键.二.解答题(共8小题)4.若x =2y =1是方程组ax +y =b 4x−by =3a−1的解,求a 、b 的值.思路引领:把x =2y =1代入方程组ax +y =b 4x−by =3a−1,然后解关于a ,b 的方程组即可.解:把x =2y =1代入方程组ax +y =b 4x−by =3a−1,得:2a +1=b 8−b =3a−1,解得:a =85b =215,故a =85,b =215.总结提升:本题考查了二元一次方程组的解,属于基础题,关键是掌握用代入法解方程组.5.已知二元一次方程px +2y =8,5x ﹣6y =4,2x +5y ﹣8=0有公共解,求p 的值.思路引领:解方程组5x−6y =42x +5y−8=0得x ,y 的值,再代入px +2y =8求解即可.解:解方程组5x−6y =42x +5y−8=0得x =6837y =3237,代入px +2y =8,得6837p +2×3237=8,解得p =5817.总结提升:本题主要考查了二元一次方程的解,解题的关键是求出方程组公共解.6.(2021秋•金寨县期末)解方程组ax+by=6x+cy=4时,甲同学因看错a符号,从而求得解为x=3y=2,乙因看漏c,从而求得解为x=6y=−2,试求a,b,c的值.思路引领:甲同学因看错a符号,把x=3,y=2代入x+cy=4,求出c,因看错a符号,得﹣3a+2b=6,乙因看漏c,把x=6,y=﹣2代入ax+by=6,组成新的二元二次方程组,解出即可.解:∵甲同学因看错a符号,∴把x=3,y=2代入x+cy=4,得c=1 2,﹣3a+2b=6.∵乙因看漏c,∴把x=6,y=﹣2代入ax+by=6,得6a﹣2b=6,得−3a+2b=6 6a−2b=6,解得,a=4,b=9;综上所述,a=4,b=9,c=1 2.总结提升:本题主要考查了二元一次方程组的解,掌握做题的方法是解题关键.7.(2019秋•平桂区期末)已知x=2y=1是二元一次方程组mx+ny−7=0nx+my−2=0的解,求m+3n的值.思路引领:把方程组的解代入方程组求出m与n的值,即可求解.解:把x=2y=1代入方程组mx+ny−7=0nx+my−2=0,得2m+n−7=02n+m−2=0,解方程组,得m=4,n=−1把m=4n=−1代入m+3n,得m+3n=4+3×(﹣1)=1.总结提升:本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.8.(2021春•娄底月考)已知方程组2x+3y=10ax+by=9与方程组bx−ay=84x−3y=2的解相等,试求a、b的值.思路引领:两个方程组的解相同,也就是有一组x、y的值是这四个方程的公共解,当然也是其中任意两个方程的公共解,所以可以把原来的方程组打乱,重新组合起来求解.解:由已知可得2x+3y=104x−3y=2,解得x=2y=2,把x=2y=2代入剩下的两个方程组成的方程组ax+by=9bx−ay=8,得2a+2b=9 2b−2a=8,解得a=14b=174.故a、b的值为a=14b=174.总结提升:解答此题的关键是熟知方程组有公共解得含义,考查了学生对题意的理解能力.9.(2018春•岳麓区校级期中)(1)已知关于x,y方程组x+2y=3k2x+y=2k+1的解满足x﹣y=3,求k的值;(2)在(1)的条件下,求出方程组的解.思路引领:(1)方程组中两式相减后可得x﹣y=1﹣k,再根据条件即可求出k的值.(2)根据二元一次方程组的解法即可求出答案.解:(1)∵x+2y=3k①2x+y=2k+1②,∴②﹣①得:x﹣y=1﹣k,∵x﹣y=3,∴1﹣k=3,∴k=﹣2.(2)将k=﹣2代入x+2y=−6①2x+y=−3②,①×2得:2x+4y=﹣12③②﹣③得:﹣3y=9,∴y=﹣3,将y=﹣3代入①得:x﹣6=﹣6,∴x=0,∴方程组的解为x=0 y=−3总结提升:本题考查二元一次方程组,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.10.已知方程组2x+y=5ax−by=−4与5x−4y=62ax−3by=2有公共解,求a、b的值.思路引领:由于两方程组有公共解,所以可把方程①和方程③联立为一个方程组进行求解,然后把所求结果代入方程②和方程④中,形成一个关于a、b的二元一次方程组,解答即可.解:在方程组2x+y=5①ax−by=−4②与5x−4y=6③2ax−3by=2④,因为有公共解,所以有2x+y=55x−4y=6和ax−by=−42ax−3by=2.由第一组可解得x=2 y=1,代入第二组,得2a−b=−4 4a−3b=2,解得a=−7b=−10.总结提升:本题考查解二元一次方程组,二元一次方程组的解,掌握二元一次方程组的解法是解题的关键.11.(2021秋•长丰县月考)已知关于x,y的二元一次方程组x+2y=a2x−y=1.(1)当方程组的解为x=1y=1时,求a的值.(2)当a=﹣2时,求方程组的解.(3)小冉同学模仿第(1)问,提出一个新解法:将x=−2y=−2代入方程x+2y=a中,即可求出a的值.小冉提出的解法对吗?若对,请完成解答;若不对,请说明理由.思路引领:(1)将x=1y=1代入方程组x+2y=a2x−y=1即可求a的值;(2)用加减消元法求方程组的解即可;(3)x=−2y=−2不是方程2x﹣y=1的解,因此x=−2y=−2不是方程组的解.解:(1)∵x=1y=1是方程组x+2y=a2x−y=1的解,∴1+2×1=a,∴a=3;(2)∵a=﹣2,∴x+2y=−2①2x−y=1②,②×2得,4x﹣2y=2③,①+③得,5x=0,∴x=0,将x=0代入②得,y=﹣1,∴方程组的解为x=0y=−1;(3)不正确,理由如下:将x=−2y=−2代入方程2x﹣y=1,可得2×(﹣2)﹣(﹣2)=﹣2≠1,∴x=−2y=−2不是方程组的解,∴解法不正确.点睛:本题考查二元一次方程组的解,熟练掌握二元一次方程组的解与二元一次方程组的关系,会用加减消元法解二元一次方程组是解题的关键.。
二元一次方程组含字母系数

二元一次方程组含字母系数二元一次方程组是初中数学内容中的一个重要知识点,在我们的日常生活中也有着广泛的应用,我们可以通过解二元一次方程组来求解很多实际问题。
二元一次方程组含字母系数的概念在解二元一次方程组时,系数往往都是常数,但在实际应用中,很多情况下系数却含有字母,这就是所谓的二元一次方程组含字母系数。
举个例子,如下所示的方程组:2x + 3y = a4x - y = b其中a和b都是字母,此时我们就需要通过一些特殊的方法来解决这类问题。
解二元一次方程组的通常方法解二元一次方程组的方法有多种,比如代入法、消元法、用公式解、图像法等等。
在这里,我们以代入法和消元法为例来进行讲解。
代入法代入法又称直接代入法,其基本思路是将一个方程的一项用另一个方程的未知数表示出来,然后代入另一个方程中,得到只含有一个未知数的一元一次方程,进而求出该未知数,再代入任意一个方程,得到另一个未知数的值。
我们以上面的方程组为例进行演示。
化简出y:y = 4x - b带入第一式:2x + 3(4x - b) = a化简得:14x - 3b = a化简出x:x = (a + 3b)/14再带入第一个式子,化简出y得:y = (2a - 9b)/14至此,我们就求得了这个方程组中的x和y的值,其中含有未知字母。
这就是用代入法解决二元一次方程组含字母系数的方法。
消元法消元法又称加减消元法,它的基本思路是将两个方程的某一个系数相加或相减得到一个新方程,使得这个新方程中含有一个未知数的项系数是相反数,从而通过消元求解。
还是以上面的方程组为例进行演示。
通过第二个方程,化简出y:y = 4x - b代入第一个方程:2x + 3(4x - b) = a化简得:14x - 3b = a将第二个方程变形:y = 4x - b 可得: 4x = y + b 代入第一个方程:2x + 3y + 3b = a再将第二个方程中的4x替换为上式得:2(y + b) + 3y + 3b = a化简得:5y + 7b = a用此式将b消元:3b = (a - 5y)/7将其代入12x = 4y + 4b中得:x = (a + 3y)/14最终可求出y和x的值,其中还是包含有未知字母。
数学人教版七年级上册含字母系数的方程的解法

4 x 2 10 x 1 6
4 x 10 x 6 2 1
合并同类项,得 系数化为1,得
6x 5
5 x 6
知识巩固
1.判断下列说法的正误. (1)关于 x 的方程 3x-a=0,若a=0 ,则方程无解.
( × ) ( √ ) (√ )
(4)关于 x 的方程 ax=a 的解为x=1 .
2. 当 a ,b 满足什么条件时,关于x的方程 2a(x+1)-2=3(2x+b)-1 有解? 解:将原方程化简,得 (2a-6)x=3b-2a+1 ∵原方程有解 1.原方程有唯一解 2.原方程有无数解 ∴2a-6≠0,3b-2a+1为任意数 ∴a≠3,b为任意实数 ∴2a-6=0( ×)
2.填空.
x x a 例1.解关于的 x方程 a ( x 12) 3 2 6
解下列关于 x 的方程. (1) ax b bx
随堂演练
(2)x 3( x 1)
kx k
例2.已知关于x 的方程a(3x-2)+b(2x-3)=8x-3b+4有无数解, 求b的值. 解:将原方程化简,得 (3x+2b-8)x=2a+4 ∵原方程有无数解 ∴ 3a+2b-8=0 , 2a+4=0 ∴a=-2 , b=7
含字母系数的方程 的解法
武汉实验外国语学校 余聪焕
复习回顾
1.概念 方程: 含有未知数的等式叫做方程. 方程的解: 使方程中等号左右两边相等的未知数的值叫 做方程的解.
回顾解一元一次方程的过程
解:去分母,得
去括号,得 移项,得
2 x 1 10 x 1 1 3 6
22 x 1 10 x 1 6
含字母系数的一元一次方程

含字母系数的一元一次方程引言一元一次方程是代数中最基本的方程类型之一。
在解一元一次方程时,我们通常会遇到含有字母系数的情况。
这种方程的解法与常规的一元一次方程类似,但需要特别注意字母系数的处理。
本文将介绍如何解含有字母系数的一元一次方程的步骤和技巧。
步骤解含有字母系数的一元一次方程的一般步骤如下:1.整理方程,将字母系数与常数项分开;2.使用移项原则,将含有字母的项移至方程的一边,将常数项移至另一边;3.化简方程,通过合并同类项简化方程;4.根据字母系数的类型,分别处理解方程的情况。
解字母系数为正数的一元一次方程当方程中的字母系数为正数时,解方程的步骤如下:1.整理方程,保证字母系数与常数项分开;2.使用移项原则,将含有字母的项移至方程的一边,将常数项移至另一边;3.化简方程,通过合并同类项简化方程;4.将常数项除以字母系数,得到方程的根。
例如,考虑方程 2x + 5 = 15,我们可以按照上述步骤解方程:1.整理方程,将字母系数与常数项分开:2x = 15 - 5;2.使用移项原则,将含有字母的项移至方程的一边,将常数项移至另一边:2x = 10;3.化简方程,通过合并同类项简化方程:x = 10/2;4.计算常数项除以字母系数,得到方程的解:x = 5。
因此,方程 2x + 5 = 15 的解为 x = 5。
解字母系数为负数的一元一次方程当方程中的字母系数为负数时,解方程的步骤与解字母系数为正数的方程类似,只需要注意符号的处理。
例如,考虑方程 -3x - 8 = 4,我们可以按照以下步骤解方程:1.整理方程,将字母系数与常数项分开:-3x = 4 + 8;2.使用移项原则,将含有字母的项移至方程的一边,将常数项移至另一边:-3x = 12;3.化简方程,通过合并同类项简化方程:x = 12/-3;4.计算常数项除以字母系数,得到方程的解:x = -4。
因此,方程 -3x - 8 = 4 的解为 x = -4。
关于含有字母系数方程的解法

关于含有字母系数方程的解法知识总结归纳:含有字母系数的方程和只含有数字系数的一元一次方程的解法是相同的,但用含有字母的式子去乘以或除以方程的两边,这个式子的值不能为零。
公式变形实质上是解含有字母系数的方程对于含字母系数的方程,通过化简,一般归结为解方程ax b =型,讨论如下: (1)当a ≠0时,此时方程ax b =为关于x 的一元一次方程,解为:x b a=(2)当a =0时,分以下两种情况:<1>若b =0,原方程变为00x =,为恒等时,此时x 可取任意数,故原方程有无数个解;<2>若b ≠0,原方程变为00x b b =≠(),这是个矛盾等式,故原方程无解。
含字母系数的分式方程主要有两类问题:(一)求方程的解,其中包括:字母给出条件和未给出条件:(二)已知方程解的情况,确定字母的条件。
下面我们一起来学习公式变形与字母系数方程 1. 求含有字母系数的一元一次方程的解 例1. 解关于x 的方程2362ax b bx ac a b -=+≠c ()分析:将x 以外字母看作数字,类似解一元一次方程,但注意除数不为零的条件。
解:去分母得:1226ax bc bx ac -=+ 移项,得1262ax bx bc ac -=+()1262212602126a b x bc aca ba b x bc ac a b-=+≠∴-≠∴=+-2. 求含字母系数的分式方程的解 例2. 解关于x 的方程aax bb bx ax-++=2分析:字母未给出条件,首先挖掘隐含的条件,分情况讨论。
解:若a 、b 全不为0,去分母整理,得 ()b a x ab 222-=-对b a 22-是否为0分类讨论:(1)当b a 220-=,即a b =±时,有02⋅=-x ab ,方程无解。
(2)当b a 220-≠,即a b ≠±时,解之,得x ab a b=-2若a 、b 有一个为0,方程为12xx=,无解若a 、b 全为0,分母为0,方程无意义 检验:当x ab a b=-2时,公分母()()ax b bx a -+≠0,所以当ab a b ≠≠±0,时,x ab a b=-2是原方程的解。
二元一次方程组“看错”系数问题解法例析

1、“看错”系数问题解法例析2、含字母系数的方程组的解法3、二元一次方程组错解剖析4、二元一次方程组名题赏析5、列方程组解调配问题两例6、图象法解二元一次方程组7、解好方程组的图表信息题8、领悟方程组中数学思想1、“看错”系数问题解法例析在解二元一次方程组时,由于一时粗心大意出现看错系数、抄错符号的现象,这样求得的是错解,其实错解中也包含着一些合理成份,只要我们细心领会,就会发现正确信息,从而巧妙求出原方程组中字母系数的值. 例1.在解方程组222ax cy x by a +=⎧⎨+=⎩时,甲同学正确解得32x y =⎧⎨=-⎩,乙同学由于把b 抄写错了,解得22x y =-⎧⎨=⎩,请问b 的值应该是多少?乙同学错把b 错抄写成了几?分析:甲同学解对了,因此他的解满足原方程组;乙同学只写错了b 的值,但他所求得的错解适合看错的方程组,当然也就满足2ax cy +=.析解:把32x y =⎧⎨=-⎩代入2ax cy +=,得322a c -= …①把22x y =-⎧⎨=⎩也代入2ax cy +=,得222a c -+= …②解由①、②组成的方程组,得45a c =⎧⎨=⎩.把32x y =⎧⎨=-⎩和a =4代入方程22x by a +=,得628b -=,所以b =-1.再把22x y =-⎧⎨=⎩和a =4代入方程22x by a +=,得428b -+=,所以b =6.所以的值应该是-1,乙同学错写成了6.例2.在解方程组134ax by cx y -=⎧⎨-=⎩时,甲同学因看错了b 的符号,从而求得解为32x y =⎧⎨=⎩,乙同学因看错了c 的值,从而求得解为51x y =⎧⎨=⎩,试求a ,b ,c 的值.析解:因为甲同学仅看错了b 的符号,所以他的错解实际上满足看错了的方程组:134ax by cx y =⎧⎨-=+⎩,因此把32x y =⎧⎨=⎩代入13ax by +=,得3132a b +=; 把32x y =⎧⎨=⎩代入4cx y -=,得c =2.同理乙同学看错了c 的值,但没看错a ,b 的值.所以把51x y =⎧⎨=⎩代入方程13ax by -=,得513a b -=.于是得到关于a ,b 的方程组3213513a b a b +=⎧⎨-=⎩,解之得32a b =⎧⎨=⎩.所以a =3,b =2,c=2.2、含字母系数的方程组的解法一、给出方程组的解当含有字母系数的方程组的解已经给出时,可先把解直接代入原方程组,构造出关于字母系数的方程,进而求得其值.例1. 若方程组2331x ay bx y -=-⎧⎨+=⎩ 的解是11x y =-⎧⎨=⎩,求a 、b 的值.析解:由方程组解的意义,知11x y =-⎧⎨=⎩满足方程组2331x ay bx y -=-⎧⎨+=⎩,所以有2331a b --=-⎧⎨-+=⎩, 解这个关于a 、b 的方程组,得12a b =⎧⎨=⎩.∴a 、b 的值分别为1,2.二、方程组的解满足关系式当关于方程组的解满足一定的等式的字母求值问题,常常应把方程组中的字母当作已知数,用它的代数式表示方程组的解.再根据满足的等式,构造出关于字母的方程.例2.已知方程组3213325x y m x y m +=⎧⎨-=⎩…①…②的解适合x +y =10,求m 的值.析解:①+②,得x =18m ,所以x =3m .①-②,得4y =8m ,所以y =2m . 把x =3m ,y =2m 代入x +y =10,得 3m +2m =10,解之,得m =2.三、字母系数看错问题在解二元一次方程组时,由于一时粗心大意出现看错系数、抄错符号的现象,这样求得的是错解,其实错解中也包含着一些合理成份,只要我们细心领会,就会发现正确信息,从而巧妙求出原方程组中字母系数的值. 例3.在解方程组222ax cy x by a +=⎧⎨+=⎩时,甲同学正确解得32x y =⎧⎨=-⎩,乙同学由于把b 抄写错了,解得22x y =-⎧⎨=⎩,请问b 的值应该是多少?乙同学错把b 错抄写成了几? 分析:甲同学解对了,因此他的解满足原方程组;乙同学只写错了b 的值,但他所求得的错解适合看错的方程组,当然也就满足2ax cy +=.析解:把32x y =⎧⎨=-⎩代入2ax cy +=,得322a c -= …①把22x y =-⎧⎨=⎩也代入2ax cy +=,得222a c -+= …②解由①、②组成的方程组,得45a c =⎧⎨=⎩.把32x y =⎧⎨=-⎩和a =4代入方程22x by a +=,得628b -=,所以b =-1.再把22x y =-⎧⎨=⎩和a =4代入方程22x by a +=,得428b -+=,所以b =6.所以的值应该是-1,乙同学错写成了6.3、二元一次方程组错解剖析同学们在学习二元一次方程组时,由于对概念理解和解法掌握程度不够,常会出现一些错误.现举几例常见错误,望引起大家注意. 例1.已知方程(a +1)x ||a +(b +1)y12-b =7是关于x 、y 二元一次方程,求2a +3b 的值 .【错解】由题意得:⎩⎨⎧=-=1121||b a ∴ ⎩⎨⎧=±=11b a所以当a =1,b =1时,2a +3b =5; 当a =-1,b =1时,2a +3b =1.剖析:根据二元一次方程定义可知,方程应含有两个未知数且未知数系数不能为0. 正解:(接上)因为a +1≠0,所以 ∴a ≠-1,所以当a =1,b =1时,2a +3b =5; 故,填:5.例2.解方程组⎩⎨⎧-=-=-222y x y x ②①⋯⋯⋯⋯【错解】①-②得: y =4,把y =4 代入②得,x =2,原方程组的解是:⎩⎨⎧==42y x .剖析:错在①-②在上的符号方面,正解:①-②得:-y =4, 解得:y =-4,把y =-4 代入②得,x =-6,原方程组的解是:⎩⎨⎧-=-=46y x .例3.解方程组⎪⎩⎪⎨⎧=--+-=+--8)2(2)(3142y x y x yx y x ②①⋯⋯⋯⋯【错解】一:①×4得:2(x -y )-(x +y )=-1,剖析:去分母时漏乘 .(你来填一填!) 【错解】二;①×4得:2x -2y -x +y =-1, 剖析:忽略 .【错解】三:由②得:3x +y -4x -y =8 剖析:忘了括号前的 .正解:①×4得:2(x -y )-(x +y )=-4, 2x -2y -x -y =-4,x -3y =-4, ……③②变形得:3x +3y -4x +2y =8,-x +5y =8, ……④③+④,得:y =2把y =2带入③,得:x =2,这个方程组的解为:⎩⎨⎧==22y x你填对了吗?三个空分别是:不含分母的项;分数线的括号作用;负号和乘法分配律.4、二元一次方程组名题赏析一些数学问题初看似乎与二元一次方程组没有关联,但若运用二元一次方程组来解却简单.例1.如图1,射线OC 的端点O 在直线AB 上,∠AOC 的度数比∠BOC 的2倍多10°,求∠AOC 和∠BOC 的度数.【分析】本题有一隐含条件是:∠AOC 和∠BOC 组成平角180°,再依据已知中的x ,y 的另一个关系:∠AOC 的度数比∠BOC 的2倍多10°,又可得一方程. 解:设∠AOC 和∠BOC 的度数分别为x 、y ,依题意得 ⎩⎨⎧+==+102180y x y x , 解(略).还有些实际应用问题有时比较复杂,但也常利用方程和方程组来解决.例2.某通讯器材商店计划用6万元从厂家购进若干部新型手机,以满足市场需求.已知一厂家生产三种型号的手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.若商场同时购进其中两种..不同型号的手机共40部,并将6万元恰好用完.请你帮助商场算一下如何购买. 【分析】由于商场只同时购进三种手机中的两种..不同型号的手机40部,所以商店可以有购甲乙、乙丙、甲丙三种选择,因此本题应列三个二元一次方程组的应用问题叠加在一起,所以应分情况来解答.解:设甲、乙、丙三种型号的手机分别购买x 部、y 部、z 部,① 若选购甲乙两种型号,根据题意可列方程组⎩⎨⎧=+=+60000600180040y x y x ,解这个方程组,得⎩⎨⎧==1030y x ;图10C B A② 若选购乙丙两种型号,则有方程组⎩⎨⎧=+=+60000120060040z y z y ,解这个方程组,得⎩⎨⎧=-=6020z y ;③ 若选购甲丙两种型号,则有方程组⎩⎨⎧=+=+600001200180040z x z x ,解这个方程组,得⎩⎨⎧==2020z x ;第二种方案不行,舍去。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
含字母系数的方程(组)的解法
✓ 知识梳理
说明:本讲内容如果没有特别说明,在含有字母系数的方程(组)或不等式(组)中,一般用a 、b 、c 等表示已知数,用x 、y 、z 表示未知数。
回顾上次课的预习思考内容
➢ 形如ax b =的方程的解的情况讨论:
◆ 当0a ≠时,方程有唯一解,为b x a
=(等式基本性质) ◆ 当0,0a b ==时,即00x ⨯=,方程有无数个解,即解为一切数
◆ 当0,0a b =≠时,方程无解
➢ 二元一次方程组111222
a x
b y
c a x b y c +=⎧⎨+=⎩的解的可能性:
◆ 当1112
a b b b ≠时,方程组有唯一的解; ◆ 当111122
a b c b b c =≠,方程组无解; ◆ 当
111122a b c b b c ==时,方程组有无数多个解 练习: 1.关于x 的方程53ax x =-无解,则a = ;
2.关于x 的方程2354mx x n -=-无解,则m ,n ;
3.已知二元一次方程组3221ax y x y +=⎧⎨-=⎩
无解,则a 的值是( ) A .a =-2 B .a =6 C .a =2 D .a =-6
参考答案:1、5; 2、5324
m n =≠、; 3、D ✓ 题型分析
例题1:解关于x 的方程(1)32m x x -=+
教法说明:首先回顾下等式的基本性质:等式的两边同乘以(除以)同一个不为零的数,等
式的性质不变
参考答案:
试一试:解关于x 的方程23ax b x -=-
例题2:解关于x 、y 的二元一次方程组 2(1)(20)3(2)mx y n m n nx y m +=⎧+≠⎨-=⎩
教法说明:解关于字母系数的二元一次方程组通常用加减消元比较简便
参考答案:
试一试:解关于x 、y 的方程组:1(0,0)2ax by a b bx ay -=⎧≠≠⎨
+=⎩ 参考答案:
例题3:若方程组223
x y m x y +=-⎧⎨-=⎩的解x 与y 均为正数,求m 的取值范围.
教法说明:要求学生会解简单的含字母系数的二元一次方程组,将本方程组中字母m 的看成是常数
参考答案: 解:解方程组得1383m x m y +⎧=⎪⎪⎨-⎪=⎪⎩
因为x 与y 均为正数,即00x y >⎧⎨>⎩ 所以103803
m m +⎧>⎪⎪⎨-⎪>⎪⎩. 解不等式组得, 8m >
所以m 的取值范围是8m >.
试一试:已知关于x y 、的二元一次方程组26322x y m x y m
+=⎧⎨-=⎩的解满足二元一次方程
435
x y -=,求m 的值。
参考答案:
解:解方程组得22x m y m
=⎧⎨=⎩
将22x m y m
=⎧⎨=⎩代入435x y -= 得, 15m = 例题4:关于x 、y 的二元一次方程组 343232x y mx y +=⎧⎨
+=⎩的解中关于x 与y 的和等于1,求m
的值。
教法说明:可先通过x 与y 的和等于1得 1x y +=再和343x y +=构成二元一次方程组 参考答案:
试一试:如果方程组4232x y x y k -=⎧⎨
-=⎩
的解满足0x y +>,求k 的取值范围. 参考答案: 方法一:解关于字母系数的二元一次方程组得45645k x k y -⎧=⎪⎪⎨-⎪=⎪⎩
再根据0x y +>得 464055
k k --+> 解不等式得2k < 方法二:由(1)(2)- 得,2x y k +=-
因为0x y +>,所以20k -> 解不等式得:2k <
✓ 达标检测
此环节设计时间在30分钟左右(20分钟练习+20分钟互动讲解)。
1.已知关于x 的方程2(1)(5)3a x a x b -=-+无解,求a 、b 的取值范围
2.如方程组3921ax y x y +=⎧⎨-=⎩
无解,则a =_____________。
3.若方程组32x y ax by b
+=⎧⎨-=⎩的解,x y 也满足方程23x y -=,则,a b 应满足的关系为
________________. 4.如果a 、b 为定值,关于x 的方程
2236kx a x bk +-=+,无论k 为何值时,它的解总是1,求a 、b 的值。
5.甲、乙两人解方程组415
x by ax by -=-⎧⎨+=⎩,甲因看错a ,解得23x y =⎧⎨=⎩;乙将其中一个方程的b
写成了它的相反数,解得11
x y =-⎧⎨=-⎩.求a 、b 的值.
6.已知方程组451x y ax by -=⎧⎨+=-⎩和方程组62183418
x y ax by +=⎧⎨-=⎩有相同的解,求a 、b 的值.
参考答案:1.510,39
a b =≠-; 2.6a =-; 3.23a b =; 4.提示:把方程看作是关于k 的方程,则这个关于k 的方程的解为一切数 13,42a b =
=-; 5.2,3a b =-=; 6.45262183
2133418
11
x y x x y y x ax by y ax by a b -==⎧⎧⎨⎨+==⎩⎩=+=-⎧⎧⎨⎨=-=⎩⎩=⎧⎨=-⎩解:由解得将代入解得 补充类试题:
1.要使方程组21620
x ay x y +=⎧⎨-=⎩有正整数解,求整数a 的值。
2.已知关于x ,y 的方程组
分别求出当a 为何值时,方程组(1)有唯一一组解;(2)无解;(3)有无穷多组解. 解:解由①得,2y=(1+a )-ax ,③
将③代入②得,(a-2)(a+1)x=(a-2)(a+2),④
(1)当(a-2)(a+1)≠0,即a ≠2且a ≠-1时,方程④有唯一解x=1
+a 2+a ,将此x 值代入③有y=1)
+2(a 1,因而原方程组有唯一一组解; (2)当(a-2)(a+1)=0且(a-2)(a+2)≠0时,即a=-1时,方程④无解,因此原方程组无解;
(3)当(a-2)(a+1)=0且(a-2)(a+2)=0时,即a=2时,方程④有无穷多个解,因此原方程组有无穷多组解.
解析
先把①中y 的值代入②,使方程变为只含x 的一元一次方程,根据x 的系数讨论方程组(1)有唯一一组解;(2)无解;(3)有无穷多组解时a 的取值即可.
本题考查的是解一元一次方程组,此类题目与一元一次方程一样,含有字母系数的一次方程组求解时也要进行讨论,一般是通过消元,归结为一元一次方程ax=b 的形式进行讨论.但必须特别注意,消元时,若用含有字母的式子去乘或者去除方程的两边时,这个式子的值不能等于零.
3. 已知 0)3(12
12=-+-b a 解方程组⎩⎨⎧=+=-5
13by x y ax
略解:因为
0)3(1212=-+-b a 所以
012
1=-a 03=-b 2=a 3=b 原方程组 解得 ⎩⎨⎧==12y x 4.求适合方程组⎩⎨⎧=++=-+0
5430432z y x z y x 求 z y x z y x +-++ 的值。
略解:把z 看作已知数。
⎩⎨⎧-=+=+z y x z y x 543432 解之得 ⎩
⎨⎧=-=z y z x 2231 所以 13
2528528==--=+-++z z z y x z y x 方法:把某个未知数,看做已知数,其它的未知数都用这个字母表示,代入所求的关系式,从而达到求解的目的。
5.解方程组⎩⎨⎧=-=+872y cx by ax 时,本应解出⎩⎨⎧-==23y x 由于看错了系数c,从而得到解⎩⎨⎧=-=2
2y x
试求a+b+c 的值。
方法:是正确的解代入任何一个方程当中都对,再把看错的解代入没有看错的方程中去从而,求出参数的值。
8273=-⨯-⨯)(c 2-=c
把⎩⎨⎧-==23y x 和⎩⎨⎧=-=2
2y x 代入到ax+by=2中,得到一个关于a 、b 的方程组。
322222a b a b -=⎧⎨-+=⎩,解得45a b =⎧⎨=⎩
所以7254=-+=++c b a
✓ 学习总结
✓ 课后作业
【巩固练习】
⎩⎨⎧=+=-513by x y ax
1.已知关于x ,y 的两个方程组127x t x y +=⎧⎨-=⎩与382x y x y b
+=⎧⎨+=⎩的解相同,则a =_____,b =_____。
2.当a ____________,b ___________时,关于x ,y 的方程组212ax y x y b +=⎧⎨
+=⎩无解。
3.解关于x 的方程2(3)15(23)326
kx x +++= 4.已知m 是正整数,且方程组436626
x y x my -=⎧⎨+=⎩有正整数解,求整数m 的值。
5.当a 为何值时,方程组48326ax y x y +=⎧⎨+=⎩
的解是正数? 6.已知方程组232x y x my n
+=⎧⎨+=⎩在什么情况下(1)有唯一解?(2)无解?(3)有无数解?
参考答案:1、2, 1; 2、14,2a b =≠
; 3、4m =±; 4、5502
2k k x =≠=当时,解为一切实数;当时, 5、4a <; 6、
44646m m n m n ≠=≠==当时,唯一解;当,时,无解;当,时,无数解;。