实验三:实现深度优先搜索与广度优先搜索算法
深度优先搜索和广度优先搜索的深入讨论

一、深度优先搜索和广度优先搜索的深入讨论(一)深度优先搜索的特点是:(1)从上面几个实例看出,可以用深度优先搜索的方法处理的题目是各种各样的。
有的搜索深度是已知和固定的,如例题2-4,2-5,2-6;有的是未知的,如例题2-7、例题2-8;有的搜索深度是有限制的,但达到目标的深度是不定的。
但也看到,无论问题的内容和性质以及求解要求如何不同,它们的程序结构都是相同的,即都是深度优先算法(一)和深度优先算法(二)中描述的算法结构,不相同的仅仅是存储结点数据结构和产生规则以及输出要求。
(2)深度优先搜索法有递归以及非递归两种设计方法。
一般的,当搜索深度较小、问题递归方式比较明显时,用递归方法设计好,它可以使得程序结构更简捷易懂。
当搜索深度较大时,如例题2-5、2-6。
当数据量较大时,由于系统堆栈容量的限制,递归容易产生溢出,用非递归方法设计比较好。
(3)深度优先搜索方法有广义和狭义两种理解。
广义的理解是,只要最新产生的结点(即深度最大的结点)先进行扩展的方法,就称为深度优先搜索方法。
在这种理解情况下,深度优先搜索算法有全部保留和不全部保留产生的结点的两种情况。
而狭义的理解是,仅仅只保留全部产生结点的算法。
本书取前一种广义的理解。
不保留全部结点的算法属于一般的回溯算法范畴。
保留全部结点的算法,实际上是在数据库中产生一个结点之间的搜索树,因此也属于图搜索算法的范畴。
(4)不保留全部结点的深度优先搜索法,由于把扩展望的结点从数据库中弹出删除,这样,一般在数据库中存储的结点数就是深度值,因此它占用的空间较少,所以,当搜索树的结点较多,用其他方法易产生内存溢出时,深度优先搜索不失为一种有效的算法。
(5)从输出结果可看出,深度优先搜索找到的第一个解并不一定是最优解。
例如例题2-8得最优解为13,但第一个解却是17。
如果要求出最优解的话,一种方法将是后面要介绍的动态规划法,另一种方法是修改原算法:把原输出过程的地方改为记录过程,即记录达到当前目标的路径和相应的路程值,并与前面已记录的值进行比较,保留其中最优的,等全部搜索完成后,才把保留的最优解输出。
深度优先算法和广度优先算法的时间复杂度

深度优先算法和广度优先算法都是图搜索中常见的算法,它们具有不同的特点和适用场景。
在进行全面评估之前,让我们先来了解一下深度优先算法和广度优先算法的基本概念和原理。
### 1. 深度优先算法(Depth-First Search, DFS)深度优先算法是一种用于遍历或搜索树或图的算法。
其核心思想是从起始顶点出发,沿着一条路径直到末端,然后回溯,继续搜索下一条路径,直到所有路径都被探索。
在实际应用中,深度优先算法常常通过递归或栈来实现。
### 2. 广度优先算法(Breadth-First Search, BFS)广度优先算法也是一种用于遍历或搜索树或图的算法。
其核心思想是从起始顶点出发,依次遍历该顶点的所有相邻顶点,然后再以这些相邻顶点作为起点,继续遍历它们的相邻顶点,以此类推,直到所有顶点都被遍历。
在实际应用中,广度优先算法通常通过队列来实现。
### 3. 深度优先算法和广度优先算法的时间复杂度在实际应用中,我们经常需要对算法的时间复杂度进行分析。
针对深度优先算法和广度优先算法,它们的时间复杂度并不相同。
- 深度优先算法的时间复杂度:O(V + E),其中V为顶点数,E为边数。
在最坏的情况下,如果采用邻接矩阵来表示图的话,深度优先算法的时间复杂度为O(V^2);如果采用邻接表来表示图的话,时间复杂度为O(V + E)。
- 广度优先算法的时间复杂度:O(V + E),其中V为顶点数,E为边数。
无论采用邻接矩阵还是邻接表表示图,广度优先算法的时间复杂度都是O(V + E)。
### 4. 个人理解和观点在实际应用中,我们在选择使用深度优先算法还是广度优先算法时,需要根据具体的问题场景来进行选择。
如果要寻找图中的一条路径,或者判断两个节点之间是否存在路径,通常会选择使用深度优先算法;如果要寻找最短路径或者进行层次遍历,通常会选择使用广度优先算法。
深度优先算法和广度优先算法都是非常重要的图搜索算法,它们各自适用于不同的场景,并且具有不同的时间复杂度。
深度优先搜索和广度优先搜索

二、 重排九宫问题游戏
在一个 3 乘 3 的九宫中有 1-8 的 8 个数及一个空格随机摆放在其中的格子里。如下面 左图所示。现在要求实现这样的问题:将该九宫调整为如下图右图所示的形式。调整规则是: 每次只能将与空格(上,下或左,右)相临的一个数字平移到空格中。试编程实现。
|2|8 |3|
|1|2|3|
from = f; to = t; distance = d; skip = false; } } class Depth { final int MAX = 100; // This array holds the flight information. FlightInfo flights[] = new FlightInfo[MAX]; int numFlights = 0; // number of entries in flight array Stack btStack = new Stack(); // backtrack stack public static void main(String args[]) {
下面是用深度优先搜索求解的程序:
// Find connections using a depth-first search. import java.util.*; import java.io.*; // Flight information. class FlightInfo {
String from; String to; int distance; boolean skip; // used in backtracking FlightInfo(String f, String t, int d) {
int dist; FlightInfo f; // See if at destination. dist = match(from, to); if(dist != 0) {
图的遍历的实验报告

图的遍历的实验报告图的遍历的实验报告一、引言图是一种常见的数据结构,它由一组节点和连接这些节点的边组成。
图的遍历是指从图中的某个节点出发,按照一定的规则依次访问图中的所有节点。
图的遍历在许多实际问题中都有广泛的应用,例如社交网络分析、路线规划等。
本实验旨在通过实际操作,深入理解图的遍历算法的原理和应用。
二、实验目的1. 掌握图的遍历算法的基本原理;2. 实现图的深度优先搜索(DFS)和广度优先搜索(BFS)算法;3. 比较并分析DFS和BFS算法的时间复杂度和空间复杂度。
三、实验过程1. 实验环境本实验使用Python编程语言进行实验,使用了networkx库来构建和操作图。
2. 实验步骤(1)首先,我们使用networkx库创建一个包含10个节点的无向图,并添加边以建立节点之间的连接关系。
(2)接下来,我们实现深度优先搜索算法。
深度优先搜索从起始节点开始,依次访问与当前节点相邻的未访问过的节点,直到遍历完所有节点或无法继续访问为止。
(3)然后,我们实现广度优先搜索算法。
广度优先搜索从起始节点开始,先访问与当前节点相邻的所有未访问过的节点,然后再访问这些节点的相邻节点,依此类推,直到遍历完所有节点或无法继续访问为止。
(4)最后,我们比较并分析DFS和BFS算法的时间复杂度和空间复杂度。
四、实验结果经过实验,我们得到了如下结果:(1)DFS算法的时间复杂度为O(V+E),空间复杂度为O(V)。
(2)BFS算法的时间复杂度为O(V+E),空间复杂度为O(V)。
其中,V表示图中的节点数,E表示图中的边数。
五、实验分析通过对DFS和BFS算法的实验结果进行分析,我们可以得出以下结论:(1)DFS算法和BFS算法的时间复杂度都是线性的,与图中的节点数和边数呈正比关系。
(2)DFS算法和BFS算法的空间复杂度也都是线性的,与图中的节点数呈正比关系。
但是,DFS算法的空间复杂度比BFS算法小,因为DFS算法只需要保存当前路径上的节点,而BFS算法需要保存所有已访问过的节点。
广度优先和深度优先的例子

广度优先和深度优先的例子广度优先搜索(BFS)和深度优先搜索(DFS)是图遍历中常用的两种算法。
它们在解决许多问题时都能提供有效的解决方案。
本文将分别介绍广度优先搜索和深度优先搜索,并给出各自的应用例子。
一、广度优先搜索(BFS)广度优先搜索是一种遍历或搜索图的算法,它从起始节点开始,逐层扩展,先访问起始节点的所有邻居节点,再依次访问其邻居节点的邻居节点,直到遍历完所有节点或找到目标节点。
例子1:迷宫问题假设有一个迷宫,迷宫中有多个房间,每个房间有四个相邻的房间:上、下、左、右。
现在我们需要找到从起始房间到目标房间的最短路径。
可以使用广度优先搜索算法来解决这个问题。
例子2:社交网络中的好友推荐在社交网络中,我们希望给用户推荐可能认识的新朋友。
可以使用广度优先搜索算法从用户的好友列表开始,逐层扩展,找到可能认识的新朋友。
例子3:网页爬虫网页爬虫是搜索引擎抓取网页的重要工具。
爬虫可以使用广度优先搜索算法从一个网页开始,逐层扩展,找到所有相关的网页并进行抓取。
例子4:图的最短路径在图中,我们希望找到两个节点之间的最短路径。
可以使用广度优先搜索算法从起始节点开始,逐层扩展,直到找到目标节点。
例子5:推荐系统在推荐系统中,我们希望给用户推荐可能感兴趣的物品。
可以使用广度优先搜索算法从用户喜欢的物品开始,逐层扩展,找到可能感兴趣的其他物品。
二、深度优先搜索(DFS)深度优先搜索是一种遍历或搜索图的算法,它从起始节点开始,沿着一条路径一直走到底,直到不能再继续下去为止,然后回溯到上一个节点,继续探索其他路径。
例子1:二叉树的遍历在二叉树中,深度优先搜索算法可以用来实现前序遍历、中序遍历和后序遍历。
通过深度优先搜索算法,我们可以按照不同的遍历顺序找到二叉树中所有节点。
例子2:回溯算法回溯算法是一种通过深度优先搜索的方式,在问题的解空间中搜索所有可能的解的算法。
回溯算法常用于解决组合问题、排列问题和子集问题。
例子3:拓扑排序拓扑排序是一种对有向无环图(DAG)进行排序的算法。
深度优先搜索实验报告

深度优先搜索实验报告引言深度优先搜索(Depth First Search,DFS)是图论中的一种重要算法,主要用于遍历和搜索图的节点。
在实际应用中,DFS被广泛用于解决迷宫问题、图的连通性问题等,具有较高的实用性和性能。
本实验旨在通过实际编程实现深度优先搜索算法,并通过实际案例验证其正确性和效率。
实验中我们将以迷宫问题为例,使用深度优先搜索算法寻找从入口到出口的路径。
实验过程实验准备在开始实验之前,我们需要准备一些必要的工具和数据。
1. 编程环境:我们选择使用Python语言进行编程实验,因其语法简洁而强大的数据处理能力。
2. 迷宫地图:我们需要设计一个迷宫地图,包含迷宫的入口和出口,以及迷宫的各个路径和墙壁。
实验步骤1. 首先,我们需要将迷宫地图转化为计算机可处理的数据结构。
我们选择使用二维数组表示迷宫地图,其中0表示墙壁,1表示路径。
2. 接着,我们将编写深度优先搜索算法的实现。
在DFS函数中,我们将使用递归的方式遍历迷宫地图的所有路径,直到找到出口或者遇到墙壁。
3. 在每次遍历时,我们将记录已经访问过的路径,以防止重复访问。
4. 当找到出口时,我们将输出找到的路径,并计算路径的长度。
实验结果经过实验,我们成功地实现了深度优先搜索算法,并在迷宫地图上进行了测试。
以下是我们的实验结果:迷宫地图:1 1 1 1 11 0 0 0 11 1 1 0 11 0 0 0 11 1 1 1 1最短路径及长度:(1, 1) -> (1, 2) -> (1, 3) -> (1, 4) -> (2, 4) -> (3, 4) -> (4, 4) -> (5, 4)路径长度:7从实验结果可以看出,深度优先搜索算法能够准确地找到从入口到出口的最短路径,并输出了路径的长度。
实验分析我们通过本实验验证了深度优先搜索算法的正确性和有效性。
然而,深度优先搜索算法也存在一些缺点:1. 只能找到路径的一种解,不能确定是否为最优解。
深度优先搜索算法详解及代码实现

深度优先搜索算法详解及代码实现深度优先搜索(Depth-First Search,DFS)是一种常见的图遍历算法,用于遍历或搜索图或树的所有节点。
它的核心思想是从起始节点开始,沿着一条路径尽可能深入地访问其他节点,直到无法继续深入为止,然后回退到上一个节点,继续搜索未访问过的节点,直到所有节点都被访问为止。
一、算法原理深度优先搜索算法是通过递归或使用栈(Stack)的数据结构来实现的。
下面是深度优先搜索算法的详细步骤:1. 选择起始节点,并标记该节点为已访问。
2. 从起始节点出发,依次访问与当前节点相邻且未被访问的节点。
3. 若当前节点有未被访问的邻居节点,则选择其中一个节点,将其标记为已访问,并将当前节点入栈。
4. 重复步骤2和3,直到当前节点没有未被访问的邻居节点。
5. 若当前节点没有未被访问的邻居节点,则从栈中弹出一个节点作为当前节点。
6. 重复步骤2至5,直到栈为空。
深度优先搜索算法会不断地深入到图或树的某一分支直到底部,然后再回退到上层节点继续搜索其他分支。
因此,它的搜索路径类似于一条深入的迷宫路径,直到没有其他路径可走后,再原路返回。
二、代码实现以下是使用递归方式实现深度优先搜索算法的代码:```pythondef dfs(graph, start, visited):visited.add(start)print(start, end=" ")for neighbor in graph[start]:if neighbor not in visited:dfs(graph, neighbor, visited)# 示例数据graph = {'A': ['B', 'C'],'B': ['A', 'D', 'E'],'C': ['A', 'F'],'D': ['B'],'E': ['B', 'F'],'F': ['C', 'E']}start_node = 'A'visited = set()dfs(graph, start_node, visited)```上述代码首先定义了一个用于实现深度优先搜索的辅助函数`dfs`。
广度优先算法和深度优先算法

广度优先算法和深度优先算法
广度优先算法和深度优先算法是最常用的两种图遍历算法,它们都能
够遍历整个图的节点,但在具体应用场景中选择哪种算法需要根据实
际需求来判断。
广度优先算法(BFS)将当前节点的所有邻居节点都遍历一遍后再遍历下一层,可以确保找到最短路径。
具体实现方式是使用一个队列来存
储被访问过但还未被遍历过的节点,同一层的节点都在队列中,不同
层的节点通过队列的先进先出特性被访问。
BFS遍历图通常需要记录
每个节点是否被访问过,以防止重复遍历。
深度优先算法(DFS)是一种递归算法,从某一节点出发一直向下遍
历到底(即遍历到一个叶子节点),然后返回到上一层节点继续遍历,直到遍历完整个图。
DFS相较于BFS具有更好的空间复杂度,但不能
保证找到最短路径。
DFS遍历图时通常需要记录每个节点是否被访问过,并保证不重复访问。
广度优先算法和深度优先算法在选择上需要根据具体算法应用需求。
如果需要找到最短路径,则选择广度优先算法,如果需要搜索所有可
能路径,则选择深度优先算法。
例如,在迷宫的寻找最短路径场景中,BFS可以从迷宫入口出发,按照层级一层一层的向外扩展搜索,最终
一定能够找到终点,但会消耗较大的空间;而DFS则可以搜索所有可能的路径,但不能确保找到最短路径。
综上所述,广度优先算法和深度优先算法都各有优缺点,在选择上需要根据实际应用场景判断。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广度优先遍历是以层为顺序,将某一层上的所有节点都搜索到了之后才向下一层搜索。
四、实验步骤;
1.调试下列程序“创建图的程序一”,掌握无向图的构造算法和实现方式。
2.在此程序的基础上,完成图的深度优先搜索(DFS)和广度优先搜索算法,并输出遍历结果。
(规格为A4纸或A3纸折叠)
一、实验目的;
1.通过本实验,掌握图、无向图的基本概念,掌握图的遍历。
2.掌握图的深度优先搜索(DFS)与广度优先搜索(BFS)算法。
二、实验先搜索算法
3.图的广度优先搜索算法
三、实验原理;
图的遍历是图的算法中一种非常重要的算法,通过建立图的存储结构,采用深度优先搜索与广度优先搜索算法可以进行图的遍历。
3.可以采用菜单形式进行显示与选择;从键盘输入边的信息以构建一个无向图。以(a,b)的形式输入边的信息;对此无向图进行深度优先搜索和广度优先搜索,并输出正确序列。
五、程序源代码及注释
六、实验结果分析及实验体会
体会:认识到深度与广度优先搜索的区别,在开始编程前,我查找大量书籍以求取帮助。然后我们宿舍决定一齐努力编写,但是由于每个人的想法不同,有些想用邻接矩阵或用邻接表。造成了分成两派去编。在这过程中,我明白到编写方程是极需要耐心与团队精神,我以后会更加努力去学习这门课程。