数字逻辑实验三实验四
数字逻辑实验四

《数字逻辑实验》报告五:中规模元件及综合设计一.中规模时序元件测试1.实验目的:在计数器74LS161芯片上,分别用反馈置数法和清零法构造模10计数器,并进行测试。
2.原理:74LS161是四位可预置数二进制加计数器,采用16脚双列直插式封装的中规模集成电路。
外形如下图。
RD异步复位输入端;ET、EP计数使能输入端;CP 时钟输入端;RCO 是进位输出端;VCC电源输入端;GND接地端;A、B、C、D 预置数据输入端LD预置端;QA、QB、QC、QD 计数值输出端。
在复位端高(RD)电平、预置端(LD)低电平时为同步预置功能,即时钟信号能使输出状态QA、QB、QC、QD等于并行输入预置数A、B、C、D。
在复位和预置端都为无效电平时,计数使能端输入使能信号(ET、EP=1)时,74161为模16加法计数功能。
而ET、EP =0 时,实现状态保持功能。
在QA、QB、QC、QD=1111时,进位输出端RCO=1 。
1)反馈清零法:74LS161从Q3Q2Q1Q0=0000开始计数,经过M-1个时钟脉冲状态对应二进制数最大,下一个CP后计数器应复位,开始新一轮M计数。
复位信号在M个CP时产生,所以复位信号在Q3Q2Q1Q0=1100时,使计数器复位Q3Q2Q1Q0=0000。
由状态1100产生的低位电平复位信号可用与非门实现。
即/RD=/Q3Q2。
接线图与状态图如图所示2)反馈置数法一:通过反馈产生置数信号/LD,将预置的D3D2D1D0数预置到输出端。
预置数D3D2D1D0=0000,应在Q3Q2Q1Q0=1011时预置端变为低电平,故/LD=/Q3Q1Q0 接线图和状态图如图所示3)反馈置数法二:预置数D3D2D1D0=0100,进位输出CO作为预置信号/LD,即/LD=/CO。
电路图与时序图如图所示3.实验步骤:①用74LS161芯片按照实验指导书中,反馈置零法和反馈置数法的接线图,分别连接芯片引脚;②进行测试。
数字电路-实验指导书汇总

数字电路-实验指导书汇总TPE-D型系列数字电路实验箱数字逻辑电路实验指导书实验⼀门电路逻辑功能及测试实验⼆组合逻辑电路(半加器、全加器及逻辑运算)实验三时序电路测试及研究实验四集成计数器及寄存器实验⼀门电路逻辑功能及测试⼀、实验⽬的1、熟悉门电路逻辑功能。
2、熟悉数字电路实验箱及⽰波器使⽤⽅法。
⼆、实验仪器及器件1、双踪⽰波器;2、实验⽤元器件74LS00 ⼆输⼊端四与⾮门 2 ⽚74LS20 四输⼊端双与⾮门 1 ⽚74LS86 ⼆输⼊端四异或门 1 ⽚74LS04 六反相器 1 ⽚三、预习要求1、复习门电路⼯作原理及相应逻辑表达式。
2、熟悉所⽤集成电路的引线位置及各引线⽤途。
3、了解双踪⽰波器使⽤⽅法。
四、实验内容实验前检查实验箱电源是否正常。
然后选择实验⽤的集成电路,按⾃⼰设计的实验接线图接好连线,特别注意Vcc 及地线不能接错(Vcc=+5v,地线实验箱上备有)。
线接好后经实验指导教师检查⽆误可通电实验。
实验中改动接线须先断开电源,接好后在通电实验。
1、测试门电路逻辑功能⑴选⽤双四输⼊与⾮门74LS20 ⼀只,插⼊⾯包板(注意集成电路应摆正放平),按图接线,输⼊端接S1~S4(实验箱左下⾓的逻辑电平开关的输出插⼝),输出端接实验箱上⽅的LED 电平指⽰⼆极管输⼊插⼝D1~D8中的任意⼀个。
⑵将电平开关按表置位,分别测出输出逻辑状态值及电压值填表。
表2、异或门逻辑功能测试⑴选⼆输⼊四异或门电路74LS86,按图接线,输⼊端1、2、4、5 接电平开关输出插⼝,输出端A 、B 、Y 接电平显⽰发光⼆极管。
⑵将电平开关按表的状态转换,将结果填⼊表中。
表3、逻辑电路的逻辑关系⑴⽤ 74LS00 双输⼊四与⾮门电路,按图、图接线,将输⼊输出逻辑关系分别填⼊表,表中。
⑵写出两个电路的逻辑表达式。
4、逻辑门传输延迟时间的测量⽤六反相器(⾮门)按图接线,输⼊80KHz 连续脉冲(实验箱脉冲源),⽤双踪⽰波器测输⼊、输出相位差。
数字逻辑电路实验报告

数字逻辑电路实验报告指导老师:班级:学号:姓名:时间:第一次试验一、实验名称:组合逻辑电路设计1二、试验目的:掌握组合逻辑电路的功能测试。
1、验证半加器和全加器的逻辑功能。
2、、学会二进制数的运算规律。
3、试验所用的器件和组件:三、74LS00 3片,型号二输入四“与非”门组件74LS20 1片,型号四输入二“与非”门组件74LS86 1片,型号二输入四“异或”门组件实验设计方案及逻辑图:四、/全减法器,如图所示:1、设计一位全加时做减法运时做加法运算,当M=1M决定的,当M=0 电路做加法还是做减法是由SCin分别为加数、被加数和低位来的进位,、B和算。
当作为全加法器时输入信号A分别为被减数,减数Cin、B和为和数,Co为向上的进位;当作为全减法时输入信号A 为向上位的借位。
S为差,Co和低位来的借位,1)输入/(输出观察表如下:(2)求逻辑函数的最简表达式函数S的卡诺图如下:函数Co的卡诺如下:化简后函数S的最简表达式为:Co的最简表达式为:2(3)逻辑电路图如下所示:、舍入与检测电路的设计:2F1码,用所给定的集成电路组件设计一个多输出逻辑电路,该电路的输入为8421为奇偶检测输出信号。
当电路检测到输入的代码大于或F2为“四舍五入”输出信号,的个数为奇数时,电路。
当输入代码中含1F1=1;等于5是,电路的输出其他情况F1=0 F2=0。
该电路的框图如图所示:的输出F2=1,其他情况输出观察表如下:(输入/0 1 0 0 1 01 0 1 0 0 11 1 1 0 0 01 0 1 1 1 11 0 0 1 0 11 0 1 0 0 11 0 0 1 1 01 1 1 0 1 11 0 1 1 0 011111求逻辑函数的最简表达式(2)的卡诺如下:函数F1 F2函数的卡诺图如下:的最简表达式为:化简后函数F2 的最简表达式为:F1)逻辑电路图如下所示;(3课后思考题五、化简包含无关条件的逻辑函数时应注意什么?1、答:当采用最小项之和表达式描述一个包含无关条件的逻辑问题时,函数表达式中,并不影响函数的实际逻辑功能。
数字逻辑电路实验仪器仪表的使用与脉冲信号的实验报告

数电实验报告电子科学系班级实验日期2017年5月16日组员姓名:实验一数字逻辑电路实验仪器仪表的使用与脉冲信号的一.实验目的1.学会数字电路实验装置的使用方法2.学会双踪数字示波器的使用方法3.掌握脉冲信号的测量方法二.主要仪器仪表、材料数字逻辑电路实验装置、双踪数字示波器、数字万用表、74LS04 反相器(标记引脚图见图1.1)图1.1 74LS0引脚图三.实验内容及步骤1.脉冲信号周期和幅值的测量将数字双踪示波器的第一通道Y1端连接到1KHZ的测试方波信号(用于检测垂直和水平电路的基本功能),Y1置0.5V档、Y2置1V 档。
调整示波器相应的开关和旋钮,在示波器上显示出稳定的Y1、Y2两路信号。
分别用示波器的0.2ms、0.5ms、1ms时间档测量及记录波形,填表1.1。
表1.1通道时间1ms 0.2ms 0.5msY12.直流电平测量(1)用示波器测量逻辑电平:示波器的第一通道Y1端连接数字逻辑电路实验装置的逻辑电平,分别用0.5V、1V、2V、5V幅度档测量并记录,填入表1.2。
表1.2(2)用示波器测量单脉冲:示波器Y1输入端连接数字逻辑电路实验装置的单脉冲,1V幅度档测量并记录,填表1.3。
(3用数字万用表测量单脉冲、逻辑电平:数字万用的5V直流电压档分别测量并记录数字逻辑电路实验装置的单脉冲、逻辑电平信号,填表1.4。
表1.43.逻辑门电路传输延时时间t pd的测量平均传输延迟时间tpd是衡量门电路开关速度的参数。
它是指输出波形边沿的0.5Vm点相对于输入波形对应边沿的0.5Vm点的时间延迟。
通常将从输入波上沿中点到输出波下沿中点的时间延迟称为导通延迟时间tpdL,从输入波下沿中点到输出波上沿中点的时间延迟称为截止延迟时间tpdH。
如图1.2所示,门电路的导通延迟时间为tpdL,截止延迟时间为tpdH,则平均传输延迟时间为:tpd=1 2(tpdL+tpdH) 。
图1.2 门电路的导通延迟时间与截止延迟时间用74LS04六反相器(非门)按图1.3接线,输入100KHZ的连续脉冲,用双踪数字示波器测量输入与输出信号的相位差,并计算每个门的平均传输延迟时间t pd的值。
实验4 组合逻辑电路设计

实验四组合逻辑电路研究(设计性实验)一、实验目的1.掌握用SSI器件实现组合逻辑电路的方法。
2.熟悉各种MSI组合逻辑器件的工作原理和引脚功能。
3.掌握用MSI组合逻辑器件实现组合逻辑电路的方法。
4.进一步熟悉测试环境的构建和组合逻辑电路的测试方法。
二、实验所用仪器设备1.Multisim10中的虚拟仪器2.Quartus II中的功能仿真工具3.GW48-EDA实验开发系统三、实验说明1. 组合逻辑电路的设计一般可按以下步骤进行(1)逻辑抽象:将文字描述的逻辑命题转换成真值表。
(2)选择器件类型:根据命题的要求和器件的功能决定采用哪种器件。
(3)根据真值表和所选用的逻辑器件写出相应的逻辑表达式:当采用SSI集成门电路设计时,为了使电路最简,应将逻辑表达式化简,并变换成与门电路相对应的最简式;当采用MSI组合逻辑器件设计时,则不用化简,只需将由最小项构成的函数式变换成MSI器件所需要的函数形式。
(4)根据化简或变换后的逻辑表达式及选用的逻辑器件画出逻辑电路图。
2. 常见的SSI和MSI的型号(1)常见的SSI:四2输入异或门74LS86,四2输入与非门74LS00,六非门74LS04,二4输入与非门74LS20,四2输入或非门74LS02,四2输入与门74LS08等。
(2)常见的MSI:二2-4译码器74LS139,3-8译码74LS138,4-16译码器74LS154,8-3线优先编码器74LS148,七段字符译码器74LS248,四位全加器74LS283,四2选1数据选择器74LS157,双4选1数据选择器74LS153,8选1数据选择器74LS151,16选1数据选择器74LS150等。
四、实验内容(一)基本命题1.设计一个多输出的逻辑网络,它的输入是8421BCD码,它的输出定义为:(1)F1:检测到输入数字能被3整除。
(2)F2:检测到输入数字大于或等于4。
(3)F3:检测到输入数字小于7。
数字逻辑新数电指导书

实验一基本逻辑门电路实验类型:验证性实验按照实验要求,由学生操作,对基本逻辑门电路进行相应测试,验证课堂所学的理论,加深对门电路的理解,掌握基本的实验知识、实验方法和实验技能,并能对实验数据进行处理,撰写规范的实验报告。
一、实验目的1、了解(TTL)与非门各参数的意义;2、掌握(TTL)与非门主要参数的测试方法。
3、加深对(TTL)与非门的逻辑功能的认识;4、学习查阅集成电路器件手册,熟悉与非门的外形和引脚。
二、实验仪器数字电路实验箱三、实验内容及步骤1、测试与门的逻辑功能在实验系统(箱)上找到相应的与门。
按图1.1(a)连接实验线路,把输入端接实验箱的逻辑开关,输出端接LED显示器。
按表1.2.2 输入A、B的信号0或1(逻辑开关高电平时为1,逻辑开关低电平时为0),观察输出结果(看LED显示器,如果灯亮为1,灯灭为0)填入表1.1 中。
图1.1 与门、或门实验接线图2、测试或门的逻辑功能在实验系统(箱)上找到相应的或门。
按图1.2.4 (b) 连接实验线路,把输入端接实验箱的逻辑开关,输出端接LED显示器。
按表1.2.2 输入A、B的信号0或1(逻辑开关高电平时为1,逻辑开关低电平时为0),观察输出结果(看LED 显示器,如果灯亮为1,灯灭为0)填入表1.1 中。
3、测非门的逻辑功能在实验系统(箱)上找到相应的非门。
按图1.2(a)连接实验线路,把输入端接实验箱的逻辑开关,输出端接LED显示器。
按表1.2 输入A的信号0或1(逻辑开关高电平时为1,逻辑开关低电平时为0),观察输出结果(看LED显示器,如果灯亮为1,灯灭为0)填入表1.2.3中。
4、测二输入与非门的逻辑功能在实验系统(箱)上找到相应的二输入与非门。
按图1.2.5(b)连接实验线路,把输入端接实验箱的逻辑开关,输出端接LED显示器。
按表1.2.3 输入A、B的信号0或1(逻辑开关高电平时为1,逻辑开关低电平时为0),观察输出结果(看LED显示器,如果灯亮为1,灯灭为0)填入表1.2.3 中。
数字逻辑与电路实验

一、实验目的 1、掌握全加器的功能及测试方法; 2、熟悉全加器的应用。 二、实验原理和内容 两个多位二进制数相加时.除了最低位以外,每一位 都应该考虑来自低位的进位。将两个对应位的加数和 来自低位的进位3个数相加,这种运算称为全加,所用 的电路称为全加器。即每一位全加器有3个输入端:Ai (被加数)、Bi(加数)、Ci-1(低位向本位的进 位),2个输出端:Si(和)和Ci+1(向高位的进位)。 根据二进制加法运算规则可列出全加器真值表,如表 3-1所示。
实验二
用译码器实现组合逻辑函数F(A,B,C) 把3—8译码器74LS138地址输入端(A2、 A1、A0)作为逻辑函数的输入变量(A、 B、C),译码器的每个输出端Yi 都与某 一个最小项mi 相对应,加上适当的门电 路,就可以利用二进制译码器实现组合 逻辑函数。
实验二
三、实验仪器、设备和器件 1、数字逻辑电路实验箱 一台 2、集成电路74LS00、74LS04、74LS138 一只。
四、实验要求
要求学生自己复习有关译码器的原理, 查阅有关二进制译码器实现组合逻辑函 数的方法;根据实验任务,画出所需的 实验线路及记录表格。
五、实验内容
译码器逻辑功能测试
1、按图2-1 接线。
图2-1 译码器逻辑功能测试
表2-1
2、根据表2-1,利用开关设置S1、S2、 S3、及A2、A1、A0 的状态,借助指示灯 观测Q0~Q7 的状态,记入表2-1中。 Φ -任意状态 3、用3—8线译码器设计一个电路,主裁 判同意情况下,三名副裁判多数同意成 实验前按实验箱使用说明先检查电源是否 正常。然后选择实验用的集成电路,按实验电 路图接好连线,特别注意Vcc及地线不能接错。 线接好后经实验指导教师检查无误方可通电实 验; 2、实验中改动接线须断开电源,接好线再通 电继续进行实验。 3、CMOS电路的使用特点:应先加入电源电压, 再接入输入信号;断电时则相反,应先测输入 信号,再断电源电压。另外,CMOS电路的多余 输入端不得悬空。
实验报告电子版实验四

接上页:
(2)利用开关输入BCD码,借助指示灯观测输出的余3码,填入下表中。
输入BCD码
输出余3码
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
任课教师评语:
教师签字:年月日
注:每学期至少有一次设计性实验。每学期结束请任课教师按时按量统一交到教学秘书处。
信息学院
学号:104100184
姓名:鲁庆斯
班级:10C班
课程名称:数字逻辑与数字系统
实验名称:加法器、比较器与数据选择器
实验性质:①综合性实验②设计性实验③验证性实验
实验时间:年月日
实验地点:同析楼3栋数字电子实验室
本实验所用设备:
1、数字电路实验台1台
2、集成电路芯片
283(四位加法器)1片
1 0 0 1
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 1
0 0 0 1
0 0 1 1
0 1 1 1
1 0 0 0
0 1 0 1
0 1 1 0
0 1 0 0
1 1 1 1
1
0
1
0
1
0
1
0
2、用74LS283实现BCD码到余3码的转换。
将每个BCD码加上0011,即可得到相应的余3码。
(1)参照如右图所示设计好的电路图,完成电路接线;
三、实验步骤
1、完成四位加法器74LS283的逻辑功能测试;
(1)下图是74LS283的引脚图和功能示意图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字逻辑实验三实验四
The following text is amended on 12 November 2020.
实验报告
课程名称 电子技术综合设计与实践
题目名称
实验三、实验四
学生学院 自动化学院
专业班级 物联网工程
学 号
学生姓名
指导教师
2016 年 6 月 26 日
一、 实验目的
1、(实验三)用两片加法器芯片74283配合适当的门电路完成
两个BCD8421码的加法运算。
2、(实验四)设计一个计数器完成1→3→5→7→9→0→2→4→
6→8→1→… 的循环计数(设初值为1),并用一个数码管显示计
数值(时钟脉冲频率为约1Hz)。
二、 功能描述及分析
实验三:
(1)分别用两个四位二进制数表示两个十进制数,如:用A3 A
2
A1A0表示被加数,用B3B2B1B0表示加数,用S3 S2 S1 S0表示“和”,用
C0表示进位。
(2)由于BCD8421码仅代表十进制的0—9,所以加法修正规
则:当S>9时,修正值为D3D2D1D0=0110;
当S<9时,修正值为D3D2D1D0=0000。
(3)由真值表,我们可以得出D3=D0=0,D2=D1=FC4 + S4(S3+S2)
实验四:
(1)分别用四位二进制数来表示十进制数,触发器状态用DCBA表
示,10个技术状态中的初值状态为0001。
(2)列出状态表,如下
现态 D C B A 次态
Dn+1 Cn+1 Bn+1 An+1
0 0 0 0 1 0 0 1 1
1 0 0 1 1 0 1 0 1
2 0 1 0 1 0 1 1 1
3 0 1 1 1 1 0 0 1
4 1 0 0 1 0 0 0 0
5 0 0 0 0 0 0 1 0
6 0 0 1 0 0 1 0 0
7 0 1 0 0 0 1 1 0
8 0 1 1 0 1 0 0 0
9 1 0 0 0 0 0 0 1
(3)得出次态方程:
Dn+1=BC, Cn+1=B⊕C, Bn+1=A D, An+1=A⊕D
(4)选用D触发器来实现,求触发器激励函数
D4=BC, D3=B⊕C, D2=A D, D1=A⊕D
(5)画出逻辑电路图如下:
(6)四个触发器输出端一次输入到7447数码管译码器输入端。
三、 实验器材
实验三:
(1)两片加法器芯片74283,两个或门,一个与门,8个按键,
5个LED显示灯。
(2)DE2开发板和QuartusⅡ软件
实验四:
一个74292分频器、一个7447数码管译码器、四个D触发器、
二个与门、二个非门、二个异或门
四、 实验结果(电路图)
实验三:
举例:
1、当输入0001+0010时,输出是0011,,则对应的是指示灯是0与
1号绿灯亮,代表十进制数里的十位数的进位指示灯C0不亮。
2、当输入1000+1000时,输出是代表十进制数的16,则对应的指
示灯则是C0进位灯亮,以及对应0110的1、2号绿灯亮。
实验四:
五、实验感想
实验三:
通过本次实验,我深刻明白了设计电路前要懂得充分运用真值
表以及卡诺图化简,这样才能更快速更准确地列出相应的逻辑函数
表达式;此外,还要熟悉本次实验要用到的74283芯片的功能,这
样才能更快捷有效地设计出电路图。通过本次实验,我的逻辑思考
能力以及动手设计能力得到了极大地提高,对DE2板的使用也更加
熟练了。
实验四:
通过本次实验,我灵活地运用了次态真值表进行电路状态化
简,更快速更准确地列出相应的逻辑函数表达式。然而本次实验也
让我发现了自己在学习这门课时的一个很大的漏洞,就是没有真正
弄懂怎样设置初态。一开始我以为需要通过连接CLRN或者PRN来使
得电路的初态为1,然而反而发现这样的设置会导致电路无法正常
循环显示1、3、5、7、9、0、2、4、6、8、1……当我将这个“初
态设置”去除后,电路却能正常循环显示了,并且已经自然从1开
始显示。通过咨询老师后,发现当我们在列次态真值表时就已经把
1,也就是0001放在了初始位置,这样也就默认1成初态了。
通过本次实验,我更全面地了解各触发器的功能,也更明白
如何在设计电路时设置初态。此外,我还找到了自己的学习漏洞和
学习盲点,这使得我在本次实验里收获匪浅。