高考物理(13)机械能守恒定律及其应用(含答案)
近6年全国卷高考物理真题分类汇编:机械能守恒定律(Word版含答案)

2017-2022年近6年全国卷高考物理真题分类汇编:机械能守恒定律学校:___________姓名:___________班级:___________考号:___________一、单选题(本大题共9小题)1.(2022·全国·高考真题)北京2022年冬奥会首钢滑雪大跳台局部示意图如图所示。
运动员从a 处由静止自由滑下,到b 处起跳,c 点为a 、b 之间的最低点,a 、c 两处的高度差为h 。
要求运动员经过一点时对滑雪板的压力不大于自身所受重力的k 倍,运动过程中将运动员视为质点并忽略所有阻力,则c 点处这一段圆弧雪道的半径不应小于( )A .1h k +B .hk C .2h k D .21h k - 2.(2022·全国·高考真题)固定于竖直平面内的光滑大圆环上套有一个小环,小环从大圆环顶端P 点由静止开始自由下滑,在下滑过程中,小环的速率正比于( )A .它滑过的弧长B .它下降的高度C .它到P 点的距离D .它与P 点的连线扫过的面积3.(2021·全国·高考真题)如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦。
用力向右推动车厢使弹簧压缩,撤去推力时滑块在车厢底板上有相对滑动。
在地面参考系(可视为惯性系)中,从撤去推力开始,小车、弹簧和滑块组成的系统( )A .动量守恒,机械能守恒B.动量守恒,机械能不守恒C.动量不守恒,机械能守恒D.动量不守恒,机械能不守恒4.(2017·全国·高考真题)如图,半圆形光滑轨道固定在水平地面上,半圆的直径与地面垂直,一小物块以速度v从轨道下端滑入轨道,并从轨道上端水平飞出,小物块落地点到轨道下端的距离与轨道半径有关,此距离最大时,对应的轨道半径为(重力加速度为g)()A.216vgB.28vgC.24vgD.22vg5.(2019·全国·高考真题)从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小不变、方向始终与运动方向相反的外力作用.距地面高度h在3m以内时,物体上升、下落过程中动能E k 随h的变化如图所示.重力加速度取10m/s2.该物体的质量为A.2kg B.1.5kg C.1kg D.0.5kg6.(2017·全国·高考真题)如图,一质量为M的光滑大圆环,用一细轻杆固定在竖直平面内;套在大圆环上的质量为m的小环(可视为质点),从大圆环的最高处由静止滑下,重力加速度为g.当小圆环滑到大圆环的最低点时,大圆环对轻杆拉力的大小为()A.Mg-5mg B.Mg+mg C.Mg+5mg D.Mg+10mg7.(2017·全国·高考真题)取水平地面为重力势能零点。
2020年高考物理专题精准突破 机械能守恒定律的理解及应用(解析版)

2020年高考物理专题精准突破专题机械能守恒定律的理解及应用【专题诠释】一、机械能守恒的理解与判断1.利用机械能的定义判断:分析动能和势能的和是否变化.2.利用做功判断:若物体或系统只有重力(或弹簧的弹力)做功,或有其他力做功,但其他力做功的代数和为零,则机械能守恒.3.利用能量转化来判断:若物体或系统只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体或系统机械能守恒.二.机械能守恒定律的表达式三、多个物体的机械能守恒问题,往往涉及“轻绳模型”“轻杆模型”以及“轻弹簧模型”.(1)轻绳模型三点提醒①分清两物体是速度大小相等,还是沿绳方向的分速度大小相等.①用好两物体的位移大小关系或竖直方向高度变化的关系.①对于单个物体,一般绳上的力要做功,机械能不守恒;但对于绳连接的系统,机械能则可能守恒.(2)轻杆模型三大特点①平动时两物体线速度相等,转动时两物体角速度相等.①杆对物体的作用力并不总是沿杆的方向,杆能对物体做功,单个物体机械能不守恒.①对于杆和球组成的系统,忽略空气阻力和各种摩擦且没有其他力对系统做功,则系统机械能守恒.(3)轻弹簧模型“四点”注意①含弹簧的物体系统在只有弹簧弹力和重力做功时,物体的动能、重力势能和弹簧的弹性势能之间相互转化,物体和弹簧组成的系统机械能守恒,而单个物体和弹簧机械能都不守恒.①含弹簧的物体系统机械能守恒问题,符合一般的运动学解题规律,同时还要注意弹簧弹力和弹性势能的特点.①弹簧弹力做的功等于弹簧弹性势能的减少量,而弹簧弹力做功与路径无关,只取决于初、末状态弹簧形变量的大小.①由两个或两个以上的物体与弹簧组成的系统,当弹簧形变量最大时,弹簧两端连接的物体具有相同的速度;弹簧处于自然长度时,弹簧弹性势能最小(为零).【高考领航】【2019·新课标全国Ⅱ卷】从地面竖直向上抛出一物体,其机械能E总等于动能E k与重力势能E p之和。
取地面为重力势能零点,该物体的E总和E p随它离开地面的高度h的变化如图所示。
高考物理总复习机械能守恒定律及应用

人)在竖直方向上匀速上升(空气阻力不可忽略),下列说法正确的是( C )
A. 发动机对飞行包不做功
B. 飞行包的重力做正功
C. 飞行包的动能不变
D. 飞行包的机械能不变
返回目录
第3讲
机械能守恒定律及应用
[解析] 飞行包(包括人)在竖直方向上匀速上升的过程中,发动机的动力向上,则发
动机对飞行包做正功,故A错误;高度上升,飞行包的重力做负功,故B错误;飞行
第六章
机械能
第3讲 机械能守恒定律及应用
目录
01
考点1 机械能守恒的理解和判断
Contents
02
考点2 机械Biblioteka 守恒定律的应用03练习帮
练透好题 精准分层
第3讲
机械能守恒定律及应用
课标要求
核心考点
2023:浙
1.理解重力势
能,知道重力势
能的变化与重力
做功的关系.
2.定性了解弹性
势能.
五年考情
核心素养对接
( ✕ )
(4)在运动过程中,铅球的机械能守恒.
(
√
)
(
√
)
1
2
(5)铅球在轨迹最高处的机械能为 m02 +mgh.
返回目录
第3讲
机械能守恒定律及应用
1. [单物体机械能守恒的判断]载人飞行包是一个单人低空飞行装置,如图所示,其
发动机使用汽油作为燃料提供动力,可以垂直起降也可以快速前进,若飞行包(包括
包(包括人)在竖直方向上匀速上升,飞行包的动能不变,故C正确;飞行包在上升过
程中动能不变,重力势能变大,机械能变大,故D错误.
返回目录
第3讲
机械能守恒定律及应用
高考物理实验专题 验证机械能守恒定律(含答案)

高考物理专题 验证机械能守恒定律(含答案)1. 在“用DIS 研究机械能守恒定律”的实验中,用到的传感器是 传感器。
若摆锤直径的测量值大于其真实值会造成摆锤动能的测量值偏 。
(选填:“大”或“小”)。
【答案】光电门;大【解析】在实验中,摆锤的速度通过光电门进行测量,测量的速度是通过小球直径d 与挡光时间的比值进行计算,为:dv t=∆,当摆锤直径测量值大于真实值时,小球直径d 会变大,导致计算出的小球速度变大,故小球动能也会变大。
2. 如图所示,打点计时器固定在铁架台上,使重物带动纸带从静止开始自由下落,利用此装置验证机械能守恒定律。
①对于该实验,下列操作中对减小实验误差有利的是______________。
A .重物选用质量和密度较大的金属锤 B .两限位孔在同一竖直面内上下对正 C .精确测量出重物的质量D .用手托稳重物,接通电源后,撒手释放重物②某实验小组利用上述装置将打点计时器接到50 Hz 的交流电源上,按正确操作得到了一条完整的纸带,由于纸带较长,图中有部分未画出,如图所示。
纸带上各点是打点计时器打出的计时点,其中O 点为纸带上打出的第一个点。
重物下落高度应从纸带上计时点间的距离直接测出,利用下列测量值能完成验证机械能守恒定律的选项有____________。
A .OA 、AD 和EG 的长度 B .OC 、BC 和CD 的长度 C .BD 、CF 和EG 的长度 C .AC 、BD 和EG 的长度 【答案】①AB ; ②BC 。
【解析】①重物选用质量和密度较大的金属锤,减小空气阻力,以减小误差,故A 正确;两限位孔在同一竖直面内上下对正,减小纸带和打点计时器之间的阻力,以减小误差,故B 正确;验证机械能守恒定律的原理是:21222121mv mv mgh -=,重物质量可以消去,无需精确测量出重物的质量,故C 错误;用手拉稳纸带,而不是托住重物,接通电源后,撒手释放纸带,故D 错误。
高考物理基础知识综合复习优化集训13机械能守恒定律(含答案)

高考物理基础知识综合复习:优化集训13 机械能守恒定律基础巩固1.下列关于机械能守恒的说法正确的是()A.若只有重力做功,则物体机械能一定守恒B.若物体的机械能守恒,一定只受重力C.做匀变速运动的物体机械能一定守恒D.物体所受合外力不为零,机械能一定守恒2.下列物体在运动过程中,机械能守恒的是()A.被起重机拉着向上做匀速运动的货物B.一个做斜抛运动的铁球C.沿粗糙的斜面向下做匀速运动的木块D.在空中向上做加速运动的氢气球3.嫦娥五号是我国月球软着陆无人登月探测器,当它接近月球表面时,可打开反冲发动机使探测器减速下降。
探测器减速下降过程中,它在月球表面的重力势能、动能和机械能的变化情况是()A.动能增加、重力势能减小B.动能减小、重力势能增加C.机械能增加D.机械能减小4.某高中物理课本上有一个小实验,其截图如图所示。
实验时,某同学将小纸帽压到桌面上,然后放手,小纸帽被弹起(小纸帽与弹簧不连接,并假定小纸帽运动中只发生竖直方向移动),不计空气阻力。
关于小纸帽在离开弹簧之前被弹簧顶起的过程中,小纸帽的机械能()A.一直增加B.一直保持不变C.先增加后减小D.先增加后不变5.如图所示,在离地面高h处以初速度v0抛出一个质量为m的物体,不计空气阻力,取地面为零势能面,则物体着地时的机械能为()A.mghB.12mv02-mghC.12mv02+mgh D.12mv026.以20 m/s的速度将质量为m的物体从地面竖直上抛,若忽略空气阻力,取地面为零势能面,g取10 m/s2,则上升过程中,物体的重力势能和动能相等时,物体距地面的高度为()A.5 mB.10 mC.15 mD.20 m7.用长绳将一重球悬挂在天花板上,如图所示,一同学紧靠墙站立,双手拉球使其与鼻尖恰好接触,然后由静止释放重球。
若该同学保持图示姿势不变,忽略空气阻力,则重球摆动过程中()A.到最低点时重力势能最大B.到最低点时机械能最大C.一定不会撞击该同学D.可能会撞击该同学8.一毛同学用一根橡皮筋发射飞机模型,如图所示。
【高考物理必刷题】机械能守恒定律(后附答案解析)

12C.3阶段,机械能逐渐变大阶段,万有引力先做负功后做正功4竖直悬挂.用外力将绳的下端缓慢地竖直向上拉.在此过程中,外力做功为()5的两点上,弹性绳的原长也为.将;再将弹性绳的两端缓慢移至天花板)6时,绳中的张力大于如图所示,一小物块被夹子夹紧,夹子通过轻绳悬挂在小环上,小环套在水平光滑细杆上,物块质量为,到小环的距离为,其两侧面与夹子间的最大静摩擦力均为.小环和物块以速度右匀速运动,小环碰到杆上的钉子后立刻停止,物块向上摆动.整个过程中,物块在夹子中没有滑动.小环和夹子的质量均不计,重力加速度为.下列说法正确的是()78受到地面的支持力小于受到地面的支持力等于的加速度方向竖直向下9的太空飞船从其飞行轨道返回地面.飞船在离地面高度的速度进入大气层,逐渐减慢至速度为时下落到地面.取地面为重力势能零点,在飞船下落过程中,重力加速度可视为常量,大小取为1 2C.3阶段,机械能逐渐变大阶段,万有引力先做负功后做正功天体椭圆运行中,从远日点向近日点运行时,天体做加速运动,万有引力做正功,引力势能转化为动能;反之,做减速运动,引力做负功,动能转化为引力势能;而整个过程机械能守恒.从这个规律出发,CD正确,B错误.同时由于速度的不同,运动个椭圆4,那么重心上升,外力做的功即为绳子增5答案解析6C设斜面的倾角为,物块的质量为,去沿斜面向上为位移正方向,根据动能定理可得:上滑过程中:,所以;下滑过程中:,所以据能量守恒定律可得,最后的总动能减小,所以C正确的,ABD错误.故选C.7时,绳中的张力大于A.物块向右匀速运动时,对夹子和物块组成的整体进行分析,其在重力和绳拉力的作B.绳子的拉力总是等于夹子对物块摩擦力的大小,因夹子对物块的最大摩擦力为,C.当物块到达最高点速度为零时,动能全部转化为重力势能,物块能达到最大的上升8受到地面的支持力小于受到地面的支持力等于的加速度方向竖直向下和受到地面的支持力大小均为;在的动能达到最大前一直是加速下降,处于失受到地面的支持力小于,故A、B正确;达到最低点时动能为零,此时弹簧的弹性势能最大,9答案解析考点一质量为的太空飞船从其飞行轨道返回地面.飞船在离地面高度处以的速度进入大气层,逐渐减慢至速度为时下落到地面.取地面为重力势能零点,在飞船下落过程中,重力加速度可视为常量,大小取为.(结果保留2位有效数字)分别求出该飞船着地前瞬间的机械能和它进入大气层时的机械能;(1)求飞船从离地面高度处至着地前瞬间的过程中克服阻力所做的功,已知飞船在该处的速度大小是其进入大气层时速度大小的.(2);(1)(2)地地,地,大大大,大.(1)大,,由动能定理得:地,.(2)机械能机械能和机械能守恒定律机械能基础。
高考物理《机械能守恒定律》真题练习含答案

高考物理《机械能守恒定律》真题练习含答案1.[2024·上海市新中中学月考]如图,将质量为m 的篮球从离地高度为h 的A 处,以初始速度v 抛出,篮球恰能进入高度为H 的篮圈.不计空气阻力和篮球转动的影响,经过篮球入圈位置B 的水平面为零势能面,重力加速度为g .则篮球经过位置B 时的机械能为( )A .12 m v 2B .12 m v 2+mg (h -H )C .12 m v 2+mg (H -h )D .12 m v 2+mgh答案:B解析:不计空气阻力和篮球转动的情况下,篮球运动过程中机械能守恒,篮球经过B 点的机械能等于在A 点的机械能.以B 点所在的水平面为零势能面,篮球在A 点的重力势能E p =-mg (H -h )=mg (h -H ),则机械能E =E k +E p =12m v 2+mg (h -H ),B 正确.2.如图所示,一根轻质弹簧左端固定,现使滑块沿光滑水平桌面滑向弹簧,在滑块接触到弹簧直到速度减为零的过程中,弹簧的( )A .弹力越来越大,弹性势能越来越大B .弹力越来越小,弹性势能越来越小C .弹力先变小后变大,弹性势能越来越小D .弹力先变大后变小,弹性势能越来越大 答案:A解析:滑块接触到弹簧直到速度减为零的过程中,弹簧形变量越来越大,根据F =kx 得弹力越来越大,滑块接触到弹簧直到速度减为零的过程中,弹簧弹力一直做负功,物块的动能逐渐转化为弹簧的弹性势能,弹簧的弹性势能越来越大,A 正确.3.利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面,如一根长为2L 的细线系一质量为m 的小球,两线上端系于水平横杆上,A 、B 两点相距也为L ,若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根线承受的张力为( )A .6mgB .23 mgC .5mgD .533 mg答案:B解析:小球恰好过最高点时有mg =m v 21R,解得v 1=32gL ,由机械能守恒定律得mg ×3 L =12 m v 22 -12 m v 21 ,由牛顿第二定律得3 F -mg =m v 22 32L ,联立以上各式解得F =23 mg ,B 正确.4.[2024·河北省张家口市张垣联盟联考]有一条均匀金属链条,一半长度在光滑的足够高斜面上,斜面顶端是一个很小的圆弧,斜面倾角为30°,另一半长度竖直下垂,由静止释放后链条滑动,已知重力加速度g =10 m/s 2,链条刚好全部滑出斜面时的速度大小为522 m/s ,则金属链条的长度为( )A .0.6 mB .1 mC .2 mD .2.6 m 答案:C解析:设链条的质量为2m ,以开始时链条的最高点所在水平面为零势能面,链条的机械能为E =E p +E k =-12 ×2mg ×L 4 sin θ-12 ×2mg ×L 4 +0=-14 mgL (1+sin θ),链条全部滑出后,动能为E ′k =12 ×2m v 2,重力势能为E ′p =-2mg L2 ,由机械能守恒可得E =E ′k +E ′p ,即-14mgL (1+sin θ)=m v 2-mgL ,解得L =2 m ,C 正确.5.[2024·山东省济宁市期中考试]有一竖直放置的“T”形架,表面光滑,滑块A 、B 分别套在水平杆与竖直杆上,A 、B 用一根不可伸长的轻细绳相连,A 、B 质量相等,且可看做质点,如图所示,开始时细绳水平伸直,A 、B 静止.由静止释放B 后,已知当细绳与竖直方向的夹角为60°时,滑块B 沿着竖直杆下滑的速度为v ,则连接A 、B 的绳长为( )A .4v 2gB .3v 2gC .2v 23gD .4v 23g答案:D解析:如图所示,将A 、B 的速度分解为沿绳的方向和垂直于绳的方向,两物体沿绳子的方向速度大小相等,则有v B cos 60°=v A cos 30°,解得v A =33v ,由于A 、B 组成的系统只有重力做功,所以系统机械能守恒,B 减小的重力势能全部转化为A 和B 的动能,有mgh =12 m v 2A +12 m v 2B ,解得h =2v 23g ,绳长L =2h =4v 23g,D 正确.6.(多选)如图所示,轻弹簧的一端固定在O 点,另一端与质量为m 的小球连接,小球套在光滑的斜杆上,初始时小球位于A 点,弹簧竖直且长度为原长L .现由静止释放小球,当小球运动至B 点时弹簧水平,且长度再次变为原长.关于小球从A 点运动到B 的过程,以下说法正确的是( )A .小球的机械能守恒B .小球运动到B 点时的速度最大 C.小球运动到B 点时的速度为0D .小球运动到B 点时的速度为2gL答案:BD解析:在小球向下运动的过程中,弹簧的弹力做功,并不是只有重力做功,小球的机械能不守恒,A 错误;从A 到B 的过程中,弹簧弹力做功为零,小球的重力做正功最多,由动能定理得小球的速度最大,B 正确,C 错误;小球运动到B 点时,弹簧为原长,由系统的机械能守恒定律得mgL =12m v 2,解得v =2gL ,D 正确.7.(多选)在竖直平面内,一根光滑金属杆弯成如图所示形状,相应的曲线方程为y =2.5cos (kx +23 π)(单位:m),式中k =1 m -1,将一光滑小环套在该金属杆上,并从x =0处以v 0=5m/s 的初速度沿杆向下运动,取重力加速度g =10 m/s 2,则下列说法正确的是( )A.当小环运动到x =π3 时的速度大小v 1=52 m/sB.当小环运动到x =π3 时的速度大小v 1=5 m/sC .该小环在x 轴方向最远能运动到x =56 π处D .该小环在x 轴方向最远能运动到x =76 π处答案:AC解析:当x =0时,y 0=-1.25 m ;当 x =π3 时,y 1=-2.5 m .由机械能守恒定律得mg (y 0-y 1)=12 m v 21 -12 m v 20 ,解得v 1=52 m/s ,A 正确,B 错误;设小球速度为零时上升的高度为h ,由机械能守恒定律得mgh =12 m v 20 ,解得h =1.25 m ,即y =0,代入曲线方程可得x =56π,C 正确,D 错误.8.如图所示,在竖直平面内有一半径为R 的四分之一圆弧轨道BC ,与竖直轨道AB 和水平轨道CD 相切,轨道均光滑.现有长也为R 的轻杆,两端固定质量为m 的小球a 、质量为2m 的小球b (均可视为质点),用某装置控制住小球a ,使轻杆竖直且小球b 与B 点等高,然后由静止释放,杆将沿轨道下滑.设小球始终与轨道接触,重力加速度为g .则( )A .下滑过程中a 球机械能增大B .下滑过程中b 球机械能守恒C .小球a 滑过C 点后,a 球速度大于26mgR3D .从释放至a 球到滑过C 点的过程中,轻杆对b 球做正功为23 mgR答案:D解析:下滑过程中,若以两球为整体,只有重力做功,则有系统的机械能守恒,若分开单独分析,杆对a 球做负功,a 球的机械能减小,杆对b 球做正功,b 球的机械能增加,A 、B 错误;若以两球为整体,只有重力做功,则有系统的机械能守恒,则有mg ·2R +2mgR =12(m +2m )v 2,解得v =26gR 3 ,C 错误;对b 球分析,由动能定理可得W +2mgR =12 ·2m v 2,W =12 ·2m v 2-2mgR =23 mgR ,杆对b 球做正功为23mgR ,D 正确.9.[2024·浙江1月]类似光学中的反射和折射现象,用磁场或电场调控也能实现质子束的“反射”和“折射”.如图所示,在竖直平面内有三个平行区域Ⅰ、Ⅱ和Ⅲ,Ⅰ区宽度为d ,存在磁感应强度大小为B 、方向垂直平面向外的匀强磁场,Ⅱ区的宽度很小.Ⅰ区和Ⅲ区电势处处相等,分别为φⅠ和φⅢ,其电势差U =φⅠ-φⅢ.一束质量为m 、电荷量为e 的质子从O 点以入射角θ射向Ⅰ区,在P 点以出射角θ射出,实现“反射”;质子束从P 点以入射角θ射入Ⅱ区,经Ⅱ区“折射”进入Ⅲ区,其出射方向与法线夹角为“折射”角.已知质子仅在平面内运动,单位时间发射的质子数为N ,初速度为v 0,不计质子重力,不考虑质子间相互作用以及质子对磁场和电势分布的影响.(1)若不同角度射向磁场的质子都能实现“反射”,求d 的最小值;(2)若U =m v 20 2e,求“折射率”n (入射角正弦与折射角正弦的比值);(3)计算说明如何调控电场,实现质子束从P 点进入Ⅱ区发生“全反射”(即质子束全部返回Ⅰ区);(4)在P 点下方距离3m v 0eB 处水平放置一长为4m v 0eB的探测板CQD (Q 在P 的正下方),CQ 长为m v 0eB ,质子打在探测板上即被吸收中和.若还有另一相同质子束,与原质子束关于法线左右对称,同时从O 点射入Ⅰ区,且θ=30°,求探测板受到竖直方向力F 的大小与U 之间的关系.答案:(1)2m v 0Be (2)2 (3)U ≤-m v 20 cos 2θ2e(4)见解析解析:(1)根据牛顿第二定律 Be v 0=m v 20r不同角度射向磁场的质子都能实现“反射”,d 的最小值为 d min =2r =2m v 0Be(2)设水平方向为x 方向,竖直方向为y 方向,x 方向速度不变,y 方向速度变小,假设折射角为θ′,根据动能定理Ue =12 m v 21 -12 m v 20 解得 v 1=2 v 0 根据速度关系 v 0sin θ=v 1sin θ′ 解得n =sin θsin θ′ =v 1v 0=2 (3)全反射的临界情况:到达Ⅲ区的时候y 方向速度为零,即 Ue =0-12 m (v 0cos θ)2可得U =-m v 20 cos 2θ2e即应满足U ≤-m v 20 cos 2θ2e(4)临界情况有两个:1、全部都能打到,2、全部都打不到的情况,根据几何关系可得 ∠CPQ =30°所以如果U ≥0的情况下,折射角小于入射角,两边射入的粒子都能打到板上,分情况讨论如下:①当U ≥0时 F =2Nm v y 又eU =12 m v 2y-12 m (v 0cos θ)2 解得 F =2Nm34v 20 +2eUm②全部都打不到板的情况,根据几何知识可知当从Ⅱ区射出时速度与竖直方向夹角为60°时,粒子刚好打到D 点,水平方向速度为v x =v 02所以v y =v x tan 60° =36 v 0又eU =12 m v 2y-12 m (v 0cos θ)2 解得 U =-m v 20 3e即当U <-m v 203e 时F =0③部分能打到的情况,根据上述分析可知条件为(-m v 203e ≤U <0),此时仅有O 点右侧的一束粒子能打到板上,因此F =Nm v y 又eU =12 m v 2y-12 m (v 0cos θ)2 解得 F =Nm 34v 20 +2eUm。
新高考物理考试易错题易错点12机械能守恒定律及其应用附答案

易错点12 机械能守恒定律及其应用易错总结1.机械能守恒定律的成立条件不是合外力为零,而是除重力和系统内弹力外,其他力做功为零。
2.机械能守恒定律是对系统而言的,单个物体没有所谓的机械能守恒,正常所说的某物体的机械能守恒只是一种习惯说法,实际为该物体与地球间机械能守恒。
3.用机械能守恒定律列方程时始、末态的重力势能要选同一个零势能面。
4.虽然我们常用始、末态机械能相等列方程解题,但始、末态机械能相等与变化过程中机械能守恒含义不尽相同。
整个过程中机械能一直保持不变才叫机械能守恒,始、末态只是其中的两个时刻。
5.机械能守恒定律是能量转换与守恒定律的一个特例,当有除重力和系统内弹力以外的力对系统做功时,机械能不再守恒,但系统的总能量仍守恒。
6.能量守恒定律不需要限定条件,对所有过程都适用,但用来计算时须准确列出初态的总能量和末态的总能量。
7.若从守恒的角度到关系式,要选取恰当的参考面,确定初末状态的机械能。
8.若从转化的角度到关系式,要考虑动能和势能的变化量,与参考面无关。
9.用做功判断机械能守恒,只有重力做功或系统内弹力做功。
10.研究多个物体机械能守恒时,除能量关系外,请找速度关系,根据物体沿绳(杆)方向的分速度相等,建立两个连接体的速度关系式。
解题方法1.对机械能守恒条件的理解(1)只有重力做功,只发生动能和重力势能的相互转化.(2)只有弹力做功,只发生动能和弹性势能的相互转化.(3)只有重力和弹力做功,发生动能、弹性势能、重力势能的相互转化.(4)除受重力或弹力外,其他力也做功,但其他力做功的代数和为零.如物体在沿斜面的拉力F的作用下沿斜面运动,若已知拉力与摩擦力的大小相等,方向相反,在此运动过程中,其机械能守恒.2.判断机械能是否守恒的方法(1)利用机械能的定义直接判断:若动能和势能中,一种能变化,另一种能不变,则其机械能一定变化.(2)用做功判断:若物体或系统只有重力(或弹力)做功,虽受其他力,但其他力不做功,机械能守恒.(3)用能量转化来判断:若物体系统中只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体系统机械能守恒.3.机械能守恒定律常用的三种表达式(1)从不同状态看:E k1+E p1=E k2+E p2(或E1=E2)此式表示系统两个状态的机械能总量相等.(2)从能的转化角度看:ΔE k=-ΔE p此式表示系统动能的增加(减少)量等于势能的减少(增加)量.(3)从能的转移角度看:ΔE A增=ΔE B减此式表示系统A部分机械能的增加量等于系统剩余部分,即B部分机械能的减少量.【易错跟踪训练】易错类型1:对物理概念理解不透彻1.(2019·云南省玉溪第一中学)如图所示,在粗糙斜面顶端固定一弹簧,其下端挂一物体,物体在A点处于平衡状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点13 机械能守恒定律及其应用两年高考真题演练1.(2015·四川理综,1)在同一位置以相同的速率把三个小球分别沿水平、斜向上、斜向下方向抛出,不计空气阻力,则落在同一水平地面时的速度大小( ) A.一样大 B.水平抛的最大C.斜向上抛的最大 D.斜向下抛的最大2.(2015·新课标全国卷Ⅱ,21)(多选)如图,滑块a、b的质量均为m,a套在固定竖直杆上,与光滑水平地面相距h,b放在地面上,a、b通过铰链用刚性轻杆连接,由静止开始运动,不计摩擦,a、b可视为质点,重力加速度大小为g。
则( )A.a落地前,轻杆对b一直做正功B.a落地时速度大小为2ghC.a下落过程中,其加速度大小始终不大于gD.a落地前,当a的机械能最小时,b对地面的压力大小为mg3.(2015·天津理综,5)如图所示,固定的竖直光滑长杆上套有质量为m的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态。
现让圆环由静止开始下滑,已知弹簧原长为L,圆环下滑到最大距离时弹簧的长度变为2L(未超过弹性限度),则在圆环下滑到最大距离的过程中( )A.圆环的机械能守恒B.弹簧弹性势能变化了3mgLC. 圆环下滑到最大距离时,所受合力为零D.圆环重力势能与弹簧弹性势能之和保持不变4.(2014·安徽理综,15)如图所示,有一内壁光滑的闭合椭圆形管道,置于竖直平面内,MN是通过椭圆中心O点的水平线。
已知一小球从M点出发,初速率为v0,沿管道MPN运动,到N 点的速率为v1,所需时间为t1;若该小球仍由M点以初速率v0出发,而沿管道MQN运动,到N点的速率为v2,所需时间为t2。
则( )A.v1=v2,t1>t2 B.v1<v2,t1>t2C.v1=v2,t1<t2 D.v1<v2,t1<t25.(2014·上海单科,11)静止在地面上的物体在竖直向上的恒力作用下上升,在某一高度撤去恒力。
不计空气阻力,在整个上升过程中,物体机械能随时间变化关系是( )6.(2015·海南单科,14)如图,位于竖直平面内的光滑轨道由四分之一圆弧ab和抛物线bc组成,圆弧半径Oa水平,b点为抛物线顶点。
已知h=2 m,s= 2 m。
取重力加速度大小g=10 m/s2。
(1)一小环套在轨道上从a点由静止滑下,当其在bc段轨道运动时,与轨道之间无相互作用力,求圆弧轨道的半径;(2)若环从b点由静止因微小扰动而开始滑下,求环到达c点时速度的水平分量的大小。
考点13 机械能守恒定律及其应用一年模拟试题精练1安徽省“江南十校”高三联考)如图所示,内壁光滑的圆形轨道固定在竖直平面内,轻杆两端固定有甲、乙两小球,已知甲球质量小于乙球质量,将两球放入轨道内,乙球位于最低点。
由静止释放轻杆后,则下列说法正确的是( )A.甲球可以沿轨道下滑到最低点B.甲球在下滑过程中机械能守恒C.一段时间后,当甲球反向滑回时它一定能返回到其初始位置D .在反向滑回过程中,甲球增加的重力势能等于乙球减少的重力势能 2.(2015·浙江省杭州市七校联考)如图所示,在水平地面上固定一倾角为θ的光滑绝缘斜面,斜面处于电场强度大小为E 、方向沿斜面向下的匀强电场中,一劲度系数为k 的绝缘轻质弹簧的一端固定在斜面底端,整根弹簧处于自然状态,一带正电的滑块从距离弹簧上端为x 0处静止释放,滑块在运动过程中电荷量保持不变。
弹簧始终处在弹性限度内,则下列说法正确的是( )A .当滑块的速度最大时,弹簧的弹性势能最大B .当滑块的速度最大时,滑块与弹簧系统的机械能最大C .当滑块刚碰到弹簧时速度最大D .滑块从接触弹簧开始向下运动到最低点的过程中,滑块的加速度先减小后增大 3.(2015·南昌调研)如图所示,光滑斜面的顶端固定一弹簧,一小球向右滑行,并冲上固定在地面上的斜面。
设物体在斜面最低点A 时的速度为v ,压缩弹簧至C 点时弹簧最短,C 点距地面高度为h ,不计小球与弹簧碰撞过程中的能量损失,则小球在C 点时弹簧的弹性势能为( )A .mgh -12mv 2 B.12mv 2-mghC .mgh +12mv 2D .mgh4.(2015·大庆质检)如图所示,半径为R 的金属环竖直放置,环上套有一质量为m 的小球,小球开始时静止于最低点。
现使小球以初速度v 0=6Rg 沿环上滑,小球运动到环的最高点时与环恰无作用力,则小球从最低点运动到最高点的过程中( )A .小球机械能守恒B .小球在最低点时对金属环的压力是6mgC .小球在最高点时,重力的功率是mg gRD .小球机械能不守恒,且克服摩擦力做的功是0.5mgR 5.(2015·浙江温州十校月考)(多选)如图所示,离水平地面一定高处水平固定一内壁光滑的圆筒,筒内固定一轻质弹簧,弹簧处于自然长度。
现将一小球从地面以某一初速度斜向上抛出,刚好能水平进入圆筒中,不计空气阻力。
下列说法中正确的是( )A .弹簧获得的最大弹性势能等于小球抛出时的动能B .小球斜上抛运动过程中处于失重状态C .小球压缩弹簧的过程,小球减小的动能等于弹簧增加的势能D .小球从抛出到将弹簧压缩到最短的过程中小球的机械能守恒 6.(2015·湖北省部分重点高中高三联考)(多选)斜面体上开有凹槽,槽内紧挨放置六个半径均为r 的相同刚性小球,各球编号如图。
斜面与水平轨道OA 平滑连接,OA 长度为6r 。
现将六个小球由静止同时释放,小球离开A 点后均做平抛运动,不计一切摩擦。
则在各小球运动过程中,下列说法正确的是( )A .球1的机械能守恒B .球6在OA 段机械能增大C .球6的水平射程最大D .有三个球落地点位置相同 7.(2015·安徽省宣城市八校高三联考)如图所示,轻绳绕过定滑轮,一端连接物块A ,另一端连接在滑环C 上,物块A 的下端用弹簧与放在地面上的物块B 连接,A 、B 两物块的质量均为m ,滑环C 的质量为M ,开始时绳连接滑环C 部分处于水平,绳刚好拉直,滑轮到杆的距离为L ,控制滑块C ,使其沿杆缓慢下滑,当C 下滑43L 时,释放滑环C ,结果滑环C 刚好处于静止,此时B 刚好要离开地面,不计一切摩擦,重力加速度为g 。
(1)求弹簧的劲度系数;(2)若由静止释放滑环C ,求当物块B 刚好要离开地面时,滑环C 的速度大小。
参考答案考点13 机械能守恒定律及其应用两年高考真题演练1.A [由机械能守恒定律mgh +12mv 21=12mv 22知,落地时速度v 2的大小相等,故A 正确。
]2.BD [滑块b 的初速度为零,末速度也为零,所以轻杆对b 先做正功,后做负功,选项A 错误;以滑块a 、b 及轻杆为研究对象,系统的机械能守恒,当a 刚落地时,b 的速度为零,则mgh =12mv 2a ,即v a =2gh ,选项B 正确;a 、b 的先后受力如图所示。
由a 的受力图可知,a 下落过程中,其加速度大小先小于g 后大于g ,选项C 错误;当a 落地前b 的加速度为零(即轻杆对b 的作用力为零)时,b 的机械能最大,a 的机械能最小,这时b 受重力、支持力,且F N b =mg ,由牛顿第三定律可知,b 对地面的压力大小为mg ,选项D 正确。
]3.B [圆环在下落过程中弹簧的弹性势能增加,由能量守恒定律可知圆环的机械能减少,而圆环与弹簧组成的系统机械能守恒,故A 、D 错误;圆环下滑到最大距离时速度为零,但是加速度不为零,即合外力不为零,故C 错误;圆环重力势能减少了3mgl ,由能量守恒定律知弹簧弹性势能增加了3mgl ,故B 正确。
]4.A [管道内壁光滑,只有重力做功,机械能守恒,故v 1=v 2=v 0;由vt 图象定性分析如图,得t 1>t 2。
]5.C [以地面为零势能面,以竖直向上为正方向,则对物体,在撤去外力前,有F -mg =ma ,h =12at 2,某一时刻的机械能E =ΔE =F ·h ,解以上各式得E =Fa2·t 2,撤去外力后,物体机械能守恒,故只有C 正确。
]6.解析 (1)一小环在bc 段轨道运动时,与轨道之间无相互作用力,则说明下落到b 点时的速度水平,使小环做平抛运动的轨迹与轨道bc 重合,故有s =v 0t ①h =12gt 2②在ab 滑落过程中,根据机械能守恒定律可得mgR =12mv 2b ③联立三式可得R =s 24h=0.25 m(2)下滑过程中,初速度为零,只有重力做功,根据机械能守恒定律可得mgh =12mv 2c ④因为物体滑到c 点时与竖直方向的夹角等于(1)问中做平抛运动过程中经过c 点时速度与竖直方向的夹角相等,设为θ,则根据平抛运动规律可知sin θ=v bv 2b +2gh⑤根据运动的合成与分解可得sin θ=v 水平v c⑥ 联立①②④⑤⑥可得v 水=2103 m/s 。
答案 (1)0.25 m (2)2103 m/s一年模拟试题精练 1.C 2.D 3.B4.D [小球运动到环的最高点时与环恰无作用力,设此时的速度为v ,由向心力公式可得:mg =mv 2R ;小球从最低点到最高点的过程中,由动能定理可得:-W f -2mgR =12mv 2-12mv 20,联立可得:W f =12mv 20-12mv 2-2mgR =-12mgR ,可见此过程中小球的机械能不守恒,克服摩擦力做的功为12mgR ,选项D 正确,选项A 错误;小球在最高点时,速度v 方向和重力的方向垂直,二者间的夹角为90°,功率P =0,选项C 错误;小球在最低点,由向心力公式可得:F-mg =mv 20R ,F =mg +mv 20R=7mg ,选项B 错误。
]5.BC [小球从抛出到将弹簧压缩过程,小球的动能、重力势能和弹簧的弹性势能总量守恒,小球的动能转化为重力势能和弹簧的弹性势能,故A 错误;小球斜上抛运动的过程中加速度为g ,方向竖直向下,处于失重状态,故B 正确;小球压缩弹簧的过程,小球的动能和弹簧的弹性势能总量守恒,所以小球减小的动能等于弹簧增加的势能,故C 正确;小球从抛出到将弹簧压缩到最短的过程中,小球和弹簧组成的系统机械能守恒,而小球的机械能不守恒,故D 错误。
]6.BD [6个小球全在斜面上时,加速度相同,相互之间没有作用力,每个小球机械能守恒。
球6加速距离最小,刚运动到OA 段的时候,球5、4、3、2、1仍在斜面上加速,对球6有向左的作用力,对球6做正功,故球6机械能增加,故B 正确;而依次滑到OA 段的小球对其上的小球有沿斜面向上的作用力,并对其上的小球做负功,只要有小球运动到OA 段球1与球2之间产生作用力,就对球1做功,故球1的机械能减少,A 错误;当6、5、4三个小球在OA 段的时候速度相等,球6离开OA 后,球4继续对球5做正功,所以球5离开OA 时速度大于球6的速度,同理球4离开时大于球5的速度,所以小球6的水平速度最小,水平射程最小,故C 错误;3、2、1三个小球到OA 时,斜面上已经没有小球,故这三个小球之间没有相互作用的弹力,离开OA 的速度相等,水平射程相同,落地点相同,D 正确。