黑龙江省庆安四中2009-2010学年度第一学期八年级数学期中试卷
2009-2010年八年级数学上册期中试卷及答案

八年级数学试卷2009-2010学年上学期期中考试(全卷满分100分,考试时间120分钟)一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,共24分)1、若等腰三角形的一边长等于5,另一边长等于3,则它的周长等于().A.10 B.11 C.13 D.11或132、下列各项中是轴对称图形,而且对称轴最多的是().A.等腰梯形B.等腰直角三角形C.等边三角形D.直角三角形3、算术平方根等于3的数是().A.9 B.C.3 D4).A.9 B.9±C.3 D.3±5、下列各组字母(大写)都是轴对称图形的是().A.A、D、E B.F、E、C C.P、R、W D.H、K、L6、若M N P M N Q∆≅∆,且8MN=,7NP=,6PM=,则M Q的长为().A.8 B.7 C.6 D.57、在0.163π0.010010001…中无理数有().A.1个B.2个C.3个D.4个8、小芳有两根长度为4cm和9cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为()的木条.A.5cm B.3 cm C.17cm D.12 cm二、填空题(每题2分,共24分)9的相反数是的平方根是10、4-,绝对值是113.604≈≈12、比较大小:,01-13、=;=14、7的平方根是,算术平方根是15、若P(m 、2m-3)在x 轴上,则点P 的坐标为 ,其关于y 轴对称的点的坐标为16、点P (5、4)关于x 轴的对称点的坐标是 ,关于原点的对称点的坐标是 .17、在Rt ABC ∆中,已知∠C=90°,∠B=60°,BC=2.3,那么∠A= ,AB=18、等腰三角形是 图形,其对称轴是 .19、下列各数中:0.3、3π-3.14、1.51511511…,有理数有 个,无理数有 个. 20、14的平方根是 ,算术平方根的相反数是三、解答题(本题共9个小题,满分52分)21、(本小题5分)30y +-=的值.22、(本题5分) 如图1,两条公路AB ,AC 相交于点A ,现要建个车站D ,使得D 到A 村和B 村的距离相等,并且到公路AB 、AC 的距离也相等,请在图中画出车站的位置.(图1)23、(本题5分) 如图2,AC 和BD 相交于点O ,OA=OC ,OB=OD . 求证:D C ∥AB .24、(本题5分) 如图3,点B 、F 、C 、E 在一条直线上,FB=CE ,AB ∥ED ,AC ∥FD ,求证:AB=DE ,AC=DF .(图3)25、(本题6分) 如图4,∠A=∠B ,CE ∥DA ,CE 交AB 于E ,求证:△CEB 是等腰三角形.26、(本题6分) 如图5,△ABC 求证:DB=DE .(图5)27、(本题6分) 如图6,AB=AC ,∠A=40∠DBC 的度数.(图628、(本题4分) 观察下列等式: 222211⨯= ,333322⨯= ,444433⨯=555544⨯= , 666655⨯= ,777766⨯= ,…,你发现了什么规律?用代数式表示.29、(本题10分) 如图7,在等边△ABC 中,点D 、E 分别在边BC ,AB 且BD=AE ,AD 与CE 交于点F . (1) 求证:AD=CE (2) 求∠DFC 的度数.(图7)分) 二、填空题(每题2分,共24分)9、;2± 10、4;4- 11、36.04 12、> ;> 13、25-;10±14、15、3(,0)2;3(,0)2-16、(5,4)-;(5,4)--17、30°;4.618、轴对称;顶角平分线(或底边上的高线;或者底边上的中线) 19、3;3 20、12±;12三、解答题(本题共9个小题,满分52分;要求写出必要的解答过程和步骤) 21、(本题5分)0≥ ,30y -≥30y -= 1分0=,30y -= 2分 ∴20x += ,30y -= 3分 ∴2x =- ,3y = 4分当2x =- ,3y =4== 5分22、(本题5分)解:车站D 在∠BAC 的平分线AE和AB 的垂直平分线的交点上 1分 (要求保留作图痕迹) 5分23、(本题5分)证明:在△ODC 和△OBA 中 OD=OB (已知)∵ ∠DOC=∠BOA (对顶角) OC=OA (已知)∴△ODC ≌△OBA (SAS ) 3分 ∴∠C=∠A (或者∠D=∠B )(全等三角形 对应边相等)∴DC∥AB(内错角相等,两直线平行) 5分(图2)24、(本题5分) 证明:∵FB=CE∴FB+FC=FC+CE∴BC=FE 1分 又∵AB ∥ED ,AC ∥FD∴∠B=∠E ,∠ACB=∠DFE 2分在△ABC 和△DEF 中∠B=∠E (已证) ∵ BC=FE (已证) ∠ACB=∠DFE ∴△ABC ≌△DEF (ASA ) 4分∴AB=DE ,AC=DF (全等三角形对应边相等) 5分 (图3) 25、(本题6分) 证明:∵CE ∥DA∴∠CEB=∠A (两直线平行,同位角相等) 2分 又∵∠A=∠B∴∠CEB=∠B (等量代换) 4分 ∴ CE=CB (等角对等边) 5分 ∴△CEB 是等腰三角形 6分(图4)26、(本题6分)证明:∵△ABC 是等边三角形,BD 是中线 1∴∠DBC=12∠ABC ,∠ABC=∠ACB=60° 2∴∠DBC=30° 3又∵CE=CD 且∠ACB=∠CDE+∠E ∴∠CDE=∠E ∴∠ACB=2∠E ∴∠E=30° 4∴∠DBC=∠E=30° 5∴DB=DE (等角对等边) 6分 27、(本题6分)解:∵AB=AC ,∠A=40°∴∠ABC=∠C=70° 2分 又∵MN 是AB 的垂直平分线∴AD=BD (垂直平分线上的点到线段两端 的距离相等) 4分 ∴∠ABD=∠A=40° 5分 ∴∠DBC=∠ABC-∠ABD=70°-40°=30° 6分28、(本题4分) 解:11n nn nn n ⨯=-- (2n ≥)或者11(1)(1)n n n n n n+++⨯=+ (1n ≥)29、(本题10分)(1)证明:∵△ABC 是等边三角形∴AB=AC ,∠B=∠EAC 1在△ABD 和△CAE 中 AB=AC (已证) ∵ ∠B=∠EAC (已证) BD=AE (已知)∴△ABD ≌△CAE (SAS ) 4∴AD=CE (全等三角形对应边相等) 5分(2)∵△ABD ≌△CAE ∴∠BAD=∠ACE 1又∵∠DFC=∠DAC+∠ACE∠BAC=∠BAD+∠DAC=60内角等于60°) 3∴∠DFC=∠DAC+∠BAD=60° 4分。
湘教版初中数学八年级上册期中测试题一一

黑龙江省庆安五中2009-2010学年度八年级上册数学期中试卷年级: 班级: 姓名:卷首寄语:亲爱的同学,这学期的学习已近一半,这份试卷将记录你的自信、沉着、智慧和收获。
我们一直投给你信任的目光,你可要认真审题,看清要求,仔细答题了。
加油!一.选择题(每题3分,共30分)1. 在3125,0,52.3,3,311,414.1,2,25 π-中,无理数有 ( ) A .1个 B .2个 C .3个 D .4个 2. 下列说法不正确的是 ( )A .51251的平方根是; B .3273-=- C .()21.0-的平方根是± ; D . 的算术平方根是8193. 一个正数的平方根为m -2与12+m ,则m 的值为 ( )A .31 B . 31或3- C . 3- D . 3 4. 若9,422==b a ,且0 ab ,则b a -的值为 ( )A .5±B . 1±C . 5D . 1-5. 已知点P(3,-2)与点Q 关于y 轴反射,则点Q 的坐标为( )A.(-3,2)B.(-3,-2)C.(3,2)D.(3,-2)6. 李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )xy0 第5题图7.点A (2,m)和点B (-4,n)都在直线y =321+-x 上,则m 与n 的大小关系应是( ) A .m > n < n = n D.条件不够,无法确定 8.已知一次函数y=kx+b(k ≠0)的草图如右所示,则下列结论正确的是( )A .k>0,b>0B .k>0,b<0C .k<0,b>0D .k<0,b<0二、填空题(每题3分,共24分)9. 16的算术平方根是 ;25-的相反数 ;=-32 . 10. 比较大小,填>或<号: 2 3;11. 函数xx y -=2 自变量x的取值范围是 .12.已知y与x-3成正比例,当x=4时,y=—3。
20092010学年度第一学期八年级数学上册期中考试试卷(定稿)

2009—2010学年度第一学期八年级数学期中质量检测试卷组卷人:祖山兰亭中学 李春艳学号 班级 姓名 成绩同学们:时间过得真快,转眼间半个学期的学习已经结束了,现在来检测一下吧。
你是最棒的,加油!一定要细心哦!!本卷考试时间90分钟,满分100+10分!一、认认真真选,沉着应战!:(每小题3分,共30分)1.(大巫岚中学 刘素芬)若10a -,那么不等式(1)(1)a a a -+的值一定是( )A .负数B .正数C .非负数D .正、负数不能唯一确定2、(安子岭 吴春喜)若分式23x x - 的值为负数,则x 的取值范围是( ) A.x >3 B.x <3 C.x <3且x ≠0 D.x >-3且x ≠03.(安子岭 吴春喜)不等式组⎩⎨⎧≥->+424,532x x 的解集为 ( ) A.x >1 B.x >32C.x ≥1D.x ≥234.(大巫岚中学 刘素芬)若分式212x x m-+不论x 取何实数时总有意义,则m 的取值范围是( )A 、1m ≥B 、1mC 、1m ≤D 、m ∠15、(大巫岚中学 刘素芬)下列各式从左到右变形正确的是( )(A )321y x ++=3(x+1)+2y (B )dc b ad c b a 543205.04.003.02.0+-=+- (C )b c a b c b b a --=-- (D )dc b ad c b a +-=+-22 6. (大巫岚中学 刘素芬) 如果不等式组212x m x m >+⎧⎨>+⎩的解集是1x >-,那么m 的值是( )(A )3 (B )1 (C )-1 (D )-37.(安子岭 吴春喜)下列轴对称图形中,对称轴最少的是( )A.等腰直角三角形B.等边三角形C.正方形D.长方形8.(安子岭 吴春喜)下列图案中的两个图不形成轴对称的一项是( )9.(大巫岚中学 刘素芬)某种肥皂原零售价每块2元,凡购买2块以上(含2块),商场推出两种优惠销售方法,第一种:“一块按原价,其余按原价的七折优惠”;第二种:“全部按原价的八折优惠”,你在购买相同数量的情况下,要使第一种比第二种办法得到的优惠多,最少需要购买肥皂( )A .5块B .4块C .3块D .2块10.(安子岭 吴春喜)在锐角△ABC 内一点P 满足PA=PB=PC ,则点P 是△ABC ( )A .三条角平分线的交点B .三条中线的交点C .三条高的交点D .三边垂直平分线的交点二、仔仔细细填,记录自信!(每题3分,共24分)11、(祖山 李春艳)x 的3倍与8的差是负数可以表示为 。
黑龙江省庆安四中2009-2010学年度第一学期期中考试(1)

黑龙江省庆安四中2009-2010学年度第一学期期中考试八年级数学试卷亲爱的同学:走进考场,你就是这里的主人。
只要你心平气和,只要你认真思考,只要你细心、细致,你就会感到试题都在意料之中,一切都在你的掌握之中,相信自己!开始吧!一、你一定能选对!(每小题4分,共40分,请选出各题中一个符合题意的正确选项,不选、多选、错选均不给分)1、观察下列中国传统工艺品的花纹,其中轴对称图形是 ( )2、若()227.0-=x ,则=x ( )A 、-0.7B 、±0.7C 、0.7D 、0.49 3、满足53<<-x 的整数x 是( )A 、3,2,1,0,1,2--B 、3,2,1,0,1-C 、3,2,1,0,1,2--D 、2,1,0,1- 4、老师给小红出了这样一道题:如图,已知AC=AD ,BC=BD , 便可知∠ABC=∠ABD ,这是根据什么理由得到的,小红想了想, 马上得出正确答案,你猜想小红说的是( ) A 、三角形的稳定性 B 、SSSC 、两边一角D 、三个角对应相等5、已知等腰三角形的一个外角等于100°,则它的顶角等于( ) A 、80° B 、50° C 、20° D 、20°或80° 6)A 、点PB 、点QC 、点MD 、点N7、将一根长为11的铅丝折成三段,再首尾相接围成一个等腰三角形,如果要求围成 的等腰三角形边长都是整数,那么其底边可取的不同长度有 ( )A 、2个B 、3个C 、4个D 、5个8、如果点P (a ,3)与点Q (-2,b )关于X 轴对称,那么a 、b 的值分别是 ( )A 、-2与3B 、2与-3C 、-2与-3D 、2与3 9、如图4,在△ABC 中,AQ=PQ ,PR=PS ,PR ⊥AB 于R ,PS ⊥AC 于S , 则有下列结论:①AS=AR ,②PQ ∥AR ,③△BRP ≌△QSP. 则其中( ) A 、全部正确 B 、仅①和②正确C 、仅①正确D 、仅①和③正确图4 A B R S QCP班级 座号 姓名 ……………………………………线…………………………………封…………………………………密…………………………………10、如图5所示,△ABE 和△ADC 是△ABC 分别沿着AB ,AC 边翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为( )A 、45°B 、60°C 、80°D 、100°. 二、你能填得又快又准吗?(每小题4分,共20分) 11、计算:825-= 。
2009-2010年八年级数学上册期中考试题及答案-期中考试题

2009-2010学年度第一学期八年级数学期中考试试卷(满分:100分,考试时间:100分钟)(友情提醒....:请将选择题和填空题的答案写在第Ⅱ卷上,考试结束后只交第Ⅱ卷) 第Ⅰ卷一、选择题(每题2分共16分)1.下列四个图形中,既是轴对称图形,又是中心对称的图形的是 ( ) ( )A .B .C .D .2.2的平方根是 ( ) A .4 B .2-C .2D .2±3.对于四舍五入得到的近似数5.20×104,下列说法正确的是 A .有3个有效数字,精确到百分位 B .有5个有效数字,精确到个位 C .有2个有效数字,精确到万位 D .有3个有效数字,精确到百位3.下列四组数中,两个数都是无理数的是 ( ) A .227B .0.1010010001C.01) 、..0.32 D .3π、 5.已知△ABC 的三边长分别为5、13、12,则△ABC 的面积为 ( )A .30B .60C .78D .不能确定6.如图,数轴上点P 表示的数可能是 ( )B. C. 3.2-D.7.将一等腰直角三角形纸片对折后再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余部分展开后的平面图形是 ( )垂直8.如图,每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影部分拼成一个正方形,那么新正方形的边长是( ) AB 2CD二、填空题(每题2分,共18分) 9.-8的立方根是 ▲ .10.如图,在□ABCD 中,∠A =60°,则∠B = ▲ . 11.比较大小:53.(用“>”或“<”填空) 12.2= ▲ .13.请写出一个比3大比4小的无理数: ▲ .14. 如图,在△ABC 中,BC =8cm,AB 的垂直平分线交AB 于D ,交边AC的周长等于18cm ,则AC 的长等于 ▲ .15.图中字母A 所在的正方形的面积是▲ .16.如图是“北大西洋公约组织”标志的主体部分(平面图),它是由四个完全相同的四边形OABC 拼成的.测得AB BC =,OA OC =,OA OC ⊥,36ABC ∠=︒,则O A B ∠的度数是 ▲ 度.17.如图,等边△ABC 的边长为1 cm ,D 、E 分别是AB 、AC 上的点,将△ADE 沿直线DE 折叠,点A 落在点A ' 处,且点A '在△ABC 外部,则阴影部分图形的周长 为 ▲ cm .第8题 第17题 第16题图 A第Ⅱ卷一、选择题(每题2分,共16分)二、填空题(每题2分,共18分)9. 10. 11. 12.13.14. 15. 16. 17.三、计算与求解(第18题3分,第19题6分,第20题5分,第21题6分,共20分) 18.计算: 219.求出等式中的x : (1)2250x -=(2)3(1)27x +=20.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”,踩伤了花草.求他们仅仅少走了几步路.(假设2步为1米)21.如图,已知BC =CD=DE =EA ,∠A =20°.(1) 求∠DEC 的度数; (2) 求∠B 的度数.ED CB A四、观察与说理(第22~24题每题6分,共18分)22.如图,在等腰梯形ABCD 中,AD BC ∥,M 是AD 的中点,MB MC 吗?为什么?23.如图:在四边形ABCD 中,AD ∥BC ,E 是BC 的中点,BC =2AD .找出图中所有的平行四边形,并选择一个说明它是平行四边形的理由.24.美国第二十届总统加菲尔德也曾经给出了勾股定理的一种证明方法,如图,他用两个全等的直角三角形和一个等腰直角三角形拼出了一个直角梯形,请你利用此图形验证勾股定理.EDCBA五、操作与解释(第25~26题每题6分,共12分)25.用四块如图(1)所示的正方形瓷砖拼成一个新的正方形,请你在(2)、(3)、(4)中各画一种拼法,使其分别满足以下条件:(1) 图2是一个轴对称图形,但不是中心对称图形; (2) 图3是一个中心对称图形,但不是轴对称图形; (3) 图4既是轴对称图形,又是中心对称图形.26.在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,图①、图②、图③均为顶点都在格点上的三角形(每个小方格的顶点叫格点).(1) 在图1中,图①经过一次 变换(填“平移”或“旋转”或“轴对称”)可以 得到图②; (2) 在图1中,图③是可以由图②经过一次旋转变换得到的,其旋转中心是点 (填“A ”或“B ”或“C ”) ;(3) 在图2中画出图①绕点A 顺时针旋转90°后的图④.图2图1六、探究与思考(第27题6分,28题10分,共16分)27.有一块直角三角形的绿地,量得两直角边长分别为3cm ,4cm 现在要将绿地扩充成等腰三角形,且扩充部分是以4cm 为直角边的直角三角形,请画出图形并直接写出扩充后等腰三角形绿地的周长.(友情提醒:不写画法,作图工具不限)28.如图1,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点, 且△CBE ≌△CDF .(1)图1中的△CBE 可以通过怎样的旋转得到△CDF ; (2)在图1中,若G 在AD 上,且∠GCE =45°,则GE =BE +GD 成立吗?为什么? (3)运用(1)(2)解答中所积累的经验和知识,完成下题: 如图2,在直角梯形ABCD 中,AD ∥BC (BC >AD ),∠B =90°,AB =BC =12,E 是AB 上一点,且∠DCE =45°,BE =4,求DE 的长.图1 图2 B C A D E C BA CB AC B A。
2009~2010学年度上学期八年级数学期中测试卷(含答案)

OEDC B AEDC BA OD CB A2009~2010学年度上学期 八年级数学期中测试卷题号 一 二 三四总分 17 18 19 20 21 22 23 24 25得分一、选一选,比比谁细心(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.9的算术平方根是(A )±3 (B )3 (C )-3 (D )32.对称现象无处不在,请你观察下面的四个图形,它们体现了中华民族的传统文化,其中,可以看作是轴对称图形的有( ) (A )1个(B )2个(C )3个(D )4个3. 若△ABC 与△DEF 全等,A 和E ;B 和D 分别是对应点,•则下列结论错误的是( ) (A )BC=EF (B )∠B=∠D (C )∠C=∠F (D )AC=EF4.已知AB=A ′B ′,∠A=∠A ′,∠B=∠B ′,则△ABC ≌△A ′B ′C ′的根据是( )(A )SAS (B )SSA (C )ASA (D )都行 5.如图,E 为BC 的中点,AB=DE,AE=CD,则下列结论中不正确的是( ) (A ) ∠A=∠D (B ) ∠B=∠DEC (C )∠C=∠AEB (D )∠B=∠C第5题图 第6题图 第7题图6.如图,OA=OB ,OC=OD ,∠O=500,∠D=350,则∠AEC 等于 ( )(A )600(B )500(C )450(D )300ABCDE FQPO E DC BAHG F ED CB A7. 如图所示,AC=BD ,∠DBC=∠ACB ,则图中全等的三角形的对数是( ) (A )2 (B )3 (C )4 (D )5 8.已知等腰三角形的两边长分别为11cm 和6cm,则它的周长为( ) (A )23cm B.28cm (C )23cm 或28cm (D )无法确定 9.点(6,3)关于直线x =2的对称点为 .(A )(-6,3) (B )(6,-3) (C )(-2,3) (D )(-3,-3) 10. 如图,已知D 为△ABC 边BC 的中点,DE ⊥DF , 则BE +CF ( )(A )大于EF (B )小于EF(C )等于EF (D )与EF 的大小关系无法确定 11. 如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE , AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .以下五个结论:① AD=BE;② PQ ∥AE ;③ AP=BQ;④ DE=DP; ⑤ ∠AOB=60°. 其中正确地结论的个数是( )(A )2个 (B )3个 (C )4个 (D )5个12. 如图,D 为等腰Rt △ABC 的斜边AB 的中点,E 为BC 边上一点,连结ED 并延长交CA 的延长线于点F,过D 作DH ⊥EF 交AC 于G,交 BC 的延长线于H,则以下结论:①DE=DG;②BE=CG;③DF=DH; ④BH=CF.其中正确地是( )(A )②③ (B )③④ (C )①④ (D )①②③④二、填一填, 看看谁仔细(本大题共4小题, 每小题3分, 共12分, 请将你的答案写在“_______”处)13. 16的平方根是 .60︒EDCBAEDCB A EDCBA ODCBA14. 一个汽车牌在水中的倒影为 ,则该车牌照号码_________. 15. 一个等腰三角形的一个角为50°,则它的顶角的度数是 .16.如图,在等边△ABC 的边BC 上任取一点D ,作∠ADE =60°,DE 交∠C 的外角平分线于E ,则△ADE 是__________三角形.三、 解一解, 试试谁更棒(本大题共7小题,共72分) 17. (本题满分10分)已知:如图,OD=OC,OA=OB.求证:AD=CB.18.(本题满分10分)如图,B 、C 、E 三点在同一条直线上,AC ∥DE ,AC =CE ,∠ACD =∠B.求证:AB=DE.19.(本题满分10分)已知:如图,C 为B E 上一点,点A D ,分别在B E 两侧.A C C D =,A B C E =,B C E D =.求证:.A B E D ∥.EDCBA 在一次数学课上,王老师在黑板上画出图6,并写下了四个等式: ①AB DC =,②B E C E =,③B C ∠=∠,④B A E CDE ∠=∠.要求同学从这四个等式中选出两个作为条件,推出AED △是等腰三角形.请你试着完成王老师提出的要求,并说明理由.(写出一种即可) 已知: 求证:AED △是等腰三角形. 证明:21.(本题10分)文文和彬彬在证明“有两个角相等的三角形是等腰三角形”这一命题时,画出图形,写出“已知”,“求证”(如图),她们对各自所作的辅助线描述如下:文文:“过点A 作BC 的中垂线AD ,垂足为D ”; 彬彬:“作△ABC 的角平分线AD ”.数学老师看了两位同学的辅助线作法后,说:“彬彬的作法是正确的,而文文的作法需要订正.”(1)请你简要说明文文的辅助线作法错在哪里.(3分) (2)根据彬彬的辅助线作法,完成证明过程.(7分)(第21题图)已知:如图,在A B C△中,B C ∠=∠. 求证:A B A C =.ABDCC D 经过B C A ∠顶点C 的一条直线,C A C B =.E F ,分别是直线C D 上两点,且B E C C F A α∠=∠=∠.(1)若直线C D 经过B C A ∠的内部,且E F ,在射线C D 上,请解决下面两个问题: ①如图1,若90BCA ∠= ,90α∠= ,则B E C F ; EFBE AF -(填“>”,“<”或“=”);(2分) ②如图2,若0180B C A <∠<,请添加一个关于α∠与B C A ∠关系的条件 ,使①中的两个结论仍然成立,并证明两个结论成立.(6分)(2)如图3,若直线C D 经过B C A ∠的外部,B C A α∠=∠,请提出EF BE AF ,,三条线段数量关系的合理猜想(不要求证明).(2分)ABCEF DDABCE F ADFCEB(图1)(图2)(图3)DC BA23.(本题满分12分) 将一张透明的平行四边形胶片沿对角线剪开,得到图①中的两张全等的三角形胶片A B C △和D EF △.将这两张三角形胶片的顶点B 与顶点E 重合,把D EF △绕点B 顺时针方向旋转,这时A C 与D F 相交于点O .(1)当D E F △旋转至如图②位置,点()B E ,C D ,在同一直线上时,A F D ∠与D C A ∠的数量关系是 .(2分)(2)当D E F △继续旋转至如图③位置时,(1)中的结论还成立吗?请说明理由.(5分)(3)在图③中,连接B O A D ,,探索B O 与A D 之间有怎样的位置关系,并证明.(5分)四、附加题(共2小题,每小题10分,共20分) 1.(本题满分10分)如图,在△ABC 中,∠C=2∠B.(1)AD 是△ABC 的角平分线,求证:AB=AC+CD .C A E FDB C DOAFB (E )AD O F C B (E )图①图②图③CBA(2)若AD 是△ABC 的角平分线交BC 的延长线于D,其它条件不变,线段AB ,AC ,CD 之间有什么确定的数量关系?画图并证明你的结论。
2009-2010学年度第一学期期中学情调研八年级数学试卷及答案

2009-2010学年度第一学期期中学模拟试卷八 年 级 数 学时间:120分钟、总分:150分一、精心选一选(每小题3分,计24分,请将每题答案填在答纸相应的表格内) 1.9的算术平方根是( )A. ±3B. 3C. -3D. 32.右图中,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N3.如图,左边是一个正方形,右边是一个直角三角形,则此正方形 的面积是( )A .1cm 2B .3cm 2C .6cm 2D .9cm 24.下列图案都是由宁母“m”经过变形、组合而成的.其中不是中心对称图形的是( )5.等腰三角形的两条边长分别为3cm 和6cm ,则它的周长为( )A .9cmB .12cmC .15cmD .12cm 或15cm6.在俄罗斯方块游戏中,若某行被小方格块填满,则该行中的所有小方格会 自动消失.现在游戏机屏幕下面三行已拼成如图所示的图案,屏幕上方又 出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消 失,你可以将图形 进行以下的操作( )A .先逆时针旋转90︒,再向左平移B .先顺时针旋转90︒,再向左平移C .先逆时针旋转90︒,再向右平移D .先顺时针旋转90︒,再向右平移 7.下列判断中错误..的是( ) A .平行四边形的对边平行且相等.B .四条边都相等且四个角也都相等的四边形是正方形.C .对角线互相垂直的四边形是菱形.D .对角线相等的平行四边形是矩形8.对于四舍五入得到的近似数41000.1⨯,下列说法正确的是( ).A .有3个有效数字,精确到百位B .有5个有效数字,精确到个位C .有2个有效数字,精确到万位D .有3个有效数字,精确到百分位 二、细心填一填(每小题3分,计30分) 9.、81-的立方根是 ,81的平方根是 . 10.已知x 、y 为实数,且()0212=-+-y x ,则=-y x 的值为11.如图,∆OAB 绕点O 逆时针旋转80º到∆OCD 的位置,已知∠AOB =45º,则∠AOD 等于 ;1 02 3 4N M Q PABCD12.在数轴上与表示3的点距离最近的整数点所表示的数 是 . 13.在镜子中看到时钟显示的是则实际时间是_______14.在边长为1的正方形ABCD 中,对角线AC ,BD 相交于点O ,OE ⊥BC ,垂足为E ,则OE = .15.如图,在□ABCD 中,∠ABC 的平分线交AD 于点E ,且AE =DE =1,则□ABCD 的周长等于 .16.在数3,5,12,13四个数中,构成勾股数的三个数是 . 17.如图,在四边形ABCD 中,已知AB =4,BC =3,AD =12,DC =13,∠B =90°,则四边形ABCD 的面积为 .18.如图,已知四边形ABCD 是菱形,∠A =72°,将它分割成如图所示的四个等腰三角形,那么∠1+∠2+∠3= 度. 三、解答题(本大题共10道题,96分.解答时写出必要的计算或说明过程.并把解答过程填写在答题卷相应的位置上.) 19.(本题满分6分) (1)-(21)2-811+41-(π-2)0 (2)、()32-×16 +3-43 -81 —21-20.(每小题6分,共12分)求下列各式中的x :(1)4x 2=9; (2)1-(x +1)3=1001;21.(本题满分8分)24.如图,在⊿ABC 中,∠ACB=900,AB=5cm ,BC=3cm ,CD ⊥AB 与D 。
数学八年级上册 期中精选试卷综合测试卷(word含答案)

数学八年级上册 期中精选试卷综合测试卷(word 含答案)一、八年级数学全等三角形解答题压轴题(难)1.已知:在平面直角坐标系中,A 为x 轴负半轴上的点,B 为y 轴负半轴上的点.(1)如图1,以A 点为顶点、AB 为腰在第三象限作等腰Rt ABC ∆,若2OA =,4OB =,试求C 点的坐标;(2)如图2,若点A 的坐标为()23,0-,点B 的坐标为()0,m -,点D 的纵坐标为n ,以B 为顶点,BA 为腰作等腰Rt ABD ∆.试问:当B 点沿y 轴负半轴向下运动且其他条件都不变时,整式2253m n +-的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(3)如图3,E 为x 轴负半轴上的一点,且OB OE =,OF EB ⊥于点F ,以OB 为边作等边OBM ∆,连接EM 交OF 于点N ,试探索:在线段EF 、EN 和MN 中,哪条线段等于EM 与ON 的差的一半?请你写出这个等量关系,并加以证明.【答案】(1) C(-6,-2);(2)不发生变化,值为3-3)EN=12(EM-ON),证明见详解. 【解析】【分析】 (1)作CQ ⊥OA 于点Q,可以证明AQC BOA ≅,由QC=AD,AQ=BO,再由条件就可以求出点C 的坐标;(2)作DP ⊥OB 于点P ,可以证明AOB BPD ≅,则有BP=OB-PO=m-(-n)=m+n 为定值,从而可以求出结论2253m n +-3-(3)作BH ⊥EB 于点B ,由条件可以得出∠1=30°,∠2=∠3=∠EMO=15°,∠EOF=∠BMG=45°,EO=BM,可以证明ENO BGM ≅,则GM=ON,就有EM-ON=EM-GM=EG ,最后由平行线分线段成比例定理就可得出EN=12(EM-ON).【详解】(1)如图(1)作CQ ⊥OA 于Q,∴∠AQC=90°,△为等腰直角三角形,∵ABC∴AC=AB,∠CAB=90°,∴∠QAC+∠OAB=90°,∵∠QAC+∠ACQ=90°,∴∠ACQ=∠BAO,又∵AC=AB,∠AQC=∠AOB,≅(AAS),∴AQC BOA∴CQ=AO,AQ=BO,∵OA=2,OB=4,∴CQ=2,AQ=4,∴OQ=6,∴C(-6,-2).(2)如图(2)作DP⊥OB于点P,∴∠BPD=90°,△是等腰直角三角形,∵ABD∴AB=BD,∠ABD=∠ABO+∠OBD=90°,∵∠OBD+∠BDP=90°,∴∠ABO=∠BDP,又∵AB=BD,∠AOB=∠BPD=90°,≅∴AOB BPD∴AO=BP,∵BP=OB-PO=m-(-n)=m+n,∵A ()23,0-,∴OA=23,∴m+n=23,∴当点B 沿y 轴负半轴向下运动时,AO=BP=m+n=23,∴整式2253m n +-的值不变为3-.(3)()12EN EM ON =- 证明:如图(3)所示,在ME 上取一点G 使得MG=ON,连接BG 并延长,交x 轴于H.∵OBM 为等边三角形,∴BO=BM=MO,∠OBM=∠OMB=∠BOM=60°,∴EO=MO,∠EBM=105°,∠1=30°,∵OE=OB,∴OE=OM=BM,∴∠3=∠EMO=15°,∴∠BEM=30°,∠BME=45°,∵OF⊥EB,∴∠EOF=∠BME,∴ENO BGM ≅,∴BG=EN,∵ON=MG,∴∠2=∠3,∴∠2=15°,∴∠EBG=90°,∴BG=12EG, ∴EN=12EG, ∵EG=EM-GM,∴EN=12(EM-GM), ∴EN=12(EM-ON).【点睛】本题考查了等腰直角三角形的性质,等边三角形的性质,等腰三角形的性质,三角形的外角与内角的关系,全等三角形的判定与性质,平行线分线段成比例定理的运用.2.已知:平面直角坐标系中,点A(a,b)的坐标满足|a﹣b|+b2﹣8b+16=0.(1)如图1,求证:OA是第一象限的角平分线;(2)如图2,过A作OA的垂线,交x轴正半轴于点B,点M、N分别从O、A两点同时出发,在线段OA上以相同的速度相向运动(不包括点O和点A),过A作AE⊥BM交x轴于点E,连BM、NE,猜想∠ONE与∠NEA之间有何确定的数量关系,并证明你的猜想;(3)如图3,F是y轴正半轴上一个动点,连接FA,过点A作AE⊥AF交x轴正半轴于点E,连接EF,过点F点作∠OFE的角平分线交OA于点H,过点H作HK⊥x轴于点K,求2HK+EF的值.【答案】(1)证明见解析(2)答案见解析(3)8【解析】【分析】(1)过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM,根据非负数的性质求出a、b的值即可得结论;(2)如图2,过A作AH平分∠OAB,交BM于点H,则△AOE≌△BAH,可得AH=OE,由已知条件可知ON=AM,∠MOE=∠MAH,可得△ONE≌△AMH,∠ABH=∠OAE,设BM 与NE交于K,则∠MKN=180°﹣2∠ONE=90°﹣∠NEA,即2∠ONE﹣∠NEA=90°;(3)如图3,过H作HM⊥OF,HN⊥EF于M、N,可证△FMH≌△FNH,则FM=FN,同理:NE=EK,先得出OE+OF﹣EF=2HK,再由△APF≌△AQE得PF=EQ,即可得OE+OF=2OP=8,等量代换即可得2HK+EF的值.【详解】解:(1)∵|a﹣b|+b2﹣8b+16=0∴|a﹣b|+(b﹣4)2=0∵|a﹣b|≥0,(b﹣4)2≥0∴|a﹣b|=0,(b﹣4)2=0∴a=b=4过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM∴OA平分∠MON即OA 是第一象限的角平分线(2)过A 作AH 平分∠OAB ,交BM 于点H∴∠OAH =∠HAB =45°∵BM ⊥AE∴∠ABH =∠OAE 在△AOE 与△BAH 中OAE ABH OA ABAOE BAH ==∠∠⎧⎪=⎨⎪∠∠⎩, ∴△AOE ≌△BAH (ASA )∴AH =OE在△ONE 和△AMH 中OE AH NOE MAH ON AM =⎧⎪∠∠⎨⎪=⎩=, ∴△ONE ≌△AMH (SAS )∴∠AMH =∠ONE设BM 与NE 交于K∴∠MKN =180°﹣2∠ONE =90°﹣∠NEA∴2∠ONE ﹣∠NEA =90°(3)过H 作HM ⊥OF ,HN ⊥EF 于M 、N可证:△FMH ≌△FNH (SAS )∴FM =FN同理:NE =EK∴OE+OF ﹣EF =2HK过A 作AP ⊥y 轴于P ,AQ ⊥x 轴于Q可证:△APF ≌△AQE (SAS )∴PF =EQ∴OE+OF =2OP =8∴2HK+EF =OE+OF =8【点睛】本题考查非负数的性质,平面直角坐标系中点的坐标,等腰直角三角形,全等三角形的判定和性质.3.如图1,在ABC ∆中,90ACB ∠=,AC BC =,直线MN 经过点C ,且AD MN ⊥于点D ,BE MN ⊥于点E .易得DE AD BE =+(不需要证明).(1)当直线MN 绕点C 旋转到图2的位置时,其余条件不变,你认为上述结论是否成立?若成立,写出证明过程;若不成立,请写出此时DE AD BE 、、之间的数量关系,并说明理由;(2)当直线MN 绕点C 旋转到图3的位置时,其余条件不变,请直接写出此时DE AD BE 、、之间的数量关系(不需要证明).【答案】(1) 不成立,DE=AD-BE ,理由见解析;(2) DE=BE-AD【解析】【分析】(1)DE 、AD 、BE 之间的数量关系是DE=AD-BE .由垂直的性质可得到∠CAD=∠BCE ,证得△ACD ≌△CBE ,得到AD=CE ,CD=BE ,即有DE=AD-BE ;(2)DE 、AD 、BE 之间的关系是DE=BE-AD .证明的方法与(1)一样.【详解】(1)不成立.DE 、AD 、BE 之间的数量关系是DE=AD-BE ,理由如下:如图,∵∠ACB=90°,BE ⊥CE ,AD ⊥CE ,AC CB =,∴∠ACD+∠CAD=90°,又∠ACD+∠BCE=90°,∴∠CAD=∠BCE ,在△ACD 和△CBE 中,90ADC CEBCAD BCEAC CB∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△CBE(AAS),∴AD=CE,CD=BE,∴DE=CE-CD=AD-BE;(2)结论:DE=BE-AD.∵∠ACB=90°,BE⊥CE,AD⊥CE,AC CB=,∴∠ACD+∠CAD=90°,又∠ACD+∠BCE=90°,∴∠CAD=∠BCE,在△ACD和△CBE中,90ADC CEBCAD BCEAC CB∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ADC≌△CEB(AAS),∴AD=CE,DC=BE,∴DE=CD-CE=BE-AD.【点睛】本题考查了旋转的性质、直角三角形全等的判定与性质,旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.4.操作发现:如图,已知△ABC和△ADE均为等腰三角形,AB=AC,AD=AE,将这两个三角形放置在一起,使点B,D,E在同一直线上,连接CE.(1)如图1,若∠ABC=∠ACB=∠ADE=∠AED=55°,求证:△BAD≌△CAE;(2)在(1)的条件下,求∠BEC的度数;拓广探索:(3)如图2,若∠CAB=∠EAD=120°,BD=4,CF为△BCE中BE边上的高,请直接写出EF的长度.【答案】(1)见解析;(2)70°;(3)2【解析】【分析】(1)根据SAS证明△BAD≌△CAE即可.(2)利用全等三角形的性质解决问题即可.(3)同法可证△BAD≌△CAE,推出EC=BD=4,由∠BEC=∠BAC=120°,推出∠FCE=30°即可解决问题.【详解】(1)证明:如图1中,∵∠ABC=∠ACB=∠ADE=∠AED,∴∠EAD=∠CAB,∴∠EAC=∠DAB,∵AE=AD,AC=AB,∴△BAD≌△CAE(SAS).(2)解:如图1中,设AC交BE于O.∵∠ABC=∠ACB=55°,∴∠BAC=180°﹣110°=70°,∵△BAD≌△CAE,∴∠ABO=∠ECO,∵∠EOC=∠AOB,∴∠CEO=∠BAO=70°,即∠BEC=70°.(3)解:如图2中,∵∠CAB=∠EAD=120°,∴∠BAD =∠CAE ,∵AB =AC ,AD =AE ,∴△BAD ≌△CAE (SAS ),∴∠BAD =∠ACE ,BD =EC =4,同理可证∠BEC =∠BAC =120°,∴∠FEC =60°,∵CF ⊥EF , ∴∠F =90°,∴∠FCE =30°,∴EF =12EC =2. 【点睛】 本题属于三角形综合题,考查了全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.5.在等边ABC 中,点D 是边BC 上一点.作射线AD ,点B 关于射线AD 的对称点为点E .连接CE 并延长,交射线AD 于点F .(1)如图,连接AE ,①AE 与AC 的数量关系是__________;②设BAF α∠=,用α表示BCF ∠的大小;(2)如图,用等式表示线段AF ,CF ,EF 之间的数量关系,并证明.【答案】(1) ①AB=AE ;②∠BCF=α;(2) AF-EF=CF ,理由见详解.【解析】【分析】(1)①根据轴对称性,即可得到答案;②由轴对称性,得:AE=AB ,∠BAF=∠EAF=α,由ABC 是等边三角形,得AB=AC ,∠BAC=∠ACB=60°,再根据等腰三角形的性质和三角形内角和等于180°,即可求解;(2)作∠FCG=60°交AD于点G,连接BF,易证∆FCG是等边三角形,得GF=FC,再证∆ACG≅∆BCF(SAS),从而得AG=BF,进而可得到结论.【详解】(1)①∵点B关于射线AD的对称点为点E,∴AB和AE关于射线AD的对称,∴AB=AE.故答案是:AB=AE;②∵点B关于射线AD的对称点为点E,∴AE=AB,∠BAF=∠EAF=α,∵ABC是等边三角形,∴AB=AC,∠BAC=∠ACB=60°,∴∠EAC=60°-2α,AE=AC,∴∠ACE=1180(602)602αα⎡⎤--=+⎣⎦,∴∠BCF=∠ACE-∠ACB=60α+-60°=α.(2)AF-EF=CF,理由如下:作∠FCG=60°交AD于点G,连接BF,∵∠BAF=∠BCF=α,∠ADB=∠CDF,∴∠ABC=∠AFC=60°,∴∆FCG是等边三角形,∴GF=FC,∵ABC是等边三角形,∴BC=AC,∠ACB=60°,∴∠ACG=∠BCF=α.在∆ACG和∆BCF中,∵CA CBACG BCF CG CF=⎧⎪∠=∠⎨⎪=⎩,∴∆ACG≅∆BCF(SAS),∴AG=BF,∵点B关于射线AD的对称点为点E,∴AG=BF=EF,∵AF-AG=GF,∴AF-EF=CF.【点睛】本题主要考查等边三角形的性质和三角形全等的判定和性质定理,添加辅助线,构造全等三角形,是解题的关键.二、八年级数学 轴对称解答题压轴题(难)6.如图,ABC 中,A ABC CB =∠∠,点D 在BC 所在的直线上,点E 在射线AC 上,且AD AE =,连接DE .(1)如图①,若35B C ∠=∠=︒,80BAD ∠=︒,求CDE ∠的度数;(2)如图②,若75ABC ACB ∠=∠=︒,18CDE ∠=︒,求BAD ∠的度数;(3)当点D 在直线BC 上(不与点B 、C 重合)运动时,试探究BAD ∠与CDE ∠的数量关系,并说明理由.【答案】(1)40°;(2)36°;(3)∠BAD 与∠CDE 的数量关系是2∠CDE=∠BAD .【解析】【分析】(1)根据等腰三角形的性质得到∠BAC=110°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(2)根据三角形的外角的性质得到∠E=75°-18°=57°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β,分3种情况:①如图1,当点D 在点B 的左侧时,∠ADC=x°-α,②如图2,当点D 在线段BC 上时,∠ADC=y°+α,③如图3,当点D 在点C 右侧时,∠ADC=y°-α,根据这3种情况分别列方程组即,解方程组即可得到结论.【详解】(1)∵∠B=∠C=35°,∴∠BAC=110°,∵∠BAD=80°,∴∠DAE=30°,∵AD=AE,∴∠ADE=∠AED=75°,∴∠CDE=∠AED-∠C=75°−35°=40°;(2)∵∠ACB=75°,∠CDE=18°,∴∠E=75°−18°=57°,∴∠ADE=∠AED=57°,∴∠ADC=39°,∵∠ABC=∠ADB+∠DAB=75°,∴∠BAD=36°.(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D在点B的左侧时,∠ADC=x°﹣α∴y x ay x aβ⎧=+⎨=-+⎩①②,①-②得,2α﹣β=0,∴2α=β;②如图2,当点D在线段BC上时,∠ADC=y°+α∴y x ay a xβ⎧=+⎨+=+⎩①②,②-①得,α=β﹣α,∴2α=β;③如图3,当点D在点C右侧时,∠ADC=y°﹣α∴180180y a xx y aβ︒︒⎧-++=⎨++=⎩①②,②-①得,2α﹣β=0,∴2α=β.综上所述,∠BAD与∠CDE的数量关系是2∠CDE=∠BAD.【点睛】考核知识点:等腰三角形性质综合运用.熟练运用等腰三角形性质和三角形外角性质,分类讨论分析问题是关键.7.已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求ABFACFSS的值.【答案】(1)①见解析;②见解析;(2)2【解析】【分析】(1)①只要证明∠2+∠BAF=∠1+∠BAF=60°即可解决问题;②只要证明△BFC≌△ADB,即可推出∠BFC=∠ADB=90°;(2)在BF上截取BK=AF,连接AK.只要证明△ABK≌CAF,可得S△ABK=S△AFC,再证明AF=FK=BK,可得S△ABK=S△AFK,即可解决问题;【详解】(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt △BFD 中,∵∠FBD =30°,∴BF =2DF ,∵BF =2AF ,∴BF =AD ,∵∠BAE =∠FBC ,AB =BC ,∴△BFC ≌△ADB ,∴∠BFC =∠ADB =90°,∴BF ⊥CF(2)在BF 上截取BK =AF ,连接AK.∵∠BFE =∠2+∠BAF ,∠CFE =∠4+∠1,∴∠CFB =∠2+∠4+∠BAC ,∵∠BFE =∠BAC =2∠EFC ,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB =AC ,∴△ABK ≌CAF ,∴∠3=∠4,S △ABK =S △AFC ,∵∠1+∠3=∠2+∠3=∠CFE =∠AKB ,∠BAC =2∠CEF ,∴∠KAF =∠1+∠3=∠AKF ,∴AF =FK =BK ,∴S △ABK =S △AFK ,∴ABF AFCS 2S ∆∆=. 【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、等腰三角形的判定和性质、直角三角形30度角性质等知识,解题的关键是能够正确添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.8.如图,在ABC ∆中,CE 为三角形的角平分线,AD CE ⊥于点F 交BC 于点D (1)若9628BAC B ︒︒∠=∠=,,直接写出BAD ∠= 度(2)若2ACB B ∠=∠,①求证:2AB CF =②若 ,CF a EF b ==,直接写出BD CD= (用含 ,a b 的式子表示)【答案】(1)34;(2)①见详解;②2b a b- 【解析】【分析】 (1)由三角形内角和定理和角平分线定义即可得出答案;(2)①证明B BCE ∠=∠,得出BE=CE ,过点A 作//AH BC 交CE 与点H ,则,H BCE ACE EAH B ∠=∠=∠∠=∠,得出AH=AC ,H EAH ∠=∠,得出AE=HE ,由等腰三角形的性质可得出HF=CF ,即可得出结论;②证明AHF DCF ≅,得出AH=DC ,求出HF=CF=a ,HE=HF-EF=a-b ,CE=a+b ,由 //AH BC 得出AH AE a b BC BE a b-==+,进而得出结论. 【详解】 解:(1)∵9628BAC B ︒︒∠=∠=,,∴180962856ACB ∠=︒-︒-︒=︒,∵CE 为三角形的角平分线,∴1282ACE ACB ∠=∠=︒, ∵AD CE ⊥,∴902862CAF ∠=︒-︒=︒,∴966234BAD ∠=︒-︒=︒.故答案为:34;(2)①证明:∵22ACB B BCE ∠=∠=∠∴B BCE ∠=∠∴BE CE =过点A 作//AH BC 交CE 与点H ,如图所示:则,H BCE ACE EAH B ∠=∠=∠∠=∠∴AH=AC ,H EAH ∠=∠∴AE=HE∵AD CE ⊥∴HF=CF∴AB=HC=2CF ;②在AHF △和DCF 中,H DCF HF CFAFH DFC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AHF DCF ≅∴AH=DC∵,CF a EF b == ∴ HF CF a ==,由①得 AE HE HF EF a b ==-=-, BE CE a b ==+∵ //AH BC ∴AH AE a b BC BE a b -==+ ∴CD a b BC a b -=+ ∴2BD b CD a b=-. 故答案为:2b a b -. 【点睛】本题考查的知识点是全等三角形的判定及其性质、等腰三角形的判定及其性质、三角形的内角和定理、三角形的角平分线定理等,掌握以上知识点是解此题的关键.9.如图,在平面直角坐标系中,A (﹣3,0),点 B 是 y 轴正半轴上一动点,点C 、D 在 x 正半轴上.(1)如图,若∠BAO =60°,∠BCO =40°,BD 、CE 是△ABC 的两条角平分线,且BD 、CE 交于点F,直接写出CF的长_____.(2)如图,△ABD是等边三角形,以线段BC为边在第一象限内作等边△BCQ,连接 QD并延长,交 y轴于点 P,当点 C运动到什么位置时,满足 PD=23DC?请求出点C的坐标;(3)如图,以AB为边在AB的下方作等边△ABP,点B在 y轴上运动时,求OP的最小值.【答案】(1)6;(2)C的坐标为(12,0);(3)3 2 .【解析】【分析】(1)作∠DCH=10°,CH 交BD 的延长线于H,分别证明△OBD≌△HCD 和△AOB≌△FHC,根据全等三角形的对应边相等解答;(2)证明△CBA≌△QBD,根据全等三角形的性质得到∠BDQ=∠BAC=60°,求出CD,得到答案;(3)以OA 为对称轴作等边△ADE,连接EP,并延长EP 交x 轴于点F.证明点P 在直线EF 上运动,根据垂线段最短解答.【详解】解:(1)作∠DCH=10°,CH 交 BD 的延长线于 H,∵∠BAO=60°,∴∠ABO=30°,∴AB=2OA=6,∵∠BAO=60°,∠BCO=40°,∴∠ABC=180°﹣60°﹣40°=80°,∵BD 是△ABC 的角平分线,∴∠ABD=∠CBD=40°,∴∠CBD=∠DCB,∠OBD=40°﹣30°=10°,∴DB=DC,在△OBD 和△HCD 中,==OBD HCD DB DC ODC HDC ∠∠⎧⎪=⎨⎪∠∠⎩∴△OBD ≌△HCD (ASA ),∴OB =HC ,在△AOB 和△FHC 中,==ABO FCH OB HC AOB FHC ∠∠⎧⎪=⎨⎪∠∠⎩∴△AOB ≌△FHC (ASA ),∴CF=AB=6,故答案为6;(2)∵△ABD 和△BCQ 是等边三角形,∴∠ABD =∠CBQ =60°,∴∠ABC =∠DBQ ,在△CBA 和△QBD 中,BA BD ABC DBQ BC BQ =⎧⎪∠=∠⎨⎪=⎩∴△CBA ≌△QBD (SAS ),∴∠BDQ =∠BAC =60°,∴∠PDO =60°,∴PD =2DO =6,∵PD =23DC , ∴DC =9,即 OC =OD+CD =12,∴点 C 的坐标为(12,0);(3)如图3,以 OA 为对称轴作等边△ADE ,连接 EP ,并延长 EP 交 x 轴于点F . 由(2)得,△AEP ≌△ADB ,∴∠AEP =∠ADB =120°,∴∠OEF=60°,∴OF=OA=3,∴点P在直线 EF上运动,当 OP⊥EF时,OP最小,∴OP=12OF=32则OP的最小值为32.【点睛】本题考查的是等边三角形的性质,全等三角形的判定和性质,垂线段最短,掌握全等三角形的判定定理和性质定理是解题的关键.10.小明在学习了“等边三角形”后,激发了他的学习和探究的兴趣,就想考考他的朋友小崔,小明作了一个等边ABC∆,如图1,并在边AC上任意取了一点F(点F不与点A、点C重合),过点F作FH AB⊥交AB于点H,延长CB到G,使得BG AF=,连接FG交AB于点l.(1)若10AC=,求HI的长度;(2)如图2,延长BC到D,再延长BA到E,使得AE BD=,连接ED,EC,求证:ECD EDC∠=∠.【答案】(1)HI =5;(2)见解析.【解析】【分析】(1)作FP∥BC交AB于点P,证明APF∆是等边三角形得到AH=PH,再证明PFI BGI∆≅∆得到PI=BI,于是可得HI =12AB,即可求解;(2)延长BD至Q,使DQ=AB,连结EQ,就可以得出BE=BQ,得出△BEQ是等边三角形,就可以得出BE=QE,得出△BCE≌△QDE就可以得出结论.【详解】解:如图1,作FP∥BC交AB于点P,∵ABC∆是等边三角形,∴∠ABC=∠A=60°,∵FP∥BC,∴∠APF=∠ABC=60°, ∠PFI=∠BGI,∴∠APF=∠A=60°,∴APF∆是等边三角形,∴PF=AF,∵FH AB⊥,∴AH=PH,∵AF=BG,∴PF=BG,∴在PFI∆和BGI∆中,PIF BIGPFI BGIPF BG∠=∠⎧⎪∠=∠⎨⎪=⎩,∴PFI BGI∆≅∆,∴PI=BI,∴PI+PH=BI+AH=12AB,∴HI=PI+PH =12AB=1102⨯=5;(2)如图2,延长BD至Q,使DQ=AB,连结EQ,∵△ABC 是等边三角形,∴AB=BC=AC ,∠B=60°.∵AE=BD ,DQ=AB ,∴AE+AB=BD+DQ ,∴BE=BQ .∵∠B=60°,∴△BEQ 为等边三角形,∴∠B=∠Q=60°,BE=QE .∵DQ=AB ,∴BC=DQ .∴在△BCE 和△QDE 中,BC DQ B Q BE QE =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△QDE (SAS ),∴EC=ED .∴∠ECD=∠EDC.【点睛】本题考查了等边三角形的判定及性质的运用,全等三角形的判定及性质的运用,解答时作出相应辅助线构造全等三角形是关键.本题难度较大,需要有较强的综合能力.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.利用我们学过的知识,可以导出下面这个等式:()()()12222222a b c ab bc ac a b b c c a ⎡⎤++---=-+-+-⎣⎦. 该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美. (1)请你展开右边检验这个等式的正确性;(2)利用上面的式子计算:222201820192020201820192019202020182020++-⨯-⨯-⨯.【答案】(1)见解析;(2)3.【解析】【分析】(1)根据完全平方公式和合并同类项的方法可以将等式右边的式子进行化简,从而可以得出结论;(2)根据题目中的等式可以求得所求式子的值.【详解】解:(1)12[(a-b)2+(b-c)2+(c-a)2]=12(a2-2ab+b2+b2-2bc+c2+a2-2ac+c2)=12×(2a2+2b2+2c2-2ab-2bc-2ac)=a2+b2+c2-ab-bc-ac,故a2+b2+c2-ab-bc-ac=12[(a-b)2+(b-c)2+(c-a)2]正确;(2)20182+20192+20202-2018×2019-2019×2020-2018×2020=12×[(2018-2019)2+(2019-2020)2+(2020-2018)2]=12×(1+1+4)=12×6=3.【点睛】本题考查因式分解的应用,解答本题的关键是明确题意,熟练掌握完全平方公式并能灵活运用.12.数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片边长为a的正方形,B中纸片是边长为b的正方形,C种纸片是长为a、宽为b的长方形.并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.(1)请问两种不同的方法求图2大正方形的面积.方法1:s=____________________;方法2:s=________________________;(2)观察图2,请你写出下列三个代数式:()222,,a b a b ab ++之间的等量关系. _______________________________________________________;(3)根据(2)题中的等量关系,解决如下问题:①已知:225,11a b a b +=+=,求ab 的值;②已知()()22202020195a a -+-=,则()()20202019a a --的值是____. 【答案】(1)()2a b +,222a ab b ++;(2)()2222a b a ab b +=++;(3)①7ab =,②2-【解析】【分析】(1)依据正方形的面积计算公式即可得到结论;(2)依据(1)中的代数式,即可得出(a+b )2,a 2+b 2,ab 之间的等量关系;(3)①依据a+b=5,可得(a+b )2=25,进而得出a 2+b 2+2ab=25,再根据a 2+b 2=11,即可得到ab=7;②设2020-a=x ,a-2019=y ,即可得到x+y=1,x 2+y 2=5,依据(x+y )2=x 2+2xy+y 2,即可得出xy=()222()2x y x y +-+=2-,进而得到()()20202019a a --=2-. 【详解】 解:(1)图2大正方形的面积=()2a b +,图2大正方形的面积=222a ab b ++故答案为:()2a b +,222a ab b ++;(2)由题可得()2a b +,22a b +,ab 之间的等量关系为:()2222a b a ab b +=++故答案为:()2222a b a ab b +=++;(3)①()()2222a b a b ab +-+=2251114ab ∴=-=7ab ∴=②设2020-a=x ,a-2019=y ,则x+y=1,∵()()22202020195a a -+-=,∴x 2+y 2=5,∵(x+y )2=x 2+2xy+y 2, ∴xy=()222()2x y x y +-+=-2, 即()()202020192a a --=-.【点睛】本题主要考查了完全平方公式的几何背景,熟练掌握完全平方公式是解本题的关键.13.阅读下列材料:1637年笛卡尔在其《几何学》中,首次应用“待定系数法”将四次方程分解为两个二次方程求解,并最早给出因式分解定理.他认为:对于一个高于二次的关于x 的多项式,“x a =是该多项式值为0时的一个解”与“这个多项式一定可以分解为(x a -)与另一个整式的乘积”可互相推导成立.例如:分解因式3223x x +-.∵1x =是32230x x +-=的一个解,∴3223x x +-可以分解为()1x -与另一个整式的乘积.设()()322231x x x ax bx c +-=-++ 而()()()()2321x ax bx c ax b a x c b x c -++=+-+--,则有 1203a b a c b c =⎧⎪-=⎪⎨-=⎪⎪-=-⎩,得133a b c =⎧⎪=⎨⎪=⎩,从而()()32223133x x x x x +-=-++ 运用材料提供的方法,解答以下问题:(1)①运用上述方法分解因式323x x ++时,猜想出3230x x ++=的一个解为_______(只填写一个即可),则323x x ++可以分解为_______与另一个整式的乘积;②分解因式323x x ++;(2)若1x -与2x +都是多项式32x mx nx p +++的因式,求m n -的值.【答案】(1)①:x=-1;(x+1);②3223=(1)(3)x x x x x +++-+;(2)3【解析】【分析】(1)①计算当x=-1时,方程成立,则323x x ++必有一个因式为(x+1),即可作答; ②根据待定系数法原理先设另一个多项式,然后根据多项式乘多项式的计算即可求得结论;(2))设32=(1)(2)x mx mx p x x M +++-+(其中M 为二次整式),由材料可知,x=1,x=-2是方程320x mx nx p +++=的解,然后列方程组求解即可.【详解】解:(1)①323x x ++,观察知,显然x=-1时,原式=0,则3230x x ++=的一个解为x=-1;原式可分解为(x+1)与另一个整式的积.故答案为:x=-1;(x+1)②设另一个因式为(x 2+ax+b ),(x+1)(x 2+ax+b )=x 3+ax 2+bx+x 2+ax+b=x 3+(a+1)x 2+(a+b )x+b∴a+1=0 ,a=-1, b=3∴多项式的另一因式为x 2-x+3.∴3223=(1)(3)x x x x x +++-+.(2)设32=(1)(2)x mx nx p x x M +++-+(其中M 为二次整式),由材料可知,x=1,x=-2是方程320x mx nx p +++=的解,∴可得108420m n p m n p +++=⎧⎨-+-+=⎩①②, ∴②-①,得m-n=3∴m n -的值为3.【点睛】本题考查了分解因式,正确理解题意,利用待定系数法和多项式乘多项式的计算法则求解是解题的关键.14.材料阅读:若一个整数能表示成a 2+b 2(a 、b 是正整数)的形式,则称这个数为“完美数”.例如:因为13=32+22,所以13是“完美数”;再如:因为a 2+2ab +2b 2=(a +b)2+b 2(a 、b 是正整数),所以a 2+2ab +2b 2也是“完美数”.(1)请你写出一个大于20小于30的“完美数”,并判断53是否为“完美数”;(2)试判断(x 2+9y 2)·(4y 2+x 2)(x 、y 是正整数)是否为“完美数”,并说明理由.【答案】(1)25,53是完美数; (2)是,理由见解析.【解析】【分析】(1)根据“完美数”的定义判断即可;(2)根据多项式的乘法法则计算出结果后,根据“完美数”的定义判断即可.【详解】(1)25=4²+3²,∵53=49+4=7²+2²,∴53是“完美数”;(2)(x²+9y²)⋅(4y²+x²)是“完美数”,(x²+9y²)⋅(4y²+x²)=4x 2y²+364y +4x +9x²y²=13x²y²+364y +4x =(6y²+x²) ²+x²y²,∴(x²+9y²)⋅(4y²+x²)是“完美数”.【点睛】本题考查了因式分解的应用,正确的理解新概念“完美数”是解题的关键.15.观察:22213-=;2222432110-+-=;22222265432121-+-+-=. 探究:(1)2222222287654321-+-+-+-= .(直接写出答案)(2)222222(2)(21)(22)(23)21n n n n --+---+-= .(直接写出答案)应用:(3)如图,20个圆由小到大套在一起,从外向里相间画阴影,最外面一层画阴影,最外面的圆的半径为20cm ,向里依次为19cm 、18cm 、……1cm ,那么在这个图形中,所有阴影部分的面积和是多少?(结果保留π)【答案】(1)36;(2)83n -;(3)210π【解析】【分析】(1)根据已知条件,直接结算可得;(2)根据观察可得规律:结果就是底数和;其实是运用平方差公式得到;(3)根据题意列出式子,()()()()()22222222222019181716154321ππππππππππ-+-+-++-+-,再根据上面规律简便运算.【详解】(1)2222222287654321-+-+-+-=15+21=36;(2)222222(2)(21)(22)(23)21n n n n --+---+-=[][][][]()()2(21)2(21)(22)(23)(22)(23)2121n n n n n n n n +-•--+-+-•---++•-2(21)(22)(23)21n n n n =+-+-+-++=83n -;(3)由题意可得阴影面积是:()()()()()22222222222019181716154321ππππππππππ-+-+-++-+- =2019181716154321ππππππππππ++++++++++=()1202012π⨯⨯+ =210π【点睛】 考核知识点:因式分解在运算中的应用.观察并找出规律,利用平方差公式分析问题是关键.四、八年级数学分式解答题压轴题(难)16.某市为了做好“全国文明城市”验收工作,计划对市区S 米长的道路进行改造,现安排甲、乙两个工程队进行施工.(1)已知甲工程队改造360米的道路与乙工程队改造300米的道路所用时间相同.若甲工程队每天比乙工程队多改造30米,求甲、乙两工程队每天改造道路的长度各是多少米.(2)若甲工程队每天可以改造a 米道路,乙工程队每天可以改造b 米道路,(其中a b ).现在有两种施工改造方案: 方案一:前12S 米的道路由甲工程队改造,后12S 米的道路由乙工程队改造; 方案二:完成整个道路改造前一半时间由甲工程队改造,后一半时间由乙工程队改造. 根据上述描述,请你判断哪种改造方案所用时间少?并说明理由.【答案】(1)甲工程队每天道路的长度为180米,乙工程队每天道路的长度为150米;(2)方案二所用的时间少【解析】【分析】(1)设乙工程队每天道路的长度为x 米,根据“甲工程队改造360米的道路与乙工程队改造300米的道路所用时间相同”,列出分式方程,即可求解;(2)根据题意,分别表示出两种方案所用的时间,再作差比较大小,即可得到结论.【详解】(1)设乙工程队每天道路的长度为x 米,则甲工程队每天道路的长度为()30x +米, 根据题意,得:36030030x x=+, 解得:150x =,检验,当150x =时,()300x x +≠,∴原分式方程的解为:150x =,30180x +=,答:甲工程队每天道路的长度为180米,乙工程队每天道路的长度为150米;(2)设方案一所用时间为:111()222s s a b s t a b ab+=+=, 方案二所用时间为2t ,则221122t a t b s +=,22s t a b=+, ∴22()22()a b a b S S S ab a b ab a b +--=++, ∵a b ,00a b >>,,∴()20a b ->, ∴202a b S S ab a b+->+,即:12t t >, ∴方案二所用的时间少.【点睛】 本题主要考查分式方程的实际应用以及分式的减法法则,找出等量关系,列分式方程,掌握分式的通分,是解题的关键.17.已知分式 A =2344(1)11a a a a a -++-÷-- (1)化简这个分式;(2)当 a >2 时,把分式 A 化简结果的分子与分母同时加上 4 后得到分式 B ,问:分式 B 的值较原来分式 A 的值是变大了还是变小了?试说明理由;(3)若 A 的值是整数,且 a 也为整数,求出符合条件的所有 a 值的和.【答案】(1)22a a +-;(2)原分式值变小了,见解析;(3)11 【解析】【分析】(1)根据分式混合运算顺序和运算法则化简即可得;(2)根据题意列出算式2622a a A B a a ++-=--+,化简可得16(2)(2)A B a a -=-+,结合a 的范围判断结果与0的大小即可得;(3)由24122a A a a +==+--可知,2a -=±1、±2、±4,结合a 的取值范围可得. 【详解】 解:(1)A=2344(1)11a a a a a -++-÷-- =221311(2)a a a a ---⨯-- =2(2)(2)11(2)a a a a a +--⨯-- =22a a +-; (2)变小了,理由如下: ∵22a A a +=-, ∴62a B a +=+, ∴261622(2)(2)a a A B a a a a ++-=-=-+-+; ∵2a >,∴20a ->,24a +>,∴0A B ->,∴分式的值变小了;(3)∵A 是整数,a 是整数, 则24122a A a a +==+--,∴21a -=±、2±、4±,∵1a ≠,∴a 的值可能为:3、0、4、6、-2;∴3046(2)11++++-=;∴符合条件的所有a 值的和为11.【点睛】本题主要考查分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.18.阅读下面的解题过程: 已知2112x x =+,求241x x +的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黑龙江省庆安四中2009-2010学年度第一学期期中考试八年级数学试卷亲爱的同学:走进考场,你就是这里的主人。
只要你心平气和,只要你认真思考,只要你细心、细致,你就会感到试题都在意料之中,一切都在你的掌握之中,相信自己!开始吧!一、你一定能选对!(每小题4分,共40分,请选出各题中一个符合题意的正确选项,不选、多选、错选均不给分)1、观察下列中国传统工艺品的花纹,其中轴对称图形是 ( )2、若()227.0-=x ,则=x ( )A 、-0.7B 、±0.7C 、0.7D 、0.49 3、满足53<<-x 的整数x 是( )A 、3,2,1,0,1,2--B 、3,2,1,0,1-C 、3,2,1,0,1,2--D 、2,1,0,1- 4、老师给小红出了这样一道题:如图,已知AC=AD ,BC=BD , 便可知∠ABC=∠ABD ,这是根据什么理由得到的,小红想了想, 马上得出正确答案,你猜想小红说的是( ) A 、三角形的稳定性 B 、判定根据是:SSSC 、两边一角对应相等两个三角形全等D 、三个角对应相等 5、已知等腰三角形的一个外角等于100°,则它的顶角等于( ) A 、80° B 、50° C 、20° D 、20°或80°6)A 、点PB 、点QC 、点MD 、点N7、将一根长为11的铅丝折成三段,再首尾相接围成一个等腰三角形,如果要求围成 的等腰三角形边长都是整数,那么其底边可取的不同长度有 ( )A 、2个B 、3个C 、4个D 、5个8、如果点P (a ,3)与点Q (-2,b )关于X 轴对称,那么a 、b 的值分别是 ( )A 、-2与3B 、2与-3C 、-2与-3D 、2与3 9、如图4,在△ABC 中,AQ=PQ ,PR=PS ,PR ⊥AB 于R ,PS ⊥AC 于S , 则有下列结论:①AS=AR ,②PQ ∥AR ,③△BRP ≌△QSP. 则其中( ) A 、全部正确 B 、仅①和②正确C 、仅①正确D 、仅①和③正确1 02 3 4 N M Q P图4 A B R S QCP班级 座号 姓名 ……………………………………线…………………………………封…………………………………密…………………………………10、如图5所示,△ABE 和△ADC 是△ABC 分别沿着AB ,AC 边翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为( )A 、45°B 、60°C 、80°D 、100°. 二、你能填得又快又准吗?(每小题4分,共20分) 11、计算:825-= 。
12、写出一个无理数,使它是小于-1的数 。
13、在平面镜里看到背后墙上,电子钟示数如图所示,这时的实际时间应该是__ ___。
14、已知如图6,∠ABC=∠DEF ,AB=DE ,要说明ΔABC ≌ΔDEF. (1) 若以“SAS ”为依据,还要添加的条件为______________; (2) 若以“ASA ”为依据,还要添加的条件为______________。
15、如图7,在△ABC 中,∠ACB=90,DE 是AB 的垂直平分线,∠CAE :∠EAB=4:1.则∠B =______度。
E DC BA三、你想提高计算的准确率吗?不妨试试“一步一回头”。
16、计算:(本题10分) 328++-1001(-2)3×3064.0四、做数学,可要“看准、想清、写明”哟!(共80分) 17、(本题12分)画图题:(1)如图,在图①的网格纸上,画出所给图形关于直线l 对称的图形。
(2)画出图中阴影部分关于直线AB 的轴对称图形(涂上阴影)。
(3)若每个小正方形的边长都为1请在图③ 中画一个格点三角形(顶点都在格点上)使其面积与图 ① 中的四边形的面积相等并且是一个轴对称图形。
18、(本题12分) 平面直角坐标系中,△ABC 的BC 边平行于x 轴,BC=2,点A 的坐标为(-4,3),点B 的坐标为(-3,1). (1)直接写出C 点的坐标:(2)画出△ABC 关于y 轴对称的△A 1B 1C 1,并写出A 1、B 1、C 1的坐标。
_ B _ A _ F_ E _ D_ C图6图7图①图②图③图519、(本题12分)如图,A 、D 、F 、B 在同一直线上,AD=BF,AE=BC, 且 AE ∥BC 。
求证:(1)△AEF ≌△BCD ;(2) EF ∥CD 。
20、(本题12分)在一次数学课上,陆老师在黑板上画出图10,并写下了四个等式:①AB DC =,②BE CE =,③B C ∠=∠,④BAE CDE ∠=∠。
要求同学从这四个等式中选出两个作为条件,推出AED △是等腰三角形。
请你试着完成陆老师提出的要求,并说明理由。
(写出一种即可) 已知:求证:AED △是等腰三角形. 证明:21、(本题14分)如图,在△ABC 中,AB=AC ,点D 、E 、F 分别 在BC 、AB 、AC 边上,且BE=CF ,BD=CE 。
(1)求证:△DEF 是等腰三角形; (2)当∠A=40°时,求∠DEF 的度数;D A CBCFDAE22、(本题18分)学完“轴对称”这一章后,•陆老师布置了一道思考题:•如图12所示,点M,N 分别在等边△ABC的BC、CA边上,且BM=CN,AM,BN交于点Q,•求证:•∠BQM=60°。
(1)请你完成这道思考题:(2)做完(1)后,同学们在老师的启发下进行了反思,提出许多问题,如:①若将题中“BM=CN”与“∠BQM=60°”的位置交换,•得到的是否仍是真命题?②若将题中的点M,N分别移动到BC,CA的延长线上,是否仍能得到∠BQM=60°?③若将题中的条件“点M,N分别在正三角形ABC的BC、CA边上”改为“点M,N•分别在正方形ABCD的BC,CD边上”,是否仍能得到∠BQM=60°?……请你作出判断,在下列横线上填写“是”或“否”:①_________;②__________;③__________.并对②,③的判断,选择一个给出证明。
(恭喜你!你已经答完试卷了,请再仔细检查,要养成复查试卷的好习惯噢!呵呵!)黑龙江省庆安四中2009-2010学年度第一学期期中考试八年级数学试卷参考答案一、选择题(本大题共10小题,每小题4分,共40分)1、A;2、B;3、D;4、B;5、A;6、C;7、B;8、C;9、B;10、C。
二、填空题(本大题共5小题,每小题4分,共20分)11、;3 12、(或- );13、21:05;14、BC=EF(或BE=CF);15、15。
三、本题共10分16、解:原式=2 +4 +0.1+8×0.4=6 +3.3四、本大题共80分17、图略,每小题4分, 共12分。
18、(1)C(-1,1);(2分);(2)图略(画图正确4分)A1(4,3);B1、(3,1);C1(1,1)。
每个坐标正确得2分。
19、(1)证明:∵ AE∥BC ∴∠A=∠B∵ AD=BF ∴ AD+DF=BF+DF 即 AF=BD………………4分∵ AE=BC∴△AEF≌△BCD (SAS) ………………………………8分(2) ∵△AEF≌△BCD ∴∠AFE=∠BDC ………………………………10分∴ EF∥CD ………………………………12分20、已知:BE=CE,∠C=∠B。
(或①和③;①和④;②和④。
)…………2分证明:∵BE=CE,∠C=∠B,∠AEB=∠DEC………………………………6分∴△AEB≌△DEC (ASA) ∴AE=DE………………………………10分即是等腰三角形………………………………12分21、(1)证明:∵AB=AC ∴∠C=∠B………………………………2分∵BE=CF,BD=CE………………………………4分∴△BDE≌△CEF(SAS)∴DE=EF即△DEF是等腰三角形………………………………7分(2)解:∵△BDE≌△CEF ∴∠FEC=∠BDE………………………………9分∵AB=AC,∠A=400 ∴∠C=∠B=(1800-400)÷2=700…………11分∴∠BDE+∠BED=1800-700=1100 ∴∠BDE+∠FEC=1100……………13分∴∠DEF=1800-1100=700………………………………14分22、(1)证明:∵△ABC为等边三角形∴AB=BC,∠ABC=∠C=600…………………2分∵BM=CN ∴△BCN≌△ABM (ASA) ……………………4分∴∠NBC=∠BAM ∵∠NBC+∠ABN=600……………………5分∴∠NBA+∠BAM=600 ∴∠BQM=600……………………6分(2)是;是;否。
每空2分,共6分。
选②证明过程与(1)类似。
……………………18分选③证明结果:∠BQM=900。