数据结构第7章

合集下载

数据结构 第7章习题答案

数据结构 第7章习题答案

第7章 《图》习题参考答案一、单选题(每题1分,共16分)( C )1. 在一个图中,所有顶点的度数之和等于图的边数的 倍。

A .1/2 B. 1 C. 2 D. 4 (B )2. 在一个有向图中,所有顶点的入度之和等于所有顶点的出度之和的 倍。

A .1/2 B. 1 C. 2 D. 4 ( B )3. 有8个结点的无向图最多有 条边。

A .14 B. 28 C. 56 D. 112 ( C )4. 有8个结点的无向连通图最少有 条边。

A .5 B. 6 C. 7 D. 8 ( C )5. 有8个结点的有向完全图有 条边。

A .14 B. 28 C. 56 D. 112 (B )6. 用邻接表表示图进行广度优先遍历时,通常是采用 来实现算法的。

A .栈 B. 队列 C. 树 D. 图 ( A )7. 用邻接表表示图进行深度优先遍历时,通常是采用 来实现算法的。

A .栈 B. 队列 C. 树 D. 图 ()8. 已知图的邻接矩阵,根据算法思想,则从顶点0出发按深度优先遍历的结点序列是( D )9. 已知图的邻接矩阵同上题8,根据算法,则从顶点0出发,按深度优先遍历的结点序列是A . 0 2 4 3 1 5 6 B. 0 1 3 5 6 4 2C. 0 4 2 3 1 6 5D. 0 1 2 34 6 5 ( D )10. 已知图的邻接表如下所示,根据算法,则从顶点0出发按深度优先遍历的结点序列是( A )11. 已知图的邻接表如下所示,根据算法,则从顶点0出发按广度优先遍历的结点序列是A .0 2 4 3 1 5 6B. 0 1 3 6 5 4 2C. 0 1 3 4 2 5 6D. 0 3 6 1 5 4 2⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡0100011101100001011010110011001000110010011011110A .0 1 3 2 B. 0 2 3 1 C. 0 3 2 1 D. 0 1 2 3(A)12. 深度优先遍历类似于二叉树的A.先序遍历 B. 中序遍历 C. 后序遍历 D. 层次遍历(D)13. 广度优先遍历类似于二叉树的A.先序遍历 B. 中序遍历 C. 后序遍历 D. 层次遍历(A)14. 任何一个无向连通图的最小生成树A.只有一棵 B. 一棵或多棵 C. 一定有多棵 D. 可能不存在(注,生成树不唯一,但最小生成树唯一,即边权之和或树权最小的情况唯一)二、填空题(每空1分,共20分)1. 图有邻接矩阵、邻接表等存储结构,遍历图有深度优先遍历、广度优先遍历等方法。

《数据结构(C语言版 第2版)》(严蔚敏 著)第七章练习题答案

《数据结构(C语言版 第2版)》(严蔚敏 著)第七章练习题答案

《数据结构(C语言版第2版)》(严蔚敏著)第七章练习题答案第7章查找1.选择题(1)对n个元素的表做顺序查找时,若查找每个元素的概率相同,则平均查找长度为()。

A.(n-1)/2B.n/2C.(n+1)/2D.n答案:C解释:总查找次数N=1+2+3+…+n=n(n+1)/2,则平均查找长度为N/n=(n+1)/2。

(2)适用于折半查找的表的存储方式及元素排列要求为()。

A.链接方式存储,元素无序B.链接方式存储,元素有序C.顺序方式存储,元素无序D.顺序方式存储,元素有序答案:D解释:折半查找要求线性表必须采用顺序存储结构,而且表中元素按关键字有序排列。

(3)如果要求一个线性表既能较快的查找,又能适应动态变化的要求,最好采用()查找法。

A.顺序查找B.折半查找C.分块查找D.哈希查找答案:C解释:分块查找的优点是:在表中插入和删除数据元素时,只要找到该元素对应的块,就可以在该块内进行插入和删除运算。

由于块内是无序的,故插入和删除比较容易,无需进行大量移动。

如果线性表既要快速查找又经常动态变化,则可采用分块查找。

(4)折半查找有序表(4,6,10,12,20,30,50,70,88,100)。

若查找表中元素58,则它将依次与表中()比较大小,查找结果是失败。

A.20,70,30,50B.30,88,70,50C.20,50D.30,88,50答案:A解释:表中共10个元素,第一次取⎣(1+10)/2⎦=5,与第五个元素20比较,58大于20,再取⎣(6+10)/2⎦=8,与第八个元素70比较,依次类推再与30、50比较,最终查找失败。

(5)对22个记录的有序表作折半查找,当查找失败时,至少需要比较()次关键字。

A.3B.4C.5D.6答案:B解释:22个记录的有序表,其折半查找的判定树深度为⎣log222⎦+1=5,且该判定树不是满二叉树,即查找失败时至多比较5次,至少比较4次。

(6)折半搜索与二叉排序树的时间性能()。

数据结构课后习题答案第七章

数据结构课后习题答案第七章

第七章图(参考答案)7.1(1)邻接矩阵中非零元素的个数的一半为无向图的边数;(2)A[i][j]= =0为顶点,I 和j无边,否则j和j有边相通;(3)任一顶点I的度是第I行非0元素的个数。

7.2(1)任一顶点间均有通路,故是强连通;(2)简单路径V4 V3 V1 V2;(3)0 1 ∞ 1∞ 0 1 ∞1 ∞ 0 ∞∞∞ 1 0邻接矩阵邻接表(2)从顶点4开始的DFS序列:V5,V3,V4,V6,V2,V1(3)从顶点4开始的BFS序列:V4,V5,V3,V6,V1,V27.4(1)①adjlisttp g; vtxptr i,j; //全程变量② void dfs(vtxptr x)//从顶点x开始深度优先遍历图g。

在遍历中若发现顶点j,则说明顶点i和j间有路径。

{ visited[x]=1; //置访问标记if (y= =j){ found=1;exit(0);}//有通路,退出else { p=g[x].firstarc;//找x的第一邻接点while (p!=null){ k=p->adjvex;if (!visited[k])dfs(k);p=p->nextarc;//下一邻接点}}③ void connect_DFS (adjlisttp g)//基于图的深度优先遍历策略,本算法判断一邻接表为存储结构的图g种,是否存在顶点i //到顶点j的路径。

设 1<=i ,j<=n,i<>j.{ visited[1..n]=0;found=0;scanf (&i,&j);dfs (i);if (found) printf (” 顶点”,i,”和顶点”,j,”有路径”);else printf (” 顶点”,i,”和顶点”,j,”无路径”);}// void connect_DFS(2)宽度优先遍历全程变量,调用函数与(1)相同,下面仅写宽度优先遍历部分。

数据结构习题及答案与实验指导(树和森林)7

数据结构习题及答案与实验指导(树和森林)7

第7章树和森林树形结构是一类重要的非线性结构。

树形结构的特点是结点之间具有层次关系。

本章介绍树的定义、存储结构、树的遍历方法、树和森林与二叉树之间的转换以及树的应用等内容。

重点提示:●树的存储结构●树的遍历●树和森林与二叉树之间的转换7-1 重点难点指导7-1-1 相关术语1.树的定义:树是n(n>=0)个结点的有限集T,T为空时称为空树,否则它满足如下两个条件:①有且仅有一个特定的称为根的结点;②其余的结点可分为m(m>=0)个互不相交的子集T1,T2,…,T m,其中每个子集本身又是一棵树,并称为根的子树。

要点:树是一种递归的数据结构。

2.结点的度:一个结点拥有的子树数称为该结点的度。

3.树的度:一棵树的度指该树中结点的最大度数。

如图7-1所示的树为3度树。

4.分支结点:度大于0的结点为分支结点或非终端结点。

如结点a、b、c、d。

5.叶子结点:度为0的结点为叶子结点或终端结点。

如e、f、g、h、i。

6.结点的层数:树是一种层次结构,根结点为第一层,根结点的孩子结点为第二层,…依次类推,可得到每一结点的层次。

7.兄弟结点:具有同一父亲的结点为兄弟结点。

如b、c、d;e、f;h、i。

8.树的深度:树中结点的最大层数称为树的深度或高度。

9.有序树:若将树中每个结点的子树看成从左到右有次序的(即不能互换),则称该树为有序树,否则称为无序树。

10.森林:是m棵互不相交的树的集合。

7-1-2 树的存储结构1.双亲链表表示法以图7-1所示的树为例。

(1)存储思想:因为树中每个元素的双亲是惟一的,因此对每个元素,将其值和一个指向双亲的指针parent构成一个元素的结点,再将这些结点存储在向量中。

(2)存储示意图:-1 data:parent:(3)注意: Parrent域存储其双亲结点的存储下标,而不是存放结点值。

下面的存储是不正确的:-1 data:parent:2.孩子链表表示法(1)存储思想:将每个数据元素的孩子拉成一个链表,链表的头指针与该元素的值存储为一个结点,树中各结点顺序存储起来,一般根结点的存储号为0。

数据结构(C语言版)_第7章 图及其应用

数据结构(C语言版)_第7章 图及其应用
(1)创建有向图邻接表 (2)创建无向图的邻接表
实现代码详见教材P208
7.4 图的遍历
图的遍历是对具有图状结构的数据线性化的过程。从图中任 一顶点出发,访问输出图中各个顶点,并且使每个顶点仅被访 问一次,这样得到顶点的一个线性序列,这一过程叫做图的遍 历。
图的遍历是个很重要的算法,图的连通性和拓扑排序等算法 都是以图的遍历算法为基础的。
V1
V1
V2
V3
V2
V3
V4
V4
V5
图9.1(a)

图7-2 图的逻辑结构示意图
7.2.2 图的相关术语
1.有向图与无向图 2.完全图 (1)有向完全图 (2)无向完全图 3.顶点的度 4.路径、路径长度、回路、简单路径 5.子图 6.连通、连通图、连通分量 7.边的权和网 8.生成树
2. while(U≠V) { (u,v)=min(wuv;u∈U,v∈V-U); U=U+{v}; T=T+{(u,v)}; }
3.结束
7.5.1 普里姆(prim)算法
【例7-10】采用Prim方法从顶点v1出发构造图7-11中网所对 应的最小生成树。
构造过程如图7-12所示。
16
V1
V1
V2
7.4.2 广度优先遍历
【例7-9】对于图7-10所示的有向图G4,写出从顶点A出发 进行广度优先遍历的过程。
访问过程如下:首先访问起始顶点A,再访问与A相邻的未被 访问过的顶点E、F,再依次访问与E、F相邻未被访问过的顶 点D、C,最后访问与D相邻的未被访问过的顶点B。由此得到 的搜索序列AEFDCB。此时所有顶点均已访问过, 遍历过程结束。
【例7-1】有向图G1的逻辑结构为:G1=(V1,E1) V1={v1,v2,v3,v4},E1={<v1,v2>,<v2,v3>,<v2,v4>,<v3,v4>,<v4,v1>,<v4,v3>}

数据结构-第7章图答案

数据结构-第7章图答案

7.3 图的遍历 从图中某个顶点出发游历图,访遍图中其余顶点, 并且使图中的每个顶点仅被访问一次的过程。 一、深度优先搜索 从图中某个顶点V0 出发,访问此顶点,然后依次 从V0的各个未被访问的邻接点出发深度优先搜索遍 历图,直至图中所有和V0有路径相通的顶点都被访 问到,若此时图中尚有顶点未被访问,则另选图中 一个未曾被访问的顶点作起始点,重复上述过程, 直至图中所有顶点都被访问到为止。
void BFSTraverse(Graph G, Status (*Visit)(int v)) { // 按广度优先非递归遍历图G。使用辅助队列Q和访问标志数组 visited。 for (v=0; v<G.vexnum; ++v) visited[v] = FALSE; InitQueue(Q); // 置空的辅助队列Q for ( v=0; v<G.vexnum; ++v ) if ( !visited[v]) { // v尚未访问 EnQueue(Q, v); // v入队列 while (!QueueEmpty(Q)) { DeQueue(Q, u); // 队头元素出队并置为u visited[u] = TRUE; Visit(u); // 访问u for ( w=FirstAdjVex(G, u); w!=0; w=NextAdjVex(G, u, w) ) if ( ! visited[w]) EnQueue(Q, w); // u的尚未访问的邻接顶点w入队列Q
4。邻接多重表
边结点
mark ivex
顶点结点
ilink
jvex
jlink
info
data
firstedge
#define MAX_VERTEX_NUM 20 typedef emnu {unvisited, visited} VisitIf; typedef struct Ebox { VisitIf mark; // 访问标记 int ivex, jvex; // 该边依附的两个顶点的位置 struct EBox *ilink, *jlink; // 分别指向依附这两个顶点的下一条 边 InfoType *info; // 该边信息指针 } EBox; typedef struct VexBox { VertexType data; EBox *firstedge; // 指向第一条依附该顶点的边 } VexBox; typedef struct { VexBox adjmulist[MAX_VERTEX_NUM]; int vexnum, edgenum; // 无向图的当前顶点数和边数 } AMLGraph;

《数据结构》第 7 章 图

《数据结构》第 7 章 图

v3
v4 v5 v4
v3
v5 v4
v3
v5 v4
v3
v5 v4
v3
v5

一个图可以有许多棵不同的生成树。 所有生成树具有以下共同特点: 生成树的顶点个数与图的顶点个数相同; 生成树是图的极小连通子图; 一个有 n 个顶点的连通图的生成树有 n-1 条边; 生成树中任意两个顶点间的路径是唯一的; 在生成树中再加一条边必然形成回路。 含 n 个顶点 n-1 条边的图不一定是生成树。
A1 = {< v1, v2>, < v1, v3>, < v3, v4>, < v4, v1>} v1 v2
有向图
v3
v4
制作:计算机科学与技术学院 徐振中
数据结构 边:若 <v, w>∈VR 必有<w, v>∈VR,则以 无序对 (v, w) 代表这两个有序对,表示 v 和 w 之 间的一条边,此时的图称为无向图。 G2 = (V2, E2) V2 = {v1, v2, v3, v4, v5}
第七章 图
E2 = {(v1, v2), (v1, v4), (v2, v3), (v2, v5) , (v3, v4), (v3, v5)} v1
G2
v3
v2
无向图
v4
v5
制作:计算机科学与技术学院 徐振中
数据结构
第七章 图
例:两个城市 A 和 B ,如果 A 和 B 之间的连线的涵义是 表示两个城市的距离,则<A, B> 和 <B, A> 是相同的, 用 (A, B) 表示。 如果 A 和 B 之间的连线的涵义是表示两城市之 间人口流动的情况,则 <A, B> 和 <B, A> 是不同的。 北京 <北京,上海> (北京,上海) <上海,北京> <北京,上海> 北京 上海 上海

数据结构(严蔚敏)第7章 PPT课件

数据结构(严蔚敏)第7章 PPT课件

B A
F
2019年12月13日星期五
C
F
E
D 若无向图为非连通图, 则图中各个极大连通
E
子图称作此图的连通
分量。
第16页
对有向图,若任意两个顶点之间都存在
一条有向路径,则称此有向图为强连通图。
否则,其各个强连通子图称作它的 强连通分量。
A
A
B
EB
E
CF
2019年12月13日星期五
第17页
CF
假设一个连通图有 n 个顶点和 e 条边, 其中 n-1 条边和 n 个顶点构成一个极小连 通子图,称该极小连通子图为此连通图的 生成树。
2019年12月13日星期五
E 顶点的出度: 以顶点v 为弧尾的弧的数目;
顶点的入度: 以顶点v 为弧头的弧的数目。
顶点的度(TD)= 出度(OD)+入度(ID)
第14页
设图G=(V,{VR})中的一个顶点序列
{ u=vi,0,vi,1, …, vi,m=w}中,(vi,j-1,vi,j)VR 1≤j≤m, 则称从顶点u 到顶点w 之间存在一条路径。
2019年12月13日星期五
7.1 图的定义与术语
7.2 图的存储表示
7.3 图的遍历
7.4 最小生成树
7.5 重(双)连通图和关节点
7.6 两点之间的最短路径问题
7.7 拓扑排序
2019年12月13日星期五
7.8 关键路径 第6页
7.1 图的定义与术语
图的结构定义:
图是由一个顶点集 V 和一个弧集 R构成 的数据结构。
struct ArcBox *hlink, *tlink;
} VexNode;
2019年12月13日星期五
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据结构第7章-图习题第7章图一、单项选择题1.在一个无向图G中,所有顶点的度数之和等于所有边数之和的______倍。

A.l/2 B.1C.2 D.42.在一个有向图中,所有顶点的入度之和等于所有顶点的出度之和的______倍。

A.l/2 B.1C.2 D.43.一个具有n个顶点的无向图最多包含______条边。

A.n B.n+1C.n-1 D.n(n-1)/24.一个具有n个顶点的无向完全图包含______条边。

A.n(n-l) B.n(n+l)C.n(n-l)/2 D.n(n-l)/25.一个具有n个顶点的有向完全图包含______条边。

A.n(n-1) B.n(n+l)C.n(n-l)/2 D.n(n+l)/26.对于具有n个顶点的图,若采用邻接矩阵表示,则该矩阵的大小为______。

A.n B.n×nC.n-1 D.(n-l) ×(n-l)7.无向图的邻接矩阵是一个______。

A.对称矩阵B.零矩阵C.上三角矩阵D.对角矩阵8.对于一个具有n个顶点和e条边的无(有)向图,若采用邻接表表示,则表头向量的大小为______。

A.n B.eC.2n D.2e9.对于一个具有n个顶点和e条边的无(有)向图,若采用邻接表表示,则所有顶点邻接表中的结点总数为______。

A.n B.eC.2n D.2e10.在有向图的邻接表中,每个顶点邻接表链接着该顶点所有______邻接点。

A.入边B.出边C.入边和出边D.不是入边也不是出边11.在有向图的逆邻接表中,每个顶点邻接表链接着该顶点所有______邻接点。

A.入边B.出边C.入边和出边D.不是人边也不是出边12.如果从无向图的任一顶点出发进行一次深度优先搜索即可访问所有顶点,则该图一定是______。

A.完全图B.连通图C.有回路D.一棵树13.采用邻接表存储的图的深度优先遍历算法类似于二叉树的______算法。

A.先序遍历B.中序遍历C.后序遍历 D.按层遍历14.采用邻接表存储的图的广度优先遍历算法类似于二叉树的______算法。

A.先序遍历B.中序遍历C.后序遍历 D.按层遍历15.如果无向图G必须进行二次广度优先搜索才能访问其所有顶点,则下列说法中不正确的是______。

A.G肯定不是完全图B.G一定不是连通图C.G中一定有回路D.G有二个连通分量16.下列有关图遍历的说法不正确的是______。

A.连通图的深度优先搜索是一个递归过程B.图的广度优先搜索中邻接点的寻找具有“先进先出”的特征C.非连通图不能用深度优先搜索法D.图的遍历要求每一顶点仅被访问一次17.下列说法中不正确的是______。

A.无向图中的极大连通子图称为连通分量B.连通图的广度优先搜索中一般要采用队列来暂存刚访问过的顶点C.图的深度优先搜索中一般要采用栈来暂存刚访问过的顶点D.有向图的遍历不可采用广度优先搜索方法18.一个有向图G的邻接表存储如下图7-1所示,现按深度优先搜索遍历,从顶点v1出发,所得到的顶点序列是______。

A.v1,v2,v3,v4,v5B.v1,v2,v3,v5,v4C.v1,v2,v4,v5,v3D.v1,v2,v5,v3,v4图7-1 一个有向图的邻接表19.对图7-2所示的无向图,从顶点1开始进行深度优先遍历,可得到顶点访问序列______。

A.1,2,4,3,5,7,6 B.1,2,4,3,5,6,7C.1,2,4,5,6,3,7 D.1,2,3,4,5,7,6图7-2 一个无向图20.对图7-2所示的无向图,从顶点1开始进行广度优先遍历,可得到顶点访问序列______。

A.1,3,2,4,5,6,7 B.1,2,4,3,5,6,7C.1,2,3,4,5,7,6 D.2,5,1,4,7,3,621.一个无向连通图的生成树是含有该连通图的全部顶点的______。

A.极小连通子图B.极小子图C.极大连通子图D.极大子图22.设无向图G=(V, E) 和G’= (V’, E’),如果G’为G的生成树,则下列说法中不正确的是______。

A.G’为G的连通分量B.G’为G的无环子图C.G’为G的子图D.G’为G的极小连通子图且V’=V 23.任意一个无向连通图______最小生成树。

A.只有一棵B.有一棵或多棵C.一定有多棵D.可能不存在24.对于含有n个顶点的带权连通图,它的最小生成树是指图中任意一个________。

A.由n-1条权值最小的边构成的子图。

B.由n-1条权值之和最小的边构成的子图。

C.由n-1条权值之和最小的边构成的连通子图。

D.由n个顶点构成的边的权值之和最小的生成树。

25.若一个有向图中的顶点不能排成一个拓扑序列,则可断定该有向图_______。

A.是个有根有向图B.是个强连通图C.含有多个入度为0的顶点D.含有顶点数目大于1的强连通分量26.判定一个有向图是否存在回路除了可以利用拓扑排序方法外,还可以用____。

A.求关键路径的方法 B.求最短路径的Dijkstra算法C.广度优先遍历算法 D.深度优先遍历算法27.求最短路径的Dijkstra算法的时间复杂度为______。

A.O(n) B.O(n+e)C.O(n2) D.O(ne)28.求最短路径的Floyd算法的时间复杂度为______。

A.O(n) B.O(ne)C.O(n2) D.O(n3)29.关键路径是事件结点网络中______。

A.从源点到汇点的最长路径B.从源点到汇点的最短路径C.最长的回路D.最短的回路30.下面说法不正确的是______。

A.在AOE网中,减少任一关键活动的权值后,整个工期也就相应减少B.AOE网工程工期为关键活动的权值和C.在关键路径上的活动都是关键活动,而关键活动也必须在关键路径上D.A和B31.下面说法不正确的是______。

A.关键活动不按期完成就会影响整个工程的完成时间B.任何一个关键活动提前完成,将使整个工程提前完成C.所有关键活动都提前完成,则整个工程提前完成D.某些关键活动若提前完成,将使整个工程提前完成二、填空题1.对于具有n个顶点的无向图G最多有_________条边。

2.对于具有n个顶点的强连通有向图G至少有_________条边。

3.对于具有n个顶点的有向图,每个顶点的度最大可达___________。

4.若无向图G的顶点度数最小值大于___________时,G至少有一条回路。

5.对于一个具有n个顶点和e条边的无向图,若采用邻接表表示,则表头向量的大小为___________,所有邻接表中的结点总数是__________。

6.已知一个有向图的邻接矩阵表示,删除所有从第i个结点出发的弧的方法是____________。

7.对于n个顶点的无向图,采用邻接矩阵表示,求图中边数的方法是__________,判断任意两个顶点i和j是否有边相连的方法是__________,求任意一个顶点的度的方法是___________。

8.对于n个顶点的有向图,采用邻接矩阵表示,求图中边数的方法是_________,判断任意两个顶点i和j是否有边相连的方法是__________,求任意一个顶点的度的方法是__________。

9.无向图的连通分量是指___________。

10.已知图G的邻接表如图7-3所示,从顶点v1出发的深度优先搜索序列为________,从顶点1出发的广度优先搜索序列为_____________。

图7-3 图G的邻接表11.n个顶点连通图的生成树一定有__________条边。

12.一个连通图的___________是一个极小连通子图。

13.Prim算法适用于求_________的网的最小生成树,Kruskal算法适用于求________的网的最小生成树。

14.在AOV图中,顶点表示________,有向边表示________。

15.可以进行拓扑排序的有向图一定是_________。

16.从源点到汇点长度最长的路径称为关键路径,该路径上的活动称为________。

17.Dijkstra算法从源点到其它各顶点的路径长度按________次序依次产生,该算法在边上的权出现_________情况时,不能正确产生最短路径。

18.求从某源点到其余各项点的Dijkstra算法在图的顶点数为10,用邻接矩阵表示图时计算时间约为10ms,则在图的顶点数为40时,计算时间约为_________ms。

三、判断题1.具有n个顶点的无向图至多有n(n-1)条边。

2.有向图中各顶点的入度之和等于各顶点的出度之和。

3.邻接矩阵只储存了边的信息,没有存储顶点的信息。

4.对同一个有向图,只保存出边的邻接表中结点的数目总是和只保存入边的邻接表中结点的数目一样多。

5.如果表示图的邻接矩阵是对称矩阵,则该图一定是无向图。

6.如果表示有向图的邻接矩阵是对称矩阵,则该有向图一定是有向完全图。

7.如果表示某个图的邻接矩阵不是对称矩阵,则该图一定是有向图。

8.连通分量是无向图的极小连通子图。

9.强连通分量是有向图的极大连通子图。

10.对有向图G,如果以任一顶点出发进行一次深度优先或广度优先搜索能访问到每一个顶点,则该图一定是完全图。

11.连通图的广度优先搜索中一般要采用队列来暂时刚访问过的顶点。

12.图的深度优先搜索中一般要采用栈来暂时刚访问过的顶点。

13.有向图的遍历不可采用广度优先搜索方法。

14.连通图的生成树包含了图中所有顶点。

15.设G为具有n个顶点的连通图,如果其中的某个子图有n个顶点,n-1条边,则该子图一定是G的生成树。

16.最小生成树是指边数最小的生成树。

17.从n个顶点的连通图中选取n-1条权值最小的边,即可构成最小生成树。

18.只要无向网中没有权值相同的边,其最小生成树就是惟一的。

19.只要无向网中有权值相同的边,其最小生成树就可能不是惟一的。

20.有环图也能进行拓扑排序。

21.拓扑排序算法仅适用于有向无环图。

22.任何有向无环图的结点都可以排成拓扑排序,而且拓扑序列不惟一。

23.关键路径是由权值最大的边构成的。

24.在AOE网中,减小任一关键活动上的权值后,整个工期也就相应减小。

25.在AOE网中工程工期为关键活动上权值之和。

26.在关键路径的活动都是关键活动,而关键活动未必在关键路径上。

27.关键活动不按期完成就会影响整个工程的完成时间。

28.所有关键活动都提前完成,则整个工程将提前完成。

29.某些关键活动若提前完成,将可能使整个工程提前完成。

30.求单源最短路径的狄克斯特拉算法不适用于有回路的有向网。

四、简答题1.图G是一个非连通无向图,共有28条边,则该图至少有多少个顶点?2.用邻接矩阵表示图时,矩阵元素的个数与顶点个数是否相关?与边的条数是否有关?3.对于稠密图和稀疏图,就存储而言,采用邻接矩阵和邻接表哪个更好些?4.请回答下列关于图的一些问题:(1)有n个顶点的有向强连通图最多有多少条边?最少有多少条边?(2)表示一个有1000个顶点,1000条边的有向图的邻接矩阵有多少个矩阵元素?是否为稀疏矩阵?(3)对于一个有向图,不用拓扑排序,如何判断图是否存在环?5.对n个顶点的无向图和有向图,采用邻接表表示时,如何判别下列有关问题?(1)图中有多少条边?(2)任意两个顶点i和j是否有边相连?(3)任意一个顶点的度是多少?6.给出如图7-4所示的无向图G的邻接矩阵和邻接表两种存储结构。

相关文档
最新文档