高中数学 第一章 推理与证明 1.1.1 归纳推理课件2 北师大版选修2-2
数学教案 北师大版选修2-2 同步备课-第1章 推理与证明学案第1节归纳与类比

§1归纳与类比1.1 归纳推理学习目标核心素养1.了解归纳推理的含义,能利用归纳推理进行简单的推理.(重点)2.了解归纳推理在数学发展中的作用.(难点) 1.通过归纳推理概念的学习,体现了数学抽象的核心素养.2.通过归纳推理的应用的学习,体现了逻辑推理的核心素养.1.归纳推理的定义根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都有这种属性,这种推理方式称为归纳推理.2.归纳推理的特征归纳推理是由部分到整体,由个别到一般的推理.思考:由归纳推理得到的结论一定是正确的吗?[提示]不一定正确.因为归纳推理是由部分到整体、由个别到一般的推理,其结论还需要证明其正确性.1.下列关于归纳推理的说法错误的是( )①归纳推理是由一般到一般的推理过程;②归纳推理是一种由特殊到特殊的推理;③归纳推理得出的结论具有或然性,不一定正确;④归纳推理具有由具体到抽象的认识功能.A.①②B.②③C.①③ D.③④A[归纳推理是由特殊到一般的推理,故①②不正确,易知③④均正确,故选A.]2.若空间中n个不同的点两两距离都相等,则正整数n的取值( )A.至多等于3 B.至多等于4C.等于5 D.大于5B [n =2时,可以;n =3时,为正三角形,可以;n =4时,为正四面体,可以;n =5时,为四棱锥,侧面为正三角形,底面为菱形且对角线长与边长相等,不可能.]3.由集合{a 1},{a 1,a 2},{a 1,a 2,a 3},……的子集个数归纳出集合{a 1,a 2,a 3,…,a n }的子集个数为________.2n[集合{a 1}有两个子集和{a 1},集合{a 1,a 2}的子集有,{a 1},{a 2},{a 1,a 2}共4个子集,集合{a 1,a 2,a 3}有8个子集,由此可归纳出集合{a 1,a 2,a 3,…,a n }的子集个数为2n个.]数式中的归纳推理+b 10=( )A .28B .76C .123D .199(2)已知f(x)=x1-x ,设f 1(x)=f(x),f n (x)=f n -1(f n -1(x))(n>1,且n∈N +),则f 3(x)的表达式为________,猜想f n (x)(n∈N +)的表达式为________.思路探究:(1)记a n+b n=f(n),观察f(1),f(2),f(3),f(4),f(5)之间的关系,再归纳得出结论. (2)写出前几项发现规律,归纳猜想结果.(1)C (2)f 3(x)=x 1-4x f n (x)=x 1-2n -1x [(1)记a n +b n =f(n),则f(3)=f(1)+f(2)=1+3=4;f(4)=f(2)+f(3)=3+4=7;f(5)=f(3)+f(4)=11.通过观察不难发现f(n)=f(n -1)+f(n -2)(n∈N+,n≥3),则f(6)=f(4)+f(5)=18;f(7)=f(5)+f(6)=29;f(8)=f(6)+f(7)=47;f(9)=f(7)+f(8)=76;f(10)=f(8)+f(9)=123.所以a 10+b 10=123. (2)f 1(x)=f(x)=x1-x,f 2(x)=f 1(f 1(x))=x 1-x 1-x 1-x =x1-2x ,f 3(x)=f 2(f 2(x))=x 1-2x 1-2·x 1-2x=x1-4x,由f 1(x),f 2(x),f 3(x)的表达式,归纳f n (x)=x1-2n -1x.]已知等式或不等式进行归纳推理的方法1.要特别注意所给几个等式(或不等式)中项数和次数等方面的变化规律; 2.要特别注意所给几个等式(或不等式)中结构形式的特征; 3.提炼出等式(或不等式)的综合特点; 4.运用归纳推理得出一般结论.1.经计算发现下列不等式:2+18<210, 4.5+15.5<210,3+2+17-2<210,……根据以上不等式的规律,试写出一个对正实数a ,b 都成立的条件不等式:________.当a +b =20时,有a +b<210,a ,b∈R + [从上面几个不等式可知,左边被开方数的和均为20,故可以归纳为a +b =20时,a +b<210.]数列中的归纳推理【例2】 (1)在数列{a n }中,a 1=1,a n +1=-1a n +1,则a 2 019等于( )A .2B .-12C .-2D .1(2)古希腊人常用小石子在沙滩上摆成各种形状来研究数,如图:由于图中1,3,6,10这些数能够表示成三角形,故被称为三角形数,试结合组成三角形数的特点,归纳第n 个三角形数的石子个数.思路探究:(1)写出数列的前几项,再利用数列的周期性解答.(2)可根据图中点的分布规律归纳出三角形数的形成规律,如1=1,3=1+2,6=1+2+3;也可以直接分析三角形数与n 的对应关系,进而归纳出第n 个三角形数.C [(1)a 1=1,a 2=-12,a 3=-2,a 4=1,…,数列{a n }是周期为3的数列,2 019=673×3,∴a 2 019=a 3=-2.](2)[解] 法一:由1=1, 3=1+2, 6=1+2+3, 10=1+2+3+4,可归纳出第n 个三角形数为1+2+3+…+n =n (n +1)2.法二:观察项数与对应项的关系特点如下:项数 1 2 3 4 对应项1×222×323×424×52分析:各项的分母均为2,分子分别为相应项数与相应项数加1的积. 归纳:第n 个三角形数的石子数应为n (n +1)2.数列中的归纳推理在数列问题中,常常用到归纳推理猜测数列的通项公式或前n 项和. (1)通过已知条件求出数列的前几项或前几项和;(2)根据数列中的前几项或前几项和与对应序号之间的关系求解; (3)运用归纳推理写出数列的通项公式或前n 项和公式.2.已知数列{a n }满足a 1=1,a n +1=2a n +1(n =1,2,3,…). (1)求a 2,a 3,a 4,a 5; (2)归纳猜想通项公式a n . [解] (1)当n =1时,知a 1=1, 由a n +1=2a n +1, 得a 2=3,a 3=7,a 4=15,a 5=31.(2)由a 1=1=21-1,a 2=3=22-1,a 3=7=23-1,a 4=15=24-1,a 5=31=25-1, 可归纳猜想出a n =2n-1(n∈N +).几何图形中的归纳推理1.某商场橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第1堆只有一层,就一个球;第2,3,4,…堆最底层(第一层)分别按如图所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球,以f(n)表示第n 堆的乒乓球总数,试求f(1),f(2),f(3),f(4)的值.[提示] 观察图形可知,f(1)=1,f(2)=4,f(3)=10,f(4)=20. 2.上述问题中,试用n 表示出f(n)的表达式.[提示] 由题意可得:下一堆的个数是上一堆个数加下一堆第一层的个数,即f(2)=f(1)+3;f(3)=f(2)+6;f(4)=f(3)+10;…;f(n)=f(n -1)+n (n +1)2.将以上(n -1)个式子相加可得 f(n)=f(1)+3+6+10+…+n (n +1)2=12[(12+22+…+n 2)+(1+2+3+…+n)] =12⎣⎢⎡⎦⎥⎤16n (n +1)(2n +1)+n (n +1)2=n (n +1)(n +2)6.【例3】 有两种花色的正六边形地面砖,按如图的规律拼成若干个图案,则第6个图案中有菱形纹的正六边形的个数是( )A .26B .31C .32D .36思路探究:解答本题可先通过观察、分析找到规律,再利用归纳得到结论. B [法一:有菱形纹的正六边形个数如下表:图案 123 … 个数6 1116…由表可以看出有菱形纹的正六边形的个数依次组成一个以6为首项,以5为公差的等差数列,所以第6个图案中有菱形纹的正六边形的个数是6+5×(6-1)=31.法二:由图案的排列规律可知,除第一块无纹正六边形需6个有纹正六边形围绕(图案1)外,每增加一块无纹正六边形,只需增加5块菱形纹正六边形(每两块相邻的无纹正六边形之间有一块“公共”的菱形纹正六边形),故第6个图案中有菱形纹的正六边形的个数为:6+5×(6-1)=31.]在题干不变的条件下,第6个图案中周围的边有多少条? [解] 各个图形周围的边的条数如下表:图案123…边条数18 26 34 …由表可知,周围边的条数依次组成一个以18为首项,8为公差的等差数列,解得第6个图形周围的边的条数为18+8×(6-1)=58条.归纳推理在图形中的应用策略通过一组平面或空间图形的变化规律,研究其一般性结论,通常需形状问题数字化,展现数字之间的规律、特征,然后进行归纳推理.解答该类问题的一般策略是:3.根据图中线段的排列规则,试猜想第8个图形中线段的条数为________.509 [分别求出前4个图形中线段的数目,发现规律,得出猜想.图形①到④中线段的条数分别为1,5,13,29,因为1=22-3,5=23-3,13=24-3,29=25-3,因此可猜想第8个图形中线段的条数应为28+1-3=509.]1.归纳推理是由部分到整体、由个别到一般的推理.(1)由归纳推理得到的结论带有猜测的性质,所以“前提真而结论假”的情况是有可能发生的,结论是否正确,需要经过理论证明或实践检验,因此,归纳推理不能作为数学证明的工具.(2)一般地,如果归纳的个别情况越多,越具有代表性,那么推广的一般性命题就越可能为真.(3)归纳推理能够发现新事实,获得新结论,是科学发现的重要手段.通过归纳推理得到的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题.2.归纳推理的思维过程大致是:实验、观察→概括、推广→猜测一般性结论.该过程包括两个步骤: (1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表述的一般性命题(猜想).1.判断(正确的打“√”,错误的打“×”)(1)统计学中,从总体中抽取样本,然后用样本估计总体,这种估计属于归纳推理. (2)由个别到一般的推理称为归纳推理. ( ) (3)由归纳推理所得到的结论一定是正确的. ( )[答案] (1)√ (2)√ (3)× 2.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n 个“金鱼”图需要火柴棒的根数为( ) A .6n -2 B .8n -2 C .6n +2D .8n +2C [a 1=8,a 2=14,a 3=20,猜想a n =6n +2.]3.已知12=16×1×2×3,12+22=16×2×3×5,12+22+32=16×3×4×7,12+22+34+42=16×4×5×9,则12+22+…+n 2=________.(其中n∈N *).16n(n +1)(2n +1) [根据题意归纳出12+22+…+n 2=16n(n +1)(2n +1),下面给出证明:(k +1)3-k 3=3k 2+3k +1,则23-13=3×12+3×1+1,33-23=3×22+3×2+1,……,(n +1)3-n 3=3n 2+3n +1,累加得(n +1)3-13=3(12+22+…+n 2)+3(1+2+…+n)+n ,整理得12+22+…+n 2=16n(n +1)(2n +1).]4.有以下三个不等式:(12+42)(92+52)≥(1×9+4×5)2, (62+82)(22+122)≥(6×2+8×12)2, (202+102)(1022+72)≥(20×102+10×7)2.请你观察这三个不等式,猜想出一个一般性的结论,并证明你的结论. [解] 结论为:(a 2+b 2)(c 2+d 2)≥(ac+bd)2.证明:(a 2+b 2)(c 2+d 2)-(ac +bd)2=a 2c 2+a 2d 2+b 2c 2+b 2d 2-(a 2c 2+b 2d 2+2abcd) =a 2d 2+b 2c 2-2abcd =(ad -bc)2≥0.所以(a2+b2)(c2+d2)≥(ac+bd)2.1.2 类比推理学 习 目 标核 心 素 养1.通过具体实例理解类比推理的意义.(重点) 2.会用类比推理对具体问题作出判断.(难点)1.通过类比推理的意义的学习,体现了数学抽象的核心素养.2.通过应用类比推理对具体问题判断的学习,体现了逻辑推理的核心素养.1.类比推理由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征,我们把这种推理过程称为类比推理.类比推理是两类事物特征之间的推理. 2.合情推理合情推理是根据实验和实践的结果、个人的经验和直觉、已有的事实和正确的结论(定义、公理、定理等),推测出某些结果的推理方式.合情推理的结果不一定正确.思考:合情推理的结果为什么不一定正确?[提示] 合情推理是由特殊到一般的推理,简单地说就是直接看出来的,没有通过证明,只归纳了一部分,属于不完全归纳,所以不一定正确.1.下面使用类比推理恰当的是( )A .“若a·3=b·3,则a =b ”类比推出“若a·0=b·0,则a =b”B .“(a+b)c =ac +bc”类比推出“(a·b)c=ac·bc”C .“(a+b)c =ac +bc”类比推出“a +b c =a c +bc (c≠0)”D .“(ab)n=a n b n”类比推出“(a+b)n=a n+b n” C [由实数运算的知识易得C 项正确.] 2.下列推理是合情推理的是( ) (1)由圆的性质类比出球的有关性质;(2)由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°; (3)a≥b,b≥c,则a≥c;(4)三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸n 边形内角和是(n -2)×180°.A .(1)(2)B .(1)(3)(4)C .(1)(2)(4)D .(2)(4)C [(1)为类比推理,(2)(4)为归纳推理,(3)不是合情推理,故选C.]3.类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列性质,你认为比较恰当的是________.(填序号)①各棱长相等,同一顶点上的任两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等; ③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等.①②③ [正四面体的面(或棱)可与正三角形的边类比,正四面体的相邻两面成的二面角(或共顶点的两棱的夹角)可与正三角形相邻两边的夹角类比,故①②③都对.]类比推理在数列中的应用【例1】 在公比为4的等比数列{b n }中,若T n 是数列{b n }的前n 项积,则有T 20T 10,T 30T 20,T 40T 30也成等比数列,且公比为4100.类比上述结论,相应地在公差为3的等差数列{a n }中,若S n 是{a n }的前n 项和.试写出相应的结论,判断该结论是否正确,并加以证明.思路探究:结合已知等比数列的特征可类比等差数列每隔10项和的有关性质.[解] 数列S 20-S 10,S 30-S 20,S 40-S 30也是等差数列,且公差为300.该结论是正确的.证明如下: ∵等差数列{a n }的公差d =3, ∴(S 30-S 20)-(S 20-S 10)=(a 21+a 22+…+a 30)-(a 11+a 12+…+a 20)同理可得:(S 40-S 30)-(S 30-S 20)=300,所以数列S 20-S 10,S 30-S 20,S 40-S 30是等差数列,且公差为300.1.本例是由等比类比等差,你能由等差类比出等比结论吗?完成下题:设等差数列{a n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论有:设等比数列{b n }的前n 项积为T n (T n ≠0),则T 4,_______,_______,T 16T 12成等比数列.T 8T 4 T 12T 8[等差数列类比于等比数列时,和类比于积,减法类比于除法,可得类比结论为:设等比数列{b n }的前n 项积为T n ,则T 4,T 8T 4,T 12T 8,T 16T 12成等比数列.]2.在本例条件不变的情况下,你能写出一个更为一般的结论吗?(不用论证)[解] 对于任意k∈N +,都有数列S 2k -S k ,S 3k -S 2k ,S 4k -S 3k 是等差数列,且公差为k 2d.1.在等比数列与等差数列的类比推理中,要注意等差与等比、加与乘、减与除、乘法与乘方的类比特点.2.类比推理的思维过程观察、比较→联想、类推→猜测新的结论.即在两类不同事物之间进行对比,找出若干相同或相似之处后,推测这两类事物在其他方面的相同或相似之处.1.在等差数列{a n }中,如果m ,n ,p ,r∈N +,且m +n +p =3r ,那么必有a m +a n +a p =3a r ,类比该结论,写出在等比数列{b n }中类似的结论,并用数列知识加以证明.[解] 类似结论如下:在等比数列{b n }中,如果m ,n ,p ,r∈N +,且m +n +p =3r ,那么必有b m b n b p=b 3r .证明如下:设等比数列{b n }的公比为q ,则b m =b 1q m -1,b n =b 1q n -1,b p =b 1qp -1,b r =b 1qr -1,于是b m b n b p =b 1qm -1·b 1qn -1·b 1q p -1=b 31qm +n +p -3=b 31q3r -3=(b 1qr -1)3=b 3r ,故结论成立.类比推理在几何中的应用【例2】 如图所示,在平面上,设h a ,h b ,h c 分别是△ABC 三条边上的高,P 为△ABC 内任意一点,P 到相应三边的距离分别为p a ,p b ,p c ,可以得到结论p a h a +p b h b +p ch c=1.证明此结论,通过类比写出在空间中的类似结论,并加以证明.思路探究:三角形类比四面体,三角形的边类比四面体的面,三角形边上的高类比四面体以某一面为底面的高.[解] p a h a =12BC·p a12BC·h a =S △PBCS △ABC,同理,p b h b =S △P AC S △ABC ,p c h c =S △PABS △ABC .∵S △PBC +S △PAC +S △PAB =S △ABC ,∴p a h a +p b h b +p c h c =S △PBC +S △PAC +S △PAB S △ABC=1. 类比上述结论得出以下结论:如图所示,在四面体ABCD 中,设h a ,h b ,h c ,h d 分别是该四面体的四个顶点到对面的距离,P 为该四面体内任意一点,P 到相应四个面的距离分别为p a ,p b ,p c ,p d ,可以得到结论p a h a +p b h b +p c h c +p dh d=1.证明:p a h a =13S △BCD ·p a13S △BCD ·h a =V PBCDV ABCD,同理,p b h b =V PACD V ABCD ,p c h c =V PABD V ABCD ,p d h d =V PABCV ABCD .∵V PBCD +V PACD +V PABD +V PABC =V ABCD , ∴p a h a +p b h b +p c h c +p d h d =V PBCD +V PACD +V PABD +V PABCV ABCD=1.1.在本例中,若△ABC 的边长分别为a ,b ,c ,其对角分别为A ,B ,C ,那么由a =b·cos C+c·cos B 可类比四面体的什么性质?[解] 在如图所示的四面体中,S 1,S 2,S 3,S 分别表示△PAB,△PBC,△PCA,△ABC 的面积,α,β,γ依次表示平面PAB ,平面PBC ,平面PCA 与底面ABC 所成二面角的大小.猜想S =S 1·cos α+S 2·cos β+S 3·cos γ.2.在本例中,若r 为三角形的内切圆半径,则S △=12(a +b +c)r ,请类比出四面体的有关相似性质.[解] 四面体的体积为V =13(S 1+S 2+S 3+S 4)r(r 为四面体内切球的半径,S 1,S 2,S 3,S 4为四面体的四个面的面积.1.平面图形与空间图形类比平面图形 点 线 边长 面积 线线角 三角形 空间图形线面面积体积二面角四面体2.类比推理的一般步骤(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质推测另一类事物的性质,得出一个明确的结论.类比推理在其他问题中的应用1.鲁班发明锯子的思维过程为:带齿的草叶能割破行人的腿,“锯子”能“锯”开木材,它们在功能上是类似的.因此,它们在形状上也应该类似,“锯子”应该是齿形的.你认为该过程为归纳推理还是类比推理?[提示] 类比推理.2.已知以下过程可以求1+2+3+…+n 的和.因为(n +1)2-n 2=2n +1, n 2-(n -1)2=2(n -1)+1, ……22-12=2×1+1,有(n +1)2-1=2(1+2+…+n)+n , 所以1+2+3+…+n =n 2+2n -n 2=n (n +1)2.类比以上过程试求12+22+32+…+n 2的和. [提示] 因为(n +1)3-n 3=3n 2+3n +1, n 3-(n -1)3=3(n -1)2+3(n -1)+1, ……23-13=3×12+3×1+1,有(n +1)3-1=3(12+22+…+n 2)+3(1+2+3+…+n)+n , 所以12+22+…+n 2=13⎝ ⎛⎭⎪⎫n 3+3n 2+3n -3n 2+5n 2=2n 3+3n 2+n 6=n (n +1)(2n +1)6.【例3】 已知椭圆具有性质:若M ,N 是椭圆C 上关于原点对称的两个点,点P 是椭圆上任意一点,当直线PM ,PN 的斜率k PM ,k PN 都存在时,那么k PM 与k PN 之积是与点P 的位置无关的定值,试写出双曲线x2a 2-y2b2=1(a>0,b>0)具有类似特征的性质,并加以证明. 思路探究:双曲线与椭圆类比→椭圆中的结论 →双曲线中的相应结论→理论证明[解] 类似性质:若M ,N 为双曲线x 2a 2-y2b 2=1(a>0,b>0)上关于原点对称的两个点,点P 是双曲线上任意一点,当直线PM ,PN 的斜率k PM ,k PN 都存在时,那么k PM 与k PN 之积是与点P 的位置无关的定值.证明如下:设点M ,P 的坐标分别为(m ,n),(x ,y),则 N(-m ,-n).因为点M(m ,n)是双曲线上的点, 所以n 2=b 2a 2m 2-b 2.同理y 2=b 2a2x 2-b 2,则k PM ·k PN =y -n x -m ·y +n x +m =y 2-n 2x 2-m 2=b 2a 2·x 2-m 2x 2-m 2=b2a2(定值).1.两类事物能进行类比推理的关键是两类对象在某些方面具备相似特征.2.进行类比推理时,首先,找出两类对象之间可以确切表达的相似特征.然后,用一类对象的已知特征去推测另一类对象的特征,从而得到一个猜想.2.我们知道: 12=1,22=(1+1)2=12+2×1+1, 32=(2+1)2=22+2×2+1, 42=(3+1)2=32+2×3+1, ……n 2=(n -1)2+2(n -1)+1,将以上各式的左右两边分别相加,整理得n 2=2×[1+2+3+…+(n -1)]+n , 所以1+2+3+…+(n -1)=n (n -1)2.类比上述推理方法写出求12+22+32+…+n 2的表达式的过程. [解] 已知: 13=1,23=(1+1)3=13+3×12+3×1+1, 33=(2+1)3=23+3×22+3×2+1, 43=(3+1)3=33+3×32+3×3+1, ……n 3=(n -1)3+3(n -1)2+3(n -1)+1, 将以上各式的左右两边分别相加,得(13+23+…+n 3)=[13+23+…+(n -1)3]+3[12+22+…+(n -1)2]+3[1+2+…+(n -1)]+n , 整理得n 3=3(12+22+…+n 2)-3n 2+3[1+2+…+(n -1)]+n , 将1+2+3+…+(n -1)=n (n -1)2代入整理可得12+22+…+n 2=2n 3+3n 2+n 6,即12+22+…+n 2=n (2n +1)(n +1)6.1.类比推理的特点(1)类比推理是从人们已经掌握的事物的特征,推测被研究的事物的特征,所以类比推理的结果具有猜测性,不一定可靠.(2)类比推理以旧的知识作基础,推测新的结果,具有发现的功能,因此类比在数学发现中具有重要作用,但必须明确,类比并不等于论证.2.类比推理与归纳推理的比较 归纳推理类比类推相同点 根据已有的事实,经过观察、分析、比较、联想,提出猜想,都属于归纳推理不 同 点特点 由部分到整体,由个别到一般 由特殊到特殊推理过程 从一类事物中的部分事物具有的属性,猜测该类事物都具有这种属性两类对象具有类似的特征,根据其中一类对象的特征猜测另一类对象具有相应的类似特征1.下列说法正确的是( )A .由合情推理得出的结论一定是正确的B .合情推理必须有前提有结论C .合情推理不能猜想D .合情推理得出的结论不能判断正误B [根据合情推理可知,合情推理必须有前提有结论.]2.已知扇形的弧长为l ,半径为r ,类比三角形的面积公式S =底×高2,可知扇形面积公式为( )A.r22 B.l 22 C.lr 2D .无法确定C [扇形的弧长对应三角形的底,扇形的半径对应三角形的高,因此可得扇形面积公式S =lr2.]3.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.1∶8 [由平面和空间的知识,可知面积之比与边长之比成平方关系,在空间中体积之比与棱长之比成立方关系,故若两个正四面体的棱长的比为1∶2,则它们的体积之比为1∶8.]4.在计算“1×2+2×3+…+n(n +1)”时,有如下方法:先改写第k 项:k(k +1)=13[k(k +1)(k +2)-(k -1)k·(k+1)],由此得1×2=13(1×2×3-0×1×2),2×3=13(2×3×4-1×2×3),……n(n +1)=13[n(n +1)(n +2)-(n -1)n(n +1)],相加得1×2+2×3+…+n(n +1)=13n(n +1)(n +2).类比上述方法,请你计算“1×3+2×4+…+n(n +2)”,将其结果写成关于n 的一次因式的积的形式.[解] 1×3=16×(1×2×9-0×1×7),2×4=16×(2×3×11-1×2×9),3×5=16×(3×4×13-2×3×11),……n(n +2)=16[n(n +1)(2n +7)-(n -1)n(2n +5)],各式相加,得1×3+2×4+3×5+…+n(n +2)=16n(n +1)(2n +7).。
高中数学 第一章 推理与证明整合课件 北师大版选修2-2

∵ PD⊥AC,PD⊥BD,AC∩BD=D,∴ PD⊥平面 ABC.
-8-
本章整合
知识网络
专题探究
专题一
专题二
专题三
专题四
【例题 2】 求证:当一个圆与一个正方形的周长相等时,这个圆的面积 比正方形的面积大. 证明:设圆和正方形的周长均为 l,则 圆的面积为 π 立, 即证 成立. 因此,如果一个圆和一个正方形的周长相等,那么这个圆的面积比正方 形的面积大.
2π 3
4π 3
+
+(4x-z2-2π)=-[(x-2)2+(y-2)2+(z-2)2]-4π+12≥0.
因为-[(x-2)2+(y-2)2+(z-2)2]≤0, 所以-4π+12≥0, 即 4π≤12,这与基本事实 4π>12 矛盾. 故 a,b,c 中至少有一个小于零.
-10-
本章整合
知识网络
专题探究
专题一
专题二
专题三
专题四
【例题 1】 如图,已知两直线 l∩m=O,l⫋ α,m⫋ α,l⊈ β,m⊈ β,α∩β=a.求 证:l 与 m 中至少有一条与 β 相交.
思路分析:结论中以“至少”形式出现,直接证明较困难,可考虑用反证 法.
-11-
本章整合
知识网络
专题探究
专题四
专题二 分析法与综合法
分析法与综合法各有其特点.有些具体的证明题,用分析法或综合法都 可以证明出来,人们往往选择比较简单的一种. 事实上,在解决问题时,我们经常把综合法和分析法结合起来使用:根据 条件的结构特点去转化结论,得到中间结论 Q;根据结论的结构特点去转化 条件,得到中间结论 P.若由 Q 可以推出 P 成立,就可以证明结论成立.
高中数学 第一章 推理与证明章末归纳总结课件 北师大版选修2-2

用P表示已知条件及已有的定义、公理、定理等,Q表示 所要证明的结论,则分析法可用框图表示为:
得到一个明显 Q⇐P1 P1⇐P2 P2⇐P3 … 成立的条件
综合法可用框图表示为: P⇒Q1 Q1⇒Q2 Q2⇒Q3 … Qn⇒Q
2.反证法 反证法是一种间接证法,它是先提出一个与命题的结论相 反的假设,然后,从这个假设出发,经过正确的推理,导致矛 盾,从而否定与结论相反的假设,达到肯定原命题正确的一种 方法.反证法可以分为归谬反证法(结论的反面只有一种)与穷 举反证法(结论的反面不只一种). 用反证法证明一个命题的步骤,大体上分为:(1)反设; (2)归谬;(3)存真.
有f(x1+x2)-f(x1)-f(x2)=(x1+x2)2-x
2 1
-x
2 2
=2x1x2≥0,即
f(x1)+f(x2)≤f(x1+x2) ∴f(x)=x2(x∈[0,1])是理想函数.
对于f(x)= x,x∈[0,1],显然满足条件①②.
对任意的x1,x2∈[0,1],x1+x2≤1, 有f2(x1+x2)-[f(x1)+f(x2)]2=(x1+x2)-(x1+2 x1x2 +x2)= -2 x1x2≤0, 即f2(x1+x2)≤[f(x1)+f(x2)]2. ∴f(x1+x2)≤f(x1)+f(x2),不满足条件③.
不一定正确, 有待证明
在前提和推理形式都正 确的前提下,结论一定 正确
作 猜测和发现结论、探索和提供证 证明数学结论,建立数
用 明思路
学体系的重要思维过程
二、数学问题的证明 1.综合法和分析法 综合法和分析法是直接证明中的两种最基本的证明方法, 应用综合法证明问题时,必须首先想到从哪里开始起步,分析 法就可以帮助我们克服这种困难.在实际证明问题时,应当把 分析法和综合法综合起来使用,转换解题思路,增加解题途 径。
2021最新北师大版高三数学选修2-2电子课本课件【全册】

2021最新北师大版高三数学选修22电子课本课件【全册】
1.归纳与类比
2021最新北师大版高三数学选修22电子课本课件【全册】
2021最新北师大版高三数学选修 2-2电子课本课件【全册】目录
0002页 0049页 0051页 0070页 0149页 0241页 0288页 0354页 0420页 0422页 0453页 0469页 0490页 0511页 0583页 0585页 0657页
第一章 推理与证明 2.综合法与分析法 4.数学归纳法 复习题一 1.变化的快慢与变化率 3.计算导数 5.简单复合函数的求导法则 复习题二 1.函数的单调性与极值 本章小结建议 第四章 定积分 2.微积分基本定理 阅读材料 数学史上的丰碑——微积分 复习题四 1.数系的扩充与复数的引入 阅读材料 数的扩充 复习题五
【数学】1.1.2 类比推理 课件(北师大版选修2-2)

它也可以是齿形的. 这个推理过程是归纳推理吗?
3
试根据等式的性质猜想不等式的性质。
等式的性质:
(1) a=ba+c=b+c;
猜想不等式的性质:
(1) a>ba+c>b+c;
(2) a=b ac=bc;
(3) a=ba2=b2;等等。
(2) a>b ac>bc;
(3) a>ba2>b2;等等。
对象也具有这些特征的推理称为类比推理
(简称类比).
简言之,类比推理是由特殊到特殊的推理.
发明行星三大运动定律的开普勒曾说类比 数学家波利亚曾指出“类比是一个伟大的 推理是「自然奧妙的参与者」和自己「最好 引路人,求解立体几何往往有赖于平面几何的类 的老师」 比问题.”
6
类比推理的特点;
1.类比是从人们已经掌握了的事物的属性,推测正在研究的 事物的属性,是以旧有的认识为基础,类比出新的结果. 2.类比是从一种事物的特殊属性推测另一种事物的特殊属性.
单位元
a+0=a
通过例1,练习1你能得到类比推理的一般模式吗?
类比推理的一般模式:
A类事物具有性质a,b,c,d,
B类事物具有性质a’,b’,c’,
(a,b,c与a’,b’,c’相似或相同) 所以B类事物可能具有性质d .
’
11
例2 类比平面内直角三角形的勾股定理,试 给出 空间中四面体性质的猜想.
3.类比的结果是猜测性的不一定可靠,但它却有发现的功能.
类比推理的一般步骤:
⑴ 找出两类对象之间可以确切表述的相似性(或 一致性); ⑵ 用一类对象的性质去推测另一类对象的性质, 从而得出一个猜想; ⑶ 检验猜想。
类比推理的一般步骤:
【数学】1.4 数学归纳法 课件(北师大版选修2-2)

n
1
证明:(1)当n=1时, 左边 a 1 , 右边 a 0 d a , 1 1
等式是成立的
(2)假设当n=k时等式成立,就是 a k a 1 ( k 1 ) d ,
那么 a a [ a 1 ( k 1 ) d ] d d k 1 k
1
已知数列 a n ,a 1 = 1 ,a n + 1 =
多米诺骨牌游戏的原理 an
an
(n N ),
*
1+a n 1 这个猜想的证明方法 n
(1)第一块骨牌倒下。 (1)当n=1时猜想成立。 (2)若当n=k时猜想成立, (2)若第k块倒下时, 即 a 1 ,则当n=k+1时猜想 k k 则相邻的第k+1块也倒下。 1 也成立,即 ak 1 。
那么,当n=k+1时,有
这就是说,当n=k+1时,等式也成立。 根据①和②,可知对任何nN*等式都成立。
练习2.(2) 用数学归纳法证明:
1 2 2 2
2
n 1
2 1.
n
证明 ①当n=1时,左边=1 =右边,等式显然成立。
②假设当n=k时等式成立,即 2 k 1
1 2 2 2
k 1
根据(1)和 (2),
根据(1)和(2),可 知对任意的正整数n,猜 可知不论有多少块骨牌, 想 都成立。 都能全部倒下。
数学归纳法的概念:
定义:对于某些与正整数n有关的命题常 常采用下面的方法来证明它的正确性:
1.先证明当n取第一个值n0 (n0 N*)时命题成立 (归纳奠基) ; 2.然后假设当n=k(kN*,k≥n0)时命题成立,
【数学】1.2.1 综合法 课件(北师大版选修2-2)

所以b(c2+a2)≥ 2abc. 因此a(b2+c2)+b(c2+a2)≥4abc.
从已知条件出发,以已知定义、公理、定理等 为依据,逐步下推,直到推出要证明的结论为 止,这种证明方法叫做综合法(顺推证法) 用P表示已知条件、已有的定义、公理、 定理等,Q表示所要证明的结论. 则综合法用框图表示为:
b b 4ac b b 4ac b x1 x2 , 2a 2a a
2 2
b b 4ac b b 4ac x1 x2 2a 2a 2 2 b (b 4ac) 4ac c 2 . 2 4a 4a a
2 2
例3:已知:x,y,z为互不相等的实数,且
所以 因此
cosB>0
B 90
小结:
综合法的定义和特点
从已知条件出发,以已知定义、公理、定理 等为依据,逐步下推,直到推出要证明的结论 为止,这种证明方法叫做综合法(顺推证法)
综合法的特点是:从已知看可知,逐步推向 未知,其逐步推理,实际上是寻找它的必要 条件。
。
f ( x) sin( 2 x
) 的一个周期。 4
例2:(韦达定理)已知 x1和 x2是一元二次方程
ax bx c 0(a 0, b 4ac 0)
2 2
的两个根。求证:
b c x1 x 2 , x1 x 2 a a
。
b b 2 4ac b b 2 4ac x , x2 ; 证明:由题意可知:1 2a 2a
2 2 2
yz x y zx x y z 1. x y zx yz
zx zx , 所以 yz
练习1、已知a>0,b>0,求证 a(b2+c2)+b(c2+a2)≥4abc 证明: 因为b2+c2
北师大版高中数学选修2-2第一章《推理与证明》数学归纳法(1)

1 思考:问题 问题2中证明数列的通项公式 思考 问题 中证明数列的通项公式 an = 这个猜想 n
由条件知,n=1时猜想成立 时猜想成立. 由条件知 时猜想成立 如果n=k时猜想成立 即 a = 1 ,那么当 时猜想成立,即 那么当n=k+1时猜 如果 时猜想成立 那么当 时猜 k k 1 想也成立,即 想也成立 即 a k +1 =
k +1
与上述多米诺骨牌游戏有相似性吗?你能类比多米诺骨 与上述多米诺骨牌游戏有相似性吗 你能类比多米诺骨 牌游戏解决这个问题吗? 牌游戏解决这个问题吗
事实上, 事实上
a k +1 =
ak 1 = = 1 + ak 1 + 1 k + 1 k
8
1 k
时猜想也成立. 即n=k+1时猜想也成立 时猜想也成立
1 an = n
不完全归 纳法
问题3:某人看到树上乌鸦是黑的, 问题 :某人看到树上乌鸦是黑的, 深有感触地说全世界的乌鸦都是黑的。 深有感触地说全世界的乌鸦都是黑的。
…
4
问题情境二
费马(Fermat) 曾经提出一个猜想: 曾经提出一个猜想: 费马
2n+1(n=0,1,2…)的数都是质数 形如F 形如 n=2 的纳法得到的某些与自然数有关 自然数的数学命题我们常采用下面的方法来证明它 们的正确性: 们的正确性:
(1)证明当n取第一个值n0(例如n0=1) 时命题 证明当n取第一个值n 例如n 成立; 成立; 【归纳奠基】 归纳奠基】 (2)假设当n=k(k∈N* ,k≥ n0)时命题成立 假设当n=k(k∈N 证明当n=k+1时命题也成立. 归纳递推】 证明当n=k+1时命题也成立【归纳递推】 n=k+1时命题也成立.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
任何一个不小于6 的偶数都等于两个 质数的和.
2n p1 p2 (n N , n 3)
陈氏定理
2n p1 p2 p3
6
数一数图中的凸多面体的面数F、顶点数V 和棱数E,然后用归纳法推理得出它们之间 的关系.
K12课件
7
多面体
三棱锥 四棱锥
面数(F) 顶点数(V) 棱数(E)
归 纳: f (n) 2n 1
f
(n)
1, 2 f
(n
1)
1,
n1 n2
K12课件
21
例3.根据图中4个图形及相应点的个数的变化规律,
填充第五个图并试猜测第n个图形中有 n2 n 1
个点.
(1) (2) (3)
(4)
K12课件
(5)
22
例4.设平面内有n条直线(n≥3),其中有且仅有两条直
n=3时, f (3) 3 1 3
f (2) 1 f (2)
2
1 K12课件
3
19
n=1时, f (1) 1 n=2时, f (2) 3 n=3时, f (3) 7 f (2) 1 f (2)
n=4时, f (4) f (3) 1 f (3) 15
4.一组数2,4,6,8, ‥‥‥
猜想:第n个数为2n
K12课件
1
归纳推理
K12课件
2
尝第一个杨
梅都是甜的 尝第二个杨
梅都是甜部的 分
这一篮杨 梅都是甜 的
铜能导电
铝能导电 金能导电
整 银能导电
一切金属 都能导电.
体
个别
三角形内角和
为 180
凸四边形内角
和为 360
凸n边形 内角和为
归纳是立足于观察、经验、实验和对有限资料
分析的基础上.提出带有规律性的结论.
需证明 K12课件
5
观察下列等式
3+7=10, 10=3+7 ,
3+17=20, 20=3+17,
13+17=30, 30=13+17. 归纳出一个规律: 偶数=质数+质数
通过更多特例的检验, 从6开始,没有出现反例.
大胆猜想:
2
1 K12课件
3
15
n=1时, f (1) 1
2
1 K12课件
3
16
n=1时, f (1) 1 n=2时, f (2) 3
2
1 K12课件
3
17
n=1时, f (1) 1 n=2时, f (2) 3 n=3时, f (3) 7
2
1 K12课件
3
18
n=1时, f (1) 1 n=2时, f (2) 3
三棱锥
4
4
6
四棱锥
5
5
8
三棱柱
5
6
9
五棱锥
6
6
10
立方体
6
8
12
正八面体
8
6
12
五棱柱
7
10
15
截角正方体 7
10
15
尖顶塔
9
9K12课件
16
10
221 1 5,
222 1 17,
223 1 257, 224 1 65537,
都是质数
猜想:22n 1是质数.
归纳推理的 一般步骤
1.有一小贩在卖一篮杨梅,我先尝了一个,觉得甜, 又尝了一个,也是甜的,再尝了一个,还是甜的
猜想:这一篮杨梅都是甜的。
2.由铜、铁、铝、金、银等金属都能导电 猜想:一切金属都能导电.
3.由三角形内角和为 180 ,凸四边形内角和
为360 ,凸五边形内角和为 540 猜想:凸n边形内角和为(n 2) 180 .
2
1 K12课件
3
20
n=1时, f (1) 1
n=2时, f (2) 3 n=3时, f (3) 7 f (2) 1 f (2)
n=4时, f (4) 15 f (3) 1 f (3)
n=5时, f (5) 31 f (4) 1 f (4)
你能举出归纳推理的例 子吗?
K12课件
4
归纳推理的几个特点:
1.归纳是依据同类事物中特殊现象推断一般现象, 因而,由归纳所得的结论超越了前提所包容的范围.
2.归纳是依据若干已知的、没有穷尽的现象推断尚 属未知的现象,因而结论具有猜测性.
3.归纳的前提是特殊的情况,因而归纳是立足于观 察、经验和实验的基础之上.
n 2180 .
凸五边形内角
一 第一个数为2
第二个数为4 第三个数为6
般
第n个 数为2n.
第四个数为8
和为 540
K12课件
3
归纳推理定义
根据一类事物中的部分事物具有某些属性,推出该类 事物中每一个事物都有这种属性,这样的推理称为归纳推 理(简称归纳).
归纳推理是由部分到整体,由个别到一般的推理
实验观察
大胆猜想
225 1 4294967297 6416700417 检验猜想
归纳推理的结论不一定成立
后来人们发现 226 1,227 1,228 1都是合数.
新的猜想:形如 22n 1(Kn12课件5 )的数都是合数.
11
归纳推理的作用
• 应用归纳推理可以发现新事实,获得新结论! • 归纳推理是科学发现的重要途径!
牛顿说:“没有大 胆的猜测,就不会 有伟大的发现
K12课件
12
例1.已知数列{an}的第1项a1=1,且
an1
an 1 an
(n=1 , 2 , …),试归纳出这个数列的通项公式.
分别把n=1,2,3,4代入 an1
an 1 an
得:
a2
1 2
,
a3
1 3
,
a4
1 4
,
a5
线互相平行,任意三条直线不过同一点.若用f(n)表
示这n条直线交点的个数,f(4)=
当n>4时,f(n)=
1 (n 2)(n 1) 2
f (3) f (2) 2
5,
.(用n表示)44 Nhomakorabea6
5
5
8
三棱柱
5
6
9
五棱锥
长方体
八面体
五棱柱
截角正方体
尖顶塔
K12课件
8
猜测 F+V-E=2
多面体
三棱锥 四棱锥
面数(F) 顶点数(V) 棱数(E)
4
4
6
5
5
8
三棱柱
5
6
9
五棱锥
6
6
10
立方体
6
8
12
正八面体
8
6
12
五棱柱
截角正方体
尖顶塔
K12课件
9
F+V-E=2 欧拉公式
多面体 面数(F) 顶点数(V) 棱数(E)
1 5
归纳:
1 an n
可用数学归纳法证明 这个猜想是正确的.
K12课件
13
解法2、构造法
取倒数得: 1 1 1
an1
an
K12课件
14
例2.有三根针和套在一根针上的若干金属片.按下 列规则,把金属片从一根针上全部移到另一根针上. 1.每次只能移动一个金属片; 2.较大的金属片不能放在较小的金属片上面. 试推测:把n个金属片从1号针移到3号针,最少需要 移动多少次?