25.3 用频率估计概率

合集下载

25.3 用频率估计概率

25.3 用频率估计概率

一定有10只次品.
错误
3.在一个不透明的盒子中装有 a 个除颜色外完全相同的球,其
中只有 6 个白球.若每次将球充分搅匀后,任意摸出 1 个球记
下颜色后再放回盒子,通过大量重复试验后,发现摸到白球的
30
频率稳定在 0.2 左右,则 a 的值约为 30 .
精 典范例
4.【例 1】某人随意投掷一枚均匀的骰子,投掷了 n 次,其中 有 m 次掷出的点数是偶数,即掷出的点数是偶数的频率为mn , 则下列说法正确的是( )
“正面朝上”的频

23 46 78 102 123 150 175 200
“正面朝上”的频

0.45 0.46 0.52 0.51 0.49 0.50 0.50 0.50
掷硬币试验
(2)根据上表的数据,在下图中画统计图表示“正面朝上”的频率.
0.6
频 0.5 率 0.4
0.3
0.2
0.1
0
0
50
100
A.mn 一定等于12 B.mn 一定不等于21 C.mn 一定大于12 D.投掷的次数很多时,mn 稳定在21附近 【答案】D 小结:频率不一定等于概率.
5.【例 2】某篮球运动员在最近的几场大赛中罚球投篮的结果
如下表:
投篮次数 n 8 10 12 16 20
进球次数 m 6
7
9 12 15
0.75 进球频率m
理解试验次数较大时试验频率趋于稳定这一规律. 结合具体情境掌握如何用频率估计概率.
知识点一:频率的计算公式 频数
公式:频率=总数.
1.假如抛硬币 10 次,有 4 次出现正面,6 次出现反面,则:
4
(1)出现正面的频数是 4 ;

【精品讲义】人教版九年级数学(上)专题25.3 用频率估计概率-(知识点+例题+练习题)含答案

【精品讲义】人教版九年级数学(上)专题25.3 用频率估计概率-(知识点+例题+练习题)含答案

第二十五章 概率初步25.3 用频率估计概率用频率估计概率连续抛掷一枚质地均匀的硬币10次、20次、30次、40次、50次……分别记录每轮试验中硬币“正面向上”和“反面向上”出现的次数,求出“正面向上”和“反面向上”的频率,分析数据,可探索出频率的变化规律.用频率估计概率(1)从长期实践中,人们观察到,对一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示出一定的稳定性.因此,我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率. (2)一般地,在大量重复试验中,如果事件A 发生的频率mn稳定于某个常数p ,那么事件A 发生的概率P (A )=p .n 个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在0.3,那么估计摸到黄球的概率为A.0.3 B.0.7C.0.4 D.0.6【答案】A【解析】∵通过大量重复摸球实验后发现,摸到黄球的频率稳定在0.3,∴估计摸到黄球的概率为0.3,故选A.【名师点睛】一般地,在大量重复试验中,如果事件A发生的频率mn稳定于某个常数p,那么估计事件A发生的概率P(A)=p.试验得出的频率只是概率的估计值.概率是针对大量重复试验而言的,大量重复试验反映出的规律并非在每一次试验中都发生.(1)将表格补充完成;(精确到0.01)(2)估计这名同学投篮一次,投中的概率约是多少(精确到0.1)?(3)根据此概率,估计这名同学投篮622次,投中的次数约是多少?【解析】(1)153÷300=0.51,252÷500≈0.50;故答案为:0.51,0.50;(2)估计这名同学投篮一次,投中的概率约是0.5;(3)622×0.5=311(次).所以估计这名同学投篮622次,投中的次数约是311次.1.关于频率和概率的关系,下列说法正确的是A.频率等于概率B.当试验次数很大时,概率稳定在频率附近C.当试验次数很大时,频率稳定在概率附近D.试验得到的频率和概率不可能相等2.随机事件A出现的频率mn满足A.mn=0 B.mn=1C.mn>1 D.0<mn<13.两人各抛一枚硬币,则下面说法正确的是A.每次抛出后出现正面或反面是一样的B.抛掷同样的次数,则出现正、反面的频数一样多C.在相同条件下,即使抛掷的次数很多,出现正、反面的频数也不一定相同D.当抛掷次数很多时,出现正、反面的次数就相同了4.一个不透明的口袋里装有除颜色不同外其余都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋中随机摸出1球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球有A.60个B.50个C.40个D.30个5.在一个不透明的袋中装有黑色和红色两种颜色的球共15个,每个球除颜色外都相同,每次摇匀后随即摸出一个球,记下颜色后再放回袋中,通过大量重复摸球实验后,发现摸到黑球的频率稳定于0.6,则可估计这个袋中红球的个数约为__________.6.在一只不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,然后把它放回袋中,不断重复,下表是活动进行中的一组统计数据:(1)上表中的a=__________;(2)“摸到白球”的概率的估计值是__________(精确到0.1);(3)试估算口袋中黑、白两种颜色的球各有多少个?7.某批彩色弹力球的质量检验结果如下表:(1)请在图中完成这批彩色弹力球“优等品”频率的折线统计图(2)这批彩色弹力球“优等品”概率的估计值大约是多少?(精确到0.01)(3)从这批彩色弹力球中选择5个黄球、13个黑球、22个红球,它们除了颜色外都相同,将它们放入一个不透明的袋子中,求从袋子中摸出一个球是黄球的概率.(4)现从第(3)问所说的袋子中取出若干个黑球,并放入相同数量的黄球,搅拌均匀,使从袋子中摸出一个黄球的概率为14,求取出了多少个黑球?1.在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,它们的形状、大小、质地等完全相同.小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色后放回……如此大量摸球试验后,小新发现从布袋中摸出红球的频率稳定于0.2,摸出黑球的频率稳定于0.5,对此试验,他总结出下列结论:①若进行大量摸球试验,摸出白球的频率应稳定于0.3;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是A.①②③B.①②C.①③D.②③2.抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为A.500B.800C.1000D.12003.在一个不透明的盒子里装有4个黑球和若干个白球,它们除颜色外完全相同,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有________个白球.4.一鱼池里有鲤鱼,鲫鱼,鲢鱼共1000尾,一渔民通过多次捕捞试验后发现,鲤鱼,鲫鱼出现的概率约为31%和42%,则这个鱼池里大概有鲤鱼______尾,鲫鱼______尾,鲢鱼______尾.5.某公司对一批某品牌衬衣的质量抽检结果如下表.(1)从这批衬衣中抽1件是次品的概率约为多少?(2)如果销售这批衬衣600件,那么至少要再准备多少件正品衬衣供买到次品的顾客更换?6.小明抛硬币的过程(每枚硬币只有正面朝上和反面朝上两种情况)见下表,阅读并回答问题:(1)从表中可知,当抛完10次时正面出现3次,正面出现的频率为30%,那么,小明抛完10次时,得到__________次反面,反面出现的频率是__________;(2)当他抛完5000次时,反面出现的次数是__________,反面出现的频率是__________;(3)通过上表我们可以知道,正面出现的频数和反面出现的频数之和等于__________,正面出现的频率和反面出现的频率之和等于__________.1.(2019•湖北襄阳)下列说法错误的是A.必然事件发生的概率是1B.通过大量重复试验,可以用频率估计概率C.概率很小的事件不可能发生D.投一枚图钉,“钉尖朝上”的概率不能用列举法求得2.(2019•江苏泰州)小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:若抛掷硬币的次数为1000,则“正面朝上”的频数最接近A.20 B.300C.500 D.8003.(2019•绍兴)为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x(cm)统计如下:根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm的概率是A.0.85 B.0.57 C.0.42 D.0.154.(2019•柳州)柳州市某校的生物兴趣小组在老师的指导下进行了多项有意义的生物研究并取得成果.下面是这个兴趣小组在相同的实验条件下,对某植物种子发芽率进行研究时所得到的数据:依据上面的数据可以估计,这种植物种子在该实验条件下发芽的概率约是__________(结果精确到0.01).5.(2019•长沙)在一个不透明的袋子中有若干个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:根据试验所得数据,估计“摸出黑球”的概率是__________.(结果保留小数点后一位)6.(2019•雅安)某校为了解本校学生对课后服务情况的评价,随机抽取了部分学生进行调查,根据调查结果制成了如下不完整的统计图.根据统计图:(1)求该校被调查的学生总数及评价为“满意”的人数;(2)补全折线统计图;(3)根据调查结果,若要在全校学生中随机抽1名学生,估计该学生的评价为“非常满意”或“满意”的概率是多少?1.【答案】C【解析】概率是一个确定的数,频率是一个变化量,当试验次数很大时,频率会稳定在概率附近.由此可得,选项C 正确.故选C . 2.【答案】D【解析】大量重复试验中具有某种规律性的事件叫做随机事件,故频率mn的含义是在n 次试验中发生m 次,即必有0<mn<1.故选D . 3.【答案】C【解析】抛硬币是一个随机事件,抛一枚硬币,出现正面朝上或者反面朝上都有可能,但事先无法预料.故选C . 4.【答案】C【解析】∵小亮共摸了1000次,其中200次摸到白球,则有800次摸到红球, ∴白球与红球的数量之比为1:4, ∵白球有10个,∴红球有10×4=40(个), 故选C . 5.【答案】6【解析】黑球个数为:150.69⨯=,红球个数:1596-=.故答案为:6.【名师点睛】本题考查了频数和频率,频率是频数与总数之比,掌握频数频率的定义是解题的关键. 6.【解析】(1)a =290500=0.58,故答案为:0.58; (2)随着实验次数的增加“摸到白球”的频率趋向于0.60,所以其概率的估计值是0.60,故答案为:0.60; (3)由(2)摸到白球的概率估计值为0.60,所以可估计口袋中白球的个数=20×0.6=12(个),黑球20−12=8(个). 答:黑球8个,白球12个.【名师点睛】本题考查利用频率估计概率,事件A 发生的频率等于事件A 出现的次数除以实验总次数;在实验次数非常大时,事件A 发生的频率约等于事件发生的概率,本题可据此作答;对于(3)可直接用概率公式.7.【解析】(1)如图,(2)()10.9420.9460.9510.9490.9485⨯++++=1 4.7365⨯=0.9472≈0.95. (3)P (摸出一个球是黄球)=551322++=18.(4)设取出了x 个黑球,则放入了x 个黄球,则551322x +++=14,解得x =5.答:取出了5个黑球.【名师点睛】本题考查利用频率估算概率,数量较大、批次较多时用求平均值的方法更接近概率,理解题意灵活运用概率公式是解题关键.1.【答案】B【解析】∵在一个不透明的布袋中,红球、黑球、白球共有若干个,其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,∴①若进行大量摸球实验,摸出白球的频率稳定于:1–20%–50%=30%,故此选项正确; ∵摸出黑球的频率稳定于50%,大于其它频率,∴②从布袋中任意摸出一个球,该球是黑球的概率最大,故此选项正确;③若再摸球100次,不一定有20次摸出的是红球,故此选项错误;故正确的有①②.故选B.【名师点睛】此题主要考查了利用频率估计概率,根据频率与概率的关系得出是解题关键.2.【答案】C【解析】抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为1000次,故选C.【名师点睛】本题主要考查随机事件,关键是理解必然事件为一定会发生的事件;解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.3.【答案】12【解析】∵共试验40次,其中有10次摸到黑球,∴白球所占的比例为:40103 404-=,设盒子中共有白球x个,则344xx=+,解得x=12,经检验,x=12是原方程的根,故答案为:12.【名师点睛】本题考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是根据白球的频率得到相应的等量关系.4.【答案】310;420;270【解析】根据所给数据可得:鲤鱼:1000×31%=310(尾);鲫鱼:1000×42%=420(尾);鲢鱼:1000–310–420=270(尾).故答案为:310;420;270.5.【答案】(1)0.06;(2)36件【解析】(1)抽查总体数m=50+100+200+300+400+500=1550,次品件数n=0+4+16+19+24+30=93,P(抽到次品)=931550=0.06.(2)根据(1)的结论:P(抽到次品)=0.06,则600×0.06=36(件).答:至少准备36件正品衬衣供顾客调换.6.【答案】(1)7;70%;(2)2502;50.04%;(3)抛掷总次数;1【解析】(1)从表中可知,当抛完10次时正面出现3次,正面出现的频率为30%,那么,小明抛完 10次时,得到7次反面,反面出现的频率是710=0.7=70%; (2)当他抛完5000次时,反面出现的次数是5000–2498=2502,反面出现的频率是2502÷5000=0.5004=50.04%;(3)通过上面我们可以知道,正面出现的频数和反面出现的频数之和等于抛掷总次数,正面出现的频率和反面出现的频率之和等于1.1.【答案】C【解析】A 、必然事件发生的概率是1,正确;B 、通过大量重复试验,可以用频率估计概率,正确;C 、概率很小的事件也有可能发生,故错误;D 、投一枚图钉,“钉尖朝上”的概率不能用列举法求得,正确,故选C .2.【答案】C【解析】观察表格发现:随着实验次数的增加,正面朝上的频率逐渐稳定到0.5附近,所以抛掷硬币的次数为1000,则“正面朝上”的频数最接近1000×0.5=500次,故选C .3.【答案】D【解析】样本中身高不低于180cm 的频率==0.15,所以估计他的身高不低于180cm 的概率是0.15.故选D .4.【答案】【解析】概率是大量重复试验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率,∴这种种子在此条件下发芽的概率约为0.95.故答案为:0.95.5.【解答】观察表格发现随着摸球次数的增多频率逐渐稳定在0.4附近,故摸到白球的频率估计值为0.4;故答案为:0.4.6.【解析】(1)由折线统计图知“非常满意”9人,由扇形统计图知“非常满意”占15%,所以被调查学生总数为9÷15%=60(人),所以“满意”的人数为60–(9+21+3)=27(人);15100(2)如图:(3)所求概率为.=6927035。

25.3利用频率估计概率

25.3利用频率估计概率

学生结合统计表和 统计图思考
地,频率会趋于稳定, “正面朝上”的频率越来越接近 0.5. 这也与我们计算 的概率是一致的,就用 0.5 这个常数表示“正面向上”发生的可能性的大小. 其实, 历史上有许多著名数学家也做过掷硬币的试验.让学生阅读历史上 数学家做掷币试验的数据统计表(看书 P141 表 25-3). 4.下面我们能否研究一下“反面向上”的频率情况? 学生自然可依照 “正面朝上” 的研究方法, 很容易总结得出: “反面向上” 的频率也相应稳定到 0.5. 5.归纳:即抛掷一枚质地均匀的硬币时, “正面向上”与“反面向上”的可能 性相等(各占一半). 一般地,在大量重复试验中,如果事件 A 发生的频率 m/n 会稳定在某个 常数 p 附近,那么这个常数 p 就叫做事件 A 的概率, 记作 P(A)= p. 思考: ①课本 142 页思考. ②频率与概率有什么区别与联系? 从定义可以得到二者的联系, 可用大量重复试验中事件发生频率来估计 事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数 (事件发生的概率)附近, 说明概率是个定值,而频率随不同试验次数而有所不 同,是概率的近似值,二者不能简单地等同. ③阅读课本 142 页文字,并思考:如何灵活选用利用频率估计概率与利用公 式求概率. (二)利用频率估计概率的应用 课本问题 1 分析:1 幼树移植成活率问题是概率问题吗? 2 同样条件下,问题中移植的幼树成活可能性相等吗? 3 填表后观察幼树移植的成活率在哪个常数上下摆动? 课本问题 2 分析:1 本问题是概率问题吗? 2 试估测柑橘的损坏率是多少?完好的概率是多少? 3 柑橘完好的质量是多少? 4 这批柑橘的总进价是多少?实际成本的单价是多少? 5 如何计算利润?售价应定为多少可获利润 5000 元? 三、课堂训练 完成课本 142、145 页练习 四、小结归纳 1.本节学习的概率问题有什么特点? 2.利用频率估计概率与利用公式求概率分别适用于什么样的问题?如何灵活 选择方法求事件的概率? 五、作业设计 复习巩固作业和综合运用为全体学生必做; 拓广探索为成绩中上等学生必做; 学有余力的学生,要求模仿编拟课堂上出现的一些补充题目进行重复练习. 补充作业:. 板 课题 利用频率估计概率 教 学 反 思 应用 书 设 计

人教版初中数学九年级上册第二十五章 25.3用频率估计概率

人教版初中数学九年级上册第二十五章 25.3用频率估计概率
随机事件(不确定事件)发生的概率介于0~1之
间,即0<P(不确定事件)<1. 如果A为随机事件(不确定事件),
那么0<P(A)<1.
用列举法求概率的条件是什么? (1)试验的所有结果是有限个(n) (2)各种结果的可能性相等.
用频率估计概率
用列举法可以求一些事件的概 率,我们还可以利用多次重复 试验,通过统计实验结果去估 计概率。
3.动物学家通过大量的调查估计出,某种动物活到20 岁的概率为0.8,活到25岁的概率是0.5,活到30岁的概率
是0.3.现年20岁的这种动物活到25岁的概率为多少?现
年25岁的这种动物活到30岁的概率为多少?
试一试
4.某厂打算生产一种中学生使用的笔袋,但无法确定各种颜色的 产量,于是该文具厂就笔袋的颜色随机调查了5 000名中学生, 并在调查到1 000名、2 000名、3 000名、4 000名、5 000名 时分别计算了各种颜色的频率,绘制折线图如下:
了解了一种方法-------用多次试验频率去估计概率
体会了一种思想: 用样本去估计总体 用频率去估计概率
大家都来做一做
从一定的高度落下的图钉,落地后 可能图钉尖着地,也可能图钉尖不找地, 估计一下哪种事件的概率更大,与同学
合作,通过做实验来验证 一下你事先估计是否正确?
你能估计图钉尖朝
上的概率吗?
归纳:
一般地,在大量重复试验中, 如在果某事个件常数A发p附生近的,频那率mn 么事会件稳A定 发生的概率P(A)=p。
用频率估计的概率 可能小于0吗?可 能大于1吗?
练习: 下表记录了一名球员在罚球线上的投篮结果。
投篮次数(n) 50 100 150 200 250 300 500

九年级数学人教版(上册)25.3 用频率估计概率

九年级数学人教版(上册)25.3 用频率估计概率
A.P 一定等于 0.5 B.P 一定不等于 0.5 C.多抛掷一次,P 更接近 0.5 D.抛掷次数逐渐增加,P 稳定在 0.5 附近
知识点 2 用频率估计概率
3.做重复试验:抛掷同一枚啤酒瓶盖 1 000 次,经过统计得“凹
面向上”的频率约为 0.53,则可以估计抛掷这枚啤酒瓶盖出现“凸
面向上”的概率约为( D )
验是(B )
A.抛掷一枚质地均匀的硬币,落地时结果是“正面向上” B.抛掷一个质地均匀的正六面体骰子,落地时朝上的面点数是 6 C.在“剪刀、石头、布”的游戏中,小明随机出的是“剪刀” D.不透明袋子中装有 1 个红球和 2 个黄球,这些球只有颜色上的区 别,从中随机取出一个球是黄球
6.某地区林业局要考察一种树苗移植的成活率,对该地区这种 树苗移植的成活情况进行调查统计,绘制了如图的统计图,根据图 中的信息解决下列问题:
A.0.53
B.0.51
C.0.50
D.0.47
4.在一个不透明的箱子里装有红色、蓝色、黄色的球共 20 个, 除颜色外,形状、大小、质地等完全相同,小明通过多次摸球试验 后发现摸到红色球、黄色球的频率分别稳定在 10%和 15%,则箱子 里蓝色球的个数很可能是 15 个.
5.某小组在“用频率估计概率”的试验中,统计了某种结果出现的 频率,绘制了如图所示的折线统计图,那么最有可能符合这一结果的试
第二十五章 概率初步
25.3 用频率估计概率
知识点 1 频率与概率的关系 1.在大量重复试验中,关于随机事件发生的频率与概率,下列 说法正确的是( D ) A.频率就是概率 B.Байду номын сангаас率与试验次数无关 C.概率是随机的,与频率无关 D.随着试验次数的增加,频率一般会越来越接近概率

25.3利用频率估计概率 TXC

25.3利用频率估计概率 TXC
移植总数(n) 10 50 270 400 750 1500 3500 7000 9000 14000 成活数(m) 8 47 235 369 662 1335 3203 6335 8073 12628 成活的频率 ( 0.8 0.94 0.870 0.923 0.883 0.890 0.915 0.905 0.897 0.902
m ) n
估计移植成Leabharlann 率0.9 左右摆动, 由下表可以发现,幼树移植成活的频率在____ 并且随着移植棵数越来越大,这种规律愈加明显. 0.9 所以估计幼树移植成活的概率为_____ .
移植总数(n) 10 成活数(m) 8 成活的频率 ( 0.8
m ) n
50 47 0.94 900 棵. 1.林业部门种植了该幼树1000棵,估计能成活_______ 270 235 0.870 2.我们学校需种植这样的树苗500棵来绿化校园,则至少 0.923 400 369 556 棵. 向林业部门购买约_______ 0.883 750 662 1500 3500 7000 9000 14000 1335 3203 6335 8073 12628 0.890 0.915 0.905 0.897 0.902
m ) n
估计移植成活率
0.9 左右摆动, 由下表可以发现,幼树移植成活的频率在____ 并且随着移植棵数越来越大,这种规律愈加明显. 0.9 所以估计幼树移植成活的概率为_____ .
移植总数(n) 10 50 270 400 750 1500 3500 7000 9000 14000 成活数(m) 8 47 235 369 662 1335 3203 6335 8073 12628 成活的频率 ( 0.8 0.94 0.870 0.923 0.883 0.890 0.915 0.905 0.897 0.902

新人教版九年级上册25.3用频率估计概率

新人教版九年级上册25.3用频率估计概率

(1)请计算出现向上点数为3的频率及出现向上点数为5的频 率. (2)王强说:“根据试验,一次试验中出现向上点数为5的概 率最大.” 李刚说:“如果抛540次,那么出现向上点数为6的次数正好 是100次.”请判断王强和李刚说法的对错. (3)如果王强与李刚各抛一枚骰子.求出现向上点数之和为5
的倍数的概率.
变化(集中)趋势,即观察各数值主要集中在哪个常数附近,
这个常数就是所求概率的估计值.同时要明确,频率只是一
个估计值,不同的试验受试验次数及试验条件的影响,所得 到的结果可能有所不同.
Байду номын сангаас
1.(2010 ·南充中考)在“抛掷正六面体”的试验中,如果正 六面体的六个面分别标有数字“1”、“2”、“3”、“4”、
(1)求参加此次活动得到海宝玩具的频率?
(2)请你估计袋中白球的数量接近多少?
【思路点拨】应用频率估计概率与生产生活实际联系密切, 是数学生活化的重要体现,解题关键是理解概率的意义、频 率与概率的关系,结合方程的思想解决问题 .
【自主解答】(1)参加此项游戏得到海宝玩具的频率
m 8 000 m 1 ,即 n 40 000 n 5
【解析】(1)根据频率与概率的关系,此次统计是大规模的, 所以可以用字母出现的频率估计其概率; (2)不可以,一篇只有200个字母的文献,出现E的频率就有 不确定性,因其数量太少.
用频率估计概率时一定要注意试验的次数及
试验条件对试验结果的影响.用试验估计概率时,必须经过
大量的试验,再用频率的稳定值估计概率 .同时理解概率只
(2)设袋中共有m个球,则摸到红球的概率P(红球)= 8 . 8 1
m m
5
解得m=40,∴白球接近40-8=32(个)

人教版九年级数学上册《25.3用频率估计概率》课件(共27张PPT)

人教版九年级数学上册《25.3用频率估计概率》课件(共27张PPT)

3 B.在答卷中,喜欢足球的答卷与总问卷的比5为3︰8
C.在答卷中,喜欢足球的答卷占总答卷的
D.在答卷中,每抽出100份问卷,恰有60份答卷是喜欢足球
练习巩固
3.在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他相
同.通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中
白球可能有( D ).
在同样条件下,对这种幼树进行大量移植,并统计成活情况,计算成活 的频率.随着移植数n越来越大,频率 m 会越来越稳定,于是就可以把频
n 率作为成活率的估计值.
从表中可以发现,随着移植数的增加,幼树移植成活的频率越来越稳 定.当移植总数为14 000时,成活的频率为0.902,于是可以估计幼树移植 成活的概率为0.9.
转动转盘的次数n
落在“铅笔”的次数m
落在“铅笔”的频率
m n
100 150 200 500 800 1 000 68 111 136 345 546 701
(2) 请估计,当n很大时,频率将会接近多少?
(3) 转动该转盘一次,获得铅笔的概率约是多少?
(4) 在该转盘中,标有“铅笔”区域的扇形的圆心角大
如果随着抛掷次数的增加,“正面向上”的频率的变化在0.5的左右摆动幅度不完全是越来越小,本次实验依然不能称为严格意义上的大量重复实验. 2.某射击运动员在同一条件下的射击成绩记录如下: 902,于是可以估计幼树移植成活的概率为 . 例2 某水果公司以2元/kg的成本价新进了10 000 kg的柑橘.如果公司希望这些柑橘能够获得利润5 000元,那么在出售柑橘(去掉损坏的柑橘)时,每千克大约定价为多少元比较合适 ? 2.某射击运动员在同一条件下的射击成绩记录如下:
约是多少(精确到1°).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档