中考数学综合题训练1

合集下载

2021年九年级数学中考复习知识点综合专题训练:一次函数与几何变换1(附答案)

2021年九年级数学中考复习知识点综合专题训练:一次函数与几何变换1(附答案)

2021年九年级数学中考复习知识点综合专题训练:一次函数与几何变换1(附答案)1.在平面直角坐标系中,把直线y=﹣2x+3沿y轴向上平移两个单位长度后.得到的直线的函数关系式为()A.y=﹣2x+5B.y=﹣2x﹣5C.y=﹣2x+1D.y=﹣2x+72.如图,直线l:与y轴交于点A,将直线l绕点A顺时针旋转75°后,所得直线的解析式为()A.y=x+B.y=x﹣C.y=﹣x+D.y=x+3.在平面直角坐标系中,将直线y=﹣2x+2关于平行于y轴的一条直线对称后得到直线AB,若直线AB恰好过点(6,2),则直线AB的表达式为()A.y=2x﹣10B.y=﹣2x+14C.y=2x+2D.y=﹣x+5 4.将直线y=﹣3x沿着x轴向右平移2个单位,所得直线的表达式为()A.y=﹣3x+6B.y=﹣3x﹣6C.y=﹣3x+2D.y=﹣3x﹣2 5.将直线y=﹣2x+1向上平移2个单位长度,所得到的直线解析式为()A.y=2x+1B.y=﹣2x﹣1C.y=2x+3D.y=﹣2x+3 6.将直线y=﹣2x+1向下平移2个单位,平移后的直线表达式为()A.y=﹣2x﹣5B.y=﹣2x﹣3C.y=﹣2x﹣1D.y=﹣2x+3 7.将直线y=x平移,使得它经过点(﹣2,0),则平移后的直线为()A.y=x﹣2B.y=x+1C.y=﹣x﹣2D.y=x+28.将一次函数y=3x向左平移后所得直线与坐标轴围成的三角形面积是24,则平移距离()A.4B.6C.6D.129.把直线y=2x﹣1向下平移1个单位,平移后直线的关系式为()A.y=2x﹣2B.y=2x+1C.y=2x D.y=2x+210.将直线y=﹣2x﹣1向上平移两个单位,平移后的直线所对应的函数关系式为()A.y=﹣2x﹣5B.y=﹣2x﹣3C.y=﹣2x+1D.y=﹣2x+3 11.将直线y=3x沿y轴向下平移1个单位长度后得到的直线解析式为()A.y=3x+1B.y=3x﹣1C.y=x+1D.y=x﹣112.在平面直角坐标系中,把直线y=2x﹣3沿y轴向上平移2个单位后,得到的直线的函数表达式为()A.y=2x+2B.y=2x﹣5C.y=2x+1D.y=2x﹣113.将直线y=2x+1向上平移3个单位后得到的解析式为.14.如果将直线y=3x平移,使其经过点(0,﹣1),那么平移后的直线表达式是.15.把直线y=2x﹣1向左平移1个单位长度,再向上平移2个单位长度,则平移后所得直线的解析式为.16.将直线y=2x﹣5向上平移3个单位长度,所得直线的解析式为.17.把直线y=﹣2x+5向下平移2个单位,得到的直线解析式是.18.在平面直角坐标系xOy中,将函数y=3x+3图象向右平移5个单位长度,则平移后的图象与x轴、y轴分别交于A、B两点,则△AOB的面积为.19.将直线y=2x﹣3沿y轴向上平移2个单位后,所得直线的解析式是.20.将直线y=﹣2x+3向下平移5个单位,得到直线.21.将直线y=2x向上平移2个单位后得到的直线解析式为.22.在平面直角坐标系中,把直线y=x沿y轴向上平移后得到直线AB,如果点P(m,n)是直线AB上的一点,且m﹣n+8=0,那么直线AB的函数表达式为.23.在平面直角坐标系中,已知A,B两点的坐标分别(2,4),(﹣3,1).(1)在平面直角坐标系中,描出点A;(2)若函数y=mx的图象经过点A,求m的值;(3)若一次函数y=kx+b的图象由(2)中函数y=mx的图象经过平移,且经过点B得到,求这个一次函数的表达式,并在直角坐标系中画出该函数对应的图象.24.已知一次函数y=kx﹣4,当x=2时,y=﹣3.(1)求一次函数的解析式;(2)将该函数的图象向上平移6个单位长度,求平移后的图象与x轴交点的坐标;(3)在(2)的条件下,直接写出y>0时,x的取值范围.25.在一次函数学习中,我们经历了列表、描点、连线画函数图象,结合图象研究函数性质并对其性质进行应用的过程.小红对函数y=的图象和性质进行了如下探究,请同学们认真阅读探究过程并解答:(1)小红列出了如下表格,请同学们把下列表格补充完整,并在平面直角坐标系中画出该函数的图象:x…﹣10123456…y……(2)根据函数图象,以下判断该函数性质的说法,正确的有(填正确答案的序号).①函数图象关于y轴对称;②此函数无最小值;③当x<3时,y随x的增大而增大;当x≥3时,y的值不变.(3)若直线y=x+b与函数y=的图象只有一个交点,求b的值.26.已知一次函数y=kx+b(k,b是常数,且k≠0)的图象过A,B两点.(1)在图中画出该一次函数并求其表达式;(2)若点(a﹣3,﹣a)在该一次函数图象上,求a的值;(3)把y=kx+b的图象向下平移3个单位后得到新的一次函数图象,在图中画出新函数图形,并直接写出新函数图象对应的表达式.27.有这样一个问题:探究函数y=|x+1|的图象与性质.小明根据学习一次函数的经验,对函数y=|x+1|的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)函数y=|x+1|的自变量x的取值范围是;(2)如表是x与y的几组对应值.x…﹣5﹣4﹣3﹣2﹣10123…y…432m01234…m的值为;(3)在如图网格中,建立平面直角坐标系xOy,描出表中各对对应值为坐标的点,并画出该函数的图象;(4)小明根据画出的函数图象,得出了如下几条结论:①函数有最小值为0;②当x>﹣1时,y随x的增大而增大;③图象关于过点(﹣1,0)且垂直于x轴的直线对称.小明得出的结论中正确的是.(只填序号)28.已知正比例函数的图象经过点A(2,3);(1)求出此正比例函数表达式;(2)该直线向上平移3个单位,写出平移后所得直线的表达式,并画出它的图象.29.一次函数y=2x+a的图象与x轴交与点(2,0),(1)求出a的值;(2)将该一次函数的图象向上平移5个单位长度,求平移后的函数解析式.30.表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线l,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x﹣10y﹣21(1)求直线l的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.31.已知一次函数y=kx+b(k,b是常数,且k≠0)的图象过A(3,5)与B(﹣2,﹣5)两点.(1)求一次函数的解析式;(2)若点(a﹣3,﹣a)在该一次函数图象上,求a的值;(3)把y=kx+b的图象向下平移3个单位后得到新的一次函数图象,在图中画出新函数图象,并直接写出新函数图象对应的解析式.32.如图,在平面直角坐标系xOy中,直线y=﹣x+8与x、y轴分别相交于点A、B,此直线向下平移后与y轴相交于点C、与x轴相交于点D,四边形ABCD的面积为18.(1)求直线CD的表达式;(2)如果点E在直线CD上,四边形ABED是等腰梯形,求点E的坐标.参考答案1.解:直线y=﹣2x+3沿y轴向上平移2个单位,则平移后直线解析式为:y=﹣2x+3+2=﹣2x+5,故选:A.2.解:由直线l:可知,直线与x轴的夹角为60°,∴与y轴的夹角为30°,∴直线l绕点A顺时针旋转75°后的直线与y轴的夹角为45°,∴旋转后的直线的斜率为1,∵直线l:与y轴交于点A,∴A(0,).∴旋转后的直线解析式为:y=x+,故选:D.3.解:由题意得,直线AB的解析式为y=2x+b,∵直线AB恰好过点(6,2),∴2=2×6+b,解得b=﹣10,∴直线AB的表达式为y=2x﹣10,故选:A.4.解:根据题意,得直线向右平移2个单位,即对应点的纵坐标不变,横坐标减2,所以得到的解析式是y=﹣3(x﹣2)=﹣3x+6.故选:A.5.解:由“上加下减”的原则可知,把直线y=﹣2x+1上平移2个单位长度后所得直线的解析式为:y=﹣2x+1+2,即y=﹣2x+3故选:D.6.解:由题意得:平移后的解析式为:y=﹣2x+1﹣2=﹣2x﹣1,即.所得直线的表达式是y=﹣2x﹣1.故选:C.7.解:设平移后直线的解析式为y=x+b.把(﹣2,0)代入直线解析式得0=﹣2+b解得b=2所以平移后直线的解析式为y=x+2.故选:D.8.解:设平移的距离为k(k>0),则将一次函数y=3x向左平移后所得直线解析式为:y =3(x+k)=3x+3k.易求得新直线与坐标轴的交点为(﹣k,0)、(0,3k)所以,新直线与坐标轴所围成的三角形的面积为:•3k=24,解得k=4或﹣4(舍去).故选:A.9.解:根据题意,把直线y=2x﹣1向下平移1个单位后得到的直线解析式为:y=2x﹣1﹣1,即y=2x﹣2,故选:A.10.解:直线y=﹣2x﹣1向上平移两个单位,所得的直线是y=﹣2x+1,故选:C.11.解:由“上加下减”的原则可知:将直线y=3x沿y轴向下平移1个单位长度后,其直线解析式为y=3x﹣1.故选:B.12.解:由题意得:平移后的解析式为:y=2x﹣3+2,即y=2x﹣1.故选:D.13.解:由“上加下减”的原则可知,把直线y=2x+1上平移3个单位长度后所得直线的解析式为:y=2x+1+3,即y=2x+4,故答案为:y=2x+4.14.解:设平移后直线的解析式为y=3x+b,把(0,﹣1)代入直线解析式得﹣1=b,解得b=﹣1.所以平移后直线的解析式为y=3x﹣1.故答案为:y=3x﹣1.15.解:把直线y=2x﹣1向左平移1个单位长度,得到y=2(x+1)﹣1=2x+1,再向上平移2个单位长度,得到y=2x+3.故答案为:y=2x+3.16.解:由“上加下减”的原则可知,将函数y=2x﹣5向上平移3个单位所得函数的解析式为y=2x﹣5+3,即y=2x﹣2.故答案为:y=2x﹣2.17.解:由“上加下减”的原则可知,把直线y=﹣2x+5向下平移2个单位后所得直线的解析式为:y=﹣2x+5﹣2,即y=﹣2x+3.故答案为:y=﹣2x+3.18.解:根据题意知,平移后直线方程为y=3(x﹣5)+3=3x﹣12.所以A(4,0),B(0,﹣12).故OA=4,OB=12.所以S△AOB=OA•OB==24.故答案是:24.19.解:由“上加下减”的原则可知,直线y=2x﹣3沿y轴向上平移2个单位,所得直线的函数关系式为y=2x﹣3+2,即y=2x﹣1;故答案为y=2x﹣1.20.解:原直线的k=﹣2,b=3.向下平移5个单位长度得到了新直线,那么新直线的k=﹣2,b=3﹣5=﹣2.∴新直线的解析式为y=﹣2x﹣2.故答案为:y=﹣2x﹣2.21.解:直线y=2x向上平移2个单位后得到的直线解析式为y=2x+2.故答案为y=2x+2.22.解:设直线AB的解析式为y=x+b.将(m,n)代入y=x+b,得m+b=n,则m﹣n+8=0,∴b=8,∴直线AB的解析式为y=x+8.故答案为y=x+8.23.解:(1)点A(2,4),如图所示:(2)∵函数y=mx的图象经过点A,∴4=2m,∴m=2;(3)由(2)可得经过点A的函数为y=2x,∵一次函数y=kx+b的图象由函数y=2x经过平移,且经过点B,∴,解得,∴这个一次函数的表达式为y=2x+7,依题意画出图象如图所示;24.解:(1)当x=2时,y=﹣3,∴﹣3=2k﹣4,则,∴,(2)图象向上平移6个单位长度,∴,当y=0时,x=﹣4,∴平移后的图象与x轴交点的坐标为(﹣4,0),(3)y>0时,x的取值范围为x>﹣4.25.解:(1)补充表格:x…﹣10123456…y…﹣2﹣1012222…画出函数图象如图所示:(2)由图象可知,正确的性质为②此函数无最小值;③当x<3时,y随x的增大而增大;当x≥3时,y的值不变.故答案为②③;(3)直线y=x+b与函数y=的图象只有一个交点,根据图象直线y=+b经过点(3,2),∴2=+b,∴b=.26.解:(1)∵一次函数y=kx+b(k,b是常数,k≠0)的图象过A(1,5),B(﹣1,﹣1)两点,∴,得,即该一次函数的表达式是y=3x+2;(2)点(a﹣3,﹣a)在该一次函数y=3x+2的图象上,∴﹣a=3(a﹣3)+2,解得,a=,即a的值是;(3)把y=3x+2向下平移3个单位后可得:y=3x+2﹣3=3x﹣1,图象如图:27.解:(1)在函数y=|x+1|中,自变量x的取值范围是x为任意实数,故答案为:x为任意实数;(2)当x=﹣2时,m=|﹣2+1|=1,故答案为1;(3)画出函数的图象如图:;(4)由函数图象可知,①函数有最小值为0,正确;②当x>﹣1时,y随x的增大而增大,正确;③图象关于过点(﹣1,0)且垂直于x轴的直线对称,正确;.故答案为:①②③.28.解:(1)设正比例函数的解析式为y=kx,把A(2,3),代入得到k=,∴正比例函数的解析式为y=x.(2)将直线y=x向上平移3个单位,得直线y=x+3,如图;29.解:(1)∵一次函数y=2x+a的图象与x轴交与点(2,0),∴4+a=0,解得a=﹣4;(2)将一次函数y=2x﹣4的图象向上平移5个单位长度,得到y=2x﹣4+5,即y=2x+1,故平移后的函数解析式为y=2x+1.30.解:(1)∵直线l:y=kx+b中,当x=﹣1时,y=﹣2;当x=0时,y=1,∴,解得,∴直线l的解析式为y=3x+1;(2)依题意可得直线l′的解析式为y=x+3如图,解得,∴两直线的交点为A(1,4),∵直线l′:y=x+3与y轴的交点为B(0,3),∴直线l'被直线l和y轴所截线段的长为:AB==;(3)把y=a代入y=3x+1得,a=3x+1,解得x=;把y=a代入y=x+3得,a=x+3,解得x=a﹣3;分三种情况:①当第三点在y轴上时,a﹣3+=0,解得a=;②当第三点在直l上时,2×=a﹣3,解得a=7;③当第三点在直线l'上时,2×(a﹣3)=,解得a=;∴直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,则a 的值为或7或.31.解:(1)∵一次函数y=kx+b(k,b是常数,且k≠0)的图象过A(3,5)与B(﹣2,﹣5)两点,∴,解得,即该一次函数的表达式是y=2x﹣1;(2)点(a﹣3,﹣a)在该一次函数y=2x﹣1的图象上,∴﹣a=2(a﹣3)﹣1,解得,a=,即a的值是;(3)把y=2x﹣1向下平移3个单位后可得:y=2x﹣1﹣3=2x﹣4,图象如图:32.解:(1)∵直线y=﹣x+8与x、y轴分别相交于点A、B,∴A(6,0)B(0,8),∴OA=6,OB=8,∴AB===10,∴S△AOB==24,四边形ABCD的面积为18.∴S△COD=24﹣18=6,∵AB∥CD,∴△COD∽△BOA,∴=()2,即=,∴OC=4,∴C(0,4),∴直线CD的解析式为:y=﹣x+4;(2)作DM⊥AB于M,EN⊥AB于N,∵四边形ABED是等腰梯形,∴AD=BE,∠DAB=∠EBA,∵∠DMA=∠ENB=90°,∴△ADM≌△BEN(AAS),∴AM=BN,∵直线CD的解析式为:y=﹣x+4,∴D(3,0),∴OD=3,∴AD=6﹣3=3,∵∠AMD=∠AOB,∠DAM=∠BAO,∴△ADM∽△ABO,∴=,即,∴AM=,∴BN=AM=,∴MN=10﹣2×=,∴ED=MN=,∵OD=3,OC=4,∴CD==5,∴CE=DE﹣CD=﹣5=,作EH⊥x轴于H,则EH∥OC,∴,即=,∴OH=,∴E的横坐标为﹣,把x=﹣代入直线CD:y=﹣x+4得y=,∴点E的坐标为(﹣,).。

2020年中考数学复习指南: 《一元一次方程》 综合训练(含答案)

2020年中考数学复习指南: 《一元一次方程》 综合训练(含答案)

2020中考数学复习指南:《一元一次方程》综合训练第Ⅰ卷(选择题)一.选择题1.关于x的方程x+1=2b的解是5,则b=()A.2 B.﹣2 C.3 D.﹣32.某商场将一种商品以每件60元的价格售出,盈利20%,那么该商品的进货价是()A.36元B.48元C.50元D.54元3.在排成每行七天的日历表中取下一个3×3的方块(如图),若方块中所有日期之和为207,则n的值为()A.23 B.21 C.15 D.124.下列方程变形中,正确的是()A.方程3x﹣2=2x+1,移项,得3x﹣2x=﹣1+2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣1C.﹣1,去分母,得4(x+1)=3x﹣1D.方程﹣x=4,未知数系数化为1,得x=﹣105.天虹商场将某品牌的羽绒服在进价的基础上提高60%定价销售,发现销量不好,于是在“元旦”期间将该品牌的羽绒服打六折出售,那么,在“元旦”期间天虹商场每售出一件这样的羽绒服,将会()A.不亏不赚B.赚了4% C.亏了4% D.赚了36% 6.方程﹣x=+1去分母得()A.3(2x+3)﹣x=2(9x﹣5)+1 B.3(2x+3)﹣6x=2(9x﹣5)+6 C.3(2x+3)﹣x=2(9x﹣5)+6 D.3(2x+3)﹣6x=2(9x﹣5)+17.下面是一个被墨水污染过的方程:(1﹣2ax)=x+a,答案显示此方程的解是x=﹣2,被墨水遮盖的是一个常数a,则这个常数是()A.1 B.﹣C.D.﹣8.有m间学生宿舍和n个学生,若每间宿舍住8个人,则还多4个人无法安置;若每间宿舍安排10个人,则还多6张空床位,据此信息列出方程,下列4个方程正确的是()①8m﹣4=10m+6;②;③;④8m+4=10m﹣6.A.①③B.②④C.①②D.③④9.若关于x的方程(k﹣4)x=3有正整数解,则自然数k的值是()A.1或3 B.5 C.5或7 D.3或710.一列火车匀速行驶,经过一条长600米的隧道需要25秒的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10秒,求火车的速度.设火车的速度为xm/s,列方程得()A.B.C.10x+600=25x D.10x+25x=600第Ⅱ卷(非选择题)二.填空题11.若x=a是方程2x+3=4的解,则代数式4a+6的值是.12.“x的与7的差等于x的2倍与5的和”用方程表示为.13.如图,数轴上A、B、C三点所表示的数分别是a,6,c,已知AB=8,a+c=0,且c是关于x的方程(m﹣4)x+16=0的解,则m的值为.14.“衢州有礼华外有你”衢州华外第19届科技艺术节如期举行,小郑在“美食节”上共卖出50个鸭头,其中一半鸭头以8元每个卖出,另一半鸭头降价为5元每个卖出,共获利50%.问小郑这50个鸭头平均每个多少元买进?设这50个鸭头平均每个以x元买进,可列出方程为:.15.已知x=4是关于x的方程3a+x=+3的解,则a2﹣a的值为.16.丰都县某中学为培养学生综合实践能力,开展了一系列综合实践活动,有一次财商训练活动中,小明同学准备去集市批发两种商品用于活动中交易.预先了解到A、B两种商品的价格之和为27元,小明计划购买B商品的数量比A商品的数量多2件,但一共不超过25件,且每样不少于3件,但小明去购买时发现A商品正打九折销售,而B商品的价格提高了20%,小明决定将A、B产品的购买数量对调,这样实际花费只比计划多8元,已知价格和购买数量均为整数,则小明购买两种商品实际花费为元.17.用“※”定义一种新运算:对于任意有理数a和b,我们规定a※b=a(a﹣b)+1,比如,2※5=2×(2﹣5)+1.若3※x=5※(x﹣1),则x的值为.18.已知连接A、B两地之间的公路长为600千米,甲开车从A地出发沿着此公路以100千米/小时的速度前往B地,乙骑自行车从B地出发沿此公路匀速前往A地.已知乙比甲晚出发1小时,乙出发4小时后与甲第一次相遇,当甲到达B地侯立即原路原速返回.若乙第二次与甲相遇时乙共骑行了m千米,则m=.19.甲、乙、丙三数之比是2:3:4,甲、乙两数之和比乙、丙两数之和大30,则甲、乙、丙分别为.20.探索规律:将连续的偶数2,4,6,8,…,排成如下表:若将十字框上下左右移动,可框住五个数,若五个数的和等于2020,写出这五个数是.三.解答题21.解方程:(1)3x﹣(x﹣1)=5(2)3x﹣=122.甲,乙两辆汽车同时从A地出发前往C地,甲车的速度是80km/h,乙车的速度是60km/h,甲车行驶30分钟后到达B地,并在B地停留了45分钟,最后两车同时到达C地.(1)当甲车从B地出发时,甲,乙两车相距多少km?(2)求A,C两地的距离.23.如图,射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm,点P从点O出发,沿OM方向以1cm/s的速度匀速运动,点Q从点C出发在线段CO 上向点O匀速运动,两点同时出发,当点Q运动到点O时,点P、Q停止运动.(1)若点Q运动速度为2cm/s,经过多长时间P、Q两点相遇?(2)当PA=2PB时,点Q运动到的位置恰好是线段OB的中点,求点Q的运动速度;(3)设运动时间为xs,当点P运动到线段AB上时,分别取OP和AB的中点E、F,则OC﹣AP﹣2EF=cm.24.列方程解应用题今年某网上购物商城在“双11购物节“期间搞促销活动,活动规则如下:①购物不超过100元不给优惠;②购物超过100元但不足500元的,全部打9折;③购物超过500元的,其中500元部分打9折,超过500元部分打8折.(1)小丽第1次购得商品的总价(标价和)为200元,按活动规定实际付款元.(2)小丽第2次购物花费490元,与没有促销相比,第2次购物节约了多少钱?(请利用一元一次方程解答)(3)若小丽将这两次购得的商品合为一次购买,是否更省钱?为什么?25.一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天,已知甲工程队铺设每天需支付工程费2000元,乙工程队铺设每天需支付工程费1500元.(1)甲、乙两队合作施工多少天能完成该管线的铺设?(2)由两队合做该管线铺设工程共需支付工程费多少元?(3)根据实际情况,若该工程要求10天完成,从节约资金的角度应怎样安排施工?26.已知:线段AB=20cm.(1)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,点Q沿线段BA自B点向A点以3厘米/秒运动,经过秒,点P、Q两点能相遇.(2)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,点P出发2秒后,点Q 沿线段BA自B点向A点以3厘米/秒运动,问再经过几秒后P、Q相距6cm?(3)如图2:AO=4cm,PO=2cm,∠POB=60°,点P绕着点O以60度/秒的速度逆时针旋转一周停止,同时点Q沿直线BA自B点向A点运动,假若点P、Q两点能相遇,求点Q运动的速度.27.某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么账肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的账算错了.参考答案一.选择题1.解:∵关于x的方程x+1=2b的解是5,∴5+1=2b,∴2b=6,解得b=3.故选:C.2.解:设该商品的进货价是x元,依题意,得:60﹣x=20%x,解得:x=50.故选:C.3.解:这九个日期分别为:n﹣8,n﹣7,n﹣6,n﹣1,n,n+1,n+6,n+7,n+8,∴所有日期之和=9n,由题意可得9n=207,∴n=23,故选:A.4.解:A、方程3x﹣2=2x+1,移项,得3x﹣2x=1+2,不符合题意;B、方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x+5,不符合题意;C、=﹣1,去分母,得4(x+1)=3x﹣12,不符合题意;D、方程﹣x=4,未知数系数化为1,得x=﹣10,符合题意,故选:D.5.解:设一件羽绒服的进价为a元,则在进价的基础上提高60%定价为:(1+60%)a=1.6a,在“元旦”期间将该品牌的羽绒服打六折出售,售价为1.6a×0.6=0.96a,0.96a﹣a=﹣0.04a,∴在“元旦”期间天虹商场每售出一件这样的羽绒服,将会亏了4%;故选:C.6.解:方程的两边都乘以6,得3(2x+3)﹣6x=2(9x﹣5)+6.故选:B.7.解:把x=﹣2代入方程得:(1+4a)=a﹣2,去分母得:1+4a=2a﹣4,解得:a=﹣,故选:B.8.解:按照学生人数不变,可列出方程8m+4=10m﹣6;按照宿舍间数不变,可列出方程=.∴方程②④正确.故选:B.9.解:(k﹣4)x=3,解得x=,又∵(k﹣4)x=3有正整数解,k为自然数,∴自然数k的值是5或7.故选:C.10.解:设火车的速度为xm/s,依题意,得:600+10x=25x.故选:C.二.填空题(共10小题)11.解:把x=a代入方程得:2a+3=4,所以4a+6=2(2a+3)=2×4=8.故答案是:8.12.解:由题意可得:x﹣7=2x+5.故答案为:x﹣7=2x+5.13.解:∵AB=8,∴6﹣a=8,解得a=﹣2,∵a+c=0,∴c=2,∵c是关于x的方程(m﹣4)x+16=0的一个解,∴2(m﹣4)+16=0,解得m=﹣4.故答案是:﹣4.14.解:设这50个鸭头平均每个以x元买进,依题意,得:8×50×+5×50×﹣50x=50%×50x.故答案为:8×50×+5×50×﹣50x=50%×50x.15.解:将x=4代入3a+x=+3,得3a+4=+3,解得a=.所以a2﹣a=()2﹣=﹣.故答案是:﹣.16.解:设A商品的单价为x元/件,则B商品的单价为(27﹣x)元/件,计划购买A商品a件,则B商品为(a+2)件,根据题意可得:0.9x×(a+2)+1.2×(27﹣x)×a=xa+(27﹣x)(a+2)+8,∴x=,∵a≥3,a+2≥3,a+a+2≤25,x,a均为整数,∴a=10,x=10∴小明购买两种商品实际花费=9×12+1.2×10×17=312元,故答案为:31217.解:∵3※x=5※(x﹣1)∴3(3﹣x)+1=5(5﹣x+1)+1去括号,得9﹣3x+1=30﹣5x+1移项,得﹣3x+5x=30+1﹣9﹣1合并同类项,得2x=21系数化为1,得x=10.5故答案为:10.5.18.解:设乙的速度为x千米/小时,由题意可知:100×1+100×4+4x=600,解得:x=25,第一次相遇后,甲到达B地所需要的时间为=1,此时乙继续往A地走了25×1=25千米,设甲到达B地后到追上乙所需要时间为t小时,∴25+100+25t=100t,∴t=,∴当甲到达B地侯立即原路原速返回.若乙第二次与甲相遇时乙共骑行了m=100+25+25t=千米,故答案为:19.解:设甲数是2x,则乙数是3x,丙数是4x,则2x+3x﹣(3x+4x)=30解得x=﹣15.故2x=﹣30,3x=﹣45,4x=﹣60.即甲、乙、丙分别为﹣30、﹣45、﹣60.故答案是:﹣30、﹣45、﹣60.20.解:设十字框最中间的数为x,其他数为x﹣10,x+10,x﹣2,x+2,根据题意得:x﹣10+x+x+10+x﹣2+x+2=2020,解得:x=404,则五个数是394,402,404,406,414,故答案为:394,402,404,406,414.三.解答题(共7小题)21.解:(1)去括号得:3x﹣x+1=5,移项合并得:2x=4,解得:x=2;(2)去分母得:12x﹣3x+1=4,移项合并得:9x=3,解得:x=.22.解:(1)60×﹣80×=35(km).答:当甲车从B地出发时,甲,乙两车相距35km.(2)设A,C两地的距离为xkm,依题意,得:﹣=,解得:x=180.答:A,C两地的距离为180km.23.解:(1)设运动时间为t,则t+2t=90,解得t=30;所以经过30s,P、Q两点相遇;(2)当点P在线段AB上时,∵PA=2PB,∴PA=40cm,∴OA=60cm,∴t==60s,∵点Q线段OB的中点,∴BQ=40cm,∴CQ=50cm,∴点Q的运动速度=cm/s;当点P在线段AB的延长线上时,∵PA=2PB,∴PA=120cm,∴OA=140cm,∴t==140s,∵点Q线段OB的中点,∴BQ=40cm,∴CQ=50cm,∴点Q的运动速度为==cm/s;(3))∵E、F分别是OP、AB的中点,∴OE=OP=t,OF=OA+AB=20+30=50,∴EF=50﹣t∴OC﹣AP﹣2EF=90﹣(t﹣20)﹣(100﹣t)=10,故答案为:10.24.解:(1)200×0.9=180(元).答:按活动规定实际付款180元.(2)∵500×0.9=450(元),490>450,∴第2次购物超过500元,设第2次购物商品的总价是x元,依题意有500×0.9+(x﹣500)×0.8=490,解得x=550,550﹣490=60(元).答:第2次购物节约了60元钱.(3)200+550=750(元),500×0.9+(750﹣500)×0.8=450+200=650(元),∵180+490=670>650,∴小丽将这两次购得的商品合为一次购买更省钱.故答案为:180.25.解:(1)设甲、乙两队合作施工x天能完成该管线的铺设,由题意得+=1,解得:x=8.答:甲、乙两队合作施工8天能完成该管线的铺设.(2)(2000+1500)×8=28000(元)答:两队合做该管线铺设工程共需支付工程费28000元.(3)设乙干满10天,剩下的让甲工程队干需要a天,由题意得+=1,解得:a=7,故甲乙合干7天,剩下的乙再干3天完成任务.26.解:(1)设经过x秒两点相遇,由题意得,(2+3)x=20,解得:x=4,即经过4s,点P、Q两点相遇;故答案为:4.(2)设经过a秒后P、Q相距6cm,由题意得,20﹣2×2﹣(2+3)a=6,解得:a=2,或2×2+(2+3)a﹣20=6,解得:a=,答:再经过2秒和秒后P、Q相距6cm;(3)点P,Q只能在直线AB上相遇,则点P旋转到直线AB上的时间为=2s或=5s,设点Q的速度为ym/s,当2秒时相遇,依题意得,2y=20﹣2=18,解得y=9当5秒时相遇,依题意得,5y=20﹣6=14,解得y=2.8答:点Q的速度为9cm/s或2.8cm/s.27.解:(1)设钢笔的单价为x元,则毛笔的单价为(x+4)元.由题意得:30x+45(x+4)=1755解得:x=21则x+4=25.答:钢笔的单价为21元,毛笔的单价为25元.(2)设单价为21元的钢笔为y支,所以单价为25元的毛笔则为(105﹣y)支.根据题意,得21y+25(105﹣y)=2447.解得:y=44.5 (不符合题意).所以王老师肯定搞错了.。

2021年九年级数学中考一轮复习与三角形有关的综合性中考真题演练1(附答案)

2021年九年级数学中考一轮复习与三角形有关的综合性中考真题演练1(附答案)

2021年九年级数学中考一轮复习与三角形有关的综合性中考真题演练1(附答案)1.如图,在△ABC中,∠ACB=90°,AC=BC=1,E、F为线段AB上两动点,且∠ECF =45°,过点E、F分别作BC、AC的垂线相交于点M,垂足分别为H、G.现有以下结论:①AB=;②当点E与点B重合时,MH=;③AF+BE=EF;④MG•MH=,其中正确结论的个数是()A.1B.2C.3D.42.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,点P是AB的中点,点D,E是AC,BC边上的动点,且AD=CE,连接DE.有下列结论:①∠DPE=90°;②四边形PDCE面积为1;③点C到DE距离的最大值为.其中,正确的个数是()A.0B.1C.2D.33.Rt△ABC中,AB=AC,D点为Rt△ABC外一点,且BD⊥CD,DF为∠BDA的平分线,当∠ACD=15°,下列结论:①∠ADC=45°;②AD=AF;③AD+AF=BD;④BC﹣CE=2DE.其中正确的是()A.①③B.①②④C.①③④D.①②③④4.如图,在△ABC中,AD⊥BC于点D,BF平分∠ABC交AD于点E,交AC于点F,AC =13,AD=12,BC=14,则AE的长等于()A.5B.6C.7D.5.如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,AF是△ADC 的中线,C,D,E三点在一条直线上,连接BD,BE,以下五个结论:①BD=CE:②BD ⊥CE;③∠ACE+∠DBC=45°;④2AF=BE⑤BE⊥AF中正确的个数是()A.2B.3C.4D.56.如图,线段OA=2,OP=1,将线段OP绕点O任意旋转时,线段AP的长度也随之改变,则下列结论:①AP的最小值是1,最大值是4;②当AP=2时,△APO是等腰三角形;③当AP=1时,△APO是等腰三角形;④当AP=时,△APO是直角三角形;⑤当AP=时,△APO是直角三角形.其中正确的是()A.①④⑤B.②③⑤C.②④⑤D.③④⑤7.如图所示,在△ABC中,D是BC的中点,DE⊥BC交AC于点E,已知AD=AB,连接BE交AD于点F,下列结论:①BE=CE;②∠CAD=∠ABE;③S△ABF=3S△DEF;④△DEF∽△DAE,其中正确的有()A.1个B.4个C.3个D.2个8.如图,已知△ABC,AB=AC,∠A=90°,直角∠EPF的顶点P是BC的中点,两边PE,PF分别交AB,AC于点E、F.给出以下四个结论:①AE=CF;②EF=AP;③△EPF是等腰直角三角形;④S四边形AEPF=S△ABC上述结论始终正确的有()A.①②③B.①③C.①③④D.①②③④9.在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE.连接DE、DF、EF.在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②四边形CDFE不可能为正方形;③四边形CDFE的面积保持不变;④△CDE面积的最大值为8.其中正确的结论有()个.A.1个B.2个C.3个D.4个10.如图,点P是等边三角形ABC外接圆⊙O上点,在以下判断中:①PB平分∠APC;②当弦PB最长时,△APC是等腰三角形;③若△APC是直角三角形时,则P A⊥AC;④当∠ACP=30°时,△BPC是直角三角形.其中正确的有()A.①②③B.①③④C.②③④D.①②④11.如图,在△ABC中,∠C=90°,∠A=30°,BC=5,在△DEF中,∠EDF=90°,∠DEF=45°,DE=3.现将△DEF的直角边DF与△ABC的斜边AB重合在一起,并将△DEF沿AB方向移动,在移动过程中,D、F两点始终在AB边上(移动开始时点D与点A重合,一直移动到点F与点B重合为止),连接BE,设AD=x,BE=y.下列结论:①当x=2时,y=;②当x=10﹣4时,BE∥AC;③当x=7﹣3时,∠EBD=22.5°,其中正确有()A.3个B.2个C.1个D.0个12.已知,等腰Rt△ABC中AC=BC,点D在BC上,且∠ADB=105°,ED⊥AB,G是AF延长线上一点,BE交AG于F,且DE=2FG,连GE、GB.则下列结论:①AG⊥BE;②∠DGE=60°;③BF=2FG;④AD+DC=AB.其中正确的结论有()A.①②B.①②④C.①③④D.②③④13.如图,在Rt△ACB中,∠ACB=90°,AC=BC,D是AB上的一个动点(不与点A,B 重合),连接CD,将CD绕点C顺时针旋转90°得到CE,连接DE,DE与AC相交于点F,连接AE.下列结论:①△ACE≌△BCD;②若∠BCD=25°,则∠AED=65°;③DE2=2CF•CA;④若AB=3,AD=2BD,则AF=.其中正确的结论是.(填写所有正确结论的序号)14.如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM、ON上滑动,下列结论:①若C、O两点关于AB对称,则OA=2;②C、O两点距离的最大值为4;③若AB平分CO,则AB⊥CO;④斜边AB的中点D运动路径的长为;其中正确的是(把你认为正确结论的序号都填上).15.如图,在△ABC中,BC=12,AC=16,∠C=90°,M是AC边上的中点,N是BC边上任意一点,且CN<BC,若点C关于直线MN的对称点C'恰好落在△ABC的中位线上,则CN=.16.如图,在△ABC中,AB=AC,∠BAC=90°,点D为BC中点,点E在边AB上,连接DE,过点D作DF⊥DE交AC于点F.连接EF.下列结论:①BE+CF=BC;②AD ≥EF;③S四边形AEDF=AD2;④S△AEF≤,其中正确的是(填写所有正确结论的序号).17.如图,在平面直角坐标中,∠ACB=90°,∠BAC=30°,BC=2,点A在x轴的正半轴上滑动,点B在y轴的正半轴上滑动,点A,点B在滑动过程中可与原点O重合,下列结论:①若C、O两点关于AB对称,则OA=2;②C,O两点之间的最大距离为4;③当BO=BC时,则AB⊥CO;④AB的中点D运动路径的长为π.其中正确的是(写出所有正确结论的序号,).18.如图,△ABC中,AD为BC上的中线,∠EBC=∠ACB,∠BEC=120°,点F在AC 的延长线上,连接DF,DF=AD,AC﹣BE=5,CF=1,则AB=.19.将一张圆形纸片,进行了如下连续操作(1)将圆形纸片左右对折,折痕为AB,如图(2)所示(2)将圆形纸片上下折叠,使A、B两点重合,折痕CD与AB相交于M,如图(3)所示(3)将圆形纸片沿EF折叠,使B、M两点重合,折痕EF与AB相交于N,如图(4)所示(4)连结AE、AF,如图(5)所示,则S△AEF:=.20.等边三角形ABC中,AB=3,点D在直线BC上,点E在直线AC上,且∠BAD=∠CBE,当BD=1时,则AE的长为.21.如图,在矩形ABCD中,AB=6,AD=12,E为边AB上一点,AE=2,P、Q分别为边AD、BC上的两点,且∠PEQ=45°,若△EPQ为等腰三角形,则AP的长为.23.如图,D、E分别是△ABC的边BC和AB上的点,△ABD与△ACD的周长相等,△CAE 与△CBE的周长相等,设BC=a,AC=b,AB=c,给出以下几个结论:①如果AD是BC边中线,那么CE是AB边中线;②AE的长度为;③BD的长度为;④若∠BAC=90°,△ABC的面积为S,则S=AE•BD.其中正确的结论是(将正确结论的序号都填上)24.如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC 绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△AED≌△AEF;②△ABC的面积等于四边形AFBD的面积;③BE2+DC2=DE2;④BE+DC=DE,其中正确的是(只填序号)25.△ABC中,点D在直线AB上.点E在平面内,点F在BC的延长线上,∠E=∠BDC,AE=CD,∠EAB+∠DCF=180°;(1)如图①,求证AD+BC=BE;(2)如图②、图③,请分别写出线段AD,BC,BE之间的数量关系,不需要证明;(3)若BE⊥BC,tan∠BCD=,CD=10,则AD=.参考答案1.解:①由题意知,△ABC是等腰直角三角形,∴AB==,故①正确;②如图1,当点E与点B重合时,点H与点B重合,∴MB⊥BC,∠MBC=90°,∵MG⊥AC,∴∠MGC=90°=∠C=∠MBC,∴MG∥BC,四边形MGCB是矩形,∴MH=MB=CG,∵∠FCE=45°=∠ABC,∠A=∠ACF=45°,∴CF=AF=BF,∴FG是△ACB的中位线,∴GC=AC=MH,故②正确;③如图2所示,∵AC=BC,∠ACB=90°,∴∠A=∠5=45°.将△ACF顺时针旋转90°至△BCD,则CF=CD,∠1=∠4,∠A=∠6=45°;BD=AF;∵∠2=45°,∴∠1+∠3=∠3+∠4=45°,∴∠DCE=∠2.在△ECF和△ECD中,,∴△ECF≌△ECD(SAS),∴EF=DE.∵∠5=45°,∴∠DBE=90°,∴DE2=BD2+BE2,即EF2=AF2+BE2,故③错误;④∵∠7=∠1+∠A=∠1+45°=∠1+∠2=∠ACE,∵∠A=∠5=45°,∴△ACE∽△BFC,∴=,∴AE•BF=AC•BC=1,由题意知四边形CHMG是矩形,∴MG∥BC,MH=CG,MG=CH,MH∥AC,∴=;=,即=;=,∴MG=AE;MH=BF,∴MG•MH=AE×BF=AE•BF=AC•BC=,故④正确;故选:C.2.解:(1)∵∠ACB=90°,AC=CB=4,P是AB边上的中点,∴CP=AP=BP,CP⊥AB,∴∠A=∠B=∠ACP=∠BCP=45°.在△ADP和△CEP中,,∴△ADP≌△CEP∴PD=PE,∠APD=∠CPE,∴∠DPE=∠APC=90°,故(1)正确;(2)当PD⊥AC时,∵∠DCE=∠CDP=∠DPE=90°,∴四边形CEDP是矩形.∵PD=PE,∴矩形CEDP是正方形.∵△ADP≌△CEP,∴S△ADP=S△CEP,∴S四边形CEDP=S△APC=S△ABC=××2×2=1.故(2)正确;(3)如图,连接CP交DE于F,由(1)知,∠DPE=90°,∵∠ACB=90°,∴点C,D,P,E是以DE为直径的圆上,∴当DE⊥CP时,点C到线段DE的距离最大,为CP,在Rt△ABC中,CP=AB=×2=即CP==故(3)正确.综上所述:(1)(2)(3)正确.故选:D.3.解:∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,且∠ACD=15°,∵∠BCD=30°,∵∠BAC=∠BDC=90°,∴点A,点C,点B,点D四点共圆,∴∠ADC=∠ABC=45°,故①符合题意,∠ACD=∠ABD=15°,∠DAB=∠DCB=30°,∵DF为∠BDA的平分线,∴∠ADF=∠BDF,∵∠AFD=∠BDF+∠DBF>∠ADF,∴AD≠AF,故②不合题意,如图,延长CD至G,使DE=DG,在BD上截取DH=AD,连接HF,∵DH=AD,∠HDF=∠ADF,DF=DF,∴△ADF≌△HDF(SAS)∴∠DHF=∠DAF=30°,AF=HF,∵∠DHF=∠HBF+∠HFB=30°,∴∠HBF=∠BFH=15°,∴BH=HF,∴BH=AF,∴BD=BH+DH=AF+AD,故③符合题意,∵∠ADC=45°,∠DAB=30°=∠BCD,∴∠BED=∠ADC+∠DAB=75°,∵GD=DE,∠BDG=∠BDE=90°,BD=BD,∴△BDG≌△BDE(SAS)∴∠BGD=∠BED=75°,∴∠GBC=180°﹣∠BCD﹣∠BGD=75°,∴∠GBC=∠BGC=75°,∴BC=BG,∴BC=BG=2DE+EC,∴BC﹣EC=2DE,故④符合题意,故选:C.4.解:∵AD⊥BC,∴∠ADC=∠ADB=90°,∵AD=12,AC=13,∴DC===5,∵BC=14,∴BD=14﹣5=9,由勾股定理得:AB==15,过点E作EG⊥AB于G,∵BF平分∠ABC,AD⊥BC,∴EG=ED,在Rt△BDE和Rt△BGE中,∵,∴Rt△BDE≌Rt△BGE(HL),∴BG=BD=9,∴AG=15﹣9=6,设AE=x,则ED=12﹣x,∴EG=12﹣x,Rt△AGE中,x2=62+(12﹣x)2,x=,∴AE=.故选:D.5.解:①∵∠BAC=∠DAE,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE.故①正确;∵△ABD≌△ACE,∴∠ABD=∠ACE.∵∠CAB=90°,∴∠ABD+∠DBC+∠ACB=90°,∴∠DBC+∠ACE+∠ACB=90°,∴∠BDC=180°﹣90°=90°.∴BD⊥CE;故②正确;③∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ABD+∠DBC=45°.∴∠ACE+∠DBC=45°,故③正确,④延长AF到G,使得FG=AF,连接CG,DG.则四边形ADGC是平行四边形.∴AD∥CG,AD=CG,∴∠DAC+∠ACG=180°,∵∠BAC=∠DAE=90°,∴∠EAB+∠DAC=180°,∴∠EAB=∠ACG,∵EA=AD=CG,AB=AC,∴△EAB≌△GCA(SAS),∴AG=BE,∴2AF=BE,故④正确,⑤延长F A交BE于H.∵△EAB≌△GCA(SAS),∴∠ABE=∠CAG,∵∠CAG+∠BAH=90°,∴∠BAH+∠ABE=90°,∴∠AHB=90°,∴AF⊥BE,故⑤正确.故选:D.6.解:①当点P在线段OA上时,AP最小,最小值为2﹣1=1,当点P在线段AO的延长线上时,AP最大,最大值为2+1=3,①错误;②当AP=2时,AP=AO,则△APO是等腰三角形,②正确;③当AP=1时,AP+OP=OA,△AOP不存在,△APO是等腰三角形错误,③错误;④当AP=时,AP2+OP2=3+1=4,OA2=4,∴AP2+OP2=OA2,∴△APO是直角三角形,④正确;⑤当AP=时,AP2=5,OP2+OA2=1+4=5,∴AO2+OP2=P A2,∴△APO是直角三角形,⑤正确,故选:C.7.解:∵D是BC的中点,且DE⊥BC,∴DE是BC的垂直平分线,CD=BD,∴CE=BE,故①正确;∴∠C=∠7,∵AD=AB,∴∠8=∠ABC=∠6+∠7,∵∠8=∠C+∠4,∴∠C+∠4=∠6+∠7,∴∠4=∠6,即∠CAD=∠ABE,故②正确;作AG⊥BD于点G,交BE于点H,连接DH∵AD=AB,DE⊥BC,∴∠2=∠3,DG=BG=BD,DE∥AG,∴△CDE∽△CGA,△BGH∽△BDE,由AD与EH相互平分知,四边形AEDH是平行四边形,∴AF∥ED,AE∥DH,∴DE=AH,∠EDA=∠3,∠5=∠1,∴在△DEF与△AHF中,,∴△DEF≌△AHF(AAS),∴AF=DF,EF=HF=EH,且EH=BH,∴EF:BF=1:3,∴S△ABF=3S△AEF,∵S△DEF=S△AEF,∴S△ABF=3S△DEF,故③正确;∵∠1=∠2+∠6,且∠4=∠6,∠2=∠3,∴∠5=∠3+∠4,∴∠5≠∠4,∴△DEF∽△DAE,不成立,故④错误.综上所述:正确的答案有3个.故选:C.8.解:连接AP,EF,∵AB=AC,∠A=90°,∴AP⊥BC,∴∠APC=90°,∴∠APF+∠CPF=90°,∵∠EPF=∠APE+∠APF=90°,∴∠APE=∠CPF,在等腰直角三角形ABC中,AP⊥BC,∴∠BAP=∠CAP=∠C=45°,AP=CP,在△APE和△CPF中,∴△APE≌△CPF,∴S△APE=S△CPF,AE=CF,PE=PF,∵∠EPF=90°,∴△EPF是等腰直角三角形;即:①③正确;同理:△APF≌△BPE,∴S△APF=S△BPE,∴S四边形AEPF=S△APE+S△APF=S△ABC,即:④正确;∵△△EPF是等腰直角三角形,∴EF=PE,当PE⊥AB时,AP=EF,而PE不一定垂直于AB,∴AP不一定等于EF,∴②错误;故选:C.9.解;连接CF.∵△ABC为等腰直角三角形,∴∠FCB=∠A=45°,CF=AF=FB,在△ADF和△CEF中,,∴△ADF≌△CEF(SAS),∴EF=DF,∠CFE=∠AFD,∵∠AFD+∠CFD=90°,∴∠CFE+∠CFD=∠EFD=90°,∴△EDF是等腰直角三角形,①正确;当D、E分别为AC,BC的中点时,四边形CDEF是正方形,②错误;∵△ADF≌△CEF,∴S△CEF=S△ADF,∴四边形CDFE的面积=S△ACF=S△ACB,∴四边形CDFE的面积保持不变,③正确;∵△DEF是等腰直角三角形,∴当DE最小时,DF也最小,即当DF⊥AC时,DE最小,此时DF=AC=4,∴DE=DF=4,当△CDE面积最大时,此时△DEF的面积最小,∴S△CDE=S四边形CEFD﹣S△DEF=S△AFC﹣S△DEF=16﹣8=8,④正确,故选:C.10.解:①∵△ABC是等边三角形,∴∠BAC=∠ABC=∠ACB=60°,∵∠APB=∠ACB=60°,∠BPC=∠BAC=60°,∴∠APB=∠BPC,∴PB平分∠APC,∴①正确;②、当弦PB最长时,PB为⊙O的直径,则∠BAP=90°.如图1所示:∵△ABC是等边三角形,∴∠BAC=∠ABC=60°,AB=BC=CA,∵点P是等边三角形ABC外接圆⊙O上的点,BP是直径,∴BP⊥AC,∴∠ABP=∠CBP=∠ABC=30°,∴AP=CP,∴△APC是等腰三角形,∴②正确;③分三种情况:当∠APC=90°时,AC是直径,不成立;当∠P AC=90°时,PC是直径,P A⊥AC;当∠ACP=90°时,AP是直径,PC⊥AC;综上所述:若△APC是直角三角形时,则P A⊥AC或PC⊥AC,∴③不正确;④、当∠ACP=30°时,点P或者在P1的位置,或者在P2的位置,如图2所示:如果点P在P1的位置时:∵∠BCP1=∠BCA+∠ACP1=60°+30°=90°,∴△BP1C是直角三角形;如果点P在P2的位置时:∵∠ACP2=30°,∴∠ABP2=∠ACP2=30°,∴∠CBP2=∠ABC+∠ABP2=60°+30°=90°,∴△BP2C是直角三角形,∴④正确;故选:D.11.解:∵在△ABC中,∠C=90°,∠A=30°,BC=5,∴AB=2BC=10,①∵AD=x=2,∴BD=AB﹣AD=8,∴y=BE==;故正确;②当x=10﹣4时,BD=4,∴tan∠EBD==,∴∠EBD<30°≠∠A,∴BE与AC不平行;故错误;③当x=7﹣3时,BD=3+3,∴BF=BD﹣DF=3,∵EF=DE=3,∴EF=BF,∴∠EBD=∠EFD=22.5°;正确.故选:B.12.解:如图,延长ED交AB于M,则∠DMB=90°,∵∠ADB=105°,△ABC是等腰直角三角形,∴∠CDE=∠MDB=45°,∠ADC=75°,∠CAD=15°,∴△DCE是等腰直角三角形,∴CE=CD,在△ACD和△BCE中,∵,∴△ACD≌△BCE(SAS),∴∠ADC=∠BEC=75°,∴∠AFE=180°﹣∠CAD﹣∠CEB=90°,即AF⊥BE,故①正确;∵∠ADC=75°,∠CDE=45°,∴Rt△EDF中,∠EDF=60°,∴DE=2DF=2FG,即DF=FG,∴EF垂直平分DG,∴△DEG是等边三角形,∴∠DGE=60°,故②正确;方法一:在Rt△ACD中,∵∠ADC=75°,∴∠P AD=15°,作∠ADP=∠P AD=15°,则P A=PD,∠CPD=30°,设CD=a,则PD=P A=2a,PC=a,∴AD===a,则====,同理可得=,∴CD:AC:AD=():():4,∴令CD=、AC=、AD=4,∴AB=AC=()=2+2=4+()=AD+CD,故④正确;方法二:由①知∠AFB=90°,∵∠ADC=∠BDF=75°,∴∠DBF=15°,由②知△DEG为等边三角形,且BE⊥AG,∴DF=GF,∴∠DBF=∠GBF=15°,∴∠BGF=90°﹣∠GBF=75°,∵∠ABG=∠ABD+∠DBF+∠GBF=75°,∴AB=AG,又∵DG=DE=CD,∴AB=AG=AD+DG=AD+CD,故④正确;∵DE=CD=()=2﹣2,∴FG=DE=﹣1,EF=DE=3﹣,∴BF=BE﹣EF=AD﹣EF=4﹣3+=1+,显然BF≠2FG,故③错误;综上可知,①②④正确,故选:B.13.解:∵∠ACB=90°,由旋转知,CD=CE,∠DCE=90°=∠ACB,∴∠BCD=∠ACE,在△BCD和△ACE中,,∴△BCD≌△ACE,故①正确;∵∠ACB=90°,BC=AC,∴∠B=45°∵∠BCD=25°,∴∠BDC=180°﹣45°﹣25°=110°,∵△BCD≌△ACE,∴∠AEC=∠BDC=110°,∵∠DCE=90°,CD=CE,∴∠CED=45°,则∠AED=∠AEC﹣∠CED=65°,故②正确;∵△BCD≌△ACE,∴∠CAE=∠CBD=45°=∠CEF,∵∠ECF=∠ACE,∴△CEF∽△CAE,∴,∴CE2=CF•AC,在等腰直角三角形CDE中,DE2=2CE2=2CF•AC,故③正确;如图,过点D作DG⊥BC于G,∵AB=3,∴AC=BC=3,∵AD=2BD,∴BD=AB=,∴DG=BG=1,∴CG=BC﹣BG=3﹣1=2,在Rt△CDG中,根据勾股定理得,CD==,∵△BCD≌△ACE,∴CE=,∵CE2=CF•AC,∴CF==,∴AF=AC﹣CF=3﹣=,故④错误,故答案为:①②③.14.解:在Rt△ABC中,∵BC=2,∠BAC=30°,∴AB=4,AC==2,①若C、O两点关于AB对称,如图1,∴AB是OC的垂直平分线,则OA=AC=2;所以①正确;②如图1,取AB的中点为E,连接OE、CE,∵∠AOB=∠ACB=90°,∴OE=CE=AB=2,当OC经过点E时,OC最大,则C、O两点距离的最大值为4;所以②正确;③如图2,当∠OBC=∠AOB=∠ACB=90°,∴四边形AOBC是矩形,∴AB与OC互相平分,但AB与OC的夹角为60°、120°,不垂直,所以③不正确;④如图3,斜边AB的中点D运动路径是:以O为圆心,以2为半径的圆周的,则:=π,所以④不正确;综上所述,本题正确的有:①②;故答案为:①②.15.解:在△ABC中,BC=12,AC=l6,∠C=90°,则由勾股定理知AB===20.取BC、AB的中点H、G,连接MH、HG、MG.如图1中,当点C′落在MH上时,设NC=NC′=x,由题意可知:MC=MC′=8,MH=10,HC′=2,HN=6﹣x,在Rt△HNC′中,∵HN2=HC′2+NC′2,∴(6﹣x)2=x2+22,解得x=.如图2中,当点C′落在GH上时,设NC=NC′=x,在Rt△GMC′中,MG=CH=6,MC=MC′=8,∴GC′=2,∵∠NHC'=∠C'GM=90°,∠NC'M=90°,∴∠HNC'+∠HC'N=∠GC'M+∠HC'N=90°,∴∠HNC'=∠CGC'M,∴△HNC′∽△GC′M,∴=,∴=,∴x=.如图3中,当点C′落在直线GM上时,易证四边形MCNC′是正方形,可得CN=CM =4.∴C'M>GM,此时点C′在中位线GM的延长线上,不符合题意.综上所述,满足条件的线段CN的长为或.故答案为:或.16.解:∵AB=AC,∠BAC=90°,点D为BC中点,∴BD=CD=AD=BC,∠BAD=∠CAD=∠C=45°,AD⊥BC,BC=AB,∵DF⊥DE,∴∠EDF=∠ADC=90°,∴∠ADE=∠CDF,且AD=CD,∠BAD=∠C,∴△ADE≌△CDF(ASA),∴AE=CF,∴BE+CF=BE+AE=AB,且BC=AB,∴BE+CF=BC,故①正确;∵AE+AF≥EF,∴AF+CF≥EF,∴AC≥EF,∴AD≥EF,故②错误;∵△ADE≌△CDF,∴S△ADE=S△CDF,∴S四边形AEDF=S△ADF+S△CDF=S△ADC=×AD2,故③正确;∵S△AEF=×AE×AF,且AE+AF=AC,∴当AE=AF时,S△AEF的最大值=S△ABC,∴S△AEF≤,故④正确,故答案为:①③④17.解:在Rt△ABC中,∵BC=2,∠BAC=30°,∴AB=4,AC==2,①若C、O两点关于AB对称,如图1,∴AB是OC的垂直平分线,则OA=AC=2;所以①正确;②如图1,取AB的中点为E,连接OE、CE,∵∠AOB=∠ACB=90°,∴OE=CE=AB=2,当OC经过点E时,OC最大,则C、O两点距离的最大值为4;所以②正确;③如图2,当BO=BC点D是OC的中点时,AB⊥CO,所以③不正确;④如图3,斜边AB的中点D运动路径是:以O为圆心,以2为半径的圆周的,则:=π,所以④不正确;综上所述,本题正确的有:①②;故答案为:①②.18.解:如图,延长AD到G,使DG=AD,连接BG,CG,GF,过点C作CH⊥BG于H,过作CN⊥BE于N,∵AD为BC上的中线,∴BD=CD,且DG=AD,∴四边形ABGC是平行四边形,∴AC∥BG,AC=BG,AB=CG,∴∠ACB=∠CBG,且∠EBC=∠ACB,∴∠EBC=∠CBG,且∠N=∠CHB=90°,BC=BC,∴△BCN≌△BCH(AAS),∴BN=BH,CN=CH,∵AC﹣BE=5,∴BG﹣BE=BH+HG﹣BE=BN+HG﹣BE=EN+HG=5,∵AD=DF,AD=DG,∴AD=DF=DG,∴∠AFG=90°,∵AC∥BG,CH⊥BG,∴CH⊥AF,且CH⊥BG,∠AFG=90°,∴四边形CFGH是矩形,∴CF=HG=1,∴EN=4,∵∠BEC=120°,∴∠NEC=60°,且∠N=90°,∴NC=EN=4,∴CH=4,∴AB=CG===7,故答案为:7.19.解:∵纸片上下折叠A、B两点重合,∴∠BMD=90°,∵纸片沿EF折叠,B、M两点重合,∴∠BNF=90°,∴∠BMD=∠BNF=90°,∴CD∥EF,根据垂径定理,BM垂直平分EF,又∵纸片沿EF折叠,B、M两点重合,∴BN=MN,∴BM、EF互相垂直平分,连接ME,如图所示:则ME=MB=2MN,∴∠MEN=30°,∴∠EMN=90°﹣30°=60°,又∵AM=ME(都是半径),∴∠AEM=∠EAM,∴∠AEM=∠EMN=×60°=30°,∴∠AEF=∠AEM+∠MEN=30°+30°=60°,同理可求∠AFE=60°,∴∠EAF=60°,∴△AEF是等边三角形,设圆的半径为r,则MN=r,EN=r,∴EF=2EN=r,AN=r+r=r,∴S△AEF:S圆=(×r×r):πr2=3:2π;故答案为:3:2π.20.解:分四种情形:①如图1中,当点D在边BC上,点E在边AC上时.∵△ABC是等边三角形,∴AB=BC=AC=3,∠ABD=∠BCE=60°,∵∠BAD=∠CBE,∴△ABD≌△BCE(ASA),∴BD=EC=1,∴AE=AC﹣EC=2.图2中,当点D在边BC上,点E在AC的延长线上时.作EF∥AB交BC的延长线于F.∵∠CEF=∠CAB=60°,∠ECF=∠ACB=60°,∴△ECF是等边三角形,设EC=CF=EF=x,∵∠ABD=∠BFE=60°,∠BAD=∠FBE,∴△ABD∽△BFE,∴=,∴=,∴x=,∴AE=AC+CE=③如图3中,当点D在CB的延长线上,点E在AC的延长线上时.∵∠ABD=∠BCE=120°,AB=BC,∠BAD=∠FBE,∴△ABD≌△BCE(ASA),∴EC=BD=1,∴AE=AC+EC=4.④如图4中,当点D在CB的延长线上,点E在边AC上时.作EF∥AB交BC于F,则△EFC是等边三角形.设EC=EF=CF=m,由△ABD∽△BFE,可得=,∴=,∴x=,∴AE=AC﹣EC=,综上所述,满足条件的AE的值为2或4或或.故答案为2或4或或.21.解:(1)如图1,当PE=PQ时,作QF⊥AD,则四边形ABQF是矩形,可得QF=AB =6.∵∠A=∠PFQ=∠EPQ=90°,∴∠APE+∠QPF=90°,∠APE+∠AEP=90°,∴∠AEP=∠QPF,∵PE=PQ,∴△AEP≌△FPQ(AAS),∴AP=FQ=6;(2)如图2,当QE=QP时,作PF⊥BC,则四边形ABFP是矩形,可得PF=AB=6,同法可得:△BEQ≌△FQP(AAS),∴BE=FQ=4,BQ=FP=6,∴AP=BF=10;(3)如图3,当EP=EQ时,作PM⊥PE交EQ的延长线于点M,作MF⊥AD于点F,MF交BC于点H.∵EP=EQ,BE∥MH,∴,∴,∴.同法可得△AEP≌△FPM(AAS),∴.综合(1)、(2)、(3)可知:AP=6或AP=10或.故答案是:6或10或4+2.23.解:当AD是BC边中线时,则BD=CD,∵△ABD与△ACD的周长相等,∴AB=AC,但此时,不能得出AC=BC,即不能得出CE是AB的中线,故①不正确;∵△ABD与△ACD的周长相等,BC=a,AC=b,AB=c,∴AB+BD+AD=AC+CD+AD,∴AB+BD=AC+CD,∵AB+BD+CD+AC=a+b+c,∴AB+BD=AC+CD=.∴BD=﹣c=,同理AE=,故②③都正确;当∠BAC=90°时,则b2+c2=a2,∴AE•BE=×=[a+(c﹣b)][a﹣(c﹣b)]=[a2﹣(c﹣b)2]=[a2﹣(c2+b2﹣2bc)]=×2bc=bc=S,故④正确;综上可知正确的结论②③④,故答案为:②③④.24.解:∵△ADC绕点A顺时针90°旋转后,得到△AFB,∴∠F AD=90°,DC=BF,∠FBE=90°,AD=AF,∵∠DAE=45°,∴∠EAF=90°﹣45°=45°,在△AED和△AEF中,,∴△AED≌△AEF(SAS);故①正确;∵将△ADC绕点A顺时针旋转90°后,得到△AFB,∴△AFB≌△ADC,∴S△AFB=S△ADC,∵S△ABC=S△ABD+S△ADC,S四边形AFBD=S△ABD+S△AFB,∴△ABC的面积等于四边形AFBD的面积;故②正确;∵△AED≌△AEF,∴EF=ED,在Rt△BEF中,BE2+BF2=EF2,∴BE2+DC2=DE2.故③正确;④错误.故答案为:①②③.25.解:(1)证明:∵∠EAB+∠DCF=180°,∠BCD+∠DCF=180°,∴∠EAB=∠BCD,∵∠E=∠BDC,AE=CD,∴△EAB≌△DCB,∴BE=BD,AB=BC,∴AD+BC=AD+AB=BD=BE;(2)①图②结论:BC﹣AD=BE,证明:∵∠EAB+∠DCF=180°,∠BCD+∠DCF=180°,∴∠EAB=∠BCD,∵∠E=∠BDC,AE=CD,∴△EAB≌△DCB,∴BE=BD,AB=BC,∴BC﹣AD=AB﹣AD=BD=BE;②图③结论:AD﹣BC=BE;证明:∵∠EAB+∠DCF=180°,∠BCD+∠DCF=180°,∴∠EAB=∠BCD,∵∠E=∠BDC,AE=CD,∴△EAB≌△DCB(ASA),∴BE=BD,AB=BC,∴AD﹣BC=AD﹣AB=BD=BE;(3)①如图2,过点D作DG⊥BC于G,在Rt△CGD中,tan∠BCD=,∴,设DG=3x,CG=4x,根据勾股定理得,DG2+CG2=CD2,∴9x2+16x2=100,∴x=2(舍去负值),∴CG=8,DG=6,由(2)①知,△EAB≌△DCB,∴∠ABE=∠CBD,∵BE⊥BC,∴∠CBE=90°,∴∠CBD=45°=∠BDG,∴BG=DG=6,BD=6,∴BC=BG+CG=14,由(2)①知,BC﹣AD=BD,∴AD=BC﹣BD=14﹣6;②如图3,过点D作DG⊥BC于G,同①的方法得,CF=8,BG=DG=6,BD=6,∴BC=CG﹣CG=2,由(2)②知,AD﹣BC=BD,∴AD=BC+BD=2+6;故答案为:14﹣6或2+6.。

2021年中考数学《圆综合压轴题》模拟训练题集(一)

2021年中考数学《圆综合压轴题》模拟训练题集(一)

2021年中考数学《圆综合压轴题》模拟训练题集(一)1.如图,在△ABC中,AB=AC,∠A=30°,AB=10,以AB为直径的⊙O交BC于点D,交AC于点E,连接DE,过点B作BP平行于DE,交⊙O于点P,连接CP、OP.(1)求证:点D为BC的中点;(2)求AP的长度;(3)求证:CP是⊙O的切线.2.已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.(1)求证:DE=OE;(2)若CD∥AB,求证:BC是⊙O的切线;(3)在(2)的条件下,求证:四边形ABCD是菱形.3.如图,AB是⊙O的直径,C、G是⊙O上两点,且C是弧AG的中点,过点C的直线CD⊥BG的延长线于点D,交BA的延长线于点E,连接BC,交OD于点F.(1)求证:CD是⊙O的切线;(2)若=,求证:AE=AO;(3)连接AD,在(2)的条件下,若CD=2,求AD的长.4.如图,已知AB是⊙O的切线,BC为⊙O的直径,AC与⊙O交于点D,点E为AB的中点,PF⊥BC交BC于点G,交AC于点F(1)求证:ED是⊙O的切线;(2)求证:△CFP∽△CPD;(3)如果CF=1,CP=2,sin A=,求O到DC的距离.5.如图1,▱AOBC的顶点A、B、C在⊙O上,点D、E分别在BO、AO的延长线上,且OD=2OB,OE=2OA,连接DE.(1)求∠AOB的度数;(2)求证:DE是⊙O的切线;(3)如图2,设直线DE与⊙O相切于点F,连接AD、BF,判断线段AD与BF的位置关系和数量关系,并证明你的结论.6.如图,AB是⊙O的直径,D是的中点,DE⊥AB于E,交CB于点F.过点D作BC的平行线DM,连接AC 并延长与DM相交于点G.(1)求证:GD是⊙O的切线;(2)求证:GD2=GC•AG;(3)若CD=6,AD=8,求cos∠ABC的值.7.如图1,⊙O是△ABC的外接圆,AB是直径,OD∥AC,OD交⊙O于点E,且∠CBD=∠COD.(1)求证:BD是⊙O的切线;(2)若点E为线段OD的中点,判断以O、A、C、E为顶点的四边形的形状并证明;(3)如图2,作CF⊥AB于点F,连接AD交CF于点G,求的值.8.如图1,⊙O的直径AB=12,P是弦BC上一动点(与点B,C不重合),∠ABC=30°,过点P作PD⊥OP交⊙O于点D.(1)如图2,当PD∥AB时,求PD的长;(2)如图3,当=时,延长AB至点E,使BE=AB,连接DE.①求证:DE是⊙O的切线;②求PC的长.9.如图,四边形ABCD为矩形,E为BC边中点,以AD为直径的⊙O与AE交于点F.(1)求证:四边形AOCE为平行四边形;(2)求证:CF与⊙O相切;(3)若F为AE的中点,求∠ADF的大小.10.已知AM是⊙O直径,弦BC⊥AM,垂足为点N,弦CD交AM于点E,连按AB和BE.(1)如图1,若CD⊥AB,垂足为点F,求证:∠BED=2∠BAM;(2)如图2,在(1)的条件下,连接BD,若∠ABE=∠BDC,求证:AE=2CN;(3)如图3,AB=CD,BE:CD=4:7,AE=11,求EM的长.11.⊙O是△ABC的外接圆,AB是直径,过的中点P作⊙O的直径PG交弦BC于点D,连接AG、CP、PB.(1)如图1,若D是线段OP的中点,求∠BAC的度数;(2)如图2,在DG上取一点K,使DK=DP,连接CK,求证:四边形AGKC是平行四边形;(3)如图3,取CP的中点E,连接ED并延长ED交AB于点H,连接PH,求证:PH⊥AB.12.如图,四边形ABCD为菱形,对角线AC,BD相交于点E,F是边BA延长线上一点,连接EF,以EF为直径作⊙O,交DC于D,G两点,AD分别于EF,GF交于I,H两点.(1)求∠FDE的度数;(2)试判断四边形F ACD的形状,并证明你的结论;(3)当G为线段DC的中点时,①求证:FD=FI;②设AC=2m,BD=2n,求⊙O的面积与菱形ABCD的面积之比.13.如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若=,求证:CD=DH.14.如图,⊙O与AB,AC分别相切于D,E两点,AB=AC,AO交⊙O于点F,交BC于点G,BC与⊙O交于点P,Q连接EQ(1)求证:AG⊥BC;(2)若DE平分OF,求证:△ADE是等边三角形;(3)在(2)的条件下,若AD=PQ,EQ=2,求BP的长.15.如图,在Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC于点D,E是BC的中点,连接DE.(1)求证:直线DE是⊙O的切线;(2)连接OC交DE于点F,若OF=CF,①判断以O、E、C、D为顶点的四边形的形状,并说明理由;②求tan∠ACO的值.16.如图,在△ABC中,AB=BC,以BC为直径作⊙O交AB于点E、交AC于点F,连结EF、BF、CE,BF与CE相交于点D,点G是EF的中点,连结OG.(1)判断OG与EF的位置关系,直接写出你的结论(不需证明);(2)求证:EF=CF;(3)若BF=2+,OG•FD=8﹣,求⊙O的面积.17.如图,AB、ED是⊙O的直径,点C在ED延长线上,且∠CBD=∠F AB.点F在⊙O上,且AB⊥DF.连接AD并延长交BC于点G.(1)求证:BC是⊙O的切线;(2)求证:BD•BC=BE•CD;(3)若⊙O的半径为r,BC=3r,求tan∠CDG的值.18.如图,在平面直角坐标系中,O为坐标原点,点A、B的坐标分别为(8,0)、(0,6).动点Q从点O、动点P 从点A同时出发,分别沿着OA方向、AB方向均以1个单位长度/秒的速度匀速运动,运动时间为t(秒)(0<t ≤5).以P为圆心,P A长为半径的⊙P与AB、OA的另一个交点分别为C、D,连接CD、QC.(1)求当t为何值时,点Q与点D重合?(2)设△QCD的面积为S,试求S与t之间的函数关系式,并求S的最大值;(3)若⊙P与线段QC只有一个交点,请直接写出t的取值范围.19.如图,四边形ABCD内接于⊙O,已知直径AD=4,∠ABC=120°,∠ACB=45°,连接OB交AC于点E.(1)求AC的长;(2)求CE:AE的值;(3)在CB的延长线上取一点P,使PB=2BC,试判断直线P A和⊙O的位置关系,并证明你的结论.20.如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线AO交BC于点O,以O为圆心,OC长为半径作⊙O,⊙O交AO所在的直线于D、E两点(点D在BC左侧).(1)求证:AB是⊙O的切线;(2)连接CD,若AC=AD,求tan∠D的值;(3)在(2)的条件下,若⊙O的半径为5,求AB的长.21.如图,点C是等边△ABD的边AD上的一点,且∠ACB=75°,⊙O是△ABC的外接圆,连结AO并延长交BD于E、交⊙O于F.(1)求证:∠BAF=∠CBD;(2)过点C作CG∥AE交BD于点G,求证:CG是⊙O的切线;(3)在(2)的条件下,当AF=2时,求的值.22.如图,平行四边形ABCD中,AC=BC,过A、B、C三点的⊙O与AD相交于点E,连接CE.(1)证明:AB=CE;(2)证明:DC与⊙O相切;(3)若⊙O的半径r=5,AB=8,求sin∠ACE的值.23.如图,⊙O是△ABC的外接圆,AB为⊙O的直径,过点C作∠BCD=∠BAC交AB的延长线于点D,过点O 作直径EF∥BC,交AC于点G.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,∠BCD=30°;①连接AE、DE,求证:四边形ACDE是菱形;②当点P是线段AD上的一动点时,求PF+PG的最小值.24.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过上一点E作EG∥AC交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.(1)求证:△ECF∽△GCE;(2)求证:EG是⊙O的切线;(3)延长AB交GE的延长线于点M,若tan∠G=,AH=3,求EM的值.25.如图,线段AB是⊙O的直径,C、D是半圆的三等分点,过点C的直线与AD的延长线垂直,垂足为点E,与AB的延长线相交于点F,连接OE,交AC于点G.(1)求证:FC是⊙O的切线;(2)连接DC、CO,判断四边形ADCO的形状,并证明;(3)求OG与GE的比值.26.如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE、DE、DF.(1)证明:∠E=∠C;(3)设DE交AB于点G,若DF=4,cos B=,E是的中点,求EG•ED的值.27.如图,AB为⊙O的直径,AB=4,P为AB上一点,过点P作⊙O的弦CD,设∠BCD=m∠ACD.(1)已知=,求m的值,及∠BCD、∠ACD的度数各是多少?(2)当=时,是否存在正实数m,使弦CD最短?如果存在,求出m的值,如果不存在,说明理由;(3)在(1)的条件下,且=,求弦CD的长.28.如图,在⊙O中,直径AB⊥CD,垂足为E,点M在OC上,AM的延长线交⊙O于点G,交过C的直线于F,∠1=∠2,连结CB与DG交于点N.(1)求证:CF是⊙O的切线;(2)求证:△ACM∽△DCN;(3)若点M是CO的中点,⊙O的半径为4,cos∠BOC=,求BN的长.29.如图1,AB为⊙O的直径,点C为⊙O上一点,CD平分∠ACB交⊙O于点D,交AB于点E.(1)求证:△ABD为等腰直角三角形;(2)如图2,ED绕点D顺时针旋转90°,得到DE′,连接BE′,证明:BE′为⊙O的切线;(3)如图3,点F为弧BD的中点,连接AF,交BD于点G,若DF=1,求AG的长.30.如图,△BCD内接于⊙O,直径AB经过弦CD的中点M,AE交BC的延长线于点E,连接AC,∠EAC=∠ABD =30°.(1)求证:△BCD是等边三角形;(2)求证:AE是⊙O的切线;(3)若CE=2,求⊙O的半径.31.如图,四边形ABCD为⊙O的内接四边形,且对角线AC为直径,AD=BC,过点D作DG⊥AC,垂足为E,DG分别与AB,⊙O及CB延长线交于点F、G、M.(1)求证:四边形ABCD为矩形;(2)若N为MF中点,求证:NB是⊙O的切线;(3)若F为GE中点,且DE=6,求⊙O的半径.32.如图,AB为⊙O直径,P点为半径OA上异于O点和A点的一个点,过P点作与直径AB垂直的弦CD,连接AD,作BE⊥AB,OE∥AD交BE于E点,连接AE、DE、AE交CD于F点.(1)求证:DE为⊙O切线;(2)若⊙O的半径为3,sin∠ADP=,求AD;(3)请猜想PF与FD的数量关系,并加以证明.33.如图,AB为半圆O的直径,OD⊥AB,与弦BC延长线交于点D,与弦AC交于点E.(1)求证:△AOE∽△DOB;(2)若点F为DE的中点,连接CF,求证:CF为⊙O的切线;(3)在(2)的条件下,若CF=3,tan A=,求AB的长.34.如图,在Rt△ABC中,∠C=90°,BD为∠ABC的平分线,DF⊥BD交AB于点F,△BDF的外接圆⊙O与边BC相交于点M,过点M作AB的垂线交BD于点E,交⊙O于点N,交AB于点H,连结FN.(1)求证:AC是⊙O的切线;(2)若AF=4,tan∠N=,求⊙O的半径长;(3)在(2)的条件下,求MN的长.35.如图1,四边形ABCD内接于⊙O,AC为⊙O的直径,AC与BD交于点E,且AE=AB,DA=DB.(1)求证:AB=CB;(2)如图2,△ABC绕点C逆时针旋转30°得到△FGC,点A经过的路径为,若AC=4,求图中阴影部分面积S;(3)在(2)的条件下,连接FB,求证:FB为⊙O的切线.36.如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:PC=PF;(3)若tan∠ABC=,AB=14,求线段PC的长.37.如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E、D,连EC,CD (1)试猜想直线AB于⊙O的位置关系,并说明理由;(2)求证:BC2=BD•BE;(3)若tan∠CED=,⊙O的半径为3,求△OAB的面积.38.如图,⊙O中,FG,AC是直径,AB是弦,FG⊥AB,垂足为点P,过点C的直线交AB的延长线于点D,交GF的延长线于点E,已知AB=4,⊙O的半径为.(1)分别求出线段AP、CB的长;(2)如果OE=5,求证:DE是⊙O的切线;(3)如果tan∠E=,求DE的长.39.已知:如图,△ABC内接于⊙O,AB为直径,弦CE⊥AB于F,C是的中点,连结BD并延长交EC的延长线于点G,连结AD,分别交CE、BC于点P、Q.(1)求证:AP=CP;(2)若tan∠ABC=,CF=8,求CQ的长;(3)求证:(FP+PQ)2=FP•FG.40.如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.41.如图,AB是⊙O的直径,点C在⊙O上,点E在线段OA上运动,DE⊥AB,垂足为E,DE交AC于点G,DC是⊙O的切线,交AB的延长线于点F.(1)求证:∠D=2∠A;(2)如图(2),若点E是OA的中点,点H是DE与⊙O的交点,OH∥BC,求证:△DCG是等边三角形;(3)如图(1),若CD=CF,且BF=1,CF=2,求CG的长.42.如图,AB为⊙O的直径,直线CD切⊙O于点M,BE⊥CD于点E.(1)求证:∠BME=∠MAB;(2)求证:BM2=BE•AB;(3)若BE=,sin∠BAM=,求线段AM的长.43.如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,过点E作直线l∥BC.(1)判断直线l与⊙O的位置关系,并说明理由;(2)若∠ABC的平分线BF交AD于点F,求证:BE=EF;(3)在(2)的条件下,若DE=4,DF=3,求AF的长.44.如图,AB切⊙O于点B,AD交⊙O于点C和点D,点E为的中点,连接OE交CD于点F,连接BE交CD 于点G.(1)求证:AB=AG;(2)若DG=DE,求证:GB2=GC•GA;(3)在(2)的条件下,若tan D=,EG=,求⊙O的半径.45.如图,在△ABC中,AB=AC,以AB为直径作⊙O,交BC边于点D,交AC边于点G,过D作⊙O的切线EF,交AB的延长线于点F,交AC于点E.(1)求证:BD=CD;(2)若AE=6,BF=4,求⊙O的半径;(3)在(2)条件下判断△ABC的形状,并说明理由.46.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH•EA;(3)若⊙O的半径为5,sin A=,求BH的长.47.如图,⊙O是△ABC的外接圆,AF平分∠BAC交BC于点E,交⊙O于点F,BD平分∠ABC交AF于点D,过点F作FH∥BC.(1)求证:FH是⊙O的切线;(2)求证:BF=DF;(3)若EF=3,DE=4,求线段AD的长.48.如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,∠AEF=90°,AE=EF,过点F 作射线BC的垂线,垂足为H,连接AC.(1)试判断BE与FH的数量关系,并说明理由;(2)求证:∠ACF=90°;(3)连接AF,过A、E、F三点作圆,如图2,若EC=4,∠CEF=15°,求的长.49.如图,P A为⊙O的切线,A为切点,直线PO交⊙O与点E,F过点A作PO的垂线AB垂足为D,交⊙O与点B,延长BO与⊙O交于点C,连接AC,BF.(1)求证:PB与⊙O相切;(2)试探究线段EF,OD,OP之间的数量关系,并加以证明;(3)若AC=12,tan∠F=,求cos∠ACB的值.50.如图,在△ABC中,∠ACB=90°,D是AB的中点,以DC为直径的⊙O交△ABC的三边,交点分别是G,E,F点.EG与CD交点为M.(1)求证:∠GEF=∠A;(2)求证:△OME∽△EMC;(3)若ME=4,MD:CO=2:5,求⊙O面积.。

2020初中数学中考专题复习——四边形中的线段最值问题专项训练1(附答案详解)

2020初中数学中考专题复习——四边形中的线段最值问题专项训练1(附答案详解)
∵四边形ABCD是菱形,
∴BD是∠ABC的平分线,
∴E1在AB上,
由图形对称的性质可知,
BE=BE1= BC= ×4=2,
∵BE=BE1= BC,
∴△BCE1是直角三角形,
∴CE1= = = ,
∴PE+PC的最小值是 ,
故选:B
【点睛】
本题考查菱形的性质、轴对称-最短路线问题,利用了角平分线的性质和直角三角形的判定及勾股定理,掌握确定最短路线的方法是解题的关键.
【详解】
作D点关于AB的对称点D',连接CD'交AB于P,P即为所求,此时PC+PD=PC+PD'=CD',根据两点之间线段最短可知此时PC+PD最小.
作D'E⊥BC于E,则EB=D'A=AD.
∵CD=2AD,
∴DD'=CD,
∴∠DCD'=∠DD'C.
∵∠DAB=∠ABC=90°,
∴四边形ABED'是矩形,
8.如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半轴上随之上下移动.
(1)当∠OAD=30°时,求点C的坐标;
(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为 时,求OA的长;
∴DD'∥EC,D'E=AB=3,
∴∠D'CE=∠DD'C,
∴∠D'CE=∠DCD'.
∵∠DCB=60°,
∴∠D'CE=30°,
∴D'C=2D'E=2AB=2×3=6,

2014-2015八年级数学上册期末综合练习题及答案1(中考题)

2014-2015八年级数学上册期末综合练习题及答案1(中考题)

2014-2015八年级数学上册期末综合练习1姓名_____________总分__________________一.选择题(共12小题)1.(2014•吴中区一模)计算:a2•(﹣a)4=()A.a5B.a6C.a8D.a92.如果x2+2mx+9是一个完全平方式,则m的值是()A.3 B.±3 C.6D.±63.若(x﹣1)2=(x+7)(x﹣7),则的平方根是()A.5 B.±5 C.D.±4.下列各式可以分解因式的是()A.x2﹣(﹣y2)B.4x2+2xy+y2C.﹣x2+4y2D.x2﹣2xy﹣y25.已知正数a,b满足a3b+ab3﹣2a2b+2ab2=7ab﹣8,则a2﹣b2=()A.1 B.3C.5D.不能确定6.若多项式x2﹣ax﹣1可分解为(x﹣2)(x+b),则a+b的值为()A.2 B.1C.﹣2 D.﹣17.(2014•南通通州区一模)若正多边形的一个内角等于144°,则这个正多边形的边数是()A.9 B.10 C.11 D.128.(2012•玉林)如图,在菱形ABCD中,对角线AC,BD相交于点O,且AC≠BD,则图中全等三角形有()A.4对B.6对C.8对D.10对9.(2011•江苏模拟)如图,∠AOB和一条定长线段a,在∠AOB内找一点P,使P到OA,OB的距离都等于a,作法如下:(1)作OB的垂线段NH,使NH=a,H为垂足.(2)过N作NM∥OB.(3)作∠AOB的平分线OP,与NM交于P.(4)点P即为所求.其中(3)的依据是()A.17 B.17或22 C.20 D.2211.(2010•荆门)如图,坐标平面内一点A(2,﹣1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为()A. 2 B.3C.4D.512.(2007•玉溪)如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A.50 B.62 C.65 D.68二.填空题(共6小题)13.(2014•漳州模拟)已知a+b=2,则a2﹣b2+4b的值为_________.14.(2006•杭州)计算:(a3)2+a5的结果是_________.15.若2x3+x2﹣12x+k有一个因式为2x+1,则k为_________.16.(2014•思明区质检)一个多边形的每个外角都等于72°,则这个多边形的边数为_________.17.(2012•潍坊)如图所示,AB=DB,∠ABD=∠CBE,请你添加一个适当的条件_________,使△ABC≌△DBE.(只需添加一个即可)18.(2014•德阳)如图,直线a∥b,△ABC是等边三角形,点A在直线a上,边BC在直线b上,把△ABC沿BC方向平移BC的一半得到△A′B′C′(如图①);继续以上的平移得到图②,再继续以上的平移得到图③,…;请问在第100个图形中等边三角形的个数是_________.三.解答题(共8小题)19.运用乘法公式计算:(1)1997×2003;(2)(﹣3a+2b)(3a+2b);(3)(2b﹣3a)(﹣3a﹣2b).20.分解因式:(1);(2)a3﹣3a2﹣10a.21.如下图所示,△ABO的三个顶点的坐标分别为O(0,0),A(5,0),B(2,4).(1)求△OAB的面积;(2)若O,A两点的位置不变,P点在什么位置时,△OAP的面积是△OAB面积的2倍;(3)若B(2,4),O(0,0)不变,M点在x轴上,M点在什么位置时,△OBM的面积是△OAB面积的2倍.22.(2008•西城区一模)已知:如图,△ABC是等腰直角三角形,D为AB边上的一点,∠ACB=∠DCE=90°,DC=EC.求证:∠B=∠EAC.23.已知AB∥CD,BC平分∠ACD.求证:AC=AB.24.已知:a=2002x+2003,b=2002x+2004,c=2002x+2005,求多项式a2+b2+c2﹣ab﹣bc﹣ac的值.25.(2012•珠海)如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点F,判断△ADF的形状.(只写结果)26.(2014•海淀区一模)在△ABC中,AB=AC,将线段AC绕着点C逆时针旋转得到线段CD,旋转角为α,且0°<α<180°,连接AD、BD.(1)如图1,当∠BAC=100°,α=60°时,∠CBD 的大小为_________;(2)如图2,当∠BAC=100°,α=20°时,求∠CBD的大小;(3)已知∠BAC的大小为m(60°<m<120°),若∠CBD的大小与(2)中的结果相同,请直接写出α的大小.参考答案一.选择题(共12小题)1.解:原式=a2•a4=a2+4=a6,故选:B.2.解:∵x2+2mx+9是一个完全平方式,∴m=±3,故选:B.3. 解:∵(x﹣1)2=(x+7)(x﹣7),∴x2﹣2x+1=x2﹣49,解得x=25,∴==5,∴的平方根是±.故选D.4.解:A、原式=x2+y2,不符合平方差公式的特点;B、第一个数是2x,第二个数是y,积的项应是4xy,不符合完全平方公式的特点;C、正确;D、两个平方项应同号.故选C.5. 解:∵a3b+ab3﹣2a2b+2ab2=7ab﹣8,⇒ab(a2+b2)﹣2ab(a﹣b)=7ab﹣8,⇒ab(a2﹣2ab+b2)﹣2ab(a﹣b)+2a2b2﹣7ab+8=0,⇒ab(a﹣b)2﹣2ab(a﹣b)+2a2b2﹣7ab+8=0,⇒ab[(a﹣b)2﹣2(a﹣b)+1]+2(a2b2﹣4ab+4)=0,⇒ab(a﹣b﹣1)2+2(ab﹣2)2=0,∵a、b均为正数,∴ab>0,∴a﹣b﹣1=0,ab﹣2=0,即a﹣b=1,ab=2,解方程,解得a=2、b=1,a=﹣1、b=﹣2(不合题意,舍去),∴a2﹣b2=4﹣1=3.故选B.6.解:∵(x﹣2)(x+b)=x2+bx﹣2x﹣2b=x2+(b﹣2)x﹣2b=x2﹣ax﹣1,∴b﹣2=﹣a,﹣2b=﹣1,∴b=0.5,a=1.5,∴a+b=2.故选A.7.解:设这个正多边形是正n边形,根据题意得:(n﹣2)×180°÷n=144°,解得:n=10.故选:B.8. 解:图中全等三角形有:△ABO≌△ADO、△ABO≌△CDO,△ABO≌△CBO;△AOD≌△COD,△AOD≌△COB;△DOC≌△BOC;△ABD≌△CBD,△ABC≌△ADC,共8对.故选C.9.解:根据角平分线的性质,(3)的依据是到角的两边的距离相等的点在角平分线上,故选B.10.解:根据题意可知等腰三角形的三边可能是4,4,9或4,9,9∵4+4<9,故4,4,9不能构成三角形,应舍去4+9>9,故4,9,9能构成三角形∴它的周长是4+9+9=22故选D.11.解:如上图:①OA为等腰三角形底边,符合符合条件的动点P有一个;②OA为等腰三角形一条腰,符合符合条件的动点P有三个.综上所述,符合条件的点P的个数共4个.故选C.12.解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠EAB=∠EFA=∠BGA=90°,∠EAF+∠BAG=90°,∠ABG+∠BAG=90°⇒∠EAF=∠ABG,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG⇒△EFA≌△ABG ∴AF=BG,AG=EF.同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16 故S=(6+4)×16﹣3×4﹣6×3=50.故选A.二.填空题(共6小题)13.(2014•漳州模拟)已知a+b=2,则a2﹣b2+4b的值为4.解:∵a+b=2,∴a2﹣b2+4b,=(a+b)(a﹣b)+4b,=2(a﹣b)+4b,=2a+2b,=2(a+b),=2×2,=4.14.(2006•杭州)计算:(a3)2+a5的结果是a6+a5.解:(a3)2+a5=a3×2+a5=a6+a5.15.若2x3+x2﹣12x+k有一个因式为2x+1,则k为﹣6.解:2x3+x2﹣12x+k=(2x+1)(x2﹣6),∴k=﹣6,16.(2014•思明区质检)一个多边形的每个外角都等于72°,则这个多边形的边数为5.解:多边形的边数是:360÷72=5.17.(2012•潍坊)如图所示,AB=DB,∠ABD=∠CBE,请你添加一个适当的条件∠BDE=∠BAC,使△ABC≌△DBE.(只需添加一个即可)解:∵∠ABD=∠CBE,∴∠ABD+∠ABE=∠CBE+∠ABE,即∠ABC=∠DBE,∵AB=DB,∴①用“角边角”,需添加∠BDE=∠BAC,②用“边角边”,需添加BE=BC,③用“角角边”,需添加∠ACB=∠DEB.故答案为:∠BDE=∠BAC或BE=BC或∠ACB=∠DEB.(写出一个即可)18.(2014•德阳)如图,直线a∥b,△ABC是等边三角形,点A在直线a上,边BC在直线b上,把△ABC沿BC方向平移BC的一半得到△A′B′C′(如图①);继续以上的平移得到图②,再继续以上的平移得到图③,…;请问在第100个图形中等边三角形的个数是400.解:如图①∵△ABC是等边三角形,∴AB=BC=AC,∵A′B′∥AB,BB′=B′C=BC,∴B′O=AB,CO=AC,∴△B′OC是等边三角形,同理阴影的三角形都是等边三角形.又观察图可得,第1个图形中大等边三角形有2个,小等边三角形有2个,第2个图形中大等边三角形有4个,小等边三角形有4个,第3个图形中大等边三角形有6个,小等边三角形有6个,…依次可得第n个图形中大等边三角形有2n个,小等边三角形有2n个.故第100个图形中等边三角形的个数是:2×100+2×100=400.三.解答题(共8小题)19.运用乘法公式计算:(1)1997×2003;(2)(﹣3a+2b)(3a+2b);(3)(2b﹣3a)(﹣3a﹣2b).解:(1)原式=(2000﹣3)×(2000+3)=20002﹣32=4000000﹣9=3999991;(2)原式=(2b)2﹣(3a)2=4b2﹣9a2;(3)原式=(﹣3a)2﹣(2b)2=9a2﹣4b2.20.分解因式:(1);(2)a3﹣3a2﹣10a.解:(1)x2y﹣8y,=y(x2﹣16),=y(x+4)(x﹣4);(2)a3﹣3a2﹣10a,=a(a2﹣3a﹣10),=a(a+2)(a﹣5).21.如下图所示,△ABO的三个顶点的坐标分别为O(0,0),A(5,0),B(2,4).(1)求△OAB的面积;(2)若O,A两点的位置不变,P点在什么位置时,△OAP的面积是△OAB面积的2倍;(3)若B(2,4),O(0,0)不变,M点在x轴上,M点在什么位置时,△OBM的面积是△OAB面积的2倍.解:(1)∵O(0,0),A(5,0),B(2,4),∴S△OAB =×5×4=10;(2)若△OAP的面积是△OAB面积的2倍,O,A两点的位置不变,则△OAP的高应是△OAB高的2倍,即△OAP的面积=△OAB面积×2=×5×(4×2),∴P点的纵坐标为8或﹣8,横坐标为任意实数;(3)若△OBM的面积是△OAB面积的2倍,且B(2,4),O(0,0)不变,则△OBM的底长是△OAB底长的2倍,即△OBM的面积=△OAB的面积×2=×(5×2)×4,∴M点的坐标是(10,0)或(﹣10,0).22.(2008•西城区一模)已知:如图,△ABC是等腰直角三角形,D为AB边上的一点,∠ACB=∠DCE=90°,DC=EC.求证:∠B=∠EAC.证明:∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=CB.∵∠ACB=∠DCE=90°,∴∠ACE=90°﹣∠ACD=∠DCB.在△ACE和△BCD中,,∴△ACE≌△BCD(SAS).∴∠B=∠EAC(全等三角形的对应角相等)23.已知AB∥CD,BC平分∠ACD.求证:AC=AB.证明:∵AB∥CD,∴∠ABC=∠DCB,∵BC平分∠ACD,∴∠ACB=∠DCB,∴∠ABC=∠ACB,∴AC=AB.24.已知:a=2002x+2003,b=2002x+2004,c=2002x+2005,求多项式a2+b2+c2﹣ab﹣bc﹣ac的值.提示:(先求出b﹣a,c﹣a,c﹣b的值,再把所给式子整理为含(a﹣b)2,(b﹣c)2,(a﹣c)2的形式代入即可求出)解:∵a=2002x+2003,b=2002x+2004,c=2002x+2005,∴a﹣b=﹣1,b﹣c=﹣1,a﹣c=﹣2,∴a2+b2+c2﹣ab﹣bc﹣ca =(2a2+2b2+2c2﹣2ab﹣2bc﹣2ca)=[(a2﹣2ab+b2)+(b2﹣2bc+c2)+(a2﹣2ac+c2)]=[(a﹣b)2+(b﹣c)2+(a﹣c)2],=×(1+1+4),=3.25.(2012•珠海)如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点F,判断△ADF的形状.(只写结果)1)如图所示:(2)△ADF的形状是等腰直角三角形,理由是:∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,∵AF平分∠EAC,∴∠EAF=∠FAC,∵∠FAD=∠FAC+∠DAC=∠EAC+∠BAC=×180°=90°,即△ADF是直角三角形,∵AB=AC,∴∠B=∠ACB,∵∠EAC=2∠EAF=∠B+∠ACB,∴∠EAF=∠B,∴AF∥BC,∴∠AFD=∠FDC,∵DF平分∠ADC,∴∠ADF=∠FDC=∠AFD,∴AD=AF,即直角三角形ADF是等腰直角三角形.26.(2014•海淀区一模)在△ABC中,AB=AC,将线段AC绕着点C逆时针旋转得到线段CD,旋转角为α,且0°<α<180°,连接AD、BD.(1)如图1,当∠BAC=100°,α=60°时,∠CBD 的大小为300;(2)如图2,当∠BAC=100°,α=20°时,求∠CBD的大小;(3)已知∠BAC的大小为m(60°<m<120°),若∠CBD的大小与(2)中的结果相同,请直接写出α的大小.解:(1)30°(2)如图作等边△AFC,连结DF、BF.∴AF=FC=AC,∠FAC=∠AFC=60°.∵∠BAC=100°,AB=AC,∴∠ABC=∠BCA=40°.∵∠ACD=20°,∴∠DCB=20°.∴∠DCB=∠FCB=20°.①∵AC=CD,AC=FC,∴DC=FC.②∵BC=BC,③∴由①②③,得△DCB≌△FCB,∴DB=BF,∠DBC=∠FBC.∵∠BAC=100°,∠FAC=60°,∴∠BAF=40°.∵∠ACD=20°,AC=CD,∴∠CAD=80°.∴∠DAF=20°.∴∠BAD=∠FAD=20°.④∵AB=AC,AC=AF,∴AB=AF.⑤∵AD=AD,⑥∴由④⑤⑥,得△DAB≌△DAF.∴FD=BD.∴FD=BD=FB.∴∠DBF=60°.∴∠CBD=30°.(3)由(1)知道,若∠BAC=100°,α=60°时,则∠CBD=30°;①由(1)可知,设∠α=60°时可得∠BAD=m﹣60°,∠ABC=∠ACB=90°﹣,∠ABD=90°﹣∠BAD=120°﹣,∠CBD=∠ABD﹣∠ABC=30°.②由(2)可知,翻折△BDC到△BD1C,则此时∠CBD1=30°,∠BCD=60°﹣∠ACB=﹣30°,∠α=∠ACB﹣∠BCD1=∠ACB﹣∠BCD=90°﹣﹣(﹣30°)=120°﹣m,③以C为圆心CD为半径画圆弧交BF延长线于D2,连接CD2,∠CDD2=∠CBD+∠BCD=30°+﹣30°=,∠DCD2=180°﹣2∠CDD2=180°﹣m∠α=60°+∠DCD2=240°﹣m.综上所述,α为60°或120°﹣m或240°﹣m时∠CBD=30°.。

2009年遵义市中考数学综合练习(一)

2009年遵义市中考数学综合练习(一)

遵义市2009年初中毕业生学业(升学)综合练习题数学(一)试题卷(本试卷总分150分,考试时间120分钟)注意事项:1. 答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。

2. 答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦擦干净后,再选涂其它答案标号。

3. 答非选择题时,必须使用0.5毫米黑色签字笔将答案书写在答题卡规定的位置上。

4. 所有题目必须在答题卡上作答,在试卷上答题无效。

5. 考试结束后,将试卷和答题卡一并交回。

一、选择题(本题共8小题,每小题4分,共32分。

在每小题给出的四个答案中,只有一项是符合题目要求的,请用2B 铅笔把答题卡上对应题目的答案标号涂黑、涂满。

) 1. 下列各式正确的是( )A .|3|3--=B . 326-=-C . (3)3--=D . 0(2)0π-= 2.如图,几何体的俯视图是( )DC B A第2题图3. 如图,在平行四边形ABCD 中,对角线AC 和BD 相交于点O ,则正面条件能判定平行四边形ABCD 为矩形的是( )A .AC =BDB .AC ⊥BD C .AC =BD 且AC ⊥BD D .AB =CD 4.如图,数轴上A 、B 两点表示的数分别为1B 关于点A 的对称点为点C ,则点C 所表示的数是( )AB .CD.第3题图DCBA第6题图Ax第7题图第8题图5. 2008年5月5日,奥运火炬手携带着象征“和平、友谊、进步”的奥运圣火火种,离开海拔5200米的“珠峰大本营”,向山顶攀登,他们在海拔每上升100米,气温就下降0.6℃的低温和缺氧的情况下,于5月8日9时17分,成功登上海拔8844.43米的地球最高点。

而此时“珠峰大本营”第4题图的温度为-4℃,峰顶的温度为(结果保留整数)( ) A .22℃ B .-18℃ C .-22℃ D .-26℃6. 如图,圆内接四边形ABCD 是由四个全等的等腰梯形组成,AD 是⊙O 的直径,则∠BEC 的度数为( )A .15°B .30°C .45°D . 60°7. 二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列说法不正确的是( )A .240b ac ->B .0a >C .0c >D . 02ba-< 8. “六·一”儿童节,6位小朋友均匀地围坐在圆桌旁做游戏,圆桌半径为60cm ,每人离圆桌的距离均为10cm ,现又来了两位小朋友,每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8人之间的距离与原来6人之间的距离(即在圆周上两人之间的圆弧的长)相等。

中考数学复习《多边形》专题练习(含答案)(1)

中考数学复习《多边形》专题练习(含答案)(1)

中考数学复习《多边形》专题练习(含答案)(1)中考数学专题练习多边形一、选择题1.(·云南)一个五边形的内角和为( )A. 540oB. 450oC. 360oD. 180o2. (2018·南通)若一个凸多边形的内角和为720o,则这个多边形的边数为( )A. 4B. 5C. 6D. 73. (2018·呼和浩特)已知一个多边形的内角和为1 080o,则这个多边形是( )A.九边形B.八边形C.七边形D.六边形4. ( 2018·台州)正十边形的每一个内角的度数为( )A. 120oB. 135oC. 140oD. 144o5. (2018·曲靖)若一个正多边形的内角和为720o,则这个正多边形的每一个内角是( )A. 60oB. 90oC. 108oD. 120o6. ( 2018·宁波)已知正多边形的一个外角等于40o,那么这个正多边形的边数为( )A. 6B. 7C. 8D.97. (2018·北京)若正多边形的一个外角是60o,则该正多边形的内角和为( )A. 360oB. 540oC. 720oD. 900o8. (2018·宿迁)如果一个多边形的内角和是外角和的3倍,那么这个多边形的边数是( )A. 8B. 9C. 10D. 119. (2018·济宁)如图,在五边形ABCDE 中,300A B E ∠+∠+∠=?,,DP CP 分别平分EDC ∠,BCD ∠,则P ∠的度数是( )A. 50oB. 55oC. 60oD. 65o10. (2018·双鸭山)如图,在四边形ABCD 中,AB AD =,5AC =,90DAB DCB ∠=∠=?,则四边形ABCD 的面积为( )A. 15B. 12.5C. 14.5D. 17二、填空题11. (2018·福建)一个n 边形的内角和为360o,则n 的值为 .12. (2018·广安)一个n 边形的每一个内角等于108o,那么n 的值为 .13. (2018·菏泽)若正多边形的每一个内角为135o,则这个正多边形的边数是 .14. (2018·上海)通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是 .15. (2018·江汉油田)若一个多边形的每个外角都等于30o,则这个多边形的边数为 .16. (2018·怀化)一个多边形的每一个外角都是36o,则这个多边形的边数是 .17. (2018·山西)图①是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消融,形状无一定规则,代表一种自然和谐美.图②是从图①冰裂纹窗格图案中提取的由五条线段组成的图形,则12345∠+∠+∠+∠+∠= .18. (2018·邵阳)如图,在四边形ABCD 中,AD AB ⊥,110C ∠=?,它的一个外角60ADE ∠=?,则B ∠的大小是 .19. (2018·陕西)如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则AFE ∠的度数为 .20. (2018·抚顺)将两张三角形纸片如图摆放,量得1234220∠+∠+∠+∠=?,则5∠的度数为 .21. (2018·南京)如图,五边形ABCDE 是正五边形.若12//l l ,,则12∠-∠= .22. (2018·贵阳)如图,,M N 分别是正五边形ABCDE 的两边,AB BC 上的点.若AM BN =,点O 是正五边形的中心,则MON ∠的度数是 .23. (2018·株洲)如图,正五边形ABCDE 和正三角形AMN 都是⊙O 的内接多边形,则BOM ∠的度数为 .24. (2018·宜宾)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积.设⊙O 的半径为1,若用⊙O 的外切正六边形的面积S 来近似估计⊙O 的面积,则S = . (结果保留根号) 25. (2018·呼和浩特)同一个圆的内接正方形和正三角形的边心距的比为 .26.(导学号78816049)(2018·聊城)如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是 .三、解答题27. (2018·河北)如图①,作BPC ∠的平分线的反向延长线PA ,现要分别以APB ∠,APC ∠,BPC ∠为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以BPC ∠为内角,可作出一个边长为1的正方形,此时90BPC ∠=?,而90452?=?是360o(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图②所示.(1)图②中的图案外轮廓周长是 ;(2)在所有符合要求的图案中选一个外轮廓周长最大的定为会标,求该会标的外轮廓周长.参考答案一、1. A 2. C 3. B 4. D 5. D 6. D 7. C 8. A 9. C10. B二、填空题11. 412. 513. 814. 540?15. 1216. 1017. 360?18. 40?19. 72?20. 40?21. 72?22. 72?23. 48?24. 25.26. 540?或360?或180?三、27. (1) 14(2) 会标的外轮廓周长为21。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.如图,Rt△ABC中,∠ACB=900,AC=BC,E为△ABC形外一点,CE⊥AE于E,交AB于H,过B作AE的垂线交AE延长线于D,连CD交AB于F,G为AB中点,连EG (1)求证:CB2=CF·CD

(2)求证:DE-AE=2EG (3)若AH=3,HF=5,求CF的长度

2、如图E为正方形ABCD的边BC上任一点,将△ABE逆时针旋转900到△ADF的位置。延长ED与AF的延长线交于G

(1)当E为BC中点时,求DEDG的值 (2)当DG=DA时,作∠GDC的平分线反向延长交AF于N,连BN。 求证:BN-DN=2AN

3、 矩形ABCD中,∠BCD的平分线分别交AD、BA的延长线于E、F两点,过E点作BE的垂线交CD于点G。 (1)求证:BE=EG;

(2)如图2,连接AC,若AC∥EG,求AB

BC

值; (3)若AB=2,BC=3,请直接写出CG的长。

4、在Rt△ABC中,∠ACB=90°,tan∠BAC=12.点D在边AC上(不与A,C重合),连接BD,F为BD中点. (1)若过点D作DE⊥AB于E,连接CF、EF、CE,如图1. 设CF=kEF,则k= 1 ; (2)若将图1中的△ADE绕点A旋转,使得D、E、B三点共线,点F仍为BD中点,如图2所示.求证:BE-DE=2CF;

HGF

ED

CB

A

E图1G

F

A

BC

DE图2G

F

A

BC

D5、如图②,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点M处,点C落在点N处,MN与CD交于点P,连接EP. ⑴如图①,若M为AD边的中点. ①△AEM的周长=__________cm; ②求证:EP=AE+DP; ⑵随着落点M在AD边上取遍所有的位置(点M不与A、D重合),△PDM的周长是否发生变化?请说明理由

6、在等腰Rt△ABC中,AB=BC点E在BC上,以AE为边作正方形AEMN,EM交AB于F,连结BM. (1)求证:BM⊥AB

(2)若CE=2BE,求EFAE的值.

7、已知:如图所示的一张矩形纸片ABCD(ADAB),将纸片折叠一次,使点A与C重合,再展开,折痕EF交AD边于E,交BC边于F,分别连结AF和CE.

(1)若10cmAE,△ABF的面积为224cm,求△ABF的周长; (2)在线段AC上是否存在一点P,使得APACAE22?若存在,请说明点P的位置,并予以证明;若不存在,请说明理由.

8、.如图(1),在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E在AC上,BE交CD于点G,EF⊥BE交AB于点F.若AC=mBC,CE=nEA(m,n为实数). 试探究线段EF与EG的数量关系. (1)如图(2),当m=1,n=1时,EF与EG的数量关系是____________; 证明: (2)如图(3),当m=1,n为任意实数时,EF与EG的数量关系是____________; 证明: (3)如图(1),当m,n为任意实数时,EF与EG的数量关系是____________.(写出关系式,不必证明)

C A E F B M N

C A E F B M N

G

A E D

C F B

图(1) C A B F D G E

图(2)

C

A B F D G E

图(3)

C

A B F D G E 9、.在△ABC中,AD平分∠BAC交BC于D. (1)如图1,求证:ABBDACDC(4分) (2)如图2,若M为BC中点,CE⊥AD于F,交AD于F,交AM于G,试判断DG与AC的位置关系并说明理由.(6分)

10、在梯形ABCD中,AB∥CD,90BCD,且AB=1,BC=2,tan2ADC.对角线AC和BD相交于点O,等腰直角三角板的直角顶点落在梯形的顶点C上,使三角板绕点C旋转。 (1)如图1,当三角板旋转到点E落在BC边上时,线段DE与BF的位置关系是 ,数量关系是 ; (2)继续旋转三角板,旋转角为.请你在图2中画出图形,并判断(1)中结论还成立吗?如果成立请加以证明;如果不成立,请说明理由; (3)如图3,当三角板的一边CF与梯形对角线AC重合时,EF与

CD相交于点P,若OF=65,求PE的长。

11、 ﹙本题满分10分﹚如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,三角扳的一边交CD于点F.另一边交CB的延长线于点G. (1)求证:EF=EG; (2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由: (3)如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,

其他条件不变,若AB=a、BC=b,求22EGEF的值.

FGEMADBCCBD

A

第24题

C P F O D E

B A

图2 C D O B A

图1

C D O E F

B A 12,正方形ABCD中,,∠EAF=45°,AE、AF交BD于M、N两点,连EN. (1)如图1,若EF∥MN,则∠ANE= , 。

(2)如图2,转动∠EAF ,(1)中的结论是否仍然成立?请证明。 (3)若AB=4BE,则tan∠MCF= .

图1 图2 13、.点P为等腰Rt△ABC中直角边CB延长线上一点,BP=nCB,以PA为直角边作等腰Rt△PAD,连接DB,交AP与点E。 (1)如图①,求证:DB⊥AB; (2)当n=2时,求DE:BE的值; (3)当n=3时,直接写出tan∠PAB的值,tan∠PAB= 0.6 。

14、已知,Rt△ABC中,∠C=90°,以AC、AB为斜边在△ABC外作等腰直角△ABE和等腰直角△ACD,F是AB的中点,连DF并延长交BE于点G。 1)求证:DF⊥AC;

2)若AC=2BC,求EGGB的值; 3)连DE交AB于点M,当∠BAC=30°时,直接写出EMDM= 。

15.△ABC中,CD是边AB上的高,且ADCDCDBD. (1) 如图1,求∠C的度数; (2) 如图2,P为AB上一点,过P作PE⊥AC,PE⊥BC垂

足分别为E、F,连EF、DF,当∠B=300时,求EFDF的值.

EFMN=

NMF

E

D

CB

ANMF

E

D

CB

A

FEPAB

C

D如图216、(1)如图1,AB∥CD,AD与BC交于点P,过P点的直线与AB、CD分别交于E,F.求证:CFDFBEAE (2)如图2,在图1中,连接CA、DB并延长相交于O,连接OP并延长交CD于M,求证:点M为CD的中点; (3)如图3,在图2中,若点G从D点向左移动(不与C点重合),AG与BC交于点P,连OP并延长交CD于M,直接写出MC、MG、MD之间的关系式。

17、如图在∆ABC中点D、E、F分别在边AB、BC、AC上,四边形DBEF是菱形,AB=nBD,连AE交DF于M,连CD交EF于N。 (1)若n=2,在图1中找出所有与DM相等的线段。并选择一个予以证明。 (2)如图2,当n≠2时,在图中找出与DM相等的线段,并证明你的结论。

(3)如图3,AF与CD交于点O,当n=__时,S∆ABE=S四边形BDNE

18.(本题10分))如图,在等腰Rt△ABC中,AC=BC,∠ACB=90°,点E在线段AB上,CF⊥CE,CE=CF,EF交AC于G,连接AF. (1)填空:线段BE、AF的数量关系为_____________,位置关系为_____________;

(2)若当AEBE=21时,求证:FGEG=2;

(3)当AEBE= 时,GFEG=2. (直接填出结果,不要求写过程).

19、如图,边长为12正方形ABCD中,M为BC上的点,P为CD上的点, (1)如图①,若P为DC中点,且∠MAD=∠AMP,则tan∠BAM= ; (2)如图②,若AP延长线交BC延长线于Q,且∠MAP=45°,MP=10,求S△APD+S△PCQ; (3)如图③,若AP延长线交BC延长线于Q,且AP=PC+CQ,求PA的长.

FABE

G

C24题图

A B

C D

E P

F 图1

A B

C D

O P M 图2

A B

C D

O

P M 图3 G

相关文档
最新文档