陈世民理论力学简明教程(第二版)课后答案
大学_理论力学第2版(唐国兴王永廉主编)课后答案_1

理论力学第2版(唐国兴王永廉主编)课后答案理论力学第2版内容简介第2版前言第1版前言第一章静力学基础知识要点解题方法难题解析习题解答第二章平面汇交力系知识要点解题方法难题解析习题解答第三章力矩、力偶与平面力偶系知识要点解题方法习题解答第四章平面任意力系知识要点解题方法难题解析习题解答第五章空间力系知识要点解题方法习题解答第六章静力学专题知识要点解题方法习题解答第七章点的运动学知识要点解题方法难题解析习题解答第八章刚体的基本运动知识要点解题方法习题解答第九章点的合成运动知识要点解题方法难题解析习题解答第十章刚体的平面运动知识要点解题方法难题解析习题解答第十一章质点动力学基本方程知识要点解题方法难题解析第十二章动量定理知识要点解题方法难题解析习题解答第十三章动量矩定理知识要点解题方法难题解析习题解答第十四章动能定理知识要点解题方法难题解析习题解答第十五章动静法知识要点解题方法习题解答参考文献理论力学第2版目录机械工业出版社本书是与唐国兴、王永廉主编的《理论力学》(第2版)配套的教学与学习指导书。
本书按主教材的章节顺序编写,每章分为知识要点、解题方法、难题解析与习题解答四个部分。
其中,“知识要点”部分提纲挈领地对该章的基本概念、基本理论和基本公式进行归纳总结,以方便读者复习、记忆和查询;“解题方法”部分深入细致地介绍解题思路、解题方法和解题技巧,以提高读者分析问题和解决问题的能力;“难题解析”部分精选若干在主教材的例题与习题中没有涉及的典型难题进行深入分析,以拓展读者视野,满足读者深入学习的需要;“习题解答”部分对主教材中该章的全部习题均给出求解思路和答案,但不提供详细解题过程,以期在帮助读者自主学习和练习的同时为他们留出适量的思考空间。
本书继承了主教材的风格特点,结构严谨、层次分明、语言精练、通俗易懂。
本书虽与主教材配套,但其结构体系完整,亦可单独使用。
本书可作为应用型本科院校与民办二级学院工科各专业学生的.学习和应试指导书,同样适合高职高专、自学自考和成人教育的学生使用,对考研者、教师和工程技术人员也是一本很好的参考书。
简明材料力学第二版课后答案

简明材料力学第二版课后答案1. 第一章。
1.1 选择题。
1. A。
2. B。
3. C。
4. D。
5. A。
1.2 填空题。
1. 应力。
2. 变形。
3. 弹性模量。
4. 泊松比。
5. 线弹性。
1.3 简答题。
1. 什么是应力?应力是单位面积上的内力。
2. 什么是应变?应变是材料单位长度上的变形量。
3. 弹性模量的意义是什么?弹性模量是材料在弹性阶段的应力和应变之比,代表了材料的刚度。
4. 什么是泊松比?泊松比是材料在拉伸时横向收缩的比例。
5. 什么是线弹性?线弹性是指材料在应力小于屈服强度时,应力和应变成正比。
2. 第二章。
2.1 选择题。
1. C。
2. A。
3. D。
4. B。
5. C。
2.2 填空题。
1. 弹性极限。
2. 屈服强度。
3. 断裂强度。
4. 韧性。
5. 脆性。
2.3 简答题。
1. 什么是弹性极限?弹性极限是材料在拉伸时,超过该极限会发生塑性变形。
2. 什么是屈服强度?屈服强度是材料在拉伸时开始发生塑性变形的应力值。
3. 断裂强度和韧性有何区别?断裂强度是材料在拉伸时发生断裂的最大应力值,而韧性是材料吸收能量的能力。
4. 什么是脆性?脆性是指材料在受力时发生突然断裂的性质。
3. 第三章。
3.1 计算题。
1. 根据公式σ=F/A,计算出应力值。
2. 利用杨氏模量公式计算材料的弹性模量。
3. 根据泊松比公式计算材料的泊松比值。
3.2 简答题。
1. 什么是拉伸?拉伸是指材料在受力时发生长度增加的现象。
2. 什么是压缩?压缩是指材料在受力时发生长度减小的现象。
3. 什么是剪切?剪切是指材料在受力时发生形状变化但体积不变的现象。
4. 第四章。
4.1 计算题。
1. 根据应变-位移曲线计算出材料的弹性模量。
2. 根据拉伸试验数据计算出材料的屈服强度。
3. 利用断裂强度公式计算出材料的断裂强度值。
4.2 简答题。
1. 什么是应力-应变曲线?应力-应变曲线是材料在受力时应力和应变之间的关系曲线。
2. 什么是屈服点?屈服点是应力-应变曲线上的一个特殊点,表示材料开始发生塑性变形的位置。
弹性力学简明教程_第四章_课后作业题答案

第四章 平面问题的极坐标解答【4-8】 实心圆盘在r ρ=的周界上受有均布压力q 的作用,试导出其解答。
【解答】实心圆盘是轴对称的,可引用轴对称应力解答,教材中的式(4-11),即22(12ln )2(32ln )20AB CAB C ρϕρϕσρρσρρτ⎫=+++⎪⎪⎪⎪=-+++⎬⎪⎪⎪=⎪⎭(a)首先,在圆盘的周界(r ρ=)上,有边界条件()=r q ρρσ=-,由此得-q 2(12ln )2AB C ρσρρ=+++=(b)其次,在圆盘的圆心,当0ρ→时,式(a )中ρσ,ϕσ的第一、第二项均趋于无限大,这是不可能的。
按照有限值条件(即,除了应力集中点以外,弹性体上的应力应为有限值。
),当=0ρ时,必须有0A B ==。
把上述条件代入式(b )中,得/2C q =-。
所以,得应力的解答为-q 0ρϕρϕσστ===。
【4-9】 半平面体表面受有均布水平力q ,试用应力函数2(sin 2)ΦρB φC φ=+求解应力分量(图4-15)。
【解答】(1)相容条件:将应力函数Φ代入相容方程40∇Φ=,显然满足。
(2)由Φ求应力分量表达式=-2sin 222sin 222cos 2B C B C B Cρϕρϕσϕϕσϕϕτϕ⎧+⎪⎪=+⎨⎪=--⎪⎩(3)考察边界条件:注意本题有两个ϕ面,即2πϕ=±,分别为ϕ±面。
在ϕ±面上,应力符号以正面正向、负面负向为正。
因此,有2()0,ϕϕπσ=±= 得0C =; -q 2(),ρϕϕπτ=±= 得2qB =-。
将各系数代入应力分量表达式,得sin 2sin 2cos 2q q q ρϕρϕσϕσϕτϕ⎧=⎪⎪=-⎨⎪=⎪⎩ 【4-14】 设有内半径为r 而外半径为R 的圆筒受内压力q ,试求内半径和外半径的改变量,并求圆筒厚度的改变量。
【解答】本题为轴对称问题,只有径向位移而无环向位移。
当圆筒只受内压力q 的情况下,取应力分量表达式,教材中式(4-11),注意到B =0。
理论力学习题及答案(全)

第一章静力学基础一、是非题1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。
()2.在理论力学中只研究力的外效应。
()3.两端用光滑铰链连接的构件是二力构件。
()4.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。
()5.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。
()6.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。
()7.平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。
()8.约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。
()二、选择题1.若作用在A点的两个大小不等的力F1和F2,沿同一直线但方向相反。
则其合力可以表示为。
①F1-F2;②F2-F1;③F1+F2;2.作用在一个刚体上的两个力F A、F B,满足F A=-F B的条件,则该二力可能是。
①作用力和反作用力或一对平衡的力;②一对平衡的力或一个力偶。
③一对平衡的力或一个力和一个力偶;④作用力和反作用力或一个力偶。
3.三力平衡定理是。
①共面不平行的三个力互相平衡必汇交于一点;②共面三力若平衡,必汇交于一点;③三力汇交于一点,则这三个力必互相平衡。
4.已知F1、F2、F3、F4为作用于刚体上的平面共点力系,其力矢关系如图所示为平行四边形,由此。
①力系可合成为一个力偶;②力系可合成为一个力;③力系简化为一个力和一个力偶;④力系的合力为零,力系平衡。
5.在下述原理、法则、定理中,只适用于刚体的有。
①二力平衡原理;②力的平行四边形法则;③加减平衡力系原理;④力的可传性原理;⑤作用与反作用定理。
三、填空题1.二力平衡和作用反作用定律中的两个力,都是等值、反向、共线的,所不同的是。
2.已知力F沿直线AB作用,其中一个分力的作用与AB成30°角,若欲使另一个分力的大小在所有分力中为最小,则此二分力间的夹角为度。
《工程力学(第2版)》课后习题及答案—理论力学篇

第一篇理论力学篇模块一刚体任务一刚体的受力分析(P11)一、简答题1.力的三要素是什么?两个力使刚体平衡的条件是什么?答:力的三要素,即力的大小、力的方向和力的作用点。
两个力使刚体处于平衡状态的必要和充分条件:两个力的大小相等,方向相反,作用在同一直线上。
2.二力平衡公理和作用与反作用公理都涉及二力等值、反向、共线,二者有什么区别?答:平衡力是作用在同一物体上,而作用力与反作用力是分别作用在两个不同的物体上。
3.为什么说二力平衡公理、加减平衡力系公理和力的可传性都只适用于刚体?答:因为非刚体在力的作用下会产生变形,改变力的传递方向。
例如,软绳受两个等值反向的拉力作用可以平衡,而受两个等值反向的压力作用就不能平衡。
4.什么是二力构件?分析二力构件受力时与构件的形状有无关系。
答:工程上将只受到两个力作用处于平衡状态的构件称为二力构件。
二力构件受力时与构件的形状没有关系,只与两力作用点有关,且必定沿两力作用点连线,等值,反向。
5.确定约束力方向的原则是什么?活动铰链支座约束有什么特点?答:约束力的方向与该约束阻碍的运动方向相反。
在不计摩擦的情况下,活动铰链支座只能限制构件沿支承面垂直方向的移动。
因此活动铰链支座的约束力方向必垂直于支承面,且通过铰链中心。
6.说明下列式子与文字的意义和区别:(1)12=F F ,(2)12F F =, (3)力1F 等效于力2F 。
答:若12=F F ,则一般只说明两个力大小相等,方向相反。
若12F F =,则一般只说明两个力大小相等,方向是否相同,难以判断。
若力1F 等效于力2F ,则两个力大小相等,方向和作用效果均相同。
7.如图1-20所示,已知作用于物体上的两个力F1与F2,满足大小相等、方向相反、作用线相同的条件,物体是否平衡?答:不平衡,平衡是指物体相对于惯性参考系保持静止或匀速直线运动的状态,而图中AC 杆与CB 杆会运动,两杆夹角会在力的作用下变大。
二、分析计算题1.试画出图1-21各图中物体A 或构件AB 的受力图(未画重力的物体重量不计,所有接触均为光滑接触)。
电工学简明教程第二版习题答案(第十一章)

I1=5mA I2=0.5mA I3=0.1mA I4=50A I5=10A
于是Rf1=U0/-Ix
故RF1=5V/5mA=1k
RF2=5V/0.5mA-KF1=9k
RF4=5V/0.1mA-RF1-RF2=50k
RF3=5V/50*10-6mA-RF1-RF2-RF3=40k
RF5=5V/10*10-6mA-RF1-RF2-RF3-RF4=400K
Uox=-Rf/RixU; (x=1.2.3.4.5)
即:R1x=-Ui/UoxRf
每个量程上输入最大时,输出均为5V。
故R11=50/5*1M=10M
R12=10/5*1M=2M
R13=5/5*1M=1M
R14=1/5*1M=200K
R15=0.5/5*1M=100K
11.3.18
解:输出电压U=-i*RF
即有
R1=100k,Cf=1uF或者R1=10k,Cf=10uF
11.3.13
解:由“虚断”可知
U-=U+=R3/(R2+R3)Ui2
由“虚短”可知
(Ui1—U-)/R1=(U—Uo1)/Rf
所以Байду номын сангаас
Uo1=-Rf/R1*Ui1+R3/(R2+R3)*(1+Rf/R1)Ui2
=-20/10x1.1+20/(10+20)x(1+20/10)x1
R2=R1//Rf=10*500/(10+500)=9.8KΩ
当Ui=10mV时,输出电压Uo=Auf*Ui=-50*10=-500mV
1.3.6
解:UO1=-(Rf/R1)*Ui
UO2=-(R/R)*UO1=-(-R/R)*((Rf/R1)*Ui)=Rf/R1*Ui
数值分析简明教程课后习题答案(第二版)

0.1算法1、 (p.11,题1)用二分法求方程013=--x x 在[1,2]内的近似根,要求误差不超过10-3.【解】 由二分法的误差估计式311*10212||-++=≤=-≤-εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10ln 3≈-≥k ,因此取9=k ,即至少需2、(p.11,题2) 证明方程210)(-+=x e x f x在区间[0,1]内有唯一个实根;使用二分法求这一实根,要求误差不超过21021-⨯。
【解】 由于210)(-+=x e x f x,则)(x f 在区间[0,1]上连续,且012010)0(0<-=-⨯+=e f ,082110)1(1>+=-⨯+=e e f ,即0)1()0(<⋅f f ,由连续函数的介值定理知,)(x f 在区间[0,1]上至少有一个零点.又010)('>+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯一实根.由二分法的误差估计式211*1021212||-++⨯=≤=-≤-εk k k a b x x ,得到1002≥k .两端取自然对数得6438.63219.322ln 10ln 2=⨯≈≥k ,因此取7=k ,即至少需二分0.2误差1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71,718.23=x 各有几位有效数字?并给出它们的相对误差限。
【解】有效数字:因为11102105.001828.0||-⨯=<=- x e ,所以7.21=x 有两位有效数字; 因为12102105.000828.0||-⨯=<=- x e ,所以71.22=x 亦有两位有效数字;因为3310210005.000028.0||-⨯=<=- x e ,所以718.23=x 有四位有效数字;%85.17.205.0||111=<-=x x e r ε; %85.171.205.0||222=<-=x x e r ε; %0184.0718.20005.0||333=<-=x x e r ε。
完整word版理论力学课后习题及答案解析

理论力学教科书课后习题及解析第一章偶,大小是260Nm,转向是逆时针。
.求图示平面力系的合成结果,长度单位为m1习题4-习题4-3.求下列各图中平行分布力的合力和对于A点之矩。
A点的矩是:(1) 解:平行力系对O(1) 解:取点为简化中心,求平面力系的主矢:B取点为简化中心,平行力系的主矢是:求平面力系对点的主矩:O 点的主矩是:B 平行力系对B RB向点简化的结果是一个力,且:M和一个力偶合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力(2) B.理论力学教科书课后习题及解析A,且:M向A点简化的结果是一个力如图所示;R和一个力偶A如图所示;将,使满足:d R向下平移一段距离B的大小等于载荷分布的其几何意义是:。
R最后简化为一个力R,大小等于R B,使满足:d R将向右平移一段距离A矩形面积,作用点通过矩形的形心。
A(2) 取点为简化中心,平行力系的主矢是:的大小等于载荷分布的R。
其几何意义是:RR最后简化为一个力,大小等于A三角形面积,作用点通过三角形的形心。
点的主矩是:A平行力系对.理论力学教科书课后习题及解析列平衡方程:。
.求下列各梁和刚架的支座反力,长度单位为习题4-4m解方程组:反力的实际方向如图示。
校核:解:(1) 研究AB杆,受力分析,画受力图:结果正确。
(2) 研究AB杆,受力分析,将线性分布的载荷简化成一个集中力,画受力图:理论力学教科书课后习题及解析(3) 研究ABC,受力分析,将均布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:列平衡方程:反力的实际方向如图示。
校核:解方程组:结果正确。
.理论力学教科书课后习题及解析反力的实际方向如图示。
校核:结果正确。
的约束反力A.重物悬挂如图,已知习题4-5G=1.8kN,其他重量不计;求铰链和杆BC所受的力。
列平衡方程:解方程组:BC是二力杆),画受力图:研究整体,受力分析((1) 解:反力的实际方向如图示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第零章 数学准备一 泰勒展开式1 二项式得展开()()()()()m 23m m-1m m-1m-2f x 1x 1mx+x x 23=+=+++K !!2 一般函数得展开()()()()()()()()230000000f x f x f xf x f x x-x x-x x-x 123!''''''=++++K !!特别:00x =时,()()()()()23f 0f 0f 0f x f 0123!x x x ''''''=++++K!!3 二元函数得展开(x=y=0处)()()00f f f x y f 0x+y x y ⎛⎫∂∂=++ ⎪∂∂⎝⎭,22222000221f f f x 2xy+y 2x x y y ⎛⎫∂∂∂++ ⎪ ⎪∂∂∂∂⎝⎭K !评注:以上方法多用于近似处理与平衡态处得非线性问题向线性问题得转化。
在理论力问题得简单处理中,一般只需近似到三阶以内。
二 常微分方程1 一阶非齐次常微分方程: ()()x x y+P y=Q通解:()()()P x dx P x dx y e c Q x e dx -⎛⎫⎰⎰=+ ⎪⎝⎭⎰ 注:()()(),P x dxP x dx Q x e dx ⎰±⎰⎰积分时不带任意常数,()x Q 可为常数。
2 一个特殊二阶微分方程2y A y B =-+&& 通解:()02By=Kcos Ax+Aθ+注:0,K θ为由初始条件决定得常量 3 二阶非齐次常微分方程()x y ay by f ++=&&&通解:*y y y =+;y 为对应齐次方程得特解,*y 为非齐次方程得一个特解。
非齐次方程得一个特解 (1) 对应齐次方程0y ay by ++=&&&设x y e λ=得特征方程2a b 0λλ++=。
解出特解为1λ,2λ。
*若12R λλ≠∈则1x 1y e λ=,2x 2y e λ=;12x x 12y c e c e λλ=+*若12R λλ=∈则1x 1y e λ=,1x 2y xe λ=; 1x 12y e (c xc )λ=+*若12i λαβ=±则%x 1y e cos x αβ=,%x 2y esin x αβ=;x 12y e (c cos x c sin x)αββ=+(2) 若()2000x f a x b x c =++为二次多项式*b 0≠时,可设*2y Ax Bx C =++ *b 0≠时,可设*32y Ax Bx Cx D =+++注:以上1c ,2c ,A,B,C,D 均为常数,由初始条件决定。
三 矢量1 矢量得标积x x y y z z A B=B A=A B cos =A B +A B +A B θ••r rr r注:常用于一矢量在一方向上得投影 2 矢量得矢积n xy z xyz ij k A B=-(B A)=A B sin e =A A A B B B θ⎛⎫ ⎪⨯⨯ ⎪ ⎪⎝⎭r r r r r r r r x y z y z x x z x y y x (A B A B )i (A B A B )j (A B A B )k =-+-+-r r r四 矩阵此处仅讨论用矩阵判断方程组解得分布情形。
111122133211222233311322333a x a x a x 0a x a x a x 0a x a x a x 0++=⎧⎪++=⎨⎪++=⎩ 令111213212223313233a a a D a a a a a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭*D=0时,方程组有非零解 *D ≠0时,方程只有零解第一章 牛顿力学得基本定律万丈高楼从地起。
整个力学大厦得地基将在此筑起,三百年得人类最高科学智慧结晶将飘来她得古朴与幽香。
此时矢量言语将尽显英雄本色,微积分更就是风光占尽。
【要点分析与总结】 1 质点运动得描述(1) 直线坐标系r xi yj zkr xiyj zk a r xi yj zkυυ=++==++===++r r r rr r r r r &&&&&r r r r r r &&&&&&&&& (2) 平面极坐标系r r 2r r re re r e a (r r )e (r 2r )e θθυθθθθ==+=-++r r r r r &&r r r &&&&&&& (3) 自然坐标系t 2t ne v a e e υυυρ==+rrrr r & (4) 柱坐标系2t nz v a e e e e ze ρθυρυρρθ=+=++r r r &rrr r&&&〈析〉 上述矢量顺序分别为:r k t n b z i,j,k;e ,e ,e ;e ,e ,e ;e ,e ,e .θρθr r r r r r r r r r r r矢量微分:r k r k r k k k de e e e dt de e e e dt de e e 0dtθθθθθθθθ=⨯==⨯=-=⨯=rr r r &&rr r r &&rr r &(其它各矢量微分与此方法相同) 微分时一定要注意矢量顺序2 牛顿定律惯性定律得矢量表述22d r ma m F dt==rrr(1) 直角坐标系中x y z F mxF myF mz⎧=⎪=⎨⎪=⎩&&&&&& (2) 极挫标系中2r kF m(r r )F m(r 2r )F 0θθθθ⎧=-⎪=+⎨⎪=⎩&&&&&&& (3) 自然坐标系中2n b F m F m F 0τυυρ=⎧⎪⎪=⎨⎪⎪=⎩&3 质点运动得基本定理 几个量得定义:动量 P m υ=r r角动量 L r m r P υ=⨯=⨯r rr r r冲量 21I P P =-r r r力矩 M r F =⨯r rr冲量矩 21t 21t H I I Mdt =-=⎰r r r r动能 21T m 2υ=(1) 动量定理 dPF dt=r rˆe l 方向上动量守恒:dPˆˆe F e0dt ==l l rr g g (2) 动量矩定理 dLM dt=r r(3) 动能定理 d dTF m dt dtυυυ==r r r r g g4机戒能守恒定理 T+V=E〈析〉势函数V: V V VdV dx dy dz F dr x y z ∂∂∂=++=-∂∂∂r r gV V V F (i j k)x y z∂∂∂=-++∂∂∂r r rr 稳定平衡下得势函数:()0x x x dV 0dx==;()02x x x dV 0dx=>此时势能处极小处m V且能量满足M mV E 00E V E <<⎧⎪<∞⎨⎪<∞⎩质点再平衡点附近振动质点逃逸-质点逃逸+【解题演示】1 细杆OL 绕固定点O 以匀角速率ω转动,并推动小环C 在固定得钢丝AB 上滑动,O 点与钢丝间得垂直距离为d ,如图所示。
求小环得速度υr 与加速度a r。
解:依几何关系知:x d tan θ=又因为:222d d x xii i cos dωυωθ+===r r rr& 故:22222(d x )x a 2xx i i d dωυω+===r r r && 2 椭圆规尺AB 得两端点分别沿相互垂直得直线O χ与Oy 滑动,已知B 端以匀速c 运动,如图所示。
求椭圆规尺上M 点得轨道方程、速度及加速度得大小υ与α。
解:依题知:B y (b d)cos θ=+且:B y C (b d)sin θθ=-=-+&&得:C*(b d)sin θθ=+&K K又因M 点位置:M M x bsin ,y d cos θθ==故有:M M M x i |y j b cos i d sin j υθθθθ=+=-r r r rr&&&&代入(*)式得:M bccot dc i j b d b dθυ=-++r rr即:υ= 2M M222bc bc a i i (b d)sin (b d)sin θυθθ==-=++&r r r r &3 一半径为r 得圆盘以匀角速率ω沿一直线滚动,如图所示。
求圆盘边上任意一点M 得速度υr与加速度a r(以O 、M 点得连线与铅直线间得夹角θ表示);并证明加速度矢量总就是沿圆盘半径指向圆心。
解:设O 点坐标为(0Rt x ,R ω+)。
则M 点坐标为(0Rt x R sin ,R R cos ωθθ+++)故:M M M x i y j (R R cos )i R υωωθ=+=+-r r rr&&222M M a R sin i R cos j R (sin i cos j)υωθωθωθθ==--=-+r r r r r r &4 一半径为r 得圆盘以匀角深度ω在一半经为R 得固定圆形槽内作无滑动地滚动,如图所示,求圆盘边上M 点得深度υ与加速度α(用参量θ,Ψ表示)。
解:依题知:r rR rR rθωϕ=-=---&&且O 点处:k r e cos()e sin()e θθϕθϕ=---rrr则:M O O OMR rr r r r (R r)e re [(R r)cos()r]e (R r)sin()e θθϕθϕ'=+=-+=--+---r r r r rr rM M r rr r r ()sin()e [(R r)cos()r]e (R r)()cos()e (R r)sin()e r sin()e r [1cos()]e θθθυϕθθϕθϕθϕθθϕθθϕωθϕωθϕ==--+--+----+--=--+--r r&r r r r r &&&&&&&r r(){}r rr r 2r a r ()cos()e r sin()e r ()sin()e r [1cos()]e r cos()e r sin()e r e r r R r cos()e r sin()e R r θθθθυωϕθθϕωθθϕωϕθθϕωθθϕωϕθϕωϕθϕωθωθϕθϕ==----------=----=---+-⎡⎤⎣⎦-r r &r r r r &&&&&&r r r &&&r r5 已知某质点得运动规律为:y=bt,at θ=,a 与b 都就是非零常数。