南京市秦淮区2015年中考二模数学试卷和答案
2015江苏省南京市中考数学试卷解析

2015年江苏省南京市中考数学试卷一、选择题(本大题共6小题,每小题2分,共12分,在每小题给出的四个选项中,恰有一项是符合题目要求的)1.(2分)(2015•南京)计算:|﹣5+3|的结果是()A.﹣2 B.2C.﹣8 D.82.(2分)(2015•南京)计算(﹣xy3)2的结果是()A.x2y6B.﹣x2y6C.x2y9D.﹣x2y93.(2分)(2015•南京)如图,在△ABC中,DE∥BC,=,则下列结论中正确的是()A.=B.=C.=D.=4.(2分)(2015•南京)某市2013年底机动车的数量是2×106辆,2014年新增3×105辆,用科学记数法表示该市2014年底机动车的数量是()A.2.3×105辆B.3.2×105辆C.2.3×106辆D.3.2×106辆5.(2分)(2015•南京)估计介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间6.(2分)(2015•南京)如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O 相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为()A.B.C.D.2二、填空题(本大题共10小题,每小题2分,共20分)7.(2分)(2015•南京)4的平方根是;4的算术平方根是.8.(2分)(2015•南京)若式子在实数范围内有意义,则x的取值范围是.9.(2分)(2015•南京)计算的结果是.10.(2分)(2015•南京)分解因式(a﹣b)(a﹣4b)+ab的结果是.11.(2分)(2015•南京)不等式组的解集是.12.(2分)(2015•南京)已知方程x2+mx+3=0的一个根是1,则它的另一个根是,m的值是.13.(2分)(2015•南京)在平面直角坐标系中,点A的坐标是(2,﹣3),作点A关于x 轴的对称点,得到点A′,再作点A′关于y轴的对称点,得到点A″,则点A″的坐标是(,).14.(2分)(2015•南京)某工程队有14名员工,他们的工种及相应每人每月工资如下表所示:工种人数每人每月工资/元电工 5 7000木工 4 6000瓦工 5 5000现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名,与调整前相比,该工程队员工月工资的方差(填“变小”、“不变”或“变大”).15.(2分)(2015•南京)如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E=°.16.(2分)(2015•南京)如图,过原点O的直线与反比例函数y1,y2的图象在第一象限内分别交于点A,B,且A为OB的中点,若函数y1=,则y2与x的函数表达式是.三、解答题(本大题共11小题,共88分,解答时应写出文字说明、证明过程或演算步骤)17.(6分)(2015•南京)解不等式2(x+1)﹣1≥3x+2,并把它的解集在数轴上表示出来.18.(7分)(2015•南京)解方程:.19.(7分)(2015•南京)计算:(﹣)÷.20.(8分)(2015•南京)如图,△ABC中,CD是边AB上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.21.(8分)(2015•南京)为了了解2014年某地区10万名大、中、小学生50米跑成绩情况,教育部门从这三类学生群体中各抽取了10%的学生进行检测,整理样本数据,并结合2010年抽样结果,得到下列统计图:(1)本次检测抽取了大、中、小学生共名,其中小学生名;(2)根据抽样的结果,估计2014年该地区10万名大、中、小学生中,50米跑成绩合格的中学生人数为名;(3)比较2010年与2014年抽样学生50米跑成绩合格率情况,写出一条正确的结论.22.(8分)(2015•南京)某人的钱包内有10元、20元和50元的纸币各1张,从中随机取出2张纸币.(1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.23.(8分)(2015•南京)如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,测得∠CAO=45°,轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km/h和36km/h,经过0.1h,轮船甲行驶至B处,轮船乙行驶至D处,测得∠DBO=58°,此时B处距离码头O多远?(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1,60)24.(8分)(2015•南京)如图,AB∥CD,点E,F分别在AB,CD上,连接EF,∠AEF、∠CFE的平分线交于点G,∠BEF、∠DFE的平分线交于点H.(1)求证:四边形EGFH是矩形;(2)小明在完成(1)的证明后继续进行了探索,过G作MN∥EF,分别交AB,CD于点M,N,过H作PQ∥EF,分别交AB,CD于点P,Q,得到四边形MNQP,此时,他猜想四边形MNQP是菱形,请在下列框中补全他的证明思路.25.(10分)(2015•南京)如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)26.(8分)(2015•南京)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB;(2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形.27.(10分)(2015•南京)某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单位:元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;(2)求线段AB所表示的y1与x之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?2015年江苏省南京市中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分,在每小题给出的四个选项中,恰有一项是符合题目要求的)1.(2分)(2015•南京)计算:|﹣5+3|的结果是()A.﹣2 B.2C.﹣8 D.8考点:有理数的加法;绝对值.分析:先计算﹣5+3,再求绝对值即可.解答:解:原式=|﹣2|=2.故选B.点评:本题考查了有理数的加法,以及绝对值的求法,负数的绝对值等于它的相反数.2.(2分)(2015•南京)计算(﹣xy3)2的结果是()A.x2y6B.﹣x2y6C.x2y9D.﹣x2y9考点:幂的乘方与积的乘方.分析:根据幂的乘方和积的乘方的运算方法:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数);求出计算(﹣xy3)2的结果是多少即可.解答:解:(﹣xy3)2=(﹣x)2•(y3)2=x2y6,即计算(﹣xy3)2的结果是x2y6.故选:A.点评:此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).3.(2分)(2015•南京)如图,在△ABC中,DE∥BC,=,则下列结论中正确的是()A.=B.=C.=D.=考点:相似三角形的判定与性质.分析:由DE∥BC,可得△ADE∽△ABC,然后由相似三角形的对应边成比例可得,然后由=,即可判断A、B的正误,然后根据相似三角形的周长之比等于相似比,面积之比等于相似比的平方即可判断C、D的正误.解答:解:∵DE∥BC,∴△ADE∽△ABC,∴,∵=,∵=,故A、B选项均错误;∵△ADE∽△ABC,∴==,=()2=,故C选项正确,D选项错误.故选C.点评:此题考查了相似三角形的判定与性质,解题的关键是:熟记相似三角形的对应边之比等于相似比;相似三角形的周长之比等于相似比;相似三角形的面积之比等于相似比的平方.4.(2分)(2015•南京)某市2013年底机动车的数量是2×106辆,2014年新增3×105辆,用科学记数法表示该市2014年底机动车的数量是()A.2.3×105辆B.3.2×105辆C.2.3×106辆D.3.2×106辆考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:2014年底机动车的数量为:3×105+2×106=2.3×106.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(2分)(2015•南京)估计介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间考点:估算无理数的大小.分析:先估算的范围,再进一步估算,即可解答.解答:解:∵ 2.235,∴﹣1≈1.235,∴≈0.617,∴介于0.6与0.7之间,故选:C.点评:本题考查了估算有理数的大小,解决本题的关键是估算的大小.6.(2分)(2015•南京)如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O 相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为()A.B.C.D.2考点:切线的性质;矩形的性质.分析:连接OE,OF,ON,OG,在矩形ABCD中,得到∠A=∠B=90°,CD=AB=4,由于AD,AB,BC分别与⊙O相切于E,F,G三点得到∠AEO=∠AFO=∠OFB=∠BGO=90°,推出四边形AFOE,FBGO是正方形,得到AF=BF=AE=BG=2,由勾股定理列方程即可求出结果.解答:解:连接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分别与⊙O相切于E,F,G三点,∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四边形AFOE,FBGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切线,∴DN=DE=3,MN=MG,∴CM=5﹣2﹣MN=3﹣MN,在R t△DMC中,DM2=CD2+CM2,∴(3+NM)2=(3﹣NM)2+42,∴NM=,∴DM=3=,故选A.点评:本题考查了切线的性质,勾股定理,正方形的性质,正确的作出辅助线是解题的关键.二、填空题(本大题共10小题,每小题2分,共20分)7.(2分)(2015•南京)4的平方根是±2;4的算术平方根是2.考点:算术平方根;平方根.分析:如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.解答:解:4的平方根是±2;4的算术平方根是2.故答案为:±2;2.点评:此题主要考查了平方根和算术平方根的概念,算术平方根易与平方根的概念混淆而导致错误.8.(2分)(2015•南京)若式子在实数范围内有意义,则x的取值范围是x≥﹣1.考点:二次根式有意义的条件.分析:根据二次根式的定义可知被开方数必须为非负数,列不等式求解.解答:解:根据题意得:x+1≥0,解得x≥﹣1,故答案为:x≥﹣1.点评:主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.9.(2分)(2015•南京)计算的结果是5.考点:二次根式的乘除法.分析:直接利用二次根式的性质化简求出即可.解答:解:=×=5.故答案为:5.点评:此题主要考查了二次根式的乘除运算,正确掌握二次根式的性质是解题关键.10.(2分)(2015•南京)分解因式(a﹣b)(a﹣4b)+ab的结果是(a﹣2b)2.考点:因式分解-运用公式法.分析:首先去括号,进而合并同类项,再利用完全平方公式分解因式得出即可.解答:解:(a﹣b)(a﹣4b)+ab=a2﹣5ab+4b2+ab=a2﹣4ab+4b2=(a﹣2b)2.故答案为:(a﹣2b)2.点评:此题主要考查了多项式乘法以及公式法分解因式,熟练应用完全平方公式是解题关键.11.(2分)(2015•南京)不等式组的解集是﹣1<x<1.考点:解一元一次不等式组.分析:分别解每一个不等式,再求解集的公共部分.解答:解:,解不等式①得:x>﹣1,解不等式②得:x<1,所以不等式组的解集是﹣1<x<1.故答案为:﹣1<x<1.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.12.(2分)(2015•南京)已知方程x2+mx+3=0的一个根是1,则它的另一个根是3,m 的值是﹣4.考点:根与系数的关系;一元二次方程的解.分析:利用一元二次方程的根与系数的关系,两根的和是﹣m,两个根的积是3,即可求解.解答:解:设方程的另一个解是a,则1+a=﹣m,1×a=3,解得:m=﹣4,a=3.故答案是:3,﹣4.点评:本题考查了一元二次方程的根与系数的关系,正确理解根与系数的关系是关键.13.(2分)(2015•南京)在平面直角坐标系中,点A的坐标是(2,﹣3),作点A关于x 轴的对称点,得到点A′,再作点A′关于y轴的对称点,得到点A″,则点A″的坐标是(﹣2,3).考点:关于x轴、y轴对称的点的坐标.分析:分别利用x轴、y轴对称点的性质,得出A′,A″的坐标进而得出答案.解答:解:∵点A的坐标是(2,﹣3),作点A关于x轴的对称点,得到点A′,∴A′的坐标为:(2,3),∵点A′关于y轴的对称点,得到点A″,∴点A″的坐标是:(﹣2,3).故答案为:﹣2;3.点评:此题主要考查了关于x轴、y轴对称点的性质.(1)关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y).(2)关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y).14.(2分)(2015•南京)某工程队有14名员工,他们的工种及相应每人每月工资如下表所示:工种人数每人每月工资/元电工 5 7000木工 4 6000瓦工 5 5000现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名,与调整前相比,该工程队员工月工资的方差变大(填“变小”、“不变”或“变大”).考点:方差.分析:利用已知方差的定义得出每个数据减去平均数后平方和增大,进而得出方差变大.解答:解:∵减少木工2名,增加电工、瓦工各1名,∴这组数据的平均数不变,但是每个数据减去平均数后平方和增大,则该工程队员工月工资的方差变大.故答案为:增大.点评:此题主要考查了方差的定义,正确把握方差中每个数据的意义是解题关键.15.(2分)(2015•南京)如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E= 215°.考点:圆内接四边形的性质.分析:连接CE,根据圆内接四边形对角互补可得∠B+∠AEC=180°,再根据同弧所对的圆周角相等可得∠CED=∠CAD,然后求解即可.解答:解:如图,连接CE,∵五边形ABCDE是圆内接五边形,∴四边形ABCE是圆内接四边形,∴∠B+∠AEC=180°,∵∠CED=∠CAD=35°,∴∠B+∠E=180°+35°=215°.故答案为:215.点评:本题考查了圆内接四边形的性质,同弧所对的圆周角相等的性质,熟记性质并作辅助线构造出圆内接四边形是解题的关键.16.(2分)(2015•南京)如图,过原点O的直线与反比例函数y1,y2的图象在第一象限内分别交于点A,B,且A为OB的中点,若函数y1=,则y2与x的函数表达式是y=.考点:反比例函数与一次函数的交点问题.分析:过A作AC⊥x轴于C,过B作BD⊥x轴于D,由于点A在反比例函数y1=上,设A(a,),求得点B的坐标代入反比例函数的解析式即可求出结果.解答:解:过A作AC⊥x轴于C,过B作BD⊥x轴于D,∵点A在反比例函数y1=上,∴设A(a,),∴OC=a,AC=,∵AC⊥x轴,BD⊥x轴,∴AC∥BD,∴△OAC∽△OBD,∴,∵A为OB的中点,∴=,∴BD=2AC=,OD=2OC=2a,∴B(2a,),设y2=,∴k=2a•=4,∴y2与x的函数表达式是:y=.故答案为:y=.点评:本题主要考查了待定系数法求反比例函数,相似三角形的判定和性质,反比例函数中k的几何意义要注意数形结合思想的运用.三、解答题(本大题共11小题,共88分,解答时应写出文字说明、证明过程或演算步骤)17.(6分)(2015•南京)解不等式2(x+1)﹣1≥3x+2,并把它的解集在数轴上表示出来.考点:解一元一次不等式;在数轴上表示不等式的解集.分析:不等式去括号、移项合并、系数化为1即可求出不等式的解集,再在数轴上表示出不等式的解集即可.解答:解:去括号,得2x+2﹣1≥3x+2,移项,得2x﹣3x≥2﹣2+1,合并同类项,得﹣x≥1,系数化为1,得x≤﹣1,这个不等式的解集在数轴上表示为:点评:本题考查了一元一次不等式的解法,在数轴上表示不等式的解集,>,≥向右画;<,≤向左画,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.18.(7分)(2015•南京)解方程:.考点:解分式方程.专题:计算题.分析:观察可得最简公分母是x(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程两边同乘以x(x﹣3),得2x=3(x﹣3).解这个方程,得x=9.检验:将x=9代入x(x﹣3)知,x(x﹣3)≠0.所以x=9是原方程的根.点评:本题考查分式方程的解法,需要注意的是在解分式方程时需对得到的解进行检验.19.(7分)(2015•南京)计算:(﹣)÷.考点:分式的混合运算.分析:首先将括号里面通分运算,进而利用分式的性质化简求出即可.解答:解:(﹣)÷=[﹣]×=[﹣]×=×=.点评:此题主要考查了分式的混合运算,正确进行通分运算是解题关键.20.(8分)(2015•南京)如图,△ABC中,CD是边AB上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.考点:相似三角形的判定与性质.分析:(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD∽△CBD;(2)由(1)知△ACD∽△CBD,然后根据相似三角形的对应角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.解答:(1)证明:∵CD是边AB上的高,∴∠ADC=∠CDB=90°,∵=.∴△ACD∽△CBD;(2)解:∵△ACD∽△CBD,∴∠A=∠BCD,在△ACD中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.点评:此题考查了相似三角形的判定与性质,解题的关键是:熟记相似三角形的判定定理与性质定理.21.(8分)(2015•南京)为了了解2014年某地区10万名大、中、小学生50米跑成绩情况,教育部门从这三类学生群体中各抽取了10%的学生进行检测,整理样本数据,并结合2010年抽样结果,得到下列统计图:(1)本次检测抽取了大、中、小学生共10000名,其中小学生4500名;(2)根据抽样的结果,估计2014年该地区10万名大、中、小学生中,50米跑成绩合格的中学生人数为3600名;(3)比较2010年与2014年抽样学生50米跑成绩合格率情况,写出一条正确的结论.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据“教育部门从这三类学生群体中各抽取了10%的学生进行检测”,可得100000×10%,即可得到本次检测抽取了大、中、小学生共多少名,再根据扇形图可得小学生所占45%,即可解答;(2)先计算出样本中50米跑成绩合格的中学生所占的百分比,再乘以10万,即可解答;(3)根据条形图,写出一条即可,答案不唯一.解答:解:(1)100000×10%=10000(人),10000×45%═4500(人).故答案为:10000,4500;(2)100000×40%×90%=3600(人).故答案为:3600;(3)例如:与2010年相比,2014年该市大学生50米跑成绩合格率下降了5%(答案不唯一).点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.22.(8分)(2015•南京)某人的钱包内有10元、20元和50元的纸币各1张,从中随机取出2张纸币.(1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.考点:列表法与树状图法.专题:计算题.分析:(1)先列表展示所有3种等可能的结果数,再找出总额是30元所占结果数,然后根据概率公式计算;(2)找出总额超过51元的结果数,然后根据概率公式计算.解答:解:(1)列表:共有3种等可能的结果数,其中总额是30元占1种,所以取出纸币的总额是30元的概率=;(2)共有3种等可能的结果数,其中总额超过51元的有2种,所以取出纸币的总额可购买一件51元的商品的概率为.点评:本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.23.(8分)(2015•南京)如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,测得∠CAO=45°,轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km/h和36km/h,经过0.1h,轮船甲行驶至B处,轮船乙行驶至D处,测得∠DBO=58°,此时B处距离码头O多远?(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1,60)考点:解直角三角形的应用.分析:设B处距离码头Oxkm,分别在Rt△CAO和Rt△DBO中,根据三角函数求得CO和DO,再利用DC=DO﹣CO,得出x的值即可.解答:解:设B处距离码头Oxkm,在Rt△CAO中,∠CAO=45°,∵tan∠CAO=,∴CO=AO•tan∠CAO=(45×0.1+x)•tan45°=4.5+x,在Rt△DBO中,∠DBO=58°,∵tan∠DBO=,∴DO=BO•tan∠DBO=x•tan58°,∵DC=DO﹣CO,∴36×0.1=x•tan58°﹣(4.5+x),∴x=≈=13.5.因此,B处距离码头O大约13.5km.点评:本题考查了解直角三角形的应用,熟练掌握三角形中的边角关系是解题的关键.24.(8分)(2015•南京)如图,AB∥CD,点E,F分别在AB,CD上,连接EF,∠AEF、∠CFE的平分线交于点G,∠BEF、∠DFE的平分线交于点H.(1)求证:四边形EGFH是矩形;(2)小明在完成(1)的证明后继续进行了探索,过G作MN∥EF,分别交AB,CD于点M,N,过H作PQ∥EF,分别交AB,CD于点P,Q,得到四边形MNQP,此时,他猜想四边形MNQP是菱形,请在下列框中补全他的证明思路.考点:菱形的判定;全等三角形的判定与性质;矩形的判定.分析:(1)利用角平分线的定义结合平行线的性质得出∠FEH+∠EFH=90°,进而得出∠GEH=90°,进而求出四边形EGFH是矩形;(2)利用菱形的判定方法首先得出要证▱MNQP是菱形,只要证MN=NQ,再证∠MGE=∠QFH得出即可.解答:(1)证明:∵EH平分∠BEF,∴∠FEH=∠BEF,∵FH平分∠DFE,∴∠EFH=∠DFE,∵AB∥CD,∴∠BEF+∠DFE=180°,∴∠FEH+∠EFH=(∠BEF+∠DFE)=×180°=90°,∵∠FEH+∠EFH+∠EHF=180°,∴∠EHF=180°﹣(∠FEH+∠EFH)=180°﹣90°=90°,同理可得:∠EGF=90°,∵EG平分∠AEF,∴∠EFG=∠AEF,∵EH平分∠BEF,∴∠FEH=∠BEF,∵点A、E、B在同一条直线上,∴∠AEB=180°,即∠AEF+∠BEF=180°,∴∠FEG+∠FEH=(∠AEF+∠BEF)=×180°=90°,即∠GEH=90°,∴四边形EGFH是矩形;(2)解:答案不唯一:由AB∥CD,MN∥EF,PQ∥EF,易证四边形MNQP是平行四边形,要证▱MNQP是菱形,只要证MN=NQ,由已知条件:FG平分∠CFE,MN∥EF,故只要证GM=FQ,即证△MGE≌△QFH,易证GE=FH、∠GME=∠FGH.故只要证∠MGE=∠QFH,易证∠MGE=∠GEF,∠QFH=∠EFH,∠GEF=∠EFH,即可得证.点评:此题主要考查了矩形的判定以及菱形的判定和角平分线的性质,根据题意得出证明菱形的方法是解题关键.25.(10分)(2015•南京)如图,在边长为4的正方形ABCD 中,请画出以A 为一个顶点,另外两个顶点在正方形ABCD 的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)考点:作图—应用与设计作图;等腰三角形的判定;勾股定理;正方形的性质.分析: ①以A 为圆心,以3为半径作弧,交AD 、AB 两点,连接即可;②连接AC ,在AC 上,以A 为端点,截取1.5个单位,过这个点作AC 的垂线,交AD 、AB 两点,连接即可;③以A 为端点在AB 上截取3个单位,以截取的点为圆心,以3个单位为半径画弧,交BC 一个点,连接即可;④连接AC ,在AC 上,以C 为端点,截取1.5个单位,过这个点作AC 的垂线,交BC 、DC 两点,然后连接A 与这两个点即可;⑤以A 为端点在AB 上截取3个单位,再作着个线段的垂直平分线交CD 一点,连接即可.解答:解:满足条件的所有图形如图所示:点评:此题主要考查了作图﹣应用与设计作图,关键是掌握等腰三角形的判定方法.26.(8分)(2015•南京)如图,四边形ABCD 是⊙O 的内接四边形,BC 的延长线与AD 的延长线交于点E ,且DC=DE .(1)求证:∠A=∠AEB ;(2)连接OE ,交CD 于点F ,OE ⊥CD ,求证:△ABE 是等边三角形.考点:圆内接四边形的性质;等边三角形的判定与性质;圆周角定理.分析:(1)根据圆内接四边形的性质可得∠A+∠BCD=180°,根据邻补角互补可得∠DCE+∠BCD=180°,进而得到∠A=∠DCE,然后利用等边对等角可得∠DCE=∠AEB,进而可得∠A=∠AEB;(2)首先证明△DCE是等边三角形,进而可得∠AEB=60°,再根据∠A=∠AEB,可得△ABE是等腰三角形,进而可得△ABE是等边三角形.解答:证明:(1)∵四边形ABCD是⊙O的内接四边形,∴∠A+∠BCD=180°,∵∠DCE+∠BCD=180°,∴∠A=∠DCE,∵DC=DE,∴∠DCE=∠AEB,∴∠A=∠AEB;(2)∵∠A=∠AEB,∴△ABE是等腰三角形,∵EO⊥CD,∴CF=DF,∴EO是CD的垂直平分线,∴ED=EC,∵DC=DE,∴DC=DE=EC,∴△DCE是等边三角形,∴∠AEB=60°,∴△ABE是等边三角形.点评:此题主要考查了等边三角形的判定和性质,以及圆内接四边形的性质,关键是掌握圆内接四边形对角互补.27.(10分)(2015•南京)某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单位:元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;(2)求线段AB所表示的y1与x之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?考点:二次函数的应用.分析:(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)根据线段AB经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(3)利用总利润=单位利润×产量列出有关x的二次函数,求得最值即可.解答:解:(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)设线段AB所表示的y1与x之间的函数关系式为y=k1x+b1,∵y=k1x+b1的图象过点(0,60)与(90,42),∴∴,∴这个一次函数的表达式为;y=﹣0.2x+60(0≤x≤90);(3)设y2与x之间的函数关系式为y=k2x+b2,∵经过点(0,120)与(130,42),∴,解得:,∴这个一次函数的表达式为y2=﹣0.6x+120(0≤x≤130),设产量为xkg时,获得的利润为W元,当0≤x≤90时,W=x[(﹣0.6x+120)﹣(﹣0.2x+60)]=﹣0.4(x﹣75)2+2250,∴当x=75时,W的值最大,最大值为2250;当90≤x130时,W=x[(﹣0.6x+120)﹣42]=﹣0.6(x﹣65)2+2535,∴当x90时,W=﹣0.6(90﹣65)2+2535=2160,由﹣0.6<0知,当x>65时,W随x的增大而减小,∴90≤x≤130时,W≤2160,因此当该产品产量为75kg时,获得的利润最大,最大值为2250.点评:本题考查了二次函数的应用,解题的关键是从实际问题中抽象出二次函数模型,难度不大.参与本试卷答题和审题的老师有:张其铎;放飞梦想;zcl5287;caicl;sdwdmahongye;王学峰;1987483819;gbl210;sd2011;星期八;733599;zhangCF;CJX;gsls;守拙;sjzx (排名不分先后)菁优网2015年6月25日。
2015年南京市中考数学试题及答案

数学试卷
第 5 页 (共 11 页)
27. (10 分)某企业生产并销售某种产品,假设销售量与产量相等.下图中的折线 ABD、线段 CD 分别表示该产品每千克生产成本 y1(单位:元) 、销售价 y2(单位:元)与产量 x(单 位:kg)之间的函数关系. (1)请解释图中点 D 的横坐标、纵坐标的实际意义. (2)求线段 AB 所表示的 y1 与 x 之间的函数表达式. (3)当该产品产量为多少时,获得的利润最大?最大利润是多少?
由 AB∥CD,MN∥EF,PQ∥EF,易证四边 形 MNQP 是平行四边形.要证□MNQP 是菱形, 只要证 NM=NQ. 由已知条件 ≌△QFH.易证 ∠EFH, ▲ ▲ , ▲ ▲ , MN∥EF, ,故只要证∠ 可证 NG=NF,故只要证 GM=FQ,即证△MGE MGE=∠QFH.易证∠MGE=∠GEF,∠QFH= ,即可得证. C N G D A M E P B
二、填空题(本大题共 10 小题,每小题 2 分,共 20 分) 7.±2;2 12.3;-4 8.x≥-1 13.-2;3 9. 5 14.变大 10.(a-2b)2 15.215 11.-1<x<1 16.y2= 4 x
三、解答题(本大题共 11 小题,共 88 分) 17. (本题 6 分) 解:去括号,得 2x+2-1≥3x+2. 移项,得 2x-3x≥2-2+1. 合并同类项,得-x≥1. 系数化为 1,得 x≤-1. 这个不等式的解集在数轴上表示如下图所示.
H
F (第 24 题)
Q
数学试卷
第 4 页 (共 11 页)
25. (10 分)如图,在边长为 4 的正方形 ABCD 中,请画出以 A 为一个顶点,另外两个顶点在 正方形 ABCD 的边上,且含边长为 3 的所有大小不同的等腰三角形. (要求:只要画出示 意图,并在所画等腰三角形长为 3 的边上标注数字 3)
秦淮区答案

9
∴四边形 AMCN 是平行四边形.· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·2 分 ∴AM=CN. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·3 分 在 Rt△ABM 和 Rt△CDN 中,AB=CD,AM=CN, ∴Rt△ABM≌Rt△CDN. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·4 分 (2)解:当 AB=AF 时,四边形 AMCN 是菱形. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·5 分 证明:∵四边形 ABCD、AECF 是矩形, ∴∠B=∠BAD=∠EAF=∠F=90° . ∴∠BAD-∠NAM=∠EAF-∠NAM,即∠BAM=∠FAN. 又∵AB=AF, ∴△ABM≌△AFN.· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·6 分 ∴AM=AN. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·7 分 由(1)知四边形 AMCN 是平行四边形, ∴平行四边形 AMCN 是菱形.· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·8 分
2015年中考二模名校考试数学试题及答案

2015年中考数学二模名校考试数学试题(卷)时间120分钟满分120分2015、2、28一、选择题(1-6小题,每小题2分7-16小题每小题3分,共42分)1.下列各数中,最小的数是()A.﹣2 B.﹣0.1 C.0D.|﹣1| 2.计算(﹣9)2﹣2×(﹣9)×1+12的值为()A.﹣98 B.﹣72 C.64 D.1003.下列式子正确的是()A.﹣(x﹣3)=﹣x﹣3 B. 5a﹣a=5C. 2﹣1=﹣2 D. 2<<34.如图,将一个正六边形分割成六个全等的等边三角形,其中有两个已涂灰,如果再随意涂灰一个空白三角形,则所有涂灰部分恰好成为一个轴对称图形的概率是()A.B.C.D.14题图 5题图 7题图5.如图,直线a、b及木条c在同一平面上,将木条c绕点O旋转到与直线a平行时,其最小旋转角为()A.100°B.90°C.80°D.70°6.下列一元二次方程中,无解的是()A. x2+4x+2=0 B.x2+4x+3=0 C.x2﹣4x+4=0 D.x2﹣4x+5=07.如图,Rt△ABC中,∠C=90°,∠B=45°,AD是∠CAB的平分线,DE⊥AB于E,AB=a,CD=m,则AC的长为()A. 2m B.a﹣m C.a D.a+m8.如图,在正方形网格中,△ABC的三个顶点及点D、E、F、G、H都在格点上,现以D、E、F、G、H中的三点为顶点画三角形,则下列与△ABC面积相等但不全等的三角形是()A.△EHD B.△EGF C.△EFH D.△HDF9.计算(﹣)÷的结果为()A.B.C.D.10.如图,平行四边形ABCD的顶点B,D都在反比例函数y=(x>0)的图象上,点D的坐标为(2,6),AB平行于x轴,点A的坐标为(0,3),将这个平行四边形向左平移2个单位、再向下平移3个单位后点C的坐标为()A.(1,3)B.(4,3)C.(1,4)D.(2,4)8题图 10题图11.张昆早晨去学校共用时15分钟.他跑了一段,走了一段,他跑步的平均速度是250m/分钟,步行的平均速度是80m/分钟;他家离学校的距离是2900m,如果他跑步的时间为x分钟,则列出的方程是()A. 250x+80(﹣x)=2900 B.80x+250(15﹣x)=2900C. 80x+250(﹣x)=2900 D.250x+80(15﹣x)=290012.已知⊙O及⊙O外一点P,过点P作出⊙O的一条切线(只有圆规和三角板这两种工具).以下是甲、乙两同学的作业:甲:①连接OP,作OP的垂直平分线l,交OP于点A;②以点A为圆心、OA为半径画弧、交⊙O于点M;③作直线PM,则直线PM即为所求(如图1).乙:①让直角三角板的一条直角边始终经过点P;②调整直角三角板的位置,让它的另一条直角边过圆心O,直角顶点落在⊙O上,记这时直角顶点的位置为点M;③作直线PM ,则直线PM 即为所求(如图2). 对于两人的作业,下列说法正确的是( ) A .甲对,乙不对 B . 甲不对,乙对 C . 两人都对 D . 两人都不对13.如图,直线l 经过点P (1,2),与坐标轴交于A (a ,0),B (0,b )两点(其中a <b ,如果a+b=6,那么tan∠ABO 的值为( )A .B . 1C .D . 213题图 14题图 16题图 14.如图,在⊙O 中,AB 为直径,点C 为圆上一点,将劣弧沿弦AC 翻折交AB 于点D ,连接CD .如果∠BAC=20°,则∠BDC=( )A . 80°B . 70°C . 60°D . 50° 15.对于实数m ,n ,定义一种运算“※”:m※n=m 2﹣mn ﹣3.下列说法错误的是( ) A . 0※1=﹣3 B . 方程x※2=0的根为x 1=﹣1,x 2=3 C .不等式组无解D . 函数y=x※(﹣2)的顶点坐标是(1,﹣4)16.如图1,S 是矩形ABCD 的AD 边上的一点,点E 以每秒kcm 的速度沿折线BS ﹣SD ﹣DC 匀速运动,同时点F 从点C 出发,以每秒1cm 的速度沿边CB 匀速运动,并且点F 运动到点B 时点E 也运动到点C .动点E ,F 同时停止运动.设点E ,F 出发t 秒时,△EBF的面积为ycm 2.已知y 与t 的函数图象如图2所示.其中曲线OM ,NP 为两段抛物线,MN 为线段.则下列说法:①点E 运动到点S 时,用了2.5秒,运动到点D 时共用了4秒; ②矩形ABCD 的两邻边长为BC=6cm ,CD=4cm ; ③sin∠ABS=;④点E 的运动速度为每秒2cm .其中正确的是( )A .①②③B .①③④C .①②④D . ②③④二、填空题(每小题3分,共12分.)17.在△ABC中,若|sinA﹣|+(1﹣tanB)2=0,则∠C的度数为_________ °.18.如图,已知点A、B、C在⊙O上,CD⊥OB于D,AB=2OD,若∠C=40°,则∠B=_________ °.18题图 19题图 20题图19.如图,一条4m宽的道路将矩形花坛分为一个直角三角形和一个直角梯形,根据图中数据,可知这条道路的占地面积为_________ m2.20.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第60个点的横坐标为_________ .三、解答题(共66分)21.(9分)已知关于x,y的二元一次方程x﹣y=3a和x+3y=4﹣a.(1)如果是方程x﹣y=3a的一个解,求a的值;(2)当a=1时,求两方程的公共解;(3)若是已知方程的公共解,当x0≤1时,求y的取值范围.22.(10分)某中学对校园卫生进行清理,某班有13名同学参加这次卫生大扫除,按要求他们需要完成总面积为80m2的三项清扫工作,三项工作的面积比例如图1,每人每分钟完成各项的工作量如图2.(1)从统计图中可知:擦玻璃、擦课桌椅、扫地拖地的面积分别是_________ m2,_________ m2,_________ m2;(2)如果x人每分钟擦玻璃面积ym2,那么y关于x的函数关系式是_________ ;(3)完成扫地拖地的任务后,把13人分成两组,一组去擦玻璃,一组去擦课桌椅,怎样分配才能同时完成任务?23.(10分)河北省赵县A、B两村盛产雪花梨,A村有雪花梨200吨,B村有雪花梨300吨,现将这些雪花梨运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨,从A村运往C、D两处的费用分别为40元/吨和45元/吨;从B村运往C、D两处的费用分别为25元/吨和32元/吨,设从A村运往C仓库的雪花梨为x吨,A、B两村往两仓库运雪花梨的运输费用分别为yA 元,yB元.C D 总计A x吨_________ 300吨B _________ _________ 400吨总计240吨260吨500吨(1)请填写下表,并求出yA ,yB与x之间的函数关系式:(2)当x为何值时,A村的运输费用比B村少?(3)请问怎样调运,才能使两村的运费之和最小?求出最小值.24.(11分)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写作法,保留作图痕迹);(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.25.(12分)已知,抛物线y=ax2+x+c的顶点为M(﹣1,﹣2),它与x轴交于点B,C(点B在点C左侧).(1)求点B、点C的坐标;(2)将这个抛物线的图象沿x轴翻折,得到一个新抛物线,这个新抛物线与直线l:y=﹣4x+6交于点N.①求证:点N是这个新抛物线与直线l的唯一交点;②将新抛物线位于x轴上方的部分记为G,将图象G以每秒1个单位的速度向右平移,同时也将直线l以每秒1个单位的速度向上平移,记运动时间为t,请直接写出图象G 与直线l有公共点时运动时间t的范围.26.(3分)1)如图1、图2,点P是⊙O外一点,作直线OP,交⊙O于点M、N,则有结论:①点M是点P到⊙O的最近点;②点N是点P到⊙O的最远点.请你从①和②中选择一个进行证明.(注:图1和图2中的虚线为辅助线,可以直接利用)(2)如图,已知,点A、B分别是直角∠XOY的两边上的动点,并且线段AB=4,如果点T是线段AB的中点,则线段TO的长等于_________ ,所以,当点A和B在直角∠XOY 的两边上运动时,点O一定在以点_________ 为圆心,以线段_________ 为直径的圆上.(3)如图,△ABC的等边三角形,AB=4,直角∠XOY的两边OX,OY分别经过点A和点B (点O与点A、点B都不重合),连接OC,求OC的最大值与最小值.(4)如图,在直角坐标系xOy中,点A、B分别是x轴与y轴上的动点,并且线段AB 等于4为一定值.以AB为边作正方形ABCD,连接OC,则OC的最大值与最小值的乘积等于_________ .参考答案三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.解:(1)将代入方程x﹣y=3a得:5+1=3a,∴a=2.(2)当a=1时,两方程为:由①得:x=3+y,代入②得:3+y+3y=3,∴y=0,∴x=3.所以方程组的公共解为:.(3)因为是已知方程的公共解,∴解得:,∵x≤1,∴2a+1≤1,∴a≤0,所以1﹣a≥1,≥1.∴y22.解:(1)擦玻璃的面积:80×20%=16(m2);擦课桌椅的面积:80×25%=20(m2);扫地拖地的面积:80×55%=44(m2);故答案为:16,22,44;(2)由题意可得,每人每分钟擦玻璃的面积为=,得y=x;故答案为:y=x;(3)设擦玻璃的人数为x人,则擦课桌的人数为(13﹣x)人,根据题意得:16÷x=20÷[0.5×(13﹣x)],即=,解得x=8,经检验x=8是原方程的解,则擦课桌椅的有:13﹣8=5(人),答:擦玻璃的8人,擦课桌椅的有5人.23.解:(1)填表如图所示,y=40x+45(200﹣x)=﹣5x+9000,Ay=25(240﹣x)+32(60+x)=7x+7920;B(2)∵A村的运输费用比B村少,∴﹣5x+9000<7x+7920,解得x>90,∵A村有雪花梨200吨,故200≥x>90吨时,A村的运输费用比B村少;(3)A、B两村的运输费用之和为:﹣5x+9000+7x+7920=2x+16920,∵2>0,∴运输费用随x的增大而增大,∵,∴x≤200,∴当x=0时,运输费用最小,为16920元.24.解:(1)完成图形,如图所示:证明:∵△ABD和△ACE都是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,∵在△CAD和△EAB中,,∴△CAD≌△EAB(SAS),∴BE=CD;(2)BE=CD,理由同(1),∵四边形ABFD和ACGE均为正方形,∴AD=AB,AC=AE,∠BAD=∠CAE=90°,∴∠CAD=∠EAB,∵在△CAD和△EAB中,,∴△CAD≌△EAB(SAS),∴BE=CD;(3)由(1)、(2)的解题经验可知,过A作等腰直角三角形ABD,∠BAD=90°,则AD=AB=100米,∠ABD=45°,∴BD=100米,连接CD,则由(2)可得BE=CD,∵∠ABC=45°,∴∠DBC=90°,在Rt△DBC中,BC=100米,BD=100米,根据勾股定理得:CD==100米,则BE=CD=100米.25.解:(1)∵抛物线y=ax2+x+c的顶点为M(﹣1,﹣2),∴该抛物线的解析式为y=a(x+1)2﹣2.即:y=ax2+2ax+a﹣2.∴2a=1.解得 a=.故该抛物线的解析式是:y=x2+x﹣.当y=0时,x2+x﹣=0.解之得 x1=﹣3,x2=1.∴B(﹣3,0),C(1,0);(2)①证明:将抛物线y=x2+x﹣沿x轴翻折后的图象,即新图象,仍过点B、C,其顶点M′与点M关于x轴对称,则M′(﹣1,2).设新抛物线的解析式为:y=a′(x+1)2+2.∵y=a′(x+1)2+2过点C(1,0),∴a′(1+1)2+2=0,解得,a′=﹣.∴翻折后得到的新抛物线的解析式为:y=﹣x2﹣x+.当﹣4x+6=x2+x﹣时,有:x2﹣6x+9=0,解得,x1=x2=3,此时,y=﹣6.∴新抛物线y=﹣x2﹣x+与直线l有唯一的交点N(3,﹣6);②≤t≤6.附解答过程:∵点N是新抛物线y=﹣x2﹣x+与直线l有唯一的交点,∴直线l与新抛物线y=﹣x2﹣x+在x轴上方部分(即G)无交点,∴当直线l经过点C时产生第一个公共点,经过点B时是最后一个公共点,运动t秒时,点B的坐标为(﹣3+t,0),点C的坐标为(1+t,0),直线与x轴交点为(,0).∵当=﹣3+t时,t=6∴图象G与直线l有公共点时,≤t≤6.26.解:(1)①如图1,根据两点之间线段最短可得:PO≤PR+OR.∴PM+MO≤PR+OR.∵MO=RO,∴PM≤PR.∴点M是点P到⊙O的最近点.②如图2,根据两点之间线段最短可得:PS≤PO+OS.∵OS=ON,∴PS≤PO+ON,即PS≤PN.∴点N是点P到⊙O的最远点.(2)如图3,∵∠XOY=90°,点T是线段AB的中点,∴TO=AB=2.∴点O在以点T为圆心,以线段AB为直径的圆上.故答案为:2、T、AB.(3)取AB的中点T,连接TO、CT、OC,如图4.∵∠AOB=90°,点T是线段AB的中点,∴TO=AB=2.∵△ABC的等边三角形,点T是线段AB的中点,∴CT⊥AB,AT=BT=2.∴CT===2.根据两点之间线段最短可得:OC≤OT+CT,即OC≤2+2;CT≤OC+OT,即OC≥CT﹣OT,也即OC≥2﹣2.∴OC的最大值为2+2,OC的最小值为2﹣2.(4)取AB的中点T,连接TO、CO、CT,如图5.∵∠AOB=90°,点T是线段AB的中点,∴TO=AB=2.∵四边形ABCD是正方形,∴BC=AB=4,∠ABC=90°.∵点T是线段AB的中点,∴BT=AB=2.∴CT===2.根据两点之间线段最短可得:OC≤OT+CT,即OC≤2+2;CT≤OC+OT,即OC≥CT﹣OT,也即OC≥2﹣2.∴OC的最大值为2+2,OC的最小值为2﹣2.∵(2+2)(2﹣2)=20﹣4=16.∴OC的最大值与最小值的乘积等于16.故答案为:16.。
2015年区二模数学答案

3 2 2
3 ..............................................................................................2 分
22.(本题满分 7 分) (1)画图正确...............................................................................................................................................3 分 △ABC 的面积为6..................................................................................................................................1 分 (2) 画图正确.................................................................................................................................................3 分 23.(本题满分 8 分) (1)解:m = 100,x = 40,y = 0.18........................................................................................................3 分 (2)补图正确..................................................................................................................................................2 分 (3)解: 估计该校学生劳动的总时间为 2640 小时..........................................................................................3 分 24.(本题满分 8 分) (1)在△ABC 中,∵AC=BC,∠ACB=90,CG 平分∠ACB, ∴∠CAB=∠CBA=
2015年南京中考数学解析版

江苏省南京市2015年初中毕业生学业考试数学试题一. 选择题(本大题共6小题,每小题2分,共12分) 1.计算︱- 5+3︱的结果是()A. - 2B. 2C. - 8D. 8 考点:有理数的加法;绝对值. 分析:先计算﹣5+3,再求绝对值即可. 解答:解:原式=|﹣2| =2. 故选B . 点评:本题考查了有理数的加法,以及绝对值的求法,负数的绝对值等于它的相反数. 2.计算(-xy ³)²的结果是( ) A. x ²y 6 B. -x ²y 6 C. x ²y 9 D. -x ²y 9 考点:幂的乘方与积的乘方. 分析:根据幂的乘方和积的乘方的运算方法:①(a m )n =a mn (m ,n 是正整数);②(ab )n =a n b n(n是正整数);求出计算(﹣xy 3)2的结果是多少即可. 解答:解:(﹣xy 3)2=(﹣x )2•(y 3)2=x 2y 6,即计算(﹣xy 3)2的结果是x 2y 6. 故选:A . 点评:此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m )n =amn(m ,n 是正整数);②(ab )n =a n b n(n 是正整数). 3.如图,在△ABC 中,DE ∥ BC ,AD DB = 12,则下列结论中正确的是()A.AE EC = 12B.DE BC = 12C.△ADE 的周长△ABC 的周长 = 13D.△ADE 的面积△ABC 的面积= 13考点:相似三角形的判定与性质. 分析:第3题图由DE∥BC,可得△ADE∽△ABC,然后由相似三角形的对应边成比例可得,然后由=,即可判断A、B的正误,然后根据相似三角形的周长之比等于相似比,面积之比等于相似比的平方即可判断C、D的正误.解答:解:∵DE∥BC,∴△ADE∽△ABC,∴,∵=,∵=,故A、B选项均错误;∵△ADE∽△ABC,∴==,=()2=,故C选项正确,D选项错误.故选C.点评:此题考查了相似三角形的判定与性质,解题的关键是:熟记相似三角形的对应边之比等于相似比;相似三角形的周长之比等于相似比;相似三角形的面积之比等于相似比的平方.4.某市2013年底机动车的数量是2×106辆,2014年新增3×105辆.用科学记数法表示该市2014年底机动车的数量是( )A. 2.3×105辆B. 3.2×105辆C. 2.3×106辆D. 3.2×106辆考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:2014年底机动车的数量为:3×105+2×106=2.3×106.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.5.估计5 -12介于( )A.0.4与0.5之间B. 0.5与0.6之间C. 0.6与0.7之间D. 0.7与0.8之间考点:估算无理数的大小.第6题图F分析: 先估算的范围,再进一步估算,即可解答.解答: 解:∵ 2.235, ∴﹣1≈1.235, ∴≈0.617,∴介于0.6与0.7之间,故选:C . 点评:本题考查了估算有理数的大小,解决本题的关键是估算的大小.6.如图,在矩形ABCD 中,AB=4,AD=5,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点D 作⊙O 的切线交BC 于点M ,切点为N ,则DM 的长为( ) A.133B.92C.4313D.2 5考点:切线的性质;矩形的性质. 分析:连接OE ,OF ,ON ,OG ,在矩形ABCD 中,得到∠A=∠B=90°,CD=AB=4,由于AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点得到∠AEO=∠AFO=∠OFB=∠BGO=90°,推出四边形AFOE ,FBGO 是正方形,得到AF=BF=AE=BG=2,由勾股定理列方程即可求出结果. 解答:解:连接OE ,OF ,ON ,OG , 在矩形ABCD 中,∵∠A=∠B=90°,CD=AB=4,∵AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点, ∴∠AEO=∠AFO=∠OFB=∠BGO=90°, ∴四边形AFOE ,FBGO 是正方形, ∴AF=BF=AE=BG=2, ∴DE=3,∵DM 是⊙O 的切线, ∴DN=DE=3,MN=MG , ∴CM=5﹣2﹣MN=3﹣MN ,在R t △DMC 中,DM 2=CD 2+CM 2,∴(3+NM )2=(3﹣NM )2+42,∴NM=, ∴DM=3=,故选A .点评:本题考查了切线的性质,勾股定理,正方形的性质,正确的作出辅助线是解题的关键.二.填空题(本大题共10小题,每小题2分,共20分)7.4的平方根是;4的算术平方根是.考点:算术平方根;平方根.分析:如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.解答:解:4的平方根是±2;4的算术平方根是2.故答案为:±2;2.点评:此题主要考查了平方根和算术平方根的概念,算术平方根易与平方根的概念混淆而导致错误.8.若式子x+1在实数范围内有意义,则x的取值范围是.考点:二次根式有意义的条件.分析:根据二次根式的定义可知被开方数必须为非负数,列不等式求解.解答:解:根据题意得:x+1≥0,解得x≥﹣1,故答案为:x≥﹣1.点评:主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.9.计算5×153的结果是.考点:二次根式的乘除法.分析:直接利用二次根式的性质化简求出即可.解答:解:=×=5.故答案为:5.点评:此题主要考查了二次根式的乘除运算,正确掌握二次根式的性质是解题关键. 10.分解因式(a - b )(a - 4b )+ab 的结果是 .考点:因式分解-运用公式法. 分析:首先去括号,进而合并同类项,再利用完全平方公式分解因式得出即可. 解答: 解:(a ﹣b )(a ﹣4b )+ab =a 2﹣5ab+4b 2+ab =a 2﹣4ab+4b 2=(a ﹣2b )2.故答案为:(a ﹣2b )2. 点评:此题主要考查了多项式乘法以及公式法分解因式,熟练应用完全平方公式是解题关键.11.不等式组⎩⎨⎧2x +1>-12x +1 < 3的解集是 .考点:解一元一次不等式组. 分析:分别解每一个不等式,再求解集的公共部分. 解答:解:,解不等式①得:x >﹣1, 解不等式②得:x <1,所以不等式组的解集是﹣1<x <1. 故答案为:﹣1<x <1. 点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.12.已知方程x ²+mx +3=0的一个根是1,则它的另一个根是 ,m 的值是 . 考点:根与系数的关系;一元二次方程的解. 分析:利用一元二次方程的根与系数的关系,两根的和是﹣m ,两个根的积是3,即可求解. 解答:解:设方程的另一个解是a ,则1+a=﹣m ,1×a=3, 解得:m=﹣4,a=3. 故答案是:3,﹣4. 点评:本题考查了一元二次方程的根与系数的关系,正确理解根与系数的关系是关键.13.在平面直角坐标系中,点A 的坐标是(2,- 3),作点A 关于x 轴的对称点,得到点A',再作点A'关于y 轴的对称点,得到点A'',则点A''的坐标是( , ). 考点:关于x 轴、y 轴对称的点的坐标. 分析:分别利用x 轴、y 轴对称点的性质,得出A ′,A ″的坐标进而得出答案. 解答:解:∵点A 的坐标是(2,﹣3),作点A 关于x 轴的对称点,得到点A ′, ∴A ′的坐标为:(2,3),∵点A ′关于y 轴的对称点,得到点A ″, ∴点A ″的坐标是:(﹣2,3). 故答案为:﹣2;3. 点评:此题主要考查了关于x 轴、y 轴对称点的性质. (1)关于x 轴对称点的坐标特点: 横坐标不变,纵坐标互为相反数.即点P (x ,y )关于x 轴的对称点P ′的坐标是(x ,﹣y ). (2)关于y 轴对称点的坐标特点: 横坐标互为相反数,纵坐标不变.即点P (x ,y )关于y 轴的对称点P ′的坐标是(﹣x ,y ).14.某工程队有14名员工,他们的工种及相应每人每月工资如下表所示.现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名.与调整前相比,该工程队员工月工资的方差 (填“变小”,“不变”或“变大”). 考点: 方差. 分析:利用已知方差的定义得出每个数据减去平均数后平方和增大,进而得出方差变大. 解答:解:∵减少木工2名,增加电工、瓦工各1名,∴这组数据的平均数不变,但是每个数据减去平均数后平方和增大,则该工程队员工月工资的方差变大. 故答案为:增大. 点评:此题主要考查了方差的定义,正确把握方差中每个数据的意义是解题关键.15.如图,在⊙O 的内接五边形ABCDE 中,∠CAD=35°,则∠B +∠E= °.第15题图y 1=1考点:圆内接四边形的性质.分析:连接CE,根据圆内接四边形对角互补可得∠B+∠AEC=180°,再根据同弧所对的圆周角相等可得∠CED=∠CAD,然后求解即可.解答:解:如图,连接CE,∵五边形ABCDE是圆内接五边形,∴四边形ABCE是圆内接四边形,∴∠B+∠AEC=180°,∵∠CED=∠CAD=35°,∴∠B+∠E=180°+35°=215°.故答案为:215.点评:本题考查了圆内接四边形的性质,同弧所对的圆周角相等的性质,熟记性质并作辅助线构造出圆内接四边形是解题的关键.16.如图,过原点O的直线与反比例函数y1、y2的图像在第一象限内分别交于点A、B,且A为OB的中点.若函数y1= 1x,则y2与x的函数表达式是.考点:反比例函数与一次函数的交点问题.分析:过A作AC⊥x轴于C,过B作BD⊥x轴于D,由于点A在反比例函数y1=上,设A(a,),求得点B的坐标代入反比例函数的解析式即可求出结果.解答:解:过A作AC⊥x轴于C,过B作BD⊥x轴于D,∵点A在反比例函数y1=上,∴设A(a,),∴OC=a,AC=,∵AC⊥x轴,BD⊥x轴,∴AC∥BD,∴△OAC∽△OBD,∴,∵A 为OB 的中点, ∴=,∴BD=2AC=,OD=2OC=2a , ∴B (2a ,), 设y 2=, ∴k=2a •=4,∴y 2与x 的函数表达式是:y=. 故答案为:y=.点评:本题主要考查了待定系数法求反比例函数,相似三角形的判定和性质,反比例函数中k的几何意义要注意数形结合思想的运用. 三. 解答题(本大题共11小题,共88分)17.(6分)解不等式2(x +1) - 1 ≥ 3x +2,并把它的解集在数轴上表示出来. 考点: 解一元一次不等式;在数轴上表示不等式的解集. 分析:不等式去括号、移项合并、系数化为1即可求出不等式的解集,再在数轴上表示出不等式的解集即可. 解答:解:去括号,得2x+2﹣1≥3x+2, 移项,得2x ﹣3x ≥2﹣2+1, 合并同类项,得﹣x ≥1, 系数化为1,得x ≤﹣1,这个不等式的解集在数轴上表示为:第17题图–1–2–31230点评:本题考查了一元一次不等式的解法,在数轴上表示不等式的解集,>,≥向右画;<,≤向左画,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示. 18.(7分)解方程2x -3= 3x考点:解分式方程. 专题: 计算题. 分析:观察可得最简公分母是x (x ﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 解答:解:方程两边同乘以x (x ﹣3),得2x=3(x ﹣3). 解这个方程,得x=9.检验:将x=9代入x (x ﹣3)知,x (x ﹣3)≠0. 所以x=9是原方程的根. 点评:本题考查分式方程的解法,需要注意的是在解分式方程时需对得到的解进行检验.19.(7分)计算⎝⎛⎭⎫2a ²-b ² - 1a ² - ab ÷ a a +b考点:分式的混合运算. 分析:首先将括号里面通分运算,进而利用分式的性质化简求出即可. 解答:解:(﹣)÷=[﹣]×=[﹣]×=×=.点评:此题主要考查了分式的混合运算,正确进行通分运算是解题关键.20.(8分)如图,△ABC 中,CD 是边AB 上的高,且AD CD = CDBD.(1) 求证:△ACD ∽ △CBD ; (2) 求∠ACB 的大小.考点:相似三角形的判定与性质. 分析:(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD ∽△CBD ;(2)由(1)知△ACD ∽△CBD ,然后根据相似三角形的对应角相等可得:∠A=∠BCD ,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°. 解答:(1)证明:∵CD 是边AB 上的高, ∴∠ADC=∠CDB=90°,∵=.∴△ACD ∽△CBD ;(2)解:∵△ACD ∽△CBD , ∴∠A=∠BCD ,在△ACD 中,∠ADC=90°, ∴∠A+∠ACD=90°, ∴∠BCD+∠ACD=90°, 即∠ACB=90°. 点评:此题考查了相似三角形的判定与性质,解题的关键是:熟记相似三角形的判定定理与性质定理. 21.(8分)为了了解2014年某地区10万名大、中、小学生50米跑成绩情况,教育部门从这三类学生群体中各抽取了10%的学生进行检测,整理样本数据,并结合2010年抽样结果,得到下列统计图.第20题图A(1)本次检测抽取了大、中、小学生共名,其中小学生名;(2)根据抽样的结果,估计2014年该地区10万名大、中、小学生中,50米跑成绩合格的中学生人数为名;(3)比较2010年与2014年抽样学生50米跑成绩合格率情况,写出一条正确的结论.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据“教育部门从这三类学生群体中各抽取了10%的学生进行检测”,可得100000×10%,即可得到本次检测抽取了大、中、小学生共多少名,再根据扇形图可得小学生所占45%,即可解答;(2)先计算出样本中50米跑成绩合格的中学生所占的百分比,再乘以10万,即可解答;(3)根据条形图,写出一条即可,答案不唯一.解答:解:(1)100000×10%=10000(人),10000×45%═4500(人).故答案为:10000,4500;(2)100000×40%×90%=3600(人).故答案为:3600;(3)例如:与2010年相比,2014年该市大学生50米跑成绩合格率下降了5%(答案不唯一).点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.22.(8分)某人的钱包内有10元、20元和50元的纸币各1张.从中随机取出2张纸币.(1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.考点:列表法与树状图法.专题:计算题.分析:(1)先列表展示所有3种等可能的结果数,再找出总额是30元所占结果数,然后根据概率公式计算;(2)找出总额超过51元的结果数,然后根据概率公式计算.解答: 解:(1)列表:共有3种等可能的结果数,其中总额是30元占1种, 所以取出纸币的总额是30元的概率=;(2)共有3种等可能的结果数,其中总额超过51元的有2种, 所以取出纸币的总额可购买一件51元的商品的概率为.点评:本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,求出概率. 23.(8分)如图,轮船甲位于码头O 的正西方向A 处,轮船乙位于码头O 的正北方向C 处,测得∠CAO=45°.轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km /h 和36km /h .经过0.1h ,轮船甲行驶至B 处,轮船乙行驶至D 位,测得∠DBO=58°,此时B 处距离码头O 有多远?(参考数据:sin 58° ≈ 0.85,cos 58° ≈ 0.53,tan 58° ≈ 1.60)考点:解直角三角形的应用. 分析:设B 处距离码头Oxkm ,分别在Rt △CAO 和Rt △DBO 中,根据三角函数求得CO 和DO ,再利用DC=DO ﹣CO ,得出x 的值即可. 解答:解:设B 处距离码头Oxkm , 在Rt △CAO 中,∠CAO=45°,∴CO=AO •tan ∠CAO=(45×0.1+x )•tan45°=4.5+x , 在Rt △DBO 中,∠DBO=58°, ∵tan ∠DBO=,∴DO=BO •tan ∠DBO=x •tan58°, ∵DC=DO ﹣CO ,∴36×0.1=x •tan58°﹣(4.5+x ), ∴x=≈=13.5.因此,B 处距离码头O 大约13.5km . 点评:本题考查了解直角三角形的应用,熟练掌握三角形中的边角关系是解题的关键. 24.(8分)如图,AB ∥ CD ,点E 、F 分别在AB 、CD 上,连接EF ,∠AEF 、∠CFE 的平分线交于点G ,∠BEF 、∠DFE 的平分线交于点H . (1) 求证:四边形EGFH 是矩形.(2) 小明在完成(1)的证明后继续进行了探索.过G 作MN ∥ EF ,分别交AB 、CD 于点M 、N ,过H 作PQ ∥ EF ,分别交AB 、CD 于点P 、Q ,得到四边形MNQP .此时,他猜想四边形MNQP 是菱形,请在下列框图中补全他的证明思路.考点:菱形的判定;全等三角形的判定与性质;矩形的判定. 分析:(1)利用角平分线的定义结合平行线的性质得出∠FEH+∠EFH=90°,进而得出∠GEH=90°,进而求出四边形EGFH 是矩形;(2)利用菱形的判定方法首先得出要证▱MNQP 是菱形,只要证MN=NQ ,再证∠MGE=∠QFH 得出即可. 解答:(1)证明:∵EH 平分∠BEF ,∴∠FEH=∠BEF , ∵FH 平分∠DFE ,小明的证明思路第24题图C∵AB ∥CD ,∴∠BEF+∠DFE=180°,∴∠FEH+∠EFH=(∠BEF+∠DFE )=×180°=90°, ∵∠FEH+∠EFH+∠EHF=180°,∴∠EHF=180°﹣(∠FEH+∠EFH )=180°﹣90°=90°, 同理可得:∠EGF=90°, ∵EG 平分∠AEF , ∴∠EFG=∠AEF , ∵EH 平分∠BEF , ∴∠FEH=∠BEF ,∵点A 、E 、B 在同一条直线上, ∴∠AEB=180°,即∠AEF+∠BEF=180°,∴∠FEG+∠FEH=(∠AEF+∠BEF )=×180°=90°,即∠GEH=90°,∴四边形EGFH 是矩形;(2)解:答案不唯一:由AB ∥CD ,MN ∥EF ,PQ ∥EF ,易证四边形MNQP 是平行四边形,要证▱MNQP 是菱形,只要证MN=NQ ,由已知条件:FG 平分∠CFE ,MN ∥EF , 故只要证GM=FQ ,即证△MGE ≌△QFH ,易证 GE=FH 、∠GME=∠FGH .故只要证∠MGE=∠QFH ,易证∠MGE=∠GEF ,∠QFH=∠EFH ,∠GEF=∠EFH ,即可得证.点评:此题主要考查了矩形的判定以及菱形的判定和角平分线的性质,根据题意得出证明菱形的方法是解题关键.25.(10分)如图,在边长为4的正方形ABCD 中,请画出以A 为一个顶点,另外两个顶点在正方形ABCD 的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)第25题图A考点:作图—应用与设计作图;等腰三角形的判定;勾股定理;正方形的性质.分析:①以A为圆心,以3为半径作弧,交AD、AB两点,连接即可;②连接AC,在AC上,以A 为端点,截取1.5个单位,过这个点作AC的垂线,交AD、AB两点,连接即可;③以A为端点在AB上截取3个单位,以截取的点为圆心,以3个单位为半径画弧,交BC一个点,连接即可;④连接AC,在AC上,以C为端点,截取1.5个单位,过这个点作AC的垂线,交BC、DC两点,然后连接A与这两个点即可;⑤以A为端点在AB上截取3个单位,再作着个线段的垂直平分线交CD一点,连接即可.解答:解:满足条件的所有图形如图所示:点评:此题主要考查了作图﹣应用与设计作图,关键是掌握等腰三角形的判定方法.26.(8分)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB.(2)连接OE,交CD于点F,OE ⊥CD.求证:△ABE是等边三角形.考点:圆内接四边形的性质;等边三角形的判定与性质;圆周角定理.分析:(第26题)(1)根据圆内接四边形的性质可得∠A+∠BCD=180°,根据邻补角互补可得∠DCE+∠BCD=180°,进而得到∠A=∠DCE ,然后利用等边对等角可得∠DCE=∠AEB ,进而可得∠A=∠AEB ;(2)首先证明△DCE 是等边三角形,进而可得∠AEB=60°,再根据∠A=∠AEB ,可得△ABE 是等腰三角形,进而可得△ABE 是等边三角形. 解答: 证明:(1)∵四边形ABCD 是⊙O 的内接四边形, ∴∠A+∠BCD=180°, ∵∠DCE+∠BCD=180°, ∴∠A=∠DCE , ∵DC=DE ,∴∠DCE=∠AEB , ∴∠A=∠AEB ;(2)∵∠A=∠AEB , ∴△ABE 是等腰三角形, ∵EO ⊥CD , ∴CF=DF ,∴EO 是CD 的垂直平分线, ∴ED=EC , ∵DC=DE , ∴DC=DE=EC ,∴△DCE 是等边三角形, ∴∠AEB=60°,∴△ABE 是等边三角形. 点评:此题主要考查了等边三角形的判定和性质,以及圆内接四边形的性质,关键是掌握圆内接四边形对角互补.27.某企业生产并销售某种产品,假设销售量与产量相等.下图中的折线ABD 、线段CD 分别表示该产品每千克生产成本y 1(单位:元)、销售价y 2(单位:元)与产量x (单位:kg )之间的函数关系.(1)请解释图中点D 的横坐标、纵坐标的实际意义. (2)求线段AB 所表示的y 1与x 之间的函数表达式.(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?/kgy /(第27题)考点:二次函数的应用.分析:(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)根据线段AB经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(3)利用总利润=单位利润×产量列出有关x的二次函数,求得最值即可.解答:解:(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)设线段AB所表示的y1与x之间的函数关系式为y=k1x+b1,∵y=k1x+b1的图象过点(0,60)与(90,42),∴∴,∴这个一次函数的表达式为;y=﹣0.2x+60(0≤x≤90);(3)设y2与x之间的函数关系式为y=k2x+b2,∵经过点(0,120)与(130,42),∴,解得:,∴这个一次函数的表达式为y2=﹣0.6x+120(0≤x≤130),设产量为xkg时,获得的利润为W元,当0≤x≤90时,W=x[(﹣0.6x+120)﹣(﹣0.2x+60)]=﹣0.4(x﹣75)2+2250,∴当x=75时,W的值最大,最大值为2250;当90≤x130时,W=x[(﹣0.6x+120)﹣42]=﹣0.6(x﹣65)2+2535,∴当x90时,W=﹣0.6(90﹣65)2+2535=2160,由﹣0.6<0知,当x>65时,W随x的增大而减小,∴90≤x≤130时,W≤2160,因此当该产品产量为75kg时,获得的利润最大,最大值为2250.点评:本题考查了二次函数的应用,解题的关键是从实际问题中抽象出二次函数模型,难度不大.。
江苏省南京市2015年中考数学试题(WORD版,含解析)

.
【解析】
试题分析:过 A 作 AC⊥x 轴于 C,过 B 作 BD⊥x 轴于 D,∵点 A 在反比例函数 (a, ∴ ),∴OC=a,AC=
上,∴设 A
,∵AC⊥x 轴,BD⊥x 轴,∴AC∥BD,∴△OAC∽△OBD, ,∴BD=2AC= ,∴ ,
,∵A 为 OB 的中点,∴ ),设 . ,∴k=
5பைடு நூலகம்估计
介于( )
A.0.4 与 0.5 之间 【答案】C.
B.0.5 与 0.6 之间
C.0.6 与 0.7 之间
D.0.7 与 0.8 之间
【考点】估算无理数的大小.
【解析】 ∵
≈2.235,∴
≈1.235,∴
≈0.617,∴
介于 0.6 与 0.7 之间,故选 C.
6.如图,在矩形 ABCD 中,AB=4,AD=5,AD,AB,BC 分别与⊙O 相切于 E,F,G 三点,过点 D 作⊙O 的切线 BC 于点 M,切点为 N,则 DM 的长为( )
A.
B.
C.
D.
【答案】A.
【考点】切线的性质;矩形的性质.
【解析】
试题分析:连接 OE,OF,ON,OG,在矩形 ABCD 中,∵∠A=∠B=90° ,CD=AB=4,∵AD,AB, BC 分别与⊙O 相切于 E,F,G 三点,∴∠AEO=∠AFO=∠OFB=∠BGO=90° ,∴四边形 AFOE, FBGO 是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM 是⊙O 的切线,∴DN=DE=3,MN=MG, ∴CM=5﹣2﹣MN=3﹣MN,在 Rt△DMC 中, ∴ ,∴NM= ,∴DM= = , ,故选 A.
考点:1.条形统计图;2.用样本估计总体;3.扇形统计图. 22.某人的钱包内有 10 元、20 元和 50 元的纸币各 1 张,从中随机取出 2 张纸币. (1)求取出纸币的总额是 30 元的概率; (2)求取出纸币的总额可购买一件 51 元的商品的概率.
江苏省南京市2015年中考数学试题(WORD版,含答案)

第6题图F 南京市2015年初中毕业生学业考试数学试题一. 选择题(本大题共6小题,每小题2分,共12分) 1.计算︱- 5+3︱的结果是( )A. - 2B. 2C. - 8D. 82.计算(-xy ³)²的结果是( ) A. x ²y 6 B. -x ²y 6C. x ²y 9D. -x ²y 93.如图,在△ABC 中,DE ∥ BC ,AD DB = 12,则下列结论中正确的是()A. AE EC = 12B.DE BC = 12C.△ADE 的周长△ABC 的周长 = 13D.△ADE 的面积△ABC 的面积 = 134.某市2013年底机动车的数量是2×106辆,2014年新增3×105辆.用科学记数法表示该市2014年底机动车的数量是( )A. 2.3×105辆B. 3.2×105辆C. 2.3×106辆D. 3.2×106辆 5.估计 5 -12介于()A.0.4与0.5之间B. 0.5与0.6之间C. 0.6与0.7之间D. 0.7与0.8之间6.如图,在矩形ABCD 中,AB=4,AD=5,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点D 作⊙O 的切线交BC 于点M ,切点为N ,则DM 的长为( )A. 133B. 92C. 4313 D.2 5 二. 填空题(本大题共10小题,每小题2分,共20分)7.4的平方根是;4的算术平方根是.8.若式子x +1在实数范围内有意义,则x 的取值范围是 . 9.计算5×153的结果是 . 10.分解因式(a - b )(a - 4b )+ab 的结果是 .11.不等式组⎩⎨⎧2x +1>-12x +1 < 3的解集是 .12.已知方程x ²+mx +3=0的一个根是1,则它的另一个根是 ,m 的值是 . 13.在平面直角坐标系中,点A 的坐标是(2,- 3),作点A 关于x 轴的对称点,得到点A',再作点A'关于y 轴的对称点,得到点A'',则点A''的坐标是( , ).14.某工程队有14名员工,他们的工种及相应每人每月工资如下表所示.现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名.与调整前相比,该工程队员工月工资的方差 (填“变小”,“不变”或“变大”).15.如图,在⊙O 的内接五边形ABCDE 中,∠CAD=35°,则∠B +∠E= °.16.如图,过原点O 的直线与反比例函数y 1、y 2的图像在第一象限内分别交于点A 、B ,且A 为OB的中点.若函数y 1= 1x ,则y 2与x 的函数表达式是 .三. 解答题(本大题共11小题,共88分)17.(6分)解不等式2(x +1) - 1 ≥ 3x +2,并把它的解集在数轴上表示出来.18.(7分)解方程2x -3 = 3x19.(7分)计算⎝⎛⎭⎫2a ²-b ² - 1a ² - ab ÷ a a +b20.(8分)如图,△ABC 中,CD 是边AB 上的高,且AD CD =CDBD . (1) 求证:△ACD ∽ △CBD ; (2) 求∠ACB 的大小.第15题图y 1=1B 第17题图–1–2–31230第20题图A21.(8分)为了了解2014年某地区10万名大、中、小学生50米跑成绩情况,教育部门从这三类学生群体中各抽取了10%的学生进行检测,整理样本数据,并结合2010年抽样结果,得到下列统计图.(1)本次检测抽取了大、中、小学生共名,其中小学生名;(2)根据抽样的结果,估计2014年该地区10万名大、中、小学生中,50米跑成绩合格的中学生人数为名;(3)比较2010年与2014年抽样学生50米跑成绩合格率情况,写出一条正确的结论.22.(8分)某人的钱包内有10元、20元和50元的纸币各1张.从中随机取出2张纸币.(1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.23.(8分)如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,测得∠CAO=45°.轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km/h 和36km/h.经过0.1h,轮船甲行驶至B处,轮船乙行驶至D位,测得∠DBO=58°,此时B处距离码头O有多远?(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)24.(8分)如图,AB ∥CD,点E、F分别在AB、CD上,连接EF,∠AEF、∠CFE的平分线交于点G,∠BEF、∠DFE的平分线交于点H.(1)求证:四边形EGFH是矩形.(2)小明在完成(1)的证明后继续进行了探索.过G作MN ∥EF,分别交AB、CD于点M、N,过H东北OBA作PQ ∥ EF ,分别交AB 、CD 于点P 、Q ,得到四边形MNQP .此时,他猜想四边形MNQP 是菱形,请在下列框图中补全他的证明思路.25.(10分)如图,在边长为4的正方形ABCD 中,请画出以A 为一个顶点,另外两个顶点在正方形ABCD 的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)26.(8分)如图,四边形ABCD 是⊙O 的内接四边形,BC 的延长线与AD 的延长线交于点E ,且DC=DE . (1) 求证:∠A=∠AEB .(2) 连接OE ,交CD 于点F ,OE ⊥ CD .求证:△ABE 是等边三角形.27.某企业生产并销售某种产品,假设销售量与产量相等.下图中的折线ABD 、线段CD 分别表示该产品每千克生产成本y 1(单位:元)、销售价y 2(单位:元)与产量x (单位:kg )之间的函数关系. (1)请解释图中点D 的横坐标、纵坐标的实际意义. (2)求线段AB 所表示的y 1与x 之间的函数表达式.(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?小明的证明思路 第24题图B C 第25题图A(第26题)y /江苏省历年考试真题第11 页共11 页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014/2015学年度第二学期第二阶段学业质量监测试卷九年级数学注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.2.答选择题必须用2B 铅笔将答题卷上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卷上的指定位置,在其他位置答题一律无效.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题..卷.相应位置....上) 1.-12的倒数是A .2B .12C .-2D .-122.计算2x 2÷x 3的结果是 A .xB .2xC .x-1D .2x -13.下列函数图像中,既是中心对称图形又是轴对称图形的是4.□ABCD 中,CE 平分∠BCD .若BC =10,AE =4,则□ABCD 的周长是 A .28 B .32C .36D .405.为了说明命题“当b <0时,关于x 的一元二次方程x 2+bx +2=0必有实数解”是假命题,可以举的一个反例是 A .b =2B .b =3C .b =-2D .b =-36.如图,⊙O 的半径为1,A 为⊙O 上一点,过点A 的直线l 交⊙O 于点B ,将直线l 绕点A 旋转180°,当AB 的长度由1变为3时,l 在圆内扫过的面积为ABDC(第4题)EA .π6B .π3C .π3 或 π2+ 3D .π6 或 π2+ 3 2二、填空题(本大题共10小题,每小题2分,共20分. 不需写出解答过程,请把答案直接填写在答题..卷相应位置.....上) 7.某时刻在南京中华门监测点监测到PM 2.5的含量为65微克/米3,即0.000065克/米3,将0.000065用科学记数法表示为 ▲ . 8.计算8-6×13的值是 ▲ . 9.如图,∠ECB =92°,CD ∥AB ,∠B =57°,则∠1= ▲ °.10.根据不等式的基本性质,若将“6a>2”变形为“6<2a ”,则a 的取值范围为 ▲ .11.为了了解某小区居民的用水情况,随机抽查了该小区20户家庭的月用水量,数据见下表:这20户家庭平均月用水量是 ▲ m 3.12.如图,把△ABC 绕点C 按顺时针方向旋转35°,得到△A ′B ′C ,A ′B ′交AC 于点D .若∠A ′DC =90°,则∠A = ▲ °.13.如图,⊙O 是△ABD 的外接圆,AB =AD ,点C 在⊙O 上,若∠C14.如图,在菱形OABC 中,点A 的坐标是(3,1),点C 的横坐标是215形.若大正六边形的面积为S 1,小正六边形的面积为S 2,则S 1S 2BACD B' A'(第12题)(第9题)ABCE 1(第13题)值是 ▲ .16.如图,△ABC 和△BOD 都是等腰直角三角形,∠ACB =∠BDO =90°,且点A 在反比例函数y =kx(k >0)的图像上,若OB 2-AB 2=10,则k 的值为 ▲ . 三、解答题(本大题共11小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解不等式组⎩⎪⎨⎪⎧2x -1>-5,4-x 3≥x +12,并写出不等式组的整数解.18.(6分)化简:1-a -2a ÷a 2-4a 2+a.19.(8分)在Rt △ABC 中,∠ACB =90°.(1)作AB 的垂直平分线l ,交AB 于点D ,连接CD ,分别作∠ADC 、∠BDC 的平分线,交AC 、BC 于点E 、F (尺规作图,不写作法,保留作图痕迹);(2)求证:四边形CEDF 是矩形.20.(8分)小明有2件上衣,分别为红色和蓝色,有3条裤子, 其中2条为蓝色、1条为棕色.(1)小明任意拿出1条裤子,是蓝色裤子的概率是 ▲ ;(2)小明任意拿出1件上衣和1条裤子,求上衣和裤子恰好都是蓝色的概率.(第19题)ABC(第15题)21.(8分)为了推动阳光体育运动的广泛开展,引导学生积极参加体育锻炼,某校九年级准备购买一批运动鞋供学生借用,现从九年级各班随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(1)接受随机抽样调查的学生人数为 ▲ ,图①中m 的值为 ▲ ; (2)在本次调查中,学生鞋号的众数为 ▲ 号,中位数为 ▲ 号;(3)根据样本数据,若该年级计划购买100双运动鞋,建议购买35号运动鞋多少双?22.(8分)某工厂经过两年时间将某种产品的产量从每年10000台提高到14400台.求该产品产量平均每年的年增长率.23.(8分)如图,已知∠ABM =37°,AB =20,C 是射线BM 上一点.(1)在下列条件中,可以唯一确定BC 长的是 ▲ ;(填写所有符合条件的序号)① AC =13;② tan ∠ACB =125; ③连接AC ,△ABC 的面积为126. (2)在(1)的答案中,选择一个作为条件,画出草图,求BC .(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)AM(第23题)34号35号 36号37号 38号 九年级抽样学生鞋号条形统计图 九年级抽样学生鞋号扇形统计图35号 30% 34号m %10% 38号 37号 36号20%25% 图①图②(第21题)24.(8分)某种洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续的过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示.根据图像解答下列问题:(1)洗衣机的进水时间是▲分钟,清洗时洗衣机中的水量是▲升;(2)已知洗衣机的排水速度为每分钟19升.①求排水时y与x之间的表达式;②洗衣机中的水量到达某一水位后13.9分钟又到达该水位,求该水位为多少升?25.(8分)已知二次函数y=(x-1) (x-a-1)(a为常数,且a>0).(1)求证:不论a为何值,该二次函数的图像总经过x轴上一定点;(2)设该函数图像与x轴的交点为A、B(点A在点B的左侧),与y轴的交点为C,△ABC的面积为1.①求a的值;②D是该函数图像上一点,且点D的横坐标是m,若S△ABD=18S△ABC,直接写出m的值.(第24题)26.(9分)如图,AB 是⊙O 的直径,C 是AB⌒ 的中点,延长AC 至点D ,使AC =CD ,DB 的延长线交CE 的延长线于点F ,AF 交⊙O 于点M ,连接BM . (1)求证:DB 是⊙O 的切线;(2)若⊙O 的半径为2,E 是OB 的中点,求BM 的长.27.(11分)在一个三角形中,若一条边等于另一条边的两倍,则称这种三角形为“倍边三角形”.(1)下列三角形是倍边三角形的是( ▲ ) A .顶角为30°的等腰三角形B .底角为30°的等腰三角形C .有一个角为30°的直角三角形D .有一个角为45°的直角三角形(2)如图①,在△ABC 中,AB =AC ,延长AB 到D ,使BD =AB ,E 是AB 的中点.求证:△DCE 是倍边三角形;(3)如图②,Rt △ABC 中,∠C =90°,AC =3,BC =6,若点D 在边AB 上(点D 不与A 、B 重合),且△BCD 是倍边三角形,求BD 的长.(第26题)ABCDE①ABC②(第27题)2014/2015学年度第二学期第二阶段学业质量监测试卷九年级数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(每小题2分,共计12分)二、填空题(每小题2分,共计20分)7.6.5×10-5 8. 2 9.35 10.a <0 11.10 12.5513.38° 14.(5,1+6) 15.4316.5三、解答题(本大题共11小题,共计88分)17.(本题6分)解:由①得,x >-2.………………………………………………………… 2分由②得,x ≤1. ……………………………………………………… 4分 ∴-2<x ≤1.…………………………………………………………… 5分 ∴不等式组的整数解为-1,0,1.…………………………………… 6分18.(本题6分)解:原式=1-a -2a ·a (a +1)(a +2)( a -2)…………………………………………… 3分=1-a +1a +2 …………………………………………………………… 4分=1a +2. ………………………………………………………………6分 19.(本题8分)解:(1)画图正确.…………………………………………………………… 4分 (2)由题意得,点D 是AB 的中点.∵∠ACB =90°,∴CD =AD =BD =12AB . ………………………5分在△ACD 中,∵CD =AD ,ED 平分∠ADC , ∴ED ⊥AC .即∠CED =90°.同理∠DFC =90°.……………………7分 ∵∠ACB =∠CED =∠DFC =90°, ∴四边形CEDF 是矩形.…………… 8分20.(本题8分)解:(1)23.…………………………………………………………………… 2分A CABCDEF(2)小明任意拿出1件上衣和1条裤子,所有可能出现的结果有:红蓝、红蓝、红棕、蓝蓝、蓝蓝、蓝棕,共有6种,它们出现的可能性相同.所有的结果中,满足“上衣和裤子恰好都是蓝色’”(记为事件A )的结果有2种,所以P(A )=13.…………………………………………………………… 8分 21.(本题8分)解:(1)40,15.…………………………………………………………… 2分 (2)35,36.…………………………………………………………… 4分 (3)根据题意得:100×30%=30(双),建议购买35号运动鞋30双.………8分22.(本题8分)解:设该产品产量平均每年的增长率为x .由题意可得:10000(1+x )2=14400.……………………………………4分 解得:x 1=20%,x 2=-220%(舍去).………………………………7分 答:该产品的该产品产量平均每年的增长率为20%.……………… 8分23.(本题8分)解:(1)②③(每个1分,多写不得分)…………………………………… 2分 (2)方案一:选②作AD ⊥BC 于D ,……………………………3分则∠ADB =∠ADC =90°.在Rt △ABD 中,∵∠ADB =90°,∴AD =AB ·sin B =12,BD =AB ·cos B =16.……………………………5分 在Rt △ACD 中,∵∠ADC =90°,∴CD =AD tan ∠ACB =5.…………………………………………………7分∴BC =BD +CD =21.………………………………………………… 8分 方案二:选③作CE ⊥AB 于E ,则∠BEC =90°.……………………………………3分 由S △ABC =12AB ·CE 得CE =12.6.………………………………………5分在Rt △BEC 中,∵∠BEC =90°, ∴BC =CEsin B=21.……………………8分 24.(本题8分)解:(1)4;40.………………………………………………………………… 2分(2)①y =40-19(x -15),即y =-19x +325;……………………… 4分②设洗衣机中的水量第一次到达某一水位的时间为x 分钟,则第二次达到该水位时时间为(x +13.9)分钟.根据题意得10 x =-19(x +13.9)+325.………………………… 6分解得x =2.1.……………………………………………………… 7分A BC DE此时y =10×2.1=21.答:该水位为21升.…………………………8分25.(本题8分)解:(1)令y =0,则(x -1) (x -a -1)=0.………………………………… 1分 解得x 1=1,x 2=1+a .∴二次函数的图像与x 轴的交点为(1,0)、(1+a ,0). ∴不论a 为何值,该二次函数的图像经过x 轴上的定点(1,0).………2分 (2)①由题意得,AB =a , OC =1+a ,(a >0)∴S △ABC =12AB ·OC =12a (a +1). ∴12a (a +1)=1.…………………………… 4分解得a 1=1,a 2=-2(舍去).∵a >0,∴a =1. ………………………5分(3)m =3+22或3-22或32.……………………………………………… 8分26.(本题9分)(1)证明:连接OC .∵C 是AB ⌒ 的中点,∴∠COA =12∠AOB =90°.∵AC =CD ,AO =BO ,∴CO 是△ADB ∴CO ∥DB .……………………………………… 2分 ∴∠ABD =∠COA =90°. ∴BD ⊥OB . 又∵点B 在⊙O 上,∴DB 是⊙O 的切线.…………………………………………………………4分(2)解:∵CO ∥DB ,∴∠COE =∠FBE ,∠OCE =∠BFE .∵E 是OB 的中点,∴OE =EB .∴△COE ≌△FBE .…………………………5分∴BF =CO =2.………………………………………………………………………………………6分 在Rt △ABF 中,由勾股定理得,AF =25. sin ∠BAM =BF AF =55. ∵AB 是直径,∴∠AMB =90°.在Rt △ABM 中, sin ∠BAM =BM AB =55,∴BM =455.……………………9分27.(本题11分)解:(1)C .……………………………………………………………………………2分 (2)∵BD =AB =AC ,∴AD =2AC .即ADAC =2.∵E 是AB 的中点,∴AB =2AE .∴AC =2AE .即ACAE=2.………………3分 ∴AD AC =ACAE .又∵∠A =∠A ,∴△ACD ∽△AEC .∴CD CE =ADAC=2.∴△DCE 是倍边三角形.……………………………………………… 5分BDF(3)当BC =2BD 时,BD =3.……………………………………………… 6分 当BC =2CD 时,如图①,CD =3,作CE ⊥AB 于E ,tan A =CE AE =BCAC=2,设AE =x ,则CE =2x ,AC∴5x =3.x =355.在△ACD 中,∵CD =AC =3,CE ⊥AB , ∴AD =2 AE =655.∴BD =AB -AD =955.………………………………………………… 8分当BD =2CD 时,如图②,作DF ⊥BC 于F ,tan B =DF BF =AC BC =12,设DF =y ,则BF =2y ,∴CD =52y ,CF =12y . ∵BC =BF +CF ,∴6=2y +12y .解得y =125. BD =1255.同理,当CD =2BD 时,DF =219-45,BD =295-455.综上所述,BD =3或955或1255或295-455.…………………… 11分(说明:最后一个答案保留6519+2不扣分)B①BCF ②。