江苏省包场高级中学高三数学讲义:专题六 解决三角函数的图像与性质问题
高三数学三角函数的图象与性质苏教版知识精讲

高三数学三角函数的图象与性质苏教版【本讲教育信息】一. 教学内容:三角函数的图象与性质二. 教学目的:了解三角函数的周期性,知道三角函数y =A sin (ωx +φ),y =A cos (ωx +φ)的周期为2T ωπ=。
能画出y =sin x ,y =cos x ,y =tan x 的图象,并能根据图象理解正弦函数、余弦函数在[0,2π],正切函数在(-π2,π2)上的性质(如单调性、最大值和最小值、图象与x 轴的交点等)。
了解三角函数 y =A sin (ωx +φ)的实际意义及其参数A ,ω,φ对函数图象变化的影响;会画出y =A sin (ωx +φ)的简图,能由正弦曲线 y =sin x 通过平移、伸缩变换得到y =A sin (ωx +φ)的图象。
会用三角函数解决一些简单的实际问题,体会三角函数是描述周期变化现象的重要函数模型。
三. 教学重点:三角函数的性质与运用教学难点:三角函数的性质与运用。
四. 知识归纳1. 正弦函数、余弦函数、正切函数的图像2. 三角函数的单调区间:x y sin =的递增区间是⎥⎦⎤⎢⎣⎡+-2222ππππk k ,)(Z k ∈, 递减区间是⎥⎦⎤⎢⎣⎡++23222ππππk k ,)(Z k ∈; x y cos =的递增区间是[]πππk k 22,-)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈, tan y x =的递增区间是⎪⎭⎫ ⎝⎛+-22ππππk k ,)(Z k ∈,3. 函数B x A y ++=)sin(ϕω),(其中00>>ωA 最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是πω2=f ,相位是ϕω+x ,初相是ϕ;其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心。
4.由y =sinx 的图象变换出y =sin(ωx+ϕ)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现.无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少.途径一:先平移变换再周期变换(伸缩变换)先将y =sinx 的图象向左(ϕ>0)或向右(ϕ<0=平移|ϕ|个单位,再将图象上各点的横坐标变为原来的ω1倍(ω>0),便得y =sin(ωx+ϕ)的图象。
高中数学第一章三角函数1.3三角函数的图象和性质1.3.3函数y=Asin(ωx+φ)的图象课件苏教

中的第三点和第五点),有
π3ω+φ=π,
ω=2.
56πω+φ=2π,解得φ=π3.
∴y=3sin(2x+π3).
法三:(图象变换法)
由 T=π,点(-π6,0),A=3 可知图象由 y=3sin 2x 向左
平移π6个单位长度而得,所以有 y=3sin 2(x+π6),
即 y=3sin(2x+π3),且 ω=2,φ=π3.
2
第八页,共42页。
2.(2014·高考江苏卷)已知函数 y=cos x 与 y=sin(2x+ φ)(0≤φ<π),它们的图象有一个横坐标为π3的交点,则 φ 的
π 值是____6____. 解析:利用函数 y=cos x 与 y=sin(2x+φ)(0≤φ<π)的交点横 坐标,列方程求解.
由题意,得 sin2×π3+φ=cos π3,因为 0≤φ<π,所以 φ=π6.
2.已知函数 y=Asin(ωx+φ),ω>0,且|φ|<π2的图象的一段 如图所示,求此函数的解析式.
第二十七页,共42页。
解:由图易知 A= 2,T2=|10-2|=8,所以 T=16. 又因为 T=|2ωπ|,ω>0,所以 ω=π8. 因为点(2, 2)在图象上,所以 y= 2sin(π8×2+φ)= 2, 所以 sin(π4+φ)=1,所以π4+φ=2kπ+π2(k∈Z), 又|φ|<π2,所以 φ=π4,所以 y= 2sin(π8x+π4).
第十五页,共42页。
法二:①把 y=sin x 的图象上所有点的横坐标伸长到原来 的 2 倍(纵坐标不变),得到 y=sin12x 的图象; ②把 y=sin12x 图象上所有的点向右平移π2个单位长度,得到 y=sin12(x-π2)=sin(12x-π4)的图象; ③把 y=sin(12x-π4)的图象上所有点的纵坐标伸长到原来的 3 倍(横坐标不变),就得到 y=3sin(12x-π4)的图象.
高三数学一轮复习讲义三角函数图像与性质

课题:三角函数的图像与性质知识点一、正弦、余弦、正切函数的图像与性质函数性质sinx y =cosx y =tanx y =定义域RR⎭⎬⎫⎩⎨⎧∈+≠Z k k x x ,2ππ图像值域[]1,1-[]1,1-R 对称性对称轴:()Z k k x ∈+=2ππ对称中心:()()Z k k ∈0,π对称轴:()z k k x ∈=π 对称中心:(,0)2k ππ+无对称轴对称中心:()Z k k ∈⎪⎭⎫⎝⎛0,2π 周期 π2π2π奇偶性奇 偶奇单调性单调递增区间()Z k k k ∈⎥⎦⎤⎢⎣⎡+-22,22ππππ 单调递减区间()Z k k k ∈⎥⎦⎤⎢⎣⎡++232,22ππππ单调递增区间[]()Z k k k ∈-πππ2,2单调递减区间[]()Z k k k ∈+πππ2,2单调递增区间Z k k k ∈+-)2,2(ππππ最值当22ππ+=k X 时,y 的最大值:1;22ππ-=k X 时,y 的最小值:1,其中Z k ∈当πk x 2=时,y 的最大值:1;当ππ+=k x 2时,y 的最小值:1,其中Z k ∈无最大值,无最小值求解三角函数:sin ()y A x x ωϕ=+性质常用结论与技巧; (1)运用整体换元法求解单调区间与对称性:类比y =sin x 的性质,只需将y =A sin(ωx +φ)中的“ωx +φ”看成y =sin x 中的“x ”,采用整体代入求解.①令ωx +φ=k π+π2(k ∈Z),可求得对称轴方程;②令ωx +φ=k π(k ∈Z),可求得对称中心的横坐标;(2)周期性:函数y =A sin(ωx +φ)(或y =A cos(ωx +φ))的最小正周期T =2π|ω|,注意y =Atan (ωx +φ)的周期T =π|ω|.(3)最值(或值域):求最值(或值域)时,一般要确定u =ωx +φ的范围,然后结合函数y =sin u 或y =cos u 的性质可得函数的最值(值域).【典型例题】【例1】函数cos()3y x π=-的单调增区间是( )A .42,2()33k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ B .22,2()33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦C .32,2()88k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦ D .52,2()66k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦【例2】函数[]1sin ,2,223y x x πππ⎛⎫=+∈-⎪⎝⎭的单调递增区间是( )A .52,3ππ⎡⎤--⎢⎥⎣⎦ B .52,,233ππππ⎡⎤⎡⎤--⎢⎥⎢⎥⎣⎦⎣⎦和 C .5,33ππ⎡⎤-⎢⎥⎣⎦ D .,23ππ⎡⎤⎢⎥⎣⎦ 【例3】函数)62cos()(π+=x x f 的一条对称轴为( )A .6πB .125πC .32πD .32π-【例4】函数2()cos cos f x x x x =+([0,]x π∈)的单调递减区间为( )A .[0,]3πB .2[,]63ππC .5[,]36ππD .5[,]6ππ 【例5】函数()sin 24f x x π⎛⎫=- ⎪⎝⎭在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值是( )A. 1-B.C.D. 0 【例6】已知函数2()sin 2+sin 22cos 1.33=+-+-∈f x x x x x R ππ()(),(Ⅰ)求函数)(x f 的最小正周期; (Ⅱ)求函数)(x f 在区间[,]44ππ-上的最大值和最小值.【举一反三】1.余弦函数cos()4y x π=+在下列哪个区间为减函数( )A .3,44ππ⎡⎤-⎢⎥⎣⎦B .[],0π-C .3,44ππ⎡⎤-⎢⎥⎣⎦ D .,22ππ⎡⎤-⎢⎥⎣⎦2.函数的最小正周期为( )A. B. C. D.3.下列函数中,周期为π,且在⎥⎦⎤⎢⎣⎡2,4ππ上为减函数的是( )A.)2sin(π+=x y B.)2cos(π+=x y C.)22cos(π+=x y D.)22sin(π+=x y4.已知函数2()3cos sin f x x x x =-,则()f x 的最小正周期为 ;单调减区间为 .5.若函数()()13cos ,36f x x x x ππ=+-≤≤,则()f x 的最大值为( )A.1B.2 3 31 6.已知函数()sin sin()6f x x x π=+.(1)求()f x 的最小正周期;(2)当[0,]2x π∈时,求()f x 的取值范围.【课堂巩固】1.已知函数))(32cos(3)(R x x x f ∈-=π,下列结论错误的是( )A .函数)(x f 的最小正周期为πB .函数)(x f 图象关于点)0,125(π对称 C. 函数)(x f 在区间]2,0[π上是减函数 D .函数)(x f 的图象关于直线6π=x 对称2.设函数()sin()3)f x x x ωϕωϕ=++(0ω>,||2πϕ<)的最小正周期为π,且()()f x f x -=,则( )A .()f x 在(0,)2π单调递减 B .()f x 在3(,)44ππ单调递减 C .()f x 在(0,)2π单调递增 D .()f x 在3(,)44ππ单调递增 3.函数3sin 6y x π⎛⎫=+⎪⎝⎭的单调递增区间为_________.4.函数x x y 2cos 32sin -=的图象的一条对称轴方程为( ) A .12π=x B .12π-=x C. 6π=x D .6π-=x5.函数的最小正周期是__________ .6.函数2sin 2y x ππ⎛⎫=+⎪⎝⎭的最小正周期是 . 7.已知函数3()2sin cos()32f x x x π=++. (Ⅰ)求函数()f x 的单调递减区间;(Ⅱ)求函数()f x 在区间[0,]2π上的最大值及最小值.【课后练习】正确率:________1.当函数()取得最大值时,( )A. B. C. D.2.设函数()()()sin 30,2f x x x πωϕωϕωϕ⎛⎫=++>< ⎪⎝⎭的最小正周期为π,且()()f x f x -=,则( ) A .()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 B .()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 C .()f x 在0,2π⎛⎫ ⎪⎝⎭单调递增 D .()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 3.已知函数()()()2sin 20f x x θθπ=-+<<,14f π⎛⎫=-⎪⎝⎭则()f x 的一个单调递减区间是( ) A .5,1212ππ⎛⎫-⎪⎝⎭ B .7,1212ππ⎛⎫ ⎪⎝⎭ C .,63ππ⎛⎫- ⎪⎝⎭ D .5,1212ππ⎛⎫- ⎪⎝⎭4.函数()sin cos()6f x x x π=--的值域为( )A .33⎡⎢⎣⎦B .3,3⎡-⎣C .[]2,2-D .[]1,1-5.函数)2sin()(ϕ-=x A x f 的图象关于点)0,34(π成中心对称,则ϕ最小的ϕ的值为( ) A .3π B .6πC .3π-D .6π- 6.已知角ϕ的终边经过点(3,4)P -,函数()sin()(0)f x x ωϕω=+>图像的相邻两条对称轴之间的距离等于2π,则()4f π=( ) A .35- B .35C .45-D .457.设函数()sin(2)cos(2)44f x x x ππ=+++,则( )A 、()y f x =在(0,)2π单调递增,其图象关于直线4x π=对称B 、()y f x =在(0,)2π单调递增,其图象关于直线2x π=对称C 、()y f x =在(0,)2π单调递减,其图象关于直线4x π=对称D 、()y f x =在(0,)2π单调递减,其图象关于直线2x π=对称8.函数sin 22y x x =的图象的一条对称轴方程为( ) A. π12x =B.π12x =-C.π6x =D.π6x =-9.已知函数2()cos cos f x x x x =+,x R ∈.(1)求4()3f π;(2)求函数()f x 的最小正周期与单调减区间.。
2020届江苏省高考数学二轮复习专题三角函数的图像和性质教案

奇函数
偶函数
奇函数
2. 用五点法画y=Asin(ωx+φ)一个周期内的简图时,要找五个特征点.
如下表所示.
x
ωx+φ
0
π
2π
y=
Asin(ωx+φ)
0
A
0
-A
0
3. 函数y=sinx的图象经变换得到y=Asin(ωx+φ)的图象的步骤如下:
4. 图象的对称性
函数y=Asin(ωx+φ) (A>0,ω>0)的图象是轴对称也是中心对称图形,具体如下:
3.将函数y=sin(x- )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得图象向左平移 个单位,则所得函数图象对应的解析式为
4.已知函数 ,若对任意实数 ,都存在唯一的实数 ,使得 ,则实数 的范围是▲.
5.先将函数 图像向右平移 个单位,再将得到的函数图像上的每一个点的横坐标变为原来的 (纵坐标不变),则所得图形对应的函数为
课题:三角函数的图象和性质
授课科目:数学
学生年级:
授课教师:
授课日期:
教学目标
1.能画出y=sinx,y=cosx,y=tanx的图象,了解函数的周期性。
2.理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、最大值和最小值、图象与x轴的交点等),理解正切函数在区间 内的单调性。
教学重难点
1.教学重点:函数y=sinx,y=cosx,y=tanx的图象和性质;
对称轴:x=kπ(k∈Z);对称中心:(kπ+ ,0) (k∈Z)
对称中心: (k∈Z)
周期
2π
2π
π
单调性
单调增区间
[2kπ- ,2kπ+ ](k∈Z);
2021版江苏高考数学复习讲义:三角函数的图象与性质含答案

2.函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +π4的最小正周期是 .π [T =2π2=π.]3.y =sin ⎝⎛⎭⎪⎫2x -π4的单调减区间是 .⎣⎢⎡⎦⎥⎤3π8+kπ,7π8+kπ(k ∈Z ) [由π2+2k π≤2x -π4≤3π2+2k π,k ∈Z 得3π8+k π≤x ≤7π8+k π,k ∈Z .] 4.y =3sin ⎝⎛⎭⎪⎫2x -π6在区间上的值域是 .考点1 三角函数的定义域和值域D [由正切函数的定义域,得2x +π6≠k π+π2,k ∈Z , 即x ≠kπ2+π6(k ∈Z ),故选D.] 2.(20xx·全国卷Ⅰ)函数f (x )=sin⎝ ⎛⎭⎪⎫2x +3π2-3cos x 的最小值为 . -4 [f (x )=sin ⎝ ⎛⎭⎪⎫2x +3π2-3cos x =-cos 2x -3cos x =-2cos 2x -3cos x +1,令cos x =t ,则t ∈[-1,1].f (t )=-2t 2-3t +1=-2⎝⎛⎭⎪⎫t +342+178, 易知当t =1时,f (t )min =-2×12-3×1+1=-4. 故f (x )的最小值为-4.] 3.已知函数f (x )=2a sin ⎝⎛⎭⎪⎫2x +π6+a +b (a <0)的定义域为⎣⎢⎡⎦⎥⎤0,π2,值域为[-5,1],则a +b = .-1 [因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,所以sin ⎝ ⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1.因为a <0,所以f (x )∈[3a +b ,b ].因为函数的值域为[-5,1],所以3a +b =-5,b =1,所以a =-2,所以a +b =-1.]4.函数y =sin x -cos x +sin x cos x 的值域为 .[设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sinx ·cos x ,sin x cos x =1-t22,且-2≤t ≤2. ∴y =-t22+t +12=-12(t -1)2+1,t ∈[-2,2]. 当t =1时,y max =1;当t =-2时,y min =-12-2.∴函数的值域为.]求解三角函数的值域(最值)常见的几种类型(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值).(2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值).(3)形如y =a sin 3x +b sin 2x +c sin x +d ,类似于(2)进行换元,然后用导数法求最值.考点2 三角函数的单调性(1)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( )(2)(20xx·大连模拟)函数y =12sin x +32cos x 的单调递增区间是 .(1)B (2) [(1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得kπ2-π12<x <kπ2+5π12(k ∈Z ), 所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝⎛⎭⎪⎫kπ2-π12,kπ2+5π12(k ∈Z ),故选B.(2)∵y =12sin x +32cos x =sin ⎝ ⎛⎭⎪⎫x +π3,由2k π-π2≤x +π3≤2k π+π2(k ∈Z ),解得2kπ-5π6≤x≤2kπ+π6(k∈Z).∴函数的单调递增区间为 (k∈Z),又x∈,∴单调递增区间为.]本例(2) 在整体求得函数y=1 2sin x+32cos x的增区间后,采用对k赋值的方式求得x∈上的区间.根据函数的单调性求参数1.若函数f (x )=sinωx (ω>0)在区间上单调递增,在区间上单调递减,则ω= .32 [由已知得T 4=π3,∴T =4π3,∴ω=2πT =32.] 2.函数f (x )=sin ⎝⎛⎭⎪⎫-2x+π3的单调减区间为 .[由已知,得函数为y =-sin ⎝ ⎛⎭⎪⎫2x -π3,欲求函数的单调减区间,只需求y =sin ⎝ ⎛⎭⎪⎫2x -π3的单调增区间即可.由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故所求函数的单调减区间为(k ∈Z ).]考点3 三角函数的周期性、奇偶性、对称性。
高三数学第二轮专题讲座复习:灵活运用三角函数的图象和性质解题.doc

高三数学第二轮专题讲座复习:灵活运用三角函数的图象和性质解题高考要求三角函数的图象和性质是高考的热点,在复习时要充分运用数形结合的思想,把图象和性质结合起来 本节主要帮助考生掌握图象和性质并会灵活运用 重难点归纳1 考查三角函数的图象和性质的基础题目,此类题目要求考生在熟练掌握三角函数图象的基础上要对三角函数的性质灵活运用1-1y=sinx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoy x1-1y=cosx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoyxy=tanx3π2ππ2-3π2-π-π2oyxy=cotx3π2ππ22π-π-π2oyx2 三角函数与其他知识相结合的综合题目,此类题目要求考生具有较强的分析能力和逻辑思维能力 在今后的命题趋势中综合性题型仍会成为热点和重点,并可以逐渐加强3 三角函数与实际问题的综合应用此类题目要求考生具有较强的知识迁移能力和数学建模能力,要注意数形结合思想在解题中的应用典型题例示范讲解例1设z 1=m +(2-m 2)i , z 2=cos θ+(λ+sin θ)i , 其中m ,λ,θ∈R ,已知z 1=2z 2,求λ的取值范围错解分析 考生不易运用等价转化的思想方法来解决问题技巧与方法 对于解法一,主要运用消参和分离变量的方法把所求的问题转化为二次函数在给定区间上的最值问题;对于解法二,主要运用三角函数的平方关系把所求的问题转化为二次函数在给定区间上的最值问题解法一 ∵z 1=2z 2,∴m +(2-m 2)i =2cos θ+(2λ+2sin θ)i ,∴⎩⎨⎧+=-=θλθsin 222cos 22m m∴λ=1-2cos 2θ-sin θ=2sin 2θ-si n θ-1=2(s in θ-41)2-89 当sin θ=41时λ取最小值-89,当sin θ=-1时,λ取最大值2 解法二 ∵z 1=2z 2 ∴⎩⎨⎧+=-=θλθsin 222cos 22m m ∴⎪⎪⎩⎪⎪⎨⎧--==222sin 2cos 2λθθm m , ∴4)22(4222λ--+m m =1 ∴m 4-(3-4λ)m 2+4λ2-8λ=0, 设t =m 2,则0≤t ≤4, 令f (t )=t 2-(3-4λ)t +4λ2-8λ,则⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤-≤≥∆0)4(0)0(424300f f λ或f (0)·f (4)≤0 ∴⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≥≤≤≤≤--≥0220434589λλλλλ或或 ∴-89≤λ≤0或0≤λ≤2 ∴λ的取值范围是[-89,2] 例2如右图,一滑雪运动员自h =50m 高处A 点滑至O 点,由于运动员的技巧(不计阻力),在O 点保持速率v 0不为,并以倾角θ起跳,落至B 点,令OB =L ,试问,α=30°时,L 的最大值为多少?当L 取最大值时,θ为多大? 错解分析 考生不易运用所学的数学知识来解决物理问题,知识的迁移能力不够灵活技巧与方法 首先运用物理学知识得出目标函数,其次运用三角函数的有关知识来解决实际问题解 由已知条件列出从O 点飞出后的运动方程020cos cos 1sin 4sin 2S L v t h L v gt αθαθ==⎧⎪⎨-=-=-⎪⎩ ① ② 由①②整理得 v 0cos θ=.21sin sin ,cos 0gt t L v t L +-=αθα ∴v 02+gL sin α=41g 2t 2+22tL ≥2222412t L t g ⋅=gL 运动员从A 点滑至O 点,机械守恒有:mgh =21mv 02, ∴v 02=2gh ,∴L ≤)sin 1(2)sin 1(20αα-=-g ghg v =200(m)即L max =200(m),又41g 2t 2=22222L t h S =+ αθv 0hO∴θααcos 22cos cos ,20⋅====gL gh t v L S g L t 得cos θ=cos α,∴θ=α=30°∴L 最大值为200米,当L 最大时,起跳仰角为30° 例3如下图,某地一天从6时到14时的温度变化曲线近似满足函数y =A sin(ωx +φ)+b(1)求这段时间的最大温差 (2)写出这段曲线的函数解析式错解分析 不易准确判断所给图象所属的三角函数式的各个特定系数和字母技巧与方法 数形结合的思想,以及运用待定系数法确定函数的解析式解 (1)由图示,这段时间的最大温差是30-10=20(℃);(2)图中从6时到14时的图象是函数y =A sin(ωx +φ)+b 的半个周期的图象∴ωπ221⋅=14-6,解得ω=8π, 由图示A =21(30-10)=10,b =21(30+10)=20,这时y =10sin(8πx +φ)+20,将x =6,y =10代入上式可取φ=43π综上所求的解析式为y =10sin(8πx +43π)+20,x ∈[6,14]例4 已知α、β为锐角,且x (α+β-2π)>0,试证不等式f (x )=)sin cos ()sin cos (αββα+x x <2对一切非零实数都成立证明 若x >0,则α+β>2π∵α、β为锐角,∴0<2π-α<β<2π;0<2π-β<2π,∴0<sin(2π-α)<sin β 0<sin(2π-β)<sin α,∴0<cos α<sin β,0<cos β<sin α,∴0<cos sin αβ<1,0<αβsin cos <1,∴f (x )在(0,+∞)上单调递减,∴f (x )<f (0)=2若x <0,α+β<2π,∵α、β为锐角, 0<β<2π-α<2π,0<α<2π-β<2π, 0<sin β<sin(2π-α),∴sin β<cos α,0<sin α<sin(2π-β),∴sin α<cos β,∴cos sin αβ>1, αβsin cos >1,∵f (x )在(-∞,0)上单调递增,∴f (x )<f (0)=2,∴结论成立 学生巩固练习1 函数y =-x ·cos x 的部分图象是( )时间/h 温度/0C 30201014106o y xAoy xBoyxC oyxDo yx2 函数f (x )=cos2x +sin(2π+x )是( ) A 非奇非偶函数 B 仅有最小值的奇函数 C 仅有最大值的偶函数D 既有最大值又有最小值的偶函数3 函数f (x )=(31)|cos x |在[-π,π]上的单调减区间为_________ 4 设ω>0,若函数f (x )=2sin ωx 在[-4,3ππ,]上单调递增,则ω的取值范围是_________5 设二次函数f (x )=x 2+bx +c (b ,c ∈R ),已知不论α、β为何实数恒有f (sin α)≥0和f (2+cos β)≤0(1)求证 b +c =-1; (2)求证c ≥3; (3)若函数f (sin α)的最大值为8,求b ,c 的值 参考答案1 函数y =-x cos x 是奇函数,图象不可能是A 和C ,又当x ∈(0,2π)时,y <0答案 D 2 解析 f (x )=cos2x +sin(2π+x )=2cos 2x -1+cos x =2[(cos x +81)2212-]-1答案 D3 解 在[-π,π]上,y =|cos x |的单调递增区间是[-2π,0]及[2π,π] 而f (x )依|cos x |取值的递增而递减,故[-2π,0]及[2π,π]为f (x )的递减区间4 解 由-2π≤ωx ≤2π,得f (x )的递增区间为[-ωπ2,ωπ2],由题设得.230,23: 4232],2,2[]4,3[≤ω<∴≤ω⎪⎪⎩⎪⎪⎨⎧π≥ωππ-≤ωπ-∴ωπωπ-⊆ππ-解得 5 解 (1)∵-1≤sin α≤1且f (sin α)≥0恒成立,∴f (1)≥0 ∵1≤2+cos β≤3,且f (2+c os β)≤0恒成立 ∴f (1)≤0 从而知f (1)=0∴b +c +1=0(2)由f (2+cos β)≤0,知f (3)≤0,∴9+3b +c ≤0 又因为b +c =-1,∴c ≥3(3)∵f (sin α)=sin 2α+(-1-c )sin α+c =(sin α-21c +)2+c -()21(c +)2,当sin α=-1时,[f (sin α)]max =8,由⎩⎨⎧=++=+-0181c b c b 解得b =-4,c =3O B αy x。
苏教版高中数学必修第一册《7.3三角函数的图象与性质》精品课件

探究新知
从前面的问题的提出与解决,我们得到:
函数 = sin, ∈ 的图象(如图(1))和 = cos, ∈ 的图象(如图(2)),分
别叫作正弦曲线和余弦曲线.
探究新知
思考1:我们取一个周期 0,2 上的正弦、余弦函数图象,如图:
能不能在图象上作出影响图象的五个关键点?
典例剖析
变式训练:用“五点法”画出下列函数的简图:
(1) = − , ∈ [, ሿ;(2) = + , ∈ [, ሿ.
分析
解析
借助于“五点法”按下列次序完成:
(1)①列表如下:
②描点:
③连线:用光滑的曲线依次连接各点,即得所求的图象(如上图).
典例剖析
①借助于余弦线,如图:
情境引入
这种方式要借助直线 = ,将横坐标的量与纵坐标的量对等,平移到坐标轴上,较为抽
象,注意学生的理解.
②借助诱导公式:cos = sin + .
2
将正弦函数的图象向左平移 个单位长度,如图所示.
2
设计意图:考查学生的发散思维和创新精神.正弦函数的作图,已经给学生传递了一种作
0 , sin0 ,将这些点用光滑的曲线连接起来,可以得到比较精确的函数 = sin, ∈
[0,2ሿ的图象(如图).
紧接着提出思考:根据函数 = sin, ∈ [0,2ሿ的图象,你能想象出函数 = sin, ∈
的图象吗?
学生根据上节课学习的三角函数的周期性,很容易想到 = sin的图象(如图):
苏教版同步教材精品课件
7.3.2 三角函数的图象与
性质(1)
情境引入
问题1:这节课我们来研究函数 = sin, ∈ 的图象,从画函数 = sin, ∈ [0,2ሿ的图
江苏省高级中学高三数学第一轮复习学案:三角函数的图象与性质

三角函数的图象与性质【教学目标】1、了解三角函数的周期性、对称性;2、理解并会求三角函数的最大值、最小值;3、理解三角函数的单调性,会求三角函数的单调区间【难点疑点】1、对周期意义的理解2、求定义域的步骤3、奇偶性的必要条件4、运用单调性比较大小【教学过程】一、知识梳理1、正弦函数的图象与性质1)图象的画法:①五点法②利用正弦线作图2)性质:①定义域:_________;②值域:_________,当x=_____________时,y取得最大值_____,当x=_____________时,y取得最小值_____;③奇偶性:;④周期:;⑤单调增区间:,减区间:;⑥对称中心:,对称轴:2、余弦函数的图象与性质1)图象的画法:①五点法②利用余弦线作图2)性质:①定义域:_________;②值域:_________,当x=_____________时,y取得最大值_____,当x=_____________时,y取得最小值_____;③奇偶性:;④周期:;⑤单调增区间:,减区间:;⑥对称中心:,对称轴:3、正切函数的图象与性质1)图象的画法:利用正切线作图2)性质:① 定义域:__________________; ② 值域:_______________; ③ 奇偶性:____________; ④ 最小正周期:_____________;⑤ 单调增区间:__________________________; ⑥ 对称中心:_______________ 二、基础训练1、利用“五点法”作出函数3sin()226x y π=+在一个周期内的简图, 并指出此函数的振幅、周期、初相、频率、单调区间:2、用图象变换原理,说出下列函数的图象可以由sin y x =的图象如何得到:①sin 2y x =:______________________ ②2sin y x =:______________________ ③sin()3y x π=+:__________________ ④:sin 2y x =+______________________⑤|sin |y x =:______________________ ⑥sin y x =-:_____________________ ⑦sin ||y x =:_____________________ 3、指出下列函数的最小正周期: ①cos(2)6y x π=+:T =___________ ②22sin()7y x ππ=-:T =___________ ③44cos sin y x x =-:T =__________ ④2tan (0)y ax a =≠:T =___________ ⑤12sin(1)2y x =---:T =________ ⑥2|sin(4)|3y x π=-:T =___________ 4、求下列函数的定义域: ①1)32cos(2--=πx y :__________ ②x x y sin )25lg(2+-=:_____________ 5、判断下列函数的奇偶性:①sin y x x =:_________________ ②3cos()2y x π=+:_________________③sin 21sin xy x=-:______________ ④y ___________________⑤()|sin 2|tan f x x x x =-: _____ ⑥cos (1sin )()1sin x x f x x-=-: .三、典型例题 例1、(1)求3sin(2)3y x π=-的单调区间;(2)求)sin (cos log 21x x y -=的单调减区间.例2、求下列函数的最值: (1)2sin cos 3y x x =;(2)21cos cos 1,2y x x x x R =++∈;(3)2()cos sin (||)4f x x x x π=+≤;(4)()sin (||)2f x x x x π=+≤;(5)求sin cos sin cos y x x x x =++的最大值.(6)、求2cos (0)sin xy x xπ-=<<的最小值.例3、已知函数f (x )=sin(ωx +φ),其中ω>0,|φ|<π2.A 1 2(1)若cos π4cos φ-sin 3π4sin φ=0,求φ的值;(2)在(1)的条件下,若函数f (x )的图象的相邻两条对称轴之间的距离等于π3,求函数f (x )的解析式;并求最小正实数m ,使得函数f (x )的图象向左平移m 个单位长度后所对应的函数是偶函数.例4、如图所示:一吊灯的下圆环直径为4m ,圆心为O ,通过细绳悬挂在天花板上,圆环呈水平状态,并且与天花板的距离)(OB 即为2m ,在圆环上设置三个等分点A 1,A 2,A 3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题六 解决三角函数的图像与性质问题
【真题感悟】
1.已知函数x y cos =与)2sin(ϕ+=x y (0≤πϕ<),它们的图象有一个横坐标为
3
π
的交点,则ϕ的值是 . 2.函数ϕϕ,,(),sin()(w A wx A x f +=是常数,
)0,0>>w A 的部分图象如图所示,则(0)f = .
3.若将函数()sin 24f x x π⎛
⎫
=+ ⎪⎝
⎭
的图像向右平移ϕ个单位,
所得图像关于y 轴对称,则ϕ的最小正值是________.
4.设常数a 使方程sin 3cos x x a +=在闭区间 上恰有三个解
123,,x x x ,则123x x x ++= .
【考点展示】
1. 已知函数y =A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则ω的值为________.
2.设函数)sin()(ϕω+=x x f ,0,0>>ωA ,若)(x f 在]2
,6[ππ上具有单调性,且
⎪⎭
⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛6322πππf f f ,则)(x f 的最小正周期为________. 3.将函数()sin (0)f x x ωω=>的图像向右平移
4
π
个单位长度,所得图像经过点3(,0)4π,则
ω的最小值是 .
4.定义在区间⎪⎭
⎫
⎝
⎛
20π,
上的函数y=6cosx 的图像与y=5tanx 的图像的交点为P ,过点P 作PP 1⊥x 轴于点P 1,直线PP 1与y=sinx 的图像交于点P 2,则线段P 1P 2的长为 .
5.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎢⎡⎦
⎥⎤-π3,π4上的最小值是-2,则ω的最小值等于 .
6.设,a b 均为大于1的自然数,函数()(sin ),()cos f x a b x g x b x =+=+,若存在实数m ,使得
()()f m g m =,则a b +=________.
7.已知)2
,0(π
∈x ,
2()sin(2)cos(2)2cos 63f x x x x ππ
=+-++, 若0)(=-a x f 有两个
不同的解,则a 的取值范围是
【典例导引】
例1 如图,摩天轮的半径为50 m ,点O 距地面的高度为60 m ,摩天轮做匀速转动,每3 min
转一圈,摩天轮上点P 的起始位置在最低点处. ①试确定在时刻t (min )时点P 距离地面的高度;
②在摩天轮转动的一圈内,有多长时间点P 距离地面超过85 m?
例2 设函数2()sin(
)2cos 1468
x x
f x ππ
π=--+. (1)求()f x 的最小正周期.
(2)若()y g x =与()y f x =的图像关于直线1x =对称,求当4
[0,]3
x ∈时()y g x = 的
最大值.
例3 已知向量()(),cos2,sin 2,a m x b x n ==,函数()f x a b =⋅,且()y f x =的图像过
点,312π⎛⎫
⎪⎝⎭
和点2,23π⎛⎫
- ⎪⎝⎭. (I )求,m n 的值;
(II )将()y f x =的图像向左平移()0ϕϕπ<<个单位后得到函数()y g x =的图像,若
()y g x =图像上各最高点到点()0,3的距离的最小值为1,求()y g x =的单调递增区间.
例4 已知函数()⎪⎭⎫ ⎝⎛<>+=2,0sin )(πϕϕωM x M x f 的部分图像如图所示.
(1)求函数()y f x =的解析式;
(2)在锐角ABC ∆中,角C B A ,,
的取值范围.
例5 已知函数)0,0)(sin()(πϕωϕω≤≤>+=x x f 是偶函数,且图像关于点)0,4
3(πM 对称,且
在区间上⎥⎦⎤⎢⎣⎡2,0π是单调函数,求ϕω,的值.
A 2
例6如图所示:一吊灯的下圆环直径为4m ,圆心为O ,通过细绳悬挂在天花板上,圆环呈水平状态,并且与天花板的距离)(OB 即为2m ,在圆环上设置三个等分点A 1,A 2,A 3。
点C 为OB 上一点(不包含端点O 、B ),同时点C 与点A 1,A 2,A 3,B 均用细绳相连接,且细绳
CA 1,CA 2,CA 3的长度相等。
设细绳的总长为y
(1)设∠CA 1O = θ (rad ),将y 表示成θ的函数关系式; (2)请你设计θ,当角θ正弦值的大小是多少时,细绳总长y 最小,并指明此时 BC 应为多长。
(2)值与b 的最小值.
【课后巩固】
1.若函数)0)(sin()(πϕϕ<<+=x x f 是偶函数,则=-)6cos(ϕπ .
2.已知函数()f x =12tan x x +-,(0,
)2
x π
∈,则()f x 的单调减区间
是 .
3.函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0,0<φ<π)的图象如下图所示,则f (π
3
)的值为 .
4.已知角ϕ的终边经过点)2,1(-P ,函数)0)(sin()(>+=ωϕωx x f 图像的相邻两条对称轴之间的距离为3π,则=)12
(πf .
5.已知函数()()sin (0,0)f x A x A ωϕω=+>>的图象与直线()0y b b A =<<的三个相邻交点的横坐标分别是2,4,8,则()f x 的单调递增区间是 . 6.把函数x x f 2sin )(=的图像向右平移
6
π
个单位得到函数)(x g 的图像,则函数)(x g 在区间)2,0(π内所有极值点之和为 .
7.已知)0)(3sin()(>+=ωπωx x f ,)3()6(ππf f =,且)(x f 在区间⎪⎭
⎫ ⎝⎛3,6ππ上有最小值,无最大
值,则=ω .
8.已知函数f (x )=sin (2x πϕ+)的部分图象如图所示,点B ,C 是该图象与x 轴的交点,过点C 的直线与该图象交于D ,E 两点, 则(BD BE +)·BC 的值为 .
9已知函数()sin 3cos (0)f x x x ωωω=+>,()y f x =的图像与直线
2y =-的两个相邻交点
的距离等于π,则[0,]x π∈时()f x 的单调递减区间是
9.已知函数)3cos()6sin()(ππ-+-=x x x f ,2sin 2)(2x x g =. (1)若α时第一象限,且553)(=αf ,求)(αg 的值;
(2)求使)()(x g x f ≥成立的x 的取值集合.
10.已知函数())20,0,0(2cos )(2πϕωϕω<<>>-+=A A x A x f 的最大值为2,)(x f 图像的相邻
两对称轴的距离为2,在y 轴上的截距为1. (1)求函数()y f x =的解析式;
(2)当⎥⎦⎤⎢⎣⎡∈37,31x 时,求函数)1()(++=x f x f y 的值域.
11.已知函数()()π
sin (,0,0,0)2
f x A x x A ωϕωϕ=+∈>><<R 的部分图象如图所示,P 是
图象的最高点,Q 为图象与x 轴的交点,O
为坐标原点.若4,OQ OP PQ === (1)求函数()y f x =的解析式;
(2)将函数()y f x =的图象向右平移2个单位后得到函数()y g x =的图象,当[]0,3x ∈
时,求函数()()()h x f x g x =⋅的值域.
12.已知函数)sin(2)(φ+=x x f ,其中x ∈R ,φ是常数,且2
0π
φ<
<.
(1)当函数)2
3()()(π
+
-=x f x f x F 为偶函数时,求φ的值; (2)当3πφ=时,将函数()y f x =的图像向左平移2
π
个单位,再向下平移1个单位,得到函
数()y g x =的图像. ①求()y g x =的解析式;
②对任意的m ∈R ,求()y g x =在区间[]π4,+m m 上零点个数的所有可能值.
13.已知函数
()cos sin ,[0,]2
f x x x x x π
=-∈,
(1)求证:
()0f x ≤;
(3)若sin x
a b x
<
<在(0,)2π上恒成立,求a 的最大值与b 的最小值.
14.设向量)sin cos ,4
2(sin 2x x x ++=π,)sin cos ,sin 4(x x x -=,x f ⋅=)(.
(1)求函数)(x f 的解析式;
(2)已知常数0>ω,若)(x f y ω=在区间⎥⎦⎤⎢⎣⎡-32,2ππ上增函数,求ω的取值范围;
(3)设集合{}
326|ππ≤≤=x x A ,{}2)(|<-=m x f x B ,若B A ⊆,求实数m 的取值范围.。