山东省2014届理科数学一轮复习试题选编6:方程的解与函数的零点及二分法(教师版)
2014山东高考数学(理)试题及答案

山东2014年高考数学理科试卷一、选择题:本大题共10小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知,a b R ∈,i 是虚数单位,若a i -与2bi +互为共轭复数,则2()a bi += (A )54i -(B )54i +(C )34i -(D )34i +(2)设集合{||1|2}A x x =-<,{|2,[0,2]}x B y y x ==∈,则A B =(A )[0,2](B )(1,3)(C )[1,3)(D )(1,4) (3)函数()f x =(A )1(0,)2(B )(2,)+∞(C )1(0,)(2,)2+∞(D )1(0,][2,)2+∞(4)用反证法证明命题:“已知,a b 为实数,则方程20x ax b ++=至少有一个实根”时,要做的假设是(A )方程20x ax b ++=没有实根(B )方程20x ax b ++=至多有一个实根学科网(C )方程20x ax b ++=至多有两个实根(D )方程20x ax b ++=恰好有两个实根(5)已知实数,x y 满足x ya a <(01a <<),则下列关系式恒成立的是(A )221111x y >++(B )22ln(1)ln(1)x y +>+ (C )sin sin x y >(D )22x y >(6)直线4y x =与曲线3y x =在第一象限内围成的封闭图形的面积为 (A)B)C )2(D )4(7)为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,......,第五组.右图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为 (A )1(B )8(C )12(D )18(8)已知函数()|2|1f x x =-+,()g x kx =,若()()f x g x =有两个不相等的实根,则实数k 的取值范围是(A )1(0,)2(B )1(,1)2(C )(1,2)(D )(2,)+∞ (9)已知,x y 满足约束条件10,230,x y x y --≤⎧⎨--≥⎩当目标函数(0,0)z ax by a b =+>>在该约束条件下取到最小值22a b +的最小值为(A )5(B )4(C D )2(10)已知a b >,椭圆1C 的方程为22221x y a b +=,双曲线2C 的方程为22221x y a b-=,1C 与2C 的离心率之积为2,则2C 的渐近线方程为学科网(A )0x =(B 0y ±=(C )20x y ±=(D )20x y ±=二、填空题:本大题共5小题,每小题5分,共25分(11)执行右面的程序框图,若输入的x 的值为1,则输出的n 的值为 .(12)在ABC ∆中,已知tan AB AC A ⋅=,当6A π=时,ABC ∆的面积为 .(13)三棱锥P ABC -中,D ,E 分别为PB ,PC 的中点,记三棱锥D ABE -的体积为1V ,P ABC -的体积为2V ,则12V V = . (14)若24()b ax x+的展开式中3x 项的系数为20,则22a b +的最小值为 .(15)已知函数()()y f x x R =∈.对函数()()y g x x I =∈,定义()g x 关于()f x 的“对称函数”为()()y h x x I =∈,()y h x =满足:对任意x I ∈,两个点(,())x h x ,(,())x g x 关于点(,())x f x 对称.若()h x是()g x =()3f x x b =+的“对称函数”,且()()h x g x >恒成立,则实数b 的取值范围是 .三、解答题:本大题共6小题,共75分. (16)(本小题满分12分)已知向量(,cos2)a m x =,(sin 2,)b x n =,设函数()f x a b =⋅,且()y f x =的图象过点(12π和点2(,2)3π-. (Ⅰ)求,m n 的值;(Ⅱ)将()y f x =的图象向左平移ϕ(0ϕπ<<)个单位后得到函数()y g x =的图象.若()y g x =的图象上各最高点到点(0,3)的学科网距离的最小值为1,求()y g x =的单调增区间.(17)(本小题满分12分)如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,60DAB ∠=,22AB CD ==,M 是线段AB 的中点.(Ⅰ)求证:111//C M A ADD ;(Ⅱ)若1CD 垂直于平面ABCD且1CD =,求平面11C D M 和平面ABCD 所成的角(锐角)的余弦值.(18)(本小题满分12分)乒乓球台面被网分成甲、乙两部分,如图,甲上有两个不相交的区域,A B ,乙被划分为两个不相交的区域,C D .某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C 上记3分,在D 上记1分,其它情况记0分.对落点在A 上的来球,小明回球的落点在C 上的概率为12,在D 上的概率为13;对落点在B 上的来球,小明回球的落点在C 上的概率为15,在D 上的概率为35.假设共有两次来球且落在,A B 上各一次,小明的两次回球互不影响.求: (Ⅰ)小明的两次回球的落点中恰有一次的落点在乙上的概率; (Ⅱ)两次回球结束后,小明得分之和ξ的分布列与数学期望. (19)(本小题满分12分)已知等差数列{}n a 的公差为2,前n 项和为n S ,且124,,S S S 成等比数列. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)令114(1)n n n n nb a a -+=-,求数列{}n b 的前n 项和n T . (20)(本小题满分13分)设函数22()(ln )x e f x k x x x=-+(k 为常数, 2.71828e =⋅⋅⋅是自然对数的底数).(Ⅰ)当0k ≤时,求函数()f x 的单调区间;(Ⅱ)若函数()f x 在(0,2)内存在两个极值点,求k 的取值范围.(21)(本小题满分14分)已知抛物线2:2(0)C y px p =>的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交C 于另一点B ,学科网交x 轴的正半轴于点D ,且有||||FA FD =.当点A 的横坐标为3时,ADF ∆为正三角形. (Ⅰ)求C 的方程;(Ⅱ)若直线1//l l ,且1l 和C 有且只有一个公共点E , (ⅰ)证明直线AE 过定点,并求出定点坐标;(ⅱ)ABE ∆的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.2014年普通高等学校招生全国统一考试(山东卷)理科数学第I卷(共50分)一、选择题:本大题共10小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知,a b R ∈,i 是虚数单位,若i a -与2i b +互为共轭复数,则2(i)a b +=( ) A .54i - B .54i + C .34i - D .34i +(2)设集合{||1|2}A x x =-<,{|2,[0,2]}x B y y x ==∈,则A B =( )A .[0,2]B .(1,3)C .[1,3)D .(1,4) (3)函数()f x =( )A .1(0,)2B .(2,)+∞C .1(0,)(2,)2+∞ D .1(0,][2,)2+∞(4)用反证法证明命题:“已知,a b 为实数,则方程20x ax b ++=至少有一个实根”时,要做的假设是( )A .方程20x ax b ++=没有实根B .方程20x ax b ++=至多有一个实根学科网C .方程20x ax b ++=至多有两个实根D .方程20x ax b ++=恰好有两个实根 (5)已知实数,x y 满足x y a a <(01a <<),则下列关系式恒成立的是( ) A .221111x y >++ B .22ln(1)ln(1)x y +>+ C .sin sin x y > D .22x y > (6)直线4y x =与曲线3y x =在第一象限内围成的封闭图形的面积为( )A .B .C .2D .4(7)为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,......,第五组.右图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A .1B .8C .12D .18(8)已知函数()|2|1f x x =-+,()g x kx =,若()()f x g x =有两个不相等的实根,则实数k 的取值范围是( )A .1(0,)2 B .1(,1)2C .(1,2)D .(2,)+∞(9)已知,x y 满足约束条件10,230,x y x y --≤⎧⎨--≥⎩当目标函数(0,0)z ax by a b =+>>在该约束条件下取到最小值22a b +的最小值为( )A .5B .4CD .2(10)已知a b >,椭圆1C 的方程为22221x y a b +=,双曲线2C 的方程为22221x y a b-=,1C 与2C 2C 的渐近线方程为( )A .0x =B 0y ±=C .20x y ±=D .20x y ±=二、填空题:本大题共5小题,每小题5分,共25分 (11)执行右面的程序框图,若输入的x 的值为1,则输出的n 的值为 .(12)在ABC ∆中,已知tan AB AC A ⋅=,当6A π=时,ABC ∆的面积为 . (13)三棱锥P ABC -中,D ,E 分别为PB ,PC 的中点,记三棱锥D ABE -的体积为1V ,P ABC -的体积为2V ,则12V V = . (14)若26()b ax x+的展开式中3x 项的系数为20,则22a b +的最小值为 .(15)已知函数()()y f x x R =∈.对函数()()y g x x I =∈,定义()g x 关于()f x 的“对称函数”为()()y h x x I =∈,()y h x =满足:对任意x I ∈,两个点(,())x h x ,(,())x g x 关于点(,())x f x 对称.若()h x是()g x =()3f x x b =+的“对称函数”,且()()h x g x >恒成立,则实数b 的取值范围是 .三、解答题:本大题共6小题,共75分. (16)(本小题满分12分)已知向量(,cos2)a m x =,(sin 2,)b x n =,设函数()f x a b =⋅,且()y f x =的图象过点(12π和点2(,2)3π-. (Ⅰ)求,m n 的值;(Ⅱ)将()y f x =的图象向左平移ϕ(0ϕπ<<)个单位后得到函数()y g x =的图象.若()y g x =的图象上各最高点到点(0,3)的距离的最小值为1,求()y g x =的单调增区间.(17)(本小题满分12分)如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,60DAB ∠=,22AB CD ==,M 是线段AB 的中点.(Ⅰ)求证:111//C M A ADD ;(Ⅱ)若1CD 垂直于平面ABCD且1CD =,求平面11C D M 和平面ABCD 所成的角(锐角)的余弦值.(18)(本小题满分12分)乒乓球台面被网分成甲、乙两部分,如图,甲上有两个不相交的区域,A B ,乙被划分为两个不相交的区域,C D .某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C 上记3分,在D 上记1分,其它情况记0分.对落点在A 上的来球,小明回球的落点在C 上的概率为12,在D 上的概率为13;对落点在B 上的来球,小明回球的落点在C 上的概率为15,在D 上的概率为35.假设共有两次来球且落在,A B 上各一次,小明的两次回球互不影响.求:(Ⅰ)小明的两次回球的落点中恰有一次的落点在乙上的概率; (Ⅱ)两次回球结束后,小明得分之和ξ的分布列与数学期望.B 1C 1D 1A 1CDMBA(19)(本小题满分12分)已知等差数列{}n a 的公差为2,前n 项和为n S ,且124,,S S S 成等比数列. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)令114(1)n n n n nb a a -+=-,求数列{}n b 的前n 项和n T .(20)(本小题满分13分)设函数22()(ln )x e f x k x x x=-+(k 为常数, 2.71828e =⋅⋅⋅是自然对数的底数).(Ⅰ)当0k ≤时,求函数()f x 的单调区间;(Ⅱ)若函数()f x 在(0,2)内存在两个极值点,求k 的取值范围.(21)(本小题满分14分)已知抛物线2:2(0)C y px p =>的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D ,且有||||FA FD =.当点A 的横坐标为3时,ADF ∆为正三角形.(Ⅰ)求C 的方程;(Ⅱ)若直线1//l l ,且1l 和C 有且只有一个公共点E , (ⅰ)证明直线AE 过定点,并求出定点坐标;的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.(ⅱ)ABE2014年普通高等学校招生全国统一考试(山东卷)理科数学参考答案1、D2、C3、C4、A5、D6、D7、C8、B9、B 10、A10、所以b a =为y =,即0x =, 故答案选A . 11、3 12、16 13、1414、2 15、()∞ 15、【解析】解:由已知得()32h x x b =+,所以()62h x x b =+()()h x g x >恒成立即62x b +3x b +>恒成立,在同一坐标系内,画出直线3y x b =+及半圆y =故答案为()∞.16、解:(Ⅰ)已知 ()sin 2cos 2f x m x n x =⋅=+a b , ()f x Q的图像过点π2π,,2123⎛⎛⎫- ⎪⎝⎝⎭πππ()sin cos 1266f m n ∴=+=,2π4π4π()sin cos 2333f m n =+=-12122m ⎧=⎪⎪∴⎨⎪=-⎪⎩解得1m n ⎧=⎪⎨=⎪⎩(Ⅱ)π()2cos22sin(2x )6f x x x =+=+, π()(+)=2sin(22)6g x f x x ϕϕ=++设()g x 的对称轴为0x x =,1d =Q 解得00x = (0)2g ∴=,解得π6ϕ=()2sin(2)2sin(2)2cos2362g x x x x πππ∴=++=+= 222,k x k k Z πππ∴-+≤≤∈ ,2k x k k Z πππ-+≤≤∈()f x ∴的单调赠区间,,2k k k Z πππ⎡⎤-+∈⎢⎥⎣⎦17、解:(Ⅰ)证明:因为四边形ABCD 是等腰梯形, 且2AB CD =所以//DC AB ,又由M 是AB 中点, 因此//CD MA 且CD MA =. 连接1AD在四棱柱1111ABCD A B C D -中, 因为11//CD C D ,11CD C D = 可得1111//,=C D MA C D MA 所以四边形11AMC D 为平行四边形 因此11//C M D A又111C M A ADD ⊄平面,111D A A ADD ⊂平面, 所以111//C M A ADD 平面(Ⅱ)由(Ⅰ)知,平11DC M ∩面ABCD AB =过C 向AB 做垂线交AB 于N ,连接1D N , 由1CD ABCD ⊥面,可得1D N AB ⊥,故1D NC ∠为二面角1C AB C --的平面角在1RT D CN △中,1,602BC NBC CN =∠=︒=可得所以1ND ==在1Rt D CN V中,11cos CN D NC D N ∠===, 所以平面11C D M 和平面ABCD.18、解:(Ⅰ)设恰有一次的落点在乙上为事件A()51143656510P A =⨯+⨯=(Ⅱ)ξ的可能取值为0,1,2,3,4,6()11106530P ξ==⨯=,()11131135656P ξ==⨯+⨯=()()131111122,3355256515P P ξξ==⨯===⨯+⨯=()()1311111114,62535302510P P ξξ==⨯+⨯===⨯=ξ∴的分布列为∴其数学期望为()111211191012346306515301030E ξ=⨯+⨯+⨯+⨯+⨯+⨯=19、解:(Ⅰ) 1121412,S ,S 2,46d a a d S a d ===+=+124,,S S S 成等比数列2214S S S ∴=解得11,21n a a n =∴=- (Ⅱ)111411(1)(1)()2121n n n n n n b a a n n --+=-=-+-+ 当n 为偶数时,111111111(1)()()()()3355723212121n T n n n n =+-+++-++-+---+当n 为奇数时,111111111(1)()()()()3355723212121n T n n n n =+-+++--+++---+ 12212121n n T n n +∴=+=++2,2122,21n nn n T n n n ⎧⎪⎪+∴=⎨+⎪⎪+⎩为偶数为奇数20、解:(Ⅰ)()242221'()x x e x xe f x k x x x⋅-=--+ ()()()320x x e kx x x --=>当0k ≤时,0,kx ≤0xe kx ∴->令()'0f x =,则2x =∴当()0,2x ∈时,()f x 单调递减;当()2,x ∈+∞时,()f x 单调递增. (Ⅱ)令()xg x e kx =-则()'xg x e k =-当0k ≤时,()'0g x >恒成立,()()0,2g x ∴在上单调递增,不符合题意. 当0k >时令()'0g x =,,ln xe k x k ∴==()()'010,010g k g =-<=> ()()22'20,220g e k g e k =->=->22e k ∴<()ln ln ln 0k g k e k k =-<ln 1k ∴> k e ∴>综上:k 的取值范围为2,2e e ⎛⎫ ⎪⎝⎭.21、解:(Ⅰ)当A 的横坐标为3时,过A 作AG x ⊥轴于G ,32pAF =+32p FD AF ∴==+AFD QV 为等边三角形13224p FG FD ∴==+ 又32pFG =-33242p p∴+=-,2p ∴=,2:4C y x ∴= (Ⅱ)(ⅰ)设11(,y )A x ,11FD AF x ==+()12,0D x ∴+ 12AB y k ∴=1//AB l l Q 1112l k y ∴=-又1l 与C 相切,设切点(),y E E E x ,214x y =,1'2x y = 1122E y y -∴=,14E y y ∴=- 22111444E x y y ⎛⎫=-= ⎪⎝⎭ 21121144,,A ,y 4y E y y ⎛⎫⎛⎫∴- ⎪ ⎪⎝⎭⎝⎭1211121214y y :y y 444AEy l x y y +⎛⎫∴-=- ⎪⎝⎭-即()121414y y x y =--恒过点()1,0∴直线AE 过定点()1,0. (ⅱ)2111y :y y 24AB y l x ⎛⎫-=-- ⎪⎝⎭,即21122244y x y y y x ⎧=-++⎪⎨⎪=⎩ ()2211880y y y y +-+= 1218y y y +=-2118y y y ∴=--12118+AB y y y y =- 点E 到AB的距离d ==32311121111184222222162242y y S AB d y y y y ∴=⋅=+++=+≥⨯=,当且仅当12y =±时,“=”成立.。
2014年山东省高考数学试卷(理科)答案与解析

2014年山东省高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2014•山东)已知a,b∈R,i是虚数单位,若a﹣i与2+bi互为共轭复数,则(a+bi)22.(5分)(2014•山东)设集合A={x丨丨x﹣1丨<2},B={y丨y=2x,x∈[0,2]},则A∩B=3.(5分)(2014•山东)函数f(x)=的定义域为()),),,<)∪(4.(5分)(2014•山东)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个5.(5分)(2014•山东)已知实数x,y满足a x<a y(0<a<1),则下列关系式恒成立的是.>=,故32∫(x|=87.(5分)(2014•山东)为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()=8.(5分)(2014•山东)已知函数f(x)=丨x﹣2丨+1,g(x)=kx.若方程f(x)=g(x)),,<9.(5分)(2014•山东)已知x,y满足约束条件,当目标函数z=ax+by(a22=0作可行域如图,,解得:化目标函数为直线方程得:由图可知,当直线2a+b=2的最小值为10.(5分)(2014•山东)已知a>b>0,椭圆C1的方程为+=1,双曲线C2的方程为﹣=1,C1与C2的离心率之积为,则C2的渐近线方程为()±x±y=0的方程为+的离心率为:,的方程为﹣的离心率为:,的离心率之积为,,±y=0二、填空题(共5小题,每小题5分,满分25分)11.(5分)(2014•山东)执行如图程序框图,若输入的x的值为1,则输出的n的值为3.12.(5分)(2014•山东)若△ABC中,已知•=tanA,当A=时,△ABC的面积为.,再根据中,∵•A=时,有=AC=××=故答案为:.13.(5分)(2014•山东)三棱锥P﹣ABC中,D,E分别为PB,PC的中点,记三棱锥D﹣ABE的体积为V1,P﹣ABC的体积为V2,则=.面积的,=.故答案为:.14.(5分)(2014•山东)若(ax2+)6的展开式中x3项的系数为20,则a2+b2的最小值为2.+=,15.(5分)(2014•山东)已知函数y=f(x)(x∈R),对函数y=g(x)(x∈I),定义g(x)关于f(x)的“对称函数”为函数y=h(x)(x∈I),y=h(x)满足:对任意x∈I,两个点(x,h(x)),(x,g(x))关于点(x,f(x))对称.若h(x)是g(x)=关于f(x)=3x+b的“对称函数”,且h(x)>g(x)恒成立,则实数b的取值范围是(2,+∞).的定义可知,,﹣﹣>d=,或﹣222,三、解答题(共6小题,满分75分)16.(12分)(2014•山东)已知向量=(m,cos2x),=(sin2x,n),函数f(x)=•,且y=f(x)的图象过点(,)和点(,﹣2).(Ⅰ)求m,n的值;(Ⅱ)将y=f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y=g(x)的图象,若y=g(x)图象上的最高点到点(0,3)的距离的最小值为1,求y=g(x)的单调递增区间.(,,﹣),可得•=msin2x+ncos2x,(,=(sin2x+cos2x2x+)+=2k,,)﹣,17.(12分)(2014•山东)如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是等腰梯形,∠DAB=60°,AB=2CD=2,M是线段AB的中点.(Ⅰ)求证:C1M∥平面A1ADD1;(Ⅱ)若CD1垂直于平面ABCD且CD1=,求平面C1D1M和平面ABCD所成的角(锐角)的余弦值.,,,,,,,,﹣的法向量=的法向量=CD AM,=,)(,(﹣,,﹣的法向量,∴的法向量=,|==所成的角(锐角)的余弦值为18.(12分)(2014•山东)乒乓球台面被网分成甲、乙两部分,如图,甲上有两个不相交的区域A,B,乙被划分为两个不相交的区域C,D,某次测试要求队员接到落点在甲上的来球后向乙回球,规定:回球一次,落点在C上记3分,在D上记1分,其它情况记0分.对落点在A上的来球,小明回球的落点在C上的概率为,在D上的概率为;对落点在B 上的来球,小明回球的落点在C上的概率为,在D上的概率为.假设共有两次来球且落在A,B上各一次,小明的两次回球互不影响,求:(Ⅰ)小明两次回球的落点中恰有一次的落点在乙上的概率;(Ⅱ)两次回球结束后,小明得分之和ξ的分布列与数学期望.+,+=×))×=+.)﹣=×))×=;×=×))×=;×+×=;×=×+1×+2×+3×+4×+6×=.19.(12分)(2014•山东)已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)令b n=(﹣1)n﹣1,求数列{b n}的前n项和T n.=,,化为1==++.﹣++=1=.﹣++=1+=Tn=20.(13分)(2014•山东)设函数f(x)=﹣k(+lnx)(k为常数,e=2.71828…是自然对数的底数).(Ⅰ)当k≤0时,求函数f(x)的单调区间;(Ⅱ)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.当且仅当e,21.(14分)(2014•山东)已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有丨FA丨=丨FD丨.当点A的横坐标为3时,△ADF为正三角形.(Ⅰ)求C的方程;(Ⅱ)若直线l1∥l,且l1和C有且只有一个公共点E,(ⅰ)证明直线AE过定点,并求出定点坐标;(ⅱ)△ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.,,,的左侧时,=p方程为联立方程,消去得的解为,直线,的方程为,即联立方程=的坐标为,点=,。
山东省2014届高三数学一轮复习考试试题精选(1)分类汇编6《二次函数》.pdf

山东省2014届高三数学一轮复习考试试题精选(1)分类汇编6:二次函数 一、选择题 .(山东省临沂一中2014届高三9月月考数学(理科)试题)若函数在区间上是减函数,则实数的取值范围是( ) A.B.C.D. 【答案】A .(山东省潍坊市2014届高三上学期期中考试数学(理)试题)不等式≤0对于任意及恒成立,则实数的取值范围是≤B.≥C.≥D.≥ 【答案】D .(山东省威海市乳山一中2014届高三上学期第一次质量检测数学试题)若关于x的方程有四个不同的实数解,则实数m的取值范围是( ) A.B.C.D. 【答案】C .(山东省郯城一中2014届高三上学期第一次月考数学(理)试题)已知函数,且,则下列说法正确的是( ) A.B.C.D.与的大小关系不能确定 【答案】A .(山东省实验中学2014届高三上学期第二次诊断性测试数学(理)试题)已知对任意的,函数的值总大于0,则的取值范围是B.C.D. 【答案】B .(山东省日照市第一中学2014届高三上学期第一次月考数学(理)试题)已知函数在区间上有最大值3,最小值2,则的取值范围是( ) A.B.C.D. 【答案】D .(山东省临朐七中2014届高三暑假自主学习效果抽测(二)数学试题)函数是单调函数的充要条件是( ) A.B.C.D. 【答案】A .(山东省菏泽市2014届高三上学期期中考试数学(理)试题)若关于的方程有四个不同的实数解,则实数的取值范围是B.C.D.【答案】C二、填空题 .(山东师大附中2014届高三第一次模拟考试数学试题)已知满足,则______________ . 【答案】 三、解答题 .(山东省临朐七中2014届高三暑假自主学习效果抽测(二)数学试题)设函数f(x)=x2-2|x|-1 (-3≤x≤3), (1)证明f(x)是偶函数; (2)画出这个函数的图象; (3)指出函数f(x)的单调区间,并说明在各个单调区间上f(x)是增还是减函数; (4)求函数的值域. 【答案】(1)证明 ∵x∈[-3,3],∴f(x)的定义域关于原点对称. f(-x)=(-x)2-2|-x|-1=x2-2|x|-1=f(x), 即f(-x)=f(x),∴f(x)是偶函数. (2)解 当x≥0时,f(x)=x2-2x-1=(x-1)2-2, 当x<0时,f(x)=x2+2x-1=(x+1)2-2, 即f(x)=根据二次函数的作图方法,可得函数图象如图.(3)解 函数f(x)的单调区间为[-3,-1),[-1,0),[0,1),[1,3]. f(x)在区间[-3,-1)和[0,1)上为减函数,在[-1,0),[1,3]上为增函数.(4)解 当x≥0时,函数f(x)=(x-1)2-2的最小值为-2,最大值为f(3)=2;当x<0时,函数f(x)=(x+1)2-2的最小值为-2,最大值为f(-3)=2.故函数f(x)的值域为[-2,2]. .(山东省烟台二中2014届高三10月月考理科数学试题)已知二次函数f(x)=ax24x+c.若f(x)<0的解集是(1,5)(1)求实数a,c的值;(2)求函数f(x)在x∈[0,3]上的值域.【答案】解:(1)由f(x)<0,得:ax24x+c<0,不等式ax24x+c0,∴f(a)=2-a|a+3|=-a2-3a+2=-. ∵二次函数f(a)在上单调递减,∴≤f(a)≤f(-1),即-≤f(a)≤4,∴f(a)的值域为 [-,4]. .(山东省临沂一中2014届高三9月月考数学(理科)试题)设函数. (1)在区间上画出函数的图象 ;(2)设集合. 试判断集合和之间的关系,并给出证明 ;(3)当时,求证:在区间上,的图象位于函数图象的上方. 【答案】 解:(1)函数在区间上画出的图象如下图所示: (2)方程的解分别是和,由于在和上单调递减,在和上单调递增,因此 由于 (3)解法一:当时,. 设 , . 又,① 当,即时,取, . , 则 ② 当,即时,取,=. 由 ①.②可知,当时,, 因此,在区间上,的图象位于函数图象的上方 解法二:当时,. 由 得, 令 ,解得 或, 在区间上,当时,的图象与函数的图象只交于一点; 当时,的图象与函数的图象没有交点. 由于直线过点,当时,直线是由直线绕点逆时针方向旋转得到. 因此,在区间上,的图象位于函数图象的上方.。
2014年高考山东理科数学试题及答案(精校版)

高三 数 学(理)期末模拟(六)一.选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,选择符合题目要求的选项。
1.已知i R b a ,,∈是虚数单位,若i a -与bi +2互为共轭复数,则=+2)(bi a (A )i 45- (B) i 45+ (C) i 43- (D) i 43+答案:D解析:a i -与2bi +互为共轭复数,()()2222,124434a b a bi i i i i∴==∴+=+=++=+2.设集合},]2,0[,2{},21{∈==<-=x y y B x x A x则=B A(A) [0,2] (B) (1,3) (C) [1,3) (D) (1,4) 答案:C3.函数1)(log 1)(22-=x x f 的定义域为(A))210(, (B) )2(∞+,(C) ),2()210(+∞ , (D) )2[]210(∞+,, 答案:C解析:()22log 10x ->,2log 1x ∴>或2log 1x ∴<-2x ∴> 或102x ∴<>。
4. 某产品的广告费用x 与销售额y 的统计数据如下表:广告费用x (万元)42 3 5 销售额y (万元) 4926 39 54根据上表可得回归方程ˆˆˆy bx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元是销售额为A.63.6万元B. 65.5万元C. 67.7万元D. 72.0万元解析:由题意可知 3.5,42x y ==,则429.43.5,9.1,a a =⨯+=9.469.165.5y =⨯+=,答案应选B 。
5、不等式5310x x -++≥的解集是A.[5,7]-B. [4,6]C. (,5][7,)-∞-+∞D.(,4][6,)-∞-+∞解析:当5x >时,原不等式可化为2210x -≥,解得6x ≥;当35x -≤≤时,原不等式可化为810≥,不成立;当3x <-时,原不等式可化为2210x -+≥,解得4x -≤.综上可知6x ≥,或4x -≤,答案应选D 。
2014年山东高考理科数学试题含答案(Word版)(卷)

山东理科数学一、选择题:本大题共10小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知,a b R ∈,i 是虚数单位,若a i -与2bi +互为共轭复数,则2()a bi += (A )54i -(B )54i +(C )34i -(D )34i +(2)设集合{||1|2}A x x =-<,{|2,[0,2]}xB y y x ==∈,则A B =(A )[0,2](B )(1,3)(C )[1,3)(D )(1,4)(3)函数()f x =(A )1(0,)2(B )(2,)+∞(C )1(0,)(2,)2+∞(D )1(0,][2,)2+∞(4)用反证法证明命题:“已知,a b 为实数,则方程20x ax b ++=至少有一个实根”时,要做的假设是(A )方程20x ax b ++=没有实根(B )方程20x ax b ++=至多有一个实根 (C )方程20x ax b ++=至多有两个实根(D )方程20x ax b ++=恰好有两个实根 (5)已知实数,x y 满足xya a <(01a <<),则下列关系式恒成立的是(A )221111x y >++(B )22ln(1)ln(1)x y +>+ (C )sin sin x y >(D )22x y >(6)直线4y x =与曲线3y x =在第一象限内围成的封闭图形的面积为 (A )22(B )42(C )2(D )4(7)为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,......,第五组.右图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为(A )1(B )8(C )12(D )18(8)已知函数()|2|1f x x =-+,()g x kx =,若()()f x g x =有两个不相等的实根,则实数k 的取值范围是(A )1(0,)2(B )1(,1)2(C )(1,2)(D )(2,)+∞(9)已知,x y 满足约束条件10,230,x y x y --≤⎧⎨--≥⎩当目标函数(0,0)z ax by a b =+>>在该约束条件下取到最小值25时,22a b +的最小值为 (A )5(B )4(C )5(D )2(10)已知a b >,椭圆1C 的方程为22221x y a b +=,双曲线2C 的方程为22221x y a b-=,1C 与2C 的离心率之积为3,则2C 的渐近线方程为 (A )20x y ±=(B )20x y ±=(C )20x y ±=(D )20x y ±=二、填空题:本大题共5小题,每小题5分,共25分(11)执行右面的程序框图,若输入的x 的值为1,则输出的n 的值为 .(12)在ABC ∆中,已知tan AB AC A ⋅=,当6A π=时,ABC ∆的面积为 .(13)三棱锥P ABC -中,D ,E 分别为PB ,PC 的中点,记三棱锥D ABE -的体积为1V ,P ABC -的体积为2V ,则12V V = . (14)若24()b ax x+的展开式中3x 项的系数为20,则22a b +的最小值为 .(15)已知函数()()y f x x R =∈.对函数()()y g x x I =∈,定义()g x 关于()f x 的“对称函数”为()()y h x x I =∈,()y h x =满足:对任意x I ∈,两个点(,())x h x ,(,())x g x 关于点(,())x f x 对称.若()h x 是2()4g x x =-关于()3f x x b =+的“对称函数”,且()()h x g x >恒成立,则实数b 的取值范围是 . 1.3.。
山东省2014届理科数学一轮复习试题选编29:二项式定理

山东省2014届理科数学一轮复习试题选编29:二项式定理一、选择题 1.(山东省淄博市2013届高三上学期期末考试数学(理))若()()()()()()923112012311132222xx a a x a x a x a x +-=+-+-+-+⋅⋅⋅+-,则1211a a a ++⋅⋅⋅+的值为( )A .0B .5-C .5D .255【答案】C【 解析】令2x =,则290(21)(23)5a =+-=-.令3x =,则01110a a a ++⋅⋅⋅+=,所以1110(5)5a a a +⋅⋅⋅+=-=--=,选C .2 .(山东省德州市2013届高三上学期期末校际联考数学(理))51()(21)ax x x+-的展开式中各项系数的和为2,则该展开式中常数项为 ( )A .-20B .—10C .10D .20【答案】C【解析】令1x =,可得各项系数和为5(1)(21)12a a +-=+=,所以1a =.所以555111()(21)()(21)()(12)ax x x x x x x x x+-=+-=-+-,5(12)x -的展开式的通项公式为155(2)(2)k k k k k k T C x x C +=-=-,当1k =时,125(2)10T C x x =-=-;所以展开式的常数项为1(10)10x x-⨯-=,选 C .3 .(山东省2013届高三高考模拟卷(一)理科数学)若2013(2)x -220130122013a a x a x a x =++++ ,则02420121352013a a a a a a a a ++++=++++( )A .201320133131+-B .201320133131+--C .201220123131+-D .201220123131+--【答案】B 【解析】令1=x 得01234520131a a a a a a a +++++++= ①,令1-=x 得201301234520133a a a a a a a -+-+-+-= ②,由①②联立,可得2012420a a a a ++++ 2013312+=,++31a a 52013a a ++ 2013132-=,从而02420121352013a a a a a a a a ++++++++ 20132013312132+=-201320133131+=--. 4 .(山东省枣庄市2013届高三3月模拟考试数学(理)试题)若4(1,)a a b +=+为有理数,则a+b=( )A .36B .46C .34D .44【答案】D二项式的展开式为11223344441118928C C C ++++=+++=+,所以28,16a b ==,281644a b +=+=,选 D .5 .(山东省济南市2013届高三3月高考模拟理科数学)二项式8(2x-的展开式中常数项是 ( )A .28B .-7C .7D .-28【答案】C展开式的通项公式为488831881()(()(1)22k k k k k k k k x T C C x ---+==-,由4803k -=得6k =,所以常数项为6866781()(1)72T C -=-=,选C .6 .(山东省临沂市2013届高三第三次模拟考试 理科数学)51()(2)x a x x+-的展开式中各项系数的和为2,则该展开式中常数项为 ( )A .-40B .-20C .20D .40【答案】 .A .7 .(山东省潍坊市2013届高三第二次模拟考试理科数学)设0(cos sin )a x x dx π=⎰-,则二项式26()a x x+展开式中的3x 项的系数为 ( )A .-20B .20C .-160D .160【答案】C 因为00(cos sin )(sin cos )2a x x dx x x ππ=⎰-=+=-,所以二项式为26262()()a x x x x+=-,所以展开式的通项公式为261231662()()(2)kk k k k k k T C x C x x--+=-=-,由1233k -=得3k =,所以333346(2)160T C x x =-=-,所以3x 项的系数为160-.选C .8 .(山东省济南市2012届高三3月高考模拟题理科数学(2012济南二模))设a=π0⎰sin x d x ,则二项式6⎛⎝的展开式的常数项是( )A .160B .-160C .240D .-240【答案】B【解析】由2)cos (sin 00=-=⎰ππx xdx ,所以2=a ,所以二项式为6)12(xx -,展开式的通项为22666661)1(2)1()2(k k kk k k k k k xxC xx C T ----+-=-=k k k k x C ---=366)1(2,所以当3=k ,为常数,此时160)1(23336-=-C ,选B .9 .(山东省青岛市2013届高三第一次模拟考试理科数学)已知()|2||4|f x x x =++-的最小值为n ,则二项式1()n x x-展开式中2x 项的系数为 ( )A .15B .15-C .30D .30-【答案】A 因为函数()|2||4|f x x x =++-的最小值为4(2)6--=,即6n =.展开式的通项公式为6621661()(1)k k k k k k k T C x C x x--+=-=-,由622k -=,得2k =,所以222236(1)15T C x x =-=,即2x 项的系数为15,选A .10.(山东省济宁市2013届高三4月联考理科数学)设221(32)=⎰-a x x dx ,则二项式261()-ax x展开式中的第4项为( )A .31280-xB .1280-C .240D .240-【答案】A11.(山东省莱钢高中2013届高三4月模拟检测数学理试题 )(82展开式中不含..4x项的系数的和为( )A .-1B .1C .0D .2【答案】C12.(山东省莱芜市莱芜十七中2013届高三4月模拟数学(理)试题)设22(13)40a x dx =-+⎰,则二项式26()a x x+展开式中不含..3x 项的系数和是( )A .160-B .160C .161D .161-【答案】C13.(山东省菏泽市2013届高三第二次模拟考试数学(理)试题)()5a x x R x ⎛⎫+∈ ⎪⎝⎭展开式中3x 的系数为10,则实数a 等于 ( )A .-1B .12C .1D .2【答案】D14.(山东省枣庄市2013届高三4月(二模)模拟考试数学(理)试题)若2012(3)nnn x a a x a x a x -=++++ ,其二项式系数的和为16,则012n a a a a ++++=( )A .8B .16C .32D .64【答案】B15.(山东省潍坊市2013届高三上学期期末考试数学理( )A .)若()()()()()()923112012311132222x x a a x a x a x a x +-=+-+-+-+⋅⋅⋅+-,则1211a a a ++⋅⋅⋅+的值为 ( )A .0B .5-C .5D .255【答案】C【解析】令3x =,则有012110a a a a +++⋅⋅⋅+=,令2x =,则290(21)(23)5a =+-=-,所以121105a a a a ++⋅⋅⋅+=-=,选C .二、填空题16.(山东省夏津一中2013届高三4月月考数学(理)试题)若52345012345(12),x a a x a x a x a x a x +=+++++则a 3=______________.【答案】8017.(山东省凤城高中2013届高三4月模拟检测数学理试题 )若261()xax -的二项展开式中3x 项的系数为52,则实数a =_______.【答案】-218.(山东省莱芜五中2013届高三4月模拟数学(理)试题)若31()nx x-展开式中的所有二项式系数和为512,则该展开式中3x 的系数为______.【答案】84;19.(2013届山东省高考压轴卷理科数学)(2013滨州市一模)设6sin (a xdx,π=⎰则二项式的展开式中的常数项等于________.【答案】-160词 【解析】,3,2)1(,)12()1(,2|)cos (sin 36616600=∴-=-=-∴=-==--+⎰r x C T x x x x a x dx x a r r r r r ππ所以常数项为-160.20.(山东省威海市2013届高三上学期期末考试理科数学)8(2x -的展开式中,常数项为___________. 【答案】7展开式的通项公式为488831881()((1)()22k k k k k k kk x T C C x ---+==-,由4803k -=,解得6k =,所以常数项为226781(1)()72T C =-=.21.(山东省烟台市2013届高三3月诊断性测试数学理试题)若(x 2-nx)1的展开式中含x 的项为第6项,设(1-3x)n=a o +a 1x+a 2x 2++a n x n,则a l +a 2++a n 的值为_____________ 【答案】255展开式(x 2-n x )1的通项公式为22311()()(1)k n k k kk n k k n n T C x C x x--+=-=-,因为含x 的项为第6项,所以5,231k n k =-=,解得8n =,令1x =,得88018(13)2a a a +++=-= ,又01a =,所以81821255a a ++=-= .22.(山东省德州市2013届高三第二次模拟考试数学(理)试题)二项式)10的展开式中含x 的正整数指数幂的项数是____________. 【答案】523.(2013年山东临沂市高三教学质量检测考试理科数学)在62(x )x-的二项展开式中,常数项等于_______. 【答案】 【答案】160- 展开式的通项公式为6621662()(2)k k k k k kk T C x C x x--+=-=-,由620k -=,得3k =,所以3346(2)160T C =-=-,即常数项为160-.24.(山东省济南市2013届高三4月巩固性训练数学(理)试题)设dx x )12(20-⎰,则二项式4⎪⎭⎫ ⎝⎛+x a x 的展开式中的常数项为__________.___【答案】2425.(2011年高考(山东理))若62(x x -展开式的常数项为60,则常数a 的值为_________.【答案】解析:6(x 的展开式616(k k k k T C x -+=636(kk C x -=,令630,2,k k -==226(1560,4C a a ===,答案应填:4.26.(山东省济宁市2013届高三第一次模拟考试理科数学 )25(ax的展开式中各项系数的和为243,则该展开式中常数项为 【答案】10【解析】因为展开式中各项系数的和为243,所以当1x =时,5(1)243a +=,解得2a =,展开式的通项公式为5102552155(2)2k kkk k kk T C x C x ---+==,由51002k -=,解得4k =,所以常数项为455210T C =⨯=.27.(山东省泰安市2013届高三第一轮复习质量检测数学(理)试题)二项式6213x x ⎛⎫+ ⎪⎝⎭的展开式中,常数项等于______(用数字作答). 【答案】1215展开式的通项公式为666316621(3)()3kk k k k kk T C x C x x---+==,由630k -=得2k =,所以常数项为423631215T C ==.28.(山东省滨州市2013届高三第一次(3月)模拟考试数学(理)试题)设6sin (a xdx,π=⎰则二项式的展开式中的常数项等于________.【答案】160-00sin =cos 2a xdx x ππ=-=⎰,所以二项式的展开式为663166(((1)2k k kk k k k k T C C x ---+==-⋅⋅,由30k -=时,3k =,所以常数项为33346(1)2160T C =-⋅=-.29.(山东省菏泽市2013届高三5月份模拟考试数学(理)试题)若22nx ⎫⎪⎭展开式中只有第六项的二项式系数最大,则展开式中的常数项是_________.【答案】180。
2014年全国高考理科数学试题及答案-山东卷

2014年全国高考理科数学试卷山东卷一、选择题:本大题共10小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知,a b R ∈,i 是虚数单位,若a i -与2bi +互为共轭复数,则2()a bi +=(A )54i -(B )54i +(C )34i -(D )34i +(2)设集合{||1|2}A x x =-<,{|2,[0,2]}xB y y x ==∈,则A B =(A )[0,2](B )(1,3)(C )[1,3)(D )(1,4) (3)函数()f x =(A )1(0,)2(B )(2,)+∞(C )1(0,)(2,)2+∞(D )1(0,][2,)2+∞(4)用反证法证明命题:“已知,a b 为实数,则方程20x ax b ++=至少有一个实根”时,要做的假设是(A )方程20x ax b ++=没有实根(B )方程20x ax b ++=至多有一个实根 (C )方程20x ax b ++=至多有两个实根(D )方程20x ax b ++=恰好有两个实根(5)已知实数,x y 满足x y a a <(01a <<),则下列关系式恒成立的是(A )221111x y >++(B )22ln(1)ln(1)x y +>+(C )sin sin x y >(D )22x y >(6)直线4y x =与曲线3y x =在第一象限内围成的封闭图形的面积为(A)(B)(C )2 (D )4(7)为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,......,第五组.右图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为 (A )1 (B )8 (C )12 (D )18(8)已知函数()|2|1f x x =-+,()g x kx =,若()()f x g x =有两个不相等的实根,则实数k 的取值范围是 (A )1(0,)2(B )1(,1)2(C )(1,2)(D )(2,)+∞(9)已知,x y 满足约束条件10,230,x y x y --≤⎧⎨--≥⎩当目标函数(0,0)z ax by a b =+>>在该约束条件下取到最小值22a b +的最小值为(A )5(B )4(C(D )2(10)已知a b >,椭圆1C 的方程为22221x y a b +=,双曲线2C 的方程为22221x y a b-=,1C 与2C 的离心率之积为2,则2C 的渐近线方程为(A )0x =(B 0y ±=(C )20x y ±=(D )20x y ±=二、填空题:本大题共5小题,每小题5分,共25分 (11)执行右面的程序框图,若输入的x 的值为1,则输出的n的值为 .(12)在ABC ∆中,已知tan AB AC A ⋅=,当6A π=时,ABC ∆的面积为 .(13)三棱锥P ABC -中,D ,E 分别为PB ,PC 的中点,记三棱锥D ABE -的体积为1V ,P ABC -的体积为2V ,则12V V = . (14)若24()b ax x+的展开式中3x 项的系数为20,则22a b +的最小值为 .(15)已知函数()()y f x x R =∈.对函数()()y g x x I =∈,定义()g x 关于()f x 的“对称函数”为()()y h x x I =∈,()y h x =满足:对任意x I ∈,两个点(,())x h x ,(,())x g x 关于点(,())x f x 对称.若()h x是()g x =()3f x x b =+的“对称函数”,且()()h x g x >恒成立,则实数b 的取值范围是 . 三、解答题:本大题共6小题,共75分. (16)(本小题满分12分)已知向量(,cos 2)a m x =,(sin 2,)b x n =,设函数()f x a b =⋅,且()y f x =的图象过点(12π和点2(,2)3π-. (Ⅰ)求,m n 的值;(Ⅱ)将()y f x =的图象向左平移ϕ(0ϕπ<<)个单位后得到函数()y g x =的图象.若()y g x =的图象上各最高点到点(0,3)的距离的最小值为1,求()y g x =的单调增区间.(17)(本小题满分12分)如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,60DAB ∠=,22AB CD ==,M 是线段AB 的中点.(Ⅰ)求证:111//C M A ADD ;(Ⅱ)若1CD 垂直于平面ABCD且1CD =,求平面11C D M 和平面ABCD 所成的角(锐角)的余弦值.(18)(本小题满分12分)乒乓球台面被网分成甲、乙两部分,如图,甲上有两个不相交的区域,A B ,乙被划分为两个不相交的区域,C D .某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C 上记3分,在D 上记1分,其它情况记0分.对落点在A 上的来球,小明回球的落点在C 上的概率为12,在D 上的概率为13;对落点在B 上的来球,小明回球的落点在C 上的概率为15,在D 上的概率为35.假设共有两次来球且落在,A B 上各一次,小明的两次回球互不影响.求:(Ⅰ)小明的两次回球的落点中恰有一次的落点在乙上的概率; (Ⅱ)两次回球结束后,小明得分之和ξ的分布列与数学期望。
2014年山东省高考数学试卷(理科)答案与解析

2014年山东省高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2014•山东)已知a,b∈R,i是虚数单位,若a﹣i与2+bi互为共轭复数,则(a+bi)22.(5分)(2014•山东)设集合A={x丨丨x﹣1丨<2},B={y丨y=2x,x∈[0,2]},则A∩B=3.(5分)(2014•山东)函数f(x)=的定义域为()),),,<)∪(4.(5分)(2014•山东)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个5.(5分)(2014•山东)已知实数x,y满足a x<a y(0<a<1),则下列关系式恒成立的是.>=,故32∫(x|=87.(5分)(2014•山东)为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()=8.(5分)(2014•山东)已知函数f(x)=丨x﹣2丨+1,g(x)=kx.若方程f(x)=g(x)),,<9.(5分)(2014•山东)已知x,y满足约束条件,当目标函数z=ax+by(a22=0作可行域如图,,解得:化目标函数为直线方程得:由图可知,当直线2a+b=2的最小值为10.(5分)(2014•山东)已知a>b>0,椭圆C1的方程为+=1,双曲线C2的方程为﹣=1,C1与C2的离心率之积为,则C2的渐近线方程为()±x±y=0的方程为+的离心率为:,的方程为﹣的离心率为:,的离心率之积为,,±y=0二、填空题(共5小题,每小题5分,满分25分)11.(5分)(2014•山东)执行如图程序框图,若输入的x的值为1,则输出的n的值为3.12.(5分)(2014•山东)若△ABC中,已知•=tanA,当A=时,△ABC的面积为.,再根据中,∵•A=时,有=AC=××=故答案为:.13.(5分)(2014•山东)三棱锥P﹣ABC中,D,E分别为PB,PC的中点,记三棱锥D﹣ABE的体积为V1,P﹣ABC的体积为V2,则=.面积的,=.故答案为:.14.(5分)(2014•山东)若(ax2+)6的展开式中x3项的系数为20,则a2+b2的最小值为2.+=,15.(5分)(2014•山东)已知函数y=f(x)(x∈R),对函数y=g(x)(x∈I),定义g(x)关于f(x)的“对称函数”为函数y=h(x)(x∈I),y=h(x)满足:对任意x∈I,两个点(x,h(x)),(x,g(x))关于点(x,f(x))对称.若h(x)是g(x)=关于f(x)=3x+b的“对称函数”,且h(x)>g(x)恒成立,则实数b的取值范围是(2,+∞).的定义可知,,﹣﹣>d=,或﹣222,三、解答题(共6小题,满分75分)16.(12分)(2014•山东)已知向量=(m,cos2x),=(sin2x,n),函数f(x)=•,且y=f(x)的图象过点(,)和点(,﹣2).(Ⅰ)求m,n的值;(Ⅱ)将y=f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y=g(x)的图象,若y=g(x)图象上的最高点到点(0,3)的距离的最小值为1,求y=g(x)的单调递增区间.(,,﹣),可得•=msin2x+ncos2x,(,=(sin2x+cos2x2x+)+=2k,,)﹣,17.(12分)(2014•山东)如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是等腰梯形,∠DAB=60°,AB=2CD=2,M是线段AB的中点.(Ⅰ)求证:C1M∥平面A1ADD1;(Ⅱ)若CD1垂直于平面ABCD且CD1=,求平面C1D1M和平面ABCD所成的角(锐角)的余弦值.,,,,,,,,﹣的法向量=的法向量=CD AM,=,)(,(﹣,,﹣的法向量,∴的法向量=,|==所成的角(锐角)的余弦值为18.(12分)(2014•山东)乒乓球台面被网分成甲、乙两部分,如图,甲上有两个不相交的区域A,B,乙被划分为两个不相交的区域C,D,某次测试要求队员接到落点在甲上的来球后向乙回球,规定:回球一次,落点在C上记3分,在D上记1分,其它情况记0分.对落点在A上的来球,小明回球的落点在C上的概率为,在D上的概率为;对落点在B 上的来球,小明回球的落点在C上的概率为,在D上的概率为.假设共有两次来球且落在A,B上各一次,小明的两次回球互不影响,求:(Ⅰ)小明两次回球的落点中恰有一次的落点在乙上的概率;(Ⅱ)两次回球结束后,小明得分之和ξ的分布列与数学期望.+,+=×))×=+.)﹣=×))×=;×=×))×=;×+×=;×=×+1×+2×+3×+4×+6×=.19.(12分)(2014•山东)已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)令b n=(﹣1)n﹣1,求数列{b n}的前n项和T n.=,,化为1==++.﹣++=1=.﹣++=1+=Tn=20.(13分)(2014•山东)设函数f(x)=﹣k(+lnx)(k为常数,e=2.71828…是自然对数的底数).(Ⅰ)当k≤0时,求函数f(x)的单调区间;(Ⅱ)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.当且仅当e,21.(14分)(2014•山东)已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有丨FA丨=丨FD丨.当点A的横坐标为3时,△ADF为正三角形.(Ⅰ)求C的方程;(Ⅱ)若直线l1∥l,且l1和C有且只有一个公共点E,(ⅰ)证明直线AE过定点,并求出定点坐标;(ⅱ)△ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.,,,的左侧时,=p方程为联立方程,消去得的解为,直线,的方程为,即联立方程=的坐标为,点=,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省2014届理科数学一轮复习试题选编6:方程的解与函数的零点及二分法一、选择题1 .(山东省枣庄市2013届高三3月模拟考试数学(理)试题)设函数4()(0)f x x ax a =->的零点都在区间[0,5]上,则函数1()g x x=与函数3()h x x a =- 的图象的交点的横坐标为正整数时实数a 的取值个数为( )A .3B .4C .5D .无穷个【答案】B43()()0f x x ax x x a =-=-=,解得0x =或x =即函数的零点有两个,要使零点都在区间[0,5]上,则有05<≤,解得0125a <≤.由()()h x g x =得31x a x-=,即41x ax -=有正整数解.设4()m x x ax =-,当1x =时,(1)11m a =-=,解得0a =,不成立.当2x =时,4(2)221621m a a =-=-=,解得151252a =<成立.当3x =时,4(3)338131m a a =-=-=,解得2551254a =<成立.当5x =时,4(5)5562551m a a =-=-=,解得6241255a =<成立.当6x =时,4(6)66129661m a a =-=-=,解得12951256a =>,不成立.所以满足条件的实数a 的取值为2,3,4,5,共有4个.选B .2 .(山东省德州市乐陵一中2013届高三十月月考数学(理)试题)设函数)0(ln 31)(>-=x x x x f ,则)(x f y =( )A .在区间),1(),1,1(e e 内均有零点B .在区间),1(),1,1(e e 内均无零点C .在区间)1,1(e 内有零点,在区间),1(e 内无零点D .在区间)1,1(e内无零点,在区间),1(e 内有零点【答案】D 【解析】111()10(1)=0()10333e f e f f e e =->>=+>,,,根据根的存在定理可知,选D .3 .(山东省莱芜市第一中学2013届高三12月阶段性测试数学(理)试题)已知函数21(0)(),()(1)(0)x x f x f x x a f x x -⎧-≤==+⎨->⎩若方程有且只有两个不相等的实数根,则实数a 的取值范围为( )A .(,0]-∞B .[0,1)C .(,1)-∞D .[0,)+∞【答案】C 【解析】做出函数)(x f 的图象如图,,由图象可知当直线为1+=x y 时,直线与函数)(x f 只要一个交点,要使直线与函数有两个交点,则需要把直线1+=x y 向下平移,此时直线恒和函数)(x f 有两个交点,所以1<a ,选C .4 .(山东省青岛市2013届高三第一次模拟考试理科数学)已知函数2, 0(), 0x x f x x x x ≤⎧=⎨->⎩,若函数()()g x f x m =-有三个不同的零点,则实数m 的取值范围为( )A .1[,1]2-B .1[,1)2-C .1(,0)4-D .1(,0]4-【答案】 C 由()()=0g x f x m =-得()f x m =,作出函数()y f x =的图象,,当0x >时,2211()()024f x x x x =-=--≥,所以要使函数()()g x f x m =-有三个不同的零点,则104m <<,即1(,0)4-,选 C .5 .(山东省济南市2012届高三3月高考模拟题理科数学(2012济南二模))偶函数f (x )满足f (x -1)=f (x +1),且在x ∈[0,1]时,f (x )=x ,则关于x 的方程f (x )= 110x⎛⎫⎪⎝⎭,在x ∈[0,4]上解的个数是( )A .1B .2C .3D .4【答案】D【解析】由)1()1(+=-x f x f ,知)()2(x f x f =+,周期为2,又函数为偶函数,所以)1()1()1(x f x f x f -=+=-,函数关于1=x 对称,在同一坐标内做出函数x y x f y )101(),(==的图象,由图象知在]4,0[内交点个数为个.选 D .6 .(山东省曲阜市2013届高三11月月考数学(理)试题)如果若干个函数图象经过平移后能够重合,则称这些函数为“同族函数”.给出下列函数:①()sin cos f x x x =; ②()2sin 4f x x π⎛⎫=+ ⎪⎝⎭;③()sin f x x x =; ④()21f x x =+其中“同族函数”的是 ( )A .①②B .①④C .②③D .③④【答案】C 7 .(山东省实验中学2013届高三第三次诊断性测试理科数学)函数x x x f ln )1()(+=的零点有 ( )A .0个B .1个C .2个D .3个【答案】B 【解析】由()(1)ln 0f x x x =+=得1ln 1x x =+,做出函数1ln ,1y x y x ==+的图象,如图由图象中可知交点个数为1个,即函数的零点个数为1个,选 B .8 .(2013年山东临沂市高三教学质量检测考试理科数学)函数1f (x )lg x x=-的零点所在的区间是( )A .(3,4)B .(2,3)C .(1,2)D .(0,1)【答案】B 因为1(2)lg 202f =-<,1(3)lg 303f =->, 所以函数的零点在区间(2,3)上,选 B . 9 .(山东省烟台市2013届高三上学期期末考试数学(理)试题)设()338xf x x =+-,用二分法求方程3380x x +-=在(1,2)x ∈内近似解的过程中得(1)0,(1.5)0,(1.25)0f f f <><,则方程的根落在区间 ( ) A .(1,1.25) B .(1.25,1.5) C .(1.5,2) D .不能确定 【答案】B【解析】因为(1.5)0,(1.25)0f f ><,所以根据根的存在定理可知方程的根落在区间(1.25,1.5)上,所以选 B .10.(山东省寿光市2013届高三10月阶段性检测数学(理)试题)函数223,0()2ln ,0x x x f x x x ⎧+-≤=⎨-+⎩ 的零点个数为 ( )A .3B .2C .1D .0【答案】B 11.(山东省凤城高中2013届高三4月模拟检测数学理试题 )若定义在R 上的偶函数()f x 满足(2)()f x f x +=,且当[0,1]x ∈时,()f x x =,则方程3()log ||f x x =的解个数是( )A .0个B .2个C .4个D .6个 【答案】C 12.(山东济南外国语学校2012—2013学年度第一学期高三质量检测数学试题(理科))函数23)(3+-=x x x f 的零点为 ( )A .1,2B .±1,-2C .1,-2D .±1, 2【答案】C 【解析】由3()320f x x x =-+=得3(22)0x x x ---=,即2(1)(2)0x x -+=,解得1x =或2x =-,选C .13.(山东省青岛市2013届高三上学期期中考试数学(理)试题)若函数a ax x f 213)(-+=在区间)1,1(-上存在一个零点,则a 的取值范围是 ( )A .51>a B .51>a 或1-<a C .511<<-a D .1a <-【答案】B14.(山东省曲阜市2013届高三11月月考数学(理)试题)函数223,0()2ln ,0x x x f x x x ⎧+-≤=⎨-+>⎩的零点个数是( )A .0B .1C .2D .3【答案】C 15.(山东省滨州市2013届高三第一次(3月)模拟考试数学(理)试题)定义在R 上的奇函数()f x ,当x ≥0时, ))12log (1),0,1,()1|3|,1,,x x f x x x ⎧+∈⎡⎣⎪=⎨⎪--∈+∞⎡⎣⎩则关于x 的函数()()F x f x a =-(0<a <1)的所有零点之和为( )A .1-2aB .21a-C .12a--D .21a--【答案】A当01x ≤<时,()0f x ≤.当1x ≥时,函数()1|3|f x x =--,关于3x =对称,当1x ≤-时,函数关于3x =-对称,由()()0F x f x a =-=,得(),y f x y a ==.所以函数()()F x f x a =-有5个零点.当10x -≤<,时,01x <-≤,所以122()log (1)log (1)f x x x -=-+=--,即2()log (1)f x x =-,10x -≤<.由2()log (1)f x x a =-=,解得12a x =-,因为函数()f x 为奇函数,所以函数()()F x f x a =-(0<a <1)的所有零点之和为12a x =-,选 ( )A .16.(山东省潍坊市2013届高三上学期期末考试数学理( )A .)已知函数⎩⎨⎧>≤+=0,10,2)(x nx x kx x f ()k R ∈,若函数()y f x k =+有三个零点,则实数k 的取值范围是( )A .2k ≤B .10k -<<C .21k -≤<-D .2k ≤-【答案】D【解析】由()0y f x k =+=,得()f x k =-,所以0k ≤.做出函数()y f x =的图象如图,要使函数()y f x k =+有三个零点,则由2k -≥,即2k ≤-,选D .17.(山东省菏泽市2013届高三5月份模拟考试数学(理)试题)已知定义在R 上的函数()f x 的对称轴为3x =-,且当3x ≥-时,()23xf x =-,若函数()f x 在区间(1,)()k k k Z -∈上有零点,则K 的值为 ( )A .2或-7B .2或-8C .1或-7D .1或-8 【答案】A18.(山东省日照市2013届高三12月份阶段训练数学(理)试题)设函数()f x 的零点为1x ,函数()422x g x x =+-的零点为2x ,若1214x x ->,则()f x 可以是 ( )A .()122f x x =-B .()214f x x x =-+- C.()110xf x =-D .()()ln 82f x x =-【答案】C 【解析】113()20422g =+-=-<,1()212102g =+-=>,则11()()024g g ⋅<,所以21142x <<.若为( ) A .()122f x x =-,则()122f x x =-的零点为114x =,所以211044x <-<,所以121||4x x -<,不满足题意.如为 B .()214f x x x =-+-的零点为112x =,211024x <-<,所以121||4x x -<,不满足题意.若为 C .()110xf x =-的零点为10x =,所以211042x <-<,所以满足121||4x x ->.若为 D .()()ln 82f x x =-的零点为138x =,23133182884x -<-<-,即2131888x -<-<,所以121||8x x -<,不满足题意,所以选C . 19.(山东省潍坊市四县一校2013届高三11月期中联考(数学理))已知0x 是xx f x 1)21()(+=的一个零点,)0,(),,(0201x x x x ∈-∞∈,则 ( )A .0)(,0)(21<<x f x fB .0)(,0)(21>>x f x fC .0)(,0)(21<>x f x fD .0)(,0)(21><x f x f【答案】C 【解析】在同一坐标系下做出函数11()(),()2xf x f x x==-的图象由图象可知当0(,)x x ∈-∞时,11()2x x >-,0(,0)x x ∈时,11()2x x<-,所以当)0,(),,(0201x x x x ∈-∞∈,有0)(,0)(21<>x f x f ,选C20.(山东省临沂市2013届高三5月高考模拟理科数学)已知定义在R 上的函数()y f x =对任意的x 都满足(1)()f x f x +=-,当11x -≤< 时,3()f x x =,若函数()()log a g x f x x =-至少6个零点,则a 取值范围是( )A .10,5,5+∞ (]() B .10,[5,5+∞ ())C .11,]5,775 (()D .11,[5,775())【答案】 A 由(1)()f x f x +=-得,(2)()f x f x +=,所以函数的周期是 2. 由()()log =0a g x f x x =-.得()=log a f x x ,分别作出函数(),()=log a y f x y m x x ==的图象,因为(5)=log 5(5)a m m =-.所以若1a >,由图象可知要使函数()()log a g x f x x =-至少6个零点,则满足(5)=log 51a m <.此时5a >.若01a <<,由图象可知要使函数()()log a g x f x x =-至少6个零点,则满足(5)=log 51a m -≥-,此时105a <≤.所以a 取值范围是10,5,5+∞ (](),选 ( )A .21.(山东省莱芜市莱芜十七中2013届高三4月模拟数学(理)试题)已知()f x 是定义在R 上的奇函数,满足33()()22f x f x -+=+,当3(0,)2x ∈时, 2()ln(1)f x x x =-+,则函数()f x 在区间[0,6]上的零点个数是 ( )A .3B .5C .7D .9【答案】D22.(山东省莱芜市莱芜十七中2013届高三4月模拟数学(理)试题)已知函数x x f x 21log 2)(-=,且实数a >b >c >0满足0)()()(<⋅⋅c f b f a f ,若实数0x 是函数y =)(x f 的一个零点,那么下列不等式中不可..能.成立的是 ( )A .a x <0B .a x >0C .b x <0 D .c x <0【答案】D 二、填空题 23.(山东省文登市2013届高三3月二轮模拟考试数学(理))函数12()3sin log f x x x π=-的零点的个数是__________.【答案】 924.(2011年高考(山东理))已知函数()log a f x x x b =+-(0a >,且1a ≠).当234a b <<<<时,函数()f x 的零点()0,1x n n ∈+,*n N ∈,则n =_________.【答案】解析:根据(2)log 22log 230a a f b a =+-<+-=,(3)log 32log 340a a f b a =+->+-=,而函数()f x 在(0,)+∞上连续,单调递增,故函数()f x 的零点在区间(2,3)内,故2n =.答案应填:2.25.(2013届山东省高考压轴卷理科数学)给定方程:1()sin 102x x +-=,下列命题中:①该方程没有小于0的实数解;②该方程有无数个实数解;③该方程在(–∞,0)内有且只有一个实数解;④若0x 是该方程的实数解,则0x>–1.则正确命题是___________. 【答案】②③④【解析】由1()sin 102x x +-=得1sin 1()2x x =-,令()f x =sin x ,()g x =11()2x-,在同一坐标系中画出两函数的图像如右,由图像知:①错,③、④对,而由于()g x =11()2x-递增,小于1,且以直线1=y 为渐近线,()f x =sin x 在-1到1之间振荡,故在区间(0,+∞)上,两者图像有无穷多个交点,所以②对,故选填②③④.26.(山东省烟台市2013届高三上学期期中考试数学试题(理科))函数2221()431x x f x x x x -≤⎧=⎨-+>⎩, , 的图象和函数()()ln 1g x x =-的图象的交点个数是 ____________.【答案】2 【解析】画出图象知交点个数为2.27.(山东省烟台市莱州一中2013届高三第二次质量检测数学(理)试题)若函数()33f x x x a =-+有三个不同的零点,则实数a 的取值范围是__________.【答案】(2,2)- 【解析】函数的导数为()22'333(1)f x x x =-=-,所以1x =和1x =-是函数的两个极值,由题意知,极大值为(1)2f a -=+,极小值为(1)2f a =-+,所以要使函数()f x 有三个不同的零点,则有20a +>且20a -+<,解得22a -<<,即实数a 的取值范围是(2,2)-.28.(山东省济南市2013届高三3月高考模拟理科数学)()()()()()()()121116()|21|,(),,,n n f x x f x f x f x f f x f x f f x -=-=== .则函数()4y f x =的零点个数为______________.【答案】8由43()(())0f x f f x ==,即32()10f x -=,解得31()2f x =.又3221()(())2()12f x f f x f x ==-=,解得23()4f x =或21()4f x =.当23()4f x =时,2113()(())2()14f x f f x f x ==-=,解得17()8f x =或11()8f x =,当21()4f x =时,2111()(())2()14f x f f x f x ==-=,解得15()8f x =或13()8f x =,由17()()218f x f x x ==-=,所以1511616x =或.由13()()218f x f x x ==-=,所以1151616x =或.由15()()218f x f x x ==-=,所以1331616x =或.由13()()218f x f x x ==-=,所以1151616x =或.所以共有8个零点.29.(2009高考(山东理))若函数f(x)=a x-x-a(a>0且a ≠1)有两个零点,则实数a 的取值范围是 .【答案】【解析】: 设函数(0,xy a a =>且1}a ≠和函数y x a =+,则函数f(x)=a x-x-a(a>0且a ≠1)有两个零点, 就是函数(0,xy a a =>且1}a ≠与函数y x a =+有两个交点,由图象可知当10<<a 时两函数只有一个交点,不符合,当1>a 时,因为函数(1)xy a a =>的图象过点(0,1),而直线y x a =+所过的点一定在点(0,1)的上方,所以一定有两个交点.所以实数a 的取值范围是1>a 答案: 1>a30.(山东省威海市2013届高三上学期期末考试理科数学)已知|||lg |,0()2,0x x x f x x >⎧=⎨≤⎩,则函数22()3()1y f x f x =-+的零点的个数为_______个.【答案】5 由22()3()10y f x f x =-+=解得()1f x =或1()2f x =.若()1f x =,当0x >时,由lg 1x =,得lg 1x =±,解得10x =或110x =.当0x ≤时,由21x =得0x =.若1()2f x =,当0x >时,由1lg 2x =,得1lg 2x =±,解得x =或x =.当0x ≤时,由122x=得1x =-,此时无解.综上共有5个零点.31.(山东省寿光市2013届高三10月阶段性检测数学(理)试题)若函数()(01)xf x a x a a a =--≠ 且有两个零点,则实数a 的取值范围是________.a a 【答案】{|1}。